

## ELIOMARA LEITE MEIRA GOMES

## MAPEAMENTO DOS *INSELBERG*S EM QUIXADÁ E QUIXERAMOBIM, CEARÁ: PADRÕES MORFOLÓGICOS E DISTRIBUIÇÃO

FORTALEZA 2023

### ELIOMARA LEITE MEIRA GOMES

## MAPEAMENTO DOS *INSELBERG*S EM QUIXADÁ E QUIXERAMOBIM, CEARÁ: PADRÕES MORFOLÓGICOS E DISTRIBUIÇÃO

Dissertação apresentada ao Programa de Pós-Graduação em Geografia da Universidade Federal do Ceará, como requisito parcial à obtenção do título de mestre em Geografia. Área de concentração: Geomorfologia.

Orientador: Prof. Dr. Rubson Pinheiro Maia.

FORTALEZA 2023

Dados Internacionais de Catalogação na Publicação Universidade Federal do Ceará Sistema de Bibliotecas Gerada automaticamente pelo módulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

G613m Gomes, Eliomara Leite Meira.

Mapeamento dos inselbergs em Quixadá e Quixeramobim, Ceará: : Padrões morfológicos e distribuição / Eliomara Leite Meira Gomes. – 2023. 90 f. : il. color.

Dissertação (mestrado) – Universidade Federal do Ceará, Centro de Ciências, Programa de Pós-Graduação em Geografia, Fortaleza, 2023.

Orientação: Prof. Dr. Rubson Pinheiro Maia.

1. Inselbergs. 2. Relevo Granítico. 3. Mapeamento. 4. Distribuição. 5. Morfologia. I. Título. CDD 910

### ELIOMARA LEITE MEIRA GOMES

## MAPEAMENTO DOS *INSELBERG*S EM QUIXADÁ E QUIXERAMOBIM, CEARÁ: PADRÕES MORFOLÓGICOS E DISTRIBUIÇÃO

Dissertação apresentada ao Programa de Pós-Graduação em Geografia da Universidade Federal do Ceará, como requisito parcial à obtenção do título de mestre em Geografia. Área de concentração: Geomorfologia.

Aprovada em: xx/xx/xxxx.

### BANCA EXAMINADORA

Prof. Dr. Rubson Pinheiro Maia (Orientador) Universidade Federal do Ceará (UFC)

Prof. Dr. Vanda Carneiro de Claudino Sales Universidade Federal de Pelotas (UFPel)

Prof. Dr. Nelson Ferreira Fernandes Universidade Federal do Rio de Janeiro (UFRJ)

A Deus e à Nossa Senhora. Aos meus pais, José de Anchieta e Maria do Socorro.

#### AGRADECIMENTOS

Agradeço a Deus e a Nossa Senhora, por terem me acompanhado e ouvido minhas preces, e sempre cuidarem de mim nos momentos que mais difíceis.

Agradeço aos meus pais, Anchieta e Socorro, por seu amor e apoio. Sem eles eu não conseguiria seguir em frente nessa montanha que chamamos de vida.

A autora agradece ao financiamento do PROEX/CAPES, processo nº 0348/2021/23038.008387/2021-53: Programa de Excelência Acadêmica.

Ao Prof. Dr. Rubson Pinheiro Maia, pela excelente orientação e pelos conselhos não só acadêmicos, mas também sobre a vida.

Aos professores participantes da banca examinadora Professora Dr. Vanda Claudino Sales e o Professor Dr. Nelson Ferreira Fernandes pelo tempo, pelas valiosas colaborações e sugestões.

Agradeço também aos meus amigos do Laboratório de Geomorfologia – UFC, que mesmo eu sendo chata e briguenta me apoiaram e sempre acreditaram no meu potencial. Um agradecimento em especial a minha amiga Sabrina, por me acompanhar nessa caminhada e me ajudar de todas as formas que foram possíveis, com os cafés sempre bem-vindos e as conversas sobre a vida e sobre geomorfologia. Sou grata a Edilene, Secretária da Pós-Graduação em Geografia pelas conversas, conselhos e atos gentis, sempre me reconfortando. Agradeço também ao corpo docente do Depto. de Geografia, em especial ao Professor Tiago Vieira Cavalcante pelos conselhos maravilhosos.

Agradeço aos amigos que sempre estiveram comigo: Beatriz, Cleiciane, Guaracy, Michel, Renata, Kelvia e Caio. Em especial agradeço ao meu amigo Davi, que sempre me ouviu surtar nesses 24 meses, sempre foi paciente comigo, brincou, conversou, e acreditou tanto em meu potencial.

A todos aqueles que não foram citados, deixo aqui os meus sinceros agradecimentos. Grande abraço.

"Devemos aprender durante toda a vida, sem imaginar que a sabedoria vem com a velhice." (Platão)

### RESUMO

Campos de *Inselbergs* estão presentes em diversos continentes, incluindo a América do Sul, América do Norte e África. No Brasil, um dos maiores agrupamentos desses relevos é o campo de *Inselbergs* graníticos de Quixadá-Quixeramobim, que consiste em 195 *Inselbergs* organizados em dois agrupamentos correspondentes aos plútons Quixadá e Quixeramobim. Apesar da importância dessas formas, a distribuição espacial e seus padrões morfológicos ainda são pouco explorados, especialmente com base em parâmetros morfométricos. Este estudo tem como objetivo analisar a distribuição dos agrupamentos de *Inselbergs* em relação a padrões morfológicos e morfométricos. Para realizar a análise morfométrica dos *Inselbergs*, foram utilizadas imagens de radar e ópticas com diferentes resoluções espaciais. Seus limites foram vetorizados manualmente por meio de programas SIG e suas altitudes mínimas e máximas foram extraídas automaticamente utilizando uma ferramenta de análise e medidas inserida no software QGIS 3.28.4 Firenze. A partir do mapeamento realizado, foram identificadas seis áreas core com alta densidade de *Inselbergs*, chegando a 1,5 *Inselbergs* por quilômetro quadrado. Os padrões de distribuição, em geral, estão relacionados com as características geológicas dos plútons e sua configuração estrutural.

Palavras-chave: relevo granítico; inselbergs; morfologia; distribuição.

### ABSTRACT

*Inselberg* fields are found on several continents, including South America, North America and Africa. In Brazil, one of the largest assemblages of these reliefs is the Quixadá-Quixeramobim granitic *inselberg* field, which consists of 195 *inselbergs* organised in two clusters corresponding to the Quixadá and Quixeramobim plutons. Despite the importance of these forms, their spatial distribution and morphological patterns are still little studied, especially based on morphometric parameters. The aim of this study was to analyse the distribution of *inselbergs* in relation to morphological and morphometric patterns. Radar and optical images with different spatial resolutions were used for the morphometric analysis of the *inselbergs*. Their boundaries were manually vectorised using GIS programs and their minimum and maximum heights were automatically extracted using an analysis and measurement tool inserted in the QGIS 3.28.4 Firenze software. Six core areas were identified with a high density of *inselbergs*, reaching 1.5 *inselbergs* per square kilometre. The distribution patterns are generally related to the geological characteristics of the plutons and their structural configuration.

Keywords: granite terrain; inselbergs; morphology; distribution.

## LISTA DE FIGURAS

| Figura 1  | <ul> <li>Mapa de localização dos municípios de Quixadá e<br/>Quixeramobim</li> </ul>                                                                                                                                                                | 18 |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figura 2  | <ul> <li>Geologia destacando apenas os plútons Quixadá e Quixeramobim. ZCQ –</li> <li>Zona de Cisalhamento Quixeramobim, ZCSP – Zona de Cisalhamento</li> <li>Senador Pompeu</li> </ul>                                                             | 19 |
| Figura 3  | <ul> <li><i>Inselbergs</i> de Quixadá destacados na Superfície</li> <li>Sertaneja</li> </ul>                                                                                                                                                        | 20 |
| Figura 4  | - Diferença entre um MDS e um MDT                                                                                                                                                                                                                   | 24 |
| Figura 5  | <ul> <li>Resolução horizontal e vertical de um MDE</li> </ul>                                                                                                                                                                                       | 24 |
| Figura 6  | <ul> <li>Relação entre os dados altimétricos (representados pelas linhas de contorno) e as formas relevo.</li> </ul>                                                                                                                                | 27 |
| Figura 7  | <ul> <li>Ilustração indicando o gradiente de inclinação onde a distância horizontal<br/>curta indica declive íngreme e distância horizontal mais extensa indica<br/>declive suave.</li> </ul>                                                       | 28 |
| Figura 8  | <ul> <li>Ilustração exemplificando uma encosta simples e uma encosta complexa.</li> <li>SU – Summit/Topo; SH – Shoulder/Ombro; BS – Backslope/Encosta</li> <li>posterior; FS – Footslope/Talude e TS – Toeslope/base da</li> <li>encosta</li> </ul> | 29 |
| Figura 9  | - Ilustração de um perfil de encosta em relevo granítico                                                                                                                                                                                            | 30 |
| Figura 10 | <ul> <li><i>Inselbergs</i> do tipo bornhardt. (a) Pancas, Brazil e (b) Ulruru,</li> <li>Austrália</li> </ul>                                                                                                                                        | 34 |
| Figura 11 | <ul> <li><i>Inselbergs</i> do tipo castelados. (a) Montes Hoggar, sul da Argélia e (b)</li> <li>Mojave Desert, California</li> </ul>                                                                                                                | 35 |
| Figura 12 | <ul> <li><i>Inselbergs</i> de blocos. (a) Naraku, noroeste Queensland e (b) Mojave</li> <li>Desert, California</li> </ul>                                                                                                                           | 36 |
| Figura 13 | – Distribuição Global dos inselbergs                                                                                                                                                                                                                | 37 |

| Figura 14 – | Inselberg caracterizado por feições de dissolução                                                                                                                                                                                                                                                                                          | 38 |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figura 15 – | <i>Inselberg</i> caracterizado por feições de fraturamento                                                                                                                                                                                                                                                                                 | 39 |
| Figura 16 – | Inselbergs maciços                                                                                                                                                                                                                                                                                                                         | 39 |
| Figura 17 – | A. Lajedo de Pai Mateus. B. Diferença de altitude do Lajedo de Pai<br>Mateus                                                                                                                                                                                                                                                               | 42 |
| Figura 18 – | Representação da relação altura, base e inclinação em ortomosaico                                                                                                                                                                                                                                                                          | 47 |
| Figura 19 – | Análise de valores dos pixels, realizada com base em uma grade móvel de três em três onde cada célula contém um valor altimétrico                                                                                                                                                                                                          | 47 |
| Figura 20 – | Áreas de alto declive em <i>inselberg</i> s. Comparação entre o MDE FABDEM<br>e o MDE gerado pelo<br>VANT                                                                                                                                                                                                                                  | 48 |
| Figura 21 – | Delimitação e reconhecimento de <i>inselberg</i> s. A – Altitude de <i>inselberg</i> s<br>segundo FABDEM. A1e A2– <i>Inselberg</i> do tipo nubbin. B1 – Foto<br>capturada em campo. B2 – Imagem obtida através do streetview (google<br>maps)                                                                                              | 49 |
| Figura 22 – | Extração de estatísticas zonais de camada rasterizada. A. Imagem de satélite mostrando MDE com <i>inselberg</i> s. Margens individuais dos <i>inselberg</i> s (linhas vermelhas). Amortecedores de 50 m de diâmetro (linha: amarelas) ao redor das margens, e pontos (preto). B. Cálculo para extração das alturas dos <i>inselberg</i> s. | 49 |
| Figura 23 – | Classificação supervisionada dos lajedos a partir de imagens SENTINEL<br>2A                                                                                                                                                                                                                                                                | 51 |
| Figura 24 – | Caracterização de lajedo. A. Vista aérea de área com predominância de<br>lajedos em Quixadá e representação do critério de inclinação. B. Foto<br>vertical do lajedo, indicando área maior com superfícies de baixo ângulo<br>de inclinação                                                                                                | 51 |

| Figura 25 – | Caracterização de <i>inselberg</i> s de fraturamento. A. Vista aérea do <i>inselberg</i> s Muxió, localizado em Quixadá. A1. Vista no streetview onde é                                                                                                                                                                                                             |    |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|             | possível observar ângulo e blocos de colapso. A2. Foto mostrando outra perspectiva do <i>inselberg</i> Muxió                                                                                                                                                                                                                                                        | 52 |
| Figura 26 – | Caracterização de <i>inselberg</i> s de dissolução. A. Vista aérea do <i>inselberg</i> s<br>Pedra do Herval, localizado em Quixadá. A1, A2 e A3. Vista aérea<br>vertical mostrando escarpas com feições de<br>dissolução                                                                                                                                            | 53 |
| Figura 27 – | Caracterização de <i>inselberg</i> s maciços. A. Vista aérea do <i>inselberg</i> s Pedra do bolo, localizado em Quixeramobim. A1. Vista do streetview. A2. Foto vertical tirada em campo                                                                                                                                                                            | 53 |
| Figura 28 – | Mapeamento e agrupamento de <i>inselberg</i> s nos plútons de Quixadá e<br>Quixeramobim, A e B respectivamente. Áreas core de Quixadá A1, A2 e<br>A3 e áreas core de Quixeramobim, B1, B2 e B3                                                                                                                                                                      | 57 |
| Figura 29 – | Mapeamento e agrupamento de lajedos nos plútons de Quixadá e<br>Quixeramobim, A e B respectivamente. Áreas core de Quixadá A1e A2 e<br>áreas core de Quixeramobim, B1 e B2                                                                                                                                                                                          | 60 |
| Figura 30 – | Distribuição dos <i>inselberg</i> s por morfologia. A) Delimitação e distribuição<br>de <i>inselberg</i> s em Quixadá. B) Delimitação e distribuição de <i>inselberg</i> s em<br>Quixeramobim. A1 e B1) corresponde a tendência de orientação do<br>agrupamento de formas dos <i>inselberg</i> s, onde A1 corresponde a Quixadá e<br>B1 corresponde a Quixeramobim. | 63 |
| Figura 31 – | Classificação dos <i>inselberg</i> s segundo a altura. A - Delimitação e<br>distribuição de <i>inselberg</i> s em Quixadá e Quixeramobim. B e C<br>distribuição de alturas nos dois plútons em classes de <50, 50 – 100 e<br>>100m                                                                                                                                  | 65 |

## LISTA DE TABELAS

| Tabela 1 | <ul> <li>Seleção de conjuntos de dados topográficos globais e regionais<br/>distribuídos de forma gratuita</li> </ul> | 22 |
|----------|-----------------------------------------------------------------------------------------------------------------------|----|
| Tabela 2 | - Definição de <i>inselbergs</i> com base em vários autores                                                           | 30 |
| Tabela 3 | <ul> <li>Densidade de <i>inselberg</i>s na totalidade dos plútons Quixadá e</li> <li>Quixeramobim</li> </ul>          | 56 |
| Tabela 4 | <ul> <li>Densidade de <i>inselberg</i>s nas áreas core dos plútons Quixadá e</li> <li>Quixeramobim</li> </ul>         | 58 |
| Tabela 5 | - Densidade de lajedos na totalidade dos plútons Quixadá e Quixeramobim.                                              | 59 |
| Tabela 6 | - Densidade de lajedos nas áreas core dos plútons Quixadá e Quixeramobin                                              | 61 |
| Tabela 7 | <ul> <li>Intervalo de altura de <i>inselberg</i>s no plúton Quixadá e</li> <li>Quixeramobim</li> </ul>                | 64 |
| Tabela 8 | <ul> <li>Correlação entre tipo morfológicos dos <i>inselberg</i>s e estatísticas básicas das alturas.</li> </ul>      | 66 |

## LISTA DE ABREVIATURAS E SIGLAS

| .SHP    | Shapefile                                                      |
|---------|----------------------------------------------------------------|
| ALOS    | Advanced Land Observing Satellite - Phased Array type L-band   |
| PALSAR  | Synthetic Aperture Radar                                       |
| ASPRS   | Sociedade Americana de Fotogrametria e Sensoriamento Remoto    |
| ASTER   | Advanced Spaceborne Thermal Emission and Reflection Radiometer |
| COPDEM  | Copernicus Digital Elevation Model                             |
| CPRM    | Companhia de Pesquisa de Recursos Minerais                     |
| EGM     | EuroGlobalMap                                                  |
| EMBRAPA | Empresa Brasileira de Pesquisa Agropecuária                    |
| ENE     | Leste-nordeste                                                 |
| ESA     | European Space Agency                                          |
| EU-DEM  | Digital Elevation Model over Europe                            |
| FABDEM  | Forest And Buildings removed Copernicus DEM                    |
| FUNCEME | Fundação Cearense de Meteorologia                              |
| GDAL    | Geospatial Data Abstraction Library                            |
| GDEM    | Global Digital Elevation Model                                 |
| GPS     | Sistema de Posicionamento Global                               |
| IBGE    | Instituto Brasileiro de Geografia e Estatística                |
| INMET   | Instituto Nacional de Meteorologia                             |
| IPECE   | Instituto de Pesquisa e Estratégia Econômica do Ceará          |
| IQR     | Intervalo interquartil                                         |
| IR      | Infra-Vermelho                                                 |
| LiDAR   | Light Detection and Ranging                                    |
| MDE     | Modelo Digital de Elevação                                     |

| MDS   | Modelo Digital de Superfície        |
|-------|-------------------------------------|
| MDT   | Modelo Digital do Terreno           |
| MSI   | MultiSpectral Instrument            |
| Ν     | Norte                               |
| NE    | Nordeste                            |
| NW    | Noroeste                            |
| RADAR | Radio Detection and Ranging         |
| RTC   | Radiometric Terrain Correcte        |
| SAR   | Radar de Abertura Sintética         |
| SIG   | Sistema de Informação Geográfica    |
| SPL   | Superficie Pré-Litorânea            |
| SRTM  | Shuttle Radar Topography Mission    |
| SS1   | Superficie Sertaneja 1              |
| SS2   | Superficie Sertaneja 2              |
| SW    | Sudoeste                            |
| VANT  | Veículos Aéreos Não Tripulados      |
| WGS   | World Geodetic System               |
| WSW   | Oeste-Sudoeste                      |
| ZCQ   | Zona de Cisalhamento Quixeramobim   |
| ZCSP  | Zona de Cisalhamento Senador Pompeu |

# LISTA DE SÍMBOLOS

- ° Graus
- > Maior que
- < Menor que
- m Metro
- % Porcentagem
- km Quilômetro
- α Alfa

# SUMÁRIO

| 1     | INTRODUÇÃO                                                          | 16 |
|-------|---------------------------------------------------------------------|----|
| 1.1   | Localização e apresentação da área de estudo                        | 17 |
| 1.2   | Objetivos                                                           | 20 |
| 1.2.1 | Gerais                                                              | 20 |
| 1.2.2 | Específicos                                                         | 21 |
| 2     | FUNDAMENTAÇÃO TEÓRICA                                               | 22 |
| 2.1   | Representação de dados topográficos                                 | 22 |
| 2.1.1 | Modelos Digitais de Elevação – MDE                                  | 22 |
| 2.1.2 | Modelos obtidos por Veículo Aéreo Não-Tripulado (VANT)              | 25 |
| 2.2   | Aspectos Fundamentais para Análise Quantitativa de Relevos          | 26 |
| 2.3   | Definição e tipos de <i>Inselberg</i> s                             | 30 |
| 2.4   | Morfometria e Morfologia dos Lajedos                                | 41 |
| 2.5   | Aplicações e limitações do mapeamento geomorfométrico em diferentes |    |
|       | escalas                                                             | 43 |
| 3     | METODOLOGIA                                                         | 45 |
| 3.1   | Levantamento bibliográfico e cartográfico                           | 45 |
| 3.2   | Reconhecimento e digitalização dos <i>Inselberg</i> s e lajedos     | 45 |
| 3.3   | Análise de Dados                                                    | 54 |
| 4     | RESULTADOS                                                          | 56 |
| 4.1   | Mapeamento e distribuição dos <i>Inselberg</i> s e lajedos          | 56 |
| 4.2   | Classificação Morfológica dos <i>Inselberg</i> s                    | 62 |
| 4.3   | Propriedades Morfométricas dos <i>Inselberg</i> s                   | 64 |
| 5     | DISCUSSÃO                                                           | 68 |
| 6     | CONCLUSÕES                                                          | 71 |
|       | REFERÊNCIAS                                                         | 72 |
|       | APÊNDICE A – TABELA DE DADOS DOS <i>INSELBERG</i> S DE              |    |
|       | QUIXADÁ E QUIXERAMOBIM                                              | 82 |

### 1 INTRODUÇÃO

As áreas graníticas apresentam uma diversidade morfológica que dificulta a caracterização de uma "paisagem granítica" típica (Migoń, 2004a). Um dos elementos mais frequentes e distintos nessas áreas são os *inselberg*, relevo residual que se eleva abruptamente de uma superfície aplainada (Willis, 1934; Campbell, 1997; Migoń, 2004b). Os *inselbergs* são amplamente reconhecidos como um dos principais tipos de relevo granítico, embora não estejam limitados exclusivamente ao granito (Gerrard, 1988; Migoń, 2013).

*Inselbergs* são encontrados em diversos lugares do mundo (Migoń, 2006, 2010; Twidale, 1995; Goudie, 2023), sendo o Brasil um dos países com maior ocorrência dessas formas, distribuindo-se desde o semiárido na região Nordeste (Ceará, Bahia, Paraíba e Rio Grande do Norte) até porções intertropicais no Sudeste (Minas Gerais, Espírito Santo e Rio de Janeiro).

A morfologia dos *inselbergs* é resultante de processos erosivos que atuam de forma diferencial refletindo tanto o controle estrutural quanto o controle litológico (Migoń, 2006; Migoń e Vieira, 2014; Kamenov *et al.*, 2022; Souza *et al.*, 2023). A classificação morfológica dos *inselbergs* é fundamentada nas relações entre estrutura e forma (Migoń, 2021), e exibem uma diversidade de tamanho e formas, sendo designados por diversos nomes (Gerrard, 1988).

O estudo da morfologia do relevo é fundamental, mas nem sempre é simples definir, classificar e mapear essas formas, pois elas podem se intercalar, se transformar ou se esconder por ações naturais ou humanas. A complexidade envolvida na caracterização precisa das formas de relevo se reflete na desafiante tarefa de estabelecer sistemas de classificação abrangentes, na elaboração de mapas geomorfológicos em várias escalas, na delineação de limites imprecisos, na formulação de critérios universalmente aplicáveis para caracterização e na busca por resultados objetivos e reprodutíveis (Bishop *et al.*, 2012).

A morfologia dos *Inselbergs* pode ser complementada através da quantificação de suas variáveis morfométricas. A combinação das tradicionais descrições de *inselbergs* com a análise morfométrica se revela como um recurso fundamental para a caracterização e classificação dessas formas de relevo. Essa abordagem possibilita a avaliação quantitativa e qualitativa de seus atributos geométricos, bem como a associação desses atributos aos processos que desempenham um papel fundamental em sua formação e evolução.

Até o momento, a compreensão das variações na forma e densidade dos *inselbergs* tem sido limitada. Entretanto, alguns estudos foram realizados nesse sentido, como o de Gibbons (1981), que revelou amplas variações na forma e densidade dos *inselbergs* em oito

tipos distintos de rochas cristalinas na Suazilândia. Além disso, Römer (2005) examinou a distribuição espacial dos *inselbergs* no Zimbábue e sua correlação com fatores geomorfológicos, litológicos e estruturais em rochas granitoides. No entanto, é evidente a necessidade de desenvolver uma metodologia mais abrangente e sistemática para compreender integralmente as características dos *inselbergs* graníticos e os fatores que influenciam sua distribuição e morfologia.

Neste trabalho, propõe-se uma metodologia para a análise morfológica e morfométrica dos *inselbergs* graníticos com base em dados de sensoriamento remoto e campo. O objetivo é identificar os principais parâmetros que definem os tipos de *inselbergs* e os fatores que influenciam sua distribuição espacial e morfológica. Essa abordagem é importante, uma vez que poucos estudos até agora se concentraram na análise quantitativa e qualitativa dos *inselbergs* em áreas de relevo granítico.

### 1.1 Localização e apresentação da área de estudo

O campo de *inselbergs* de Quixadá-Quixeramobim está localizado na região central do Estado do Ceará, no Nordeste Setentrional do Brasil (Figura 1). Essa região é conhecida pela sua beleza natural, os *inselbergs*, em particular, são um destaque dessa área. Os *inselbergs* e afloramentos baixos, regionalmente conhecidos como "lajedos", estão distribuídos nos plútons homônimos.



Figura 1 - Mapa de localização dos municípios de Quixadá e Quixeramobim

Fonte: Elaborado pela autora (2023).

Geologicamente, a região é caracterizada pela presença de dois corpos graníticos intrudidos durante a orogenia brasiliana (Arthaud, 2007). Corpos plutônicos considerados neoproterozóicos, fazendo parte da Suíte Intrusiva Itaporanga, conhecidos como plútons Quixadá e Quixeramobim (Pinéo *et al.*, 2020). O plúton Quixadá, possuí uma forma de "gota", com seu eixo maior de direção ENE-WSW, estendendo-se por cerca de 33 km e seu eixo menor com cerca de 11 km. Enquanto o plúton Quixeramobim, possuí uma forma elipsoidal, com seu eixo maior de direção ENE-WSW, estendendo-se por cerca de 56 km e no seu eixo menor com18 km.

Em sua composição são encontrados granodioritos, monzogranitos, sienogranitos, granitos e monzonitos, todos cálcio-alcalinos de alto potássio. Apresentando granulação média ou grossa e textura porfirítica (Pinéo *et al.*, 2020). O plúton Quixadá está dividido apenas na fácie Monzonito Quixadá (Figura 2A) (Almeida, 1999). Já o plúton Quixeramobim está

subdividido em 6 fáceis: Muxuré Novo, Muxuré Velho, Água Doce, Serra Branca, Suíte Uruquê, Suíte Boa Fé (Figura 2B) (Torquato *et al*, 1989). Em Quixeramobim, as fácies com maior ocorrência de *inselbergs* são a Muxuré Novo e Serra Branca.

Figura 2 - Geologia destacando apenas os plútons Quixadá e Quixeramobim. ZCQ – Zona de Cisalhamento Quixeramobim, ZCSP – Zona de Cisalhamento Senador Pompeu.



Fonte: Elaborado pela autora (2023).

Na região, é comum encontrar a Superfície Sertaneja 1 (SS1), que está presente em áreas mais baixas, onde os processos de aplainamento são mais evidentes, sua altitude vária de 50 e 250 m aproximadamente (Costa *et al.*, 2020). Os *inselbergs* são os elementos mais resistentes do embasamento e, permanecem como saliências topográficas que se destacam na superfície sertaneja (Figura 3).



Figura 3 - Inselbergs de Quixadá destacados na Superfície Sertaneja

Os processos de intemperismo atuantes na região são subordinados pela semiaridez (Freitas *et al.*, 2019), com o clima predominante semiárido (D), conforme a classificação de Thornthwaite (Muniz *et al.*, 2017). As temperaturas médias mensais variam entre 26 e 29 °C (INMET, 2017). Apresenta uma média anual de precipitação de 820 mm (FUNCEME, 2022) e é marcada por uma sazonalidade com chuvas concentradas entre os meses de fevereiro e abril. Em termos de hidrografia, a rede de drenagem apresenta fluxos sazonais intermitentes de baixa energia, resultando em um padrão de drenagem predominantemente dendrítico (Nogueira, 2004).

Esses afloramentos rochosos são ambientes ecologicamente isolados, com alta riqueza de espécies e endemismo em sua flora, e podem ser considerados refúgios ecológicos para muitas espécies de plantas locais que se adaptaram à falta de água e à escassez de substrato (Paulino, Gomes e Siqueira, 2018). Segundo esses autores, a área de estudo possui vegetação típica caatinga, com presença de zoocóricas, fanerófitas e arbóreas.

Na região, predominam os solos Planossolos e Argissolos, mas também são encontrados Neossolos Litólicos, Vertissolos e Luvissolos (EMBRAPA, 2011; Santos *et al.*, 2018). Esses solos são pouco profundos e apresentam drenagem imperfeita, com textura predominantemente arenosa nas camadas superficiais e areno-argilosa nos substratos inferiores, podendo conter fragmentos de rocha (Santos *et al.*, 2018).

### 1.2 Objetivos

### 1.2.1 Gerais

Fonte: MAIA, 2023.

Estabelecer os principais parâmetros que definem os tipos de *inselbergs* e os fatores que influenciam sua distribuição espacial e morfológica

## 1.2.2 Específicos

- Analisar através de ferramentas computacionais e dados de sensoriamento remoto as informações sobre distribuição macroscópica, padrões e tipos de formas dos *inselbergs* e lajedos;
- Identificar as variáveis morfométricas do relevo e as características morfológicas dos *inselbergs* e lajedos, validando os resultados por meio de dados de campo;
- Classificar os *inselbergs* com base em tipos e padrões morfológicos identificados, explorando as relações entre as variáveis morfométricas e a distribuição espacial.

### 2 FUNDAMENTAÇÃO TEÓRICA

### 2.1 Representação de dados topográficos

### 2.1.1 Modelos Digitais de Elevação – MDE

Modelos Digitais de Elevação (MDE), também conhecidos como dados topográficos, consistem em medidas discretas de elevação coletadas de uma superfície que, em geral, é contínua, mas representada como um modelo discreto (Wood, 1996). Existem três fontes principais de dados para a criação de MDE: técnicas de levantamento de solo, mapas topográficos existentes e sensoriamento remoto (Nelson, Reuter e Gessler, 2009).

O sensoriamento remoto é uma importante ferramenta na geração de MDE, permitindo a cobertura de grandes áreas de maneira rápida e precisa (Zhang *et al.*, 2020). Imagens utilizadas no sensoriamento remoto são obtidas a partir de três fontes principais: fotogrametria, LiDAR (*Light Detection and Ranging*) e RADAR (*Radio Detection and Ranging*) (Nelson, Reuter e Gessler, 2009). Com uso dessas técnicas, elevações são medidas a partir do espaço utilizando sensores de infravermelho-próximo, radar e sensores visíveis, armazenadas em uma estrutura de armazenamento em grade (*grid*), permitindo a geração de MDE de alta resolução espacial (Mudd, 2020).

Atualmente, muitos MDEs estão disponíveis gratuitamente em escala mundial ou quase global, com diferentes níveis de precisão e parâmetros, variando em termos de tempo de aquisição, tipo de sensor, processamento, pós-processamento e escopo geográfico. Geralmente, o espaçamento de grade está entre 3 *arcsecond* (~ 90 m) e 1 *arcsecond* (~ 30 m). Diferentes países e instituições oferecem diferentes tipos de modelos. É possível encontrar informações sobre esses modelos e suas propriedades na Tabela 01.

| MDE<br>Global      | Cobertura | Resolução                | Método                | Datum<br>Vertical    | Acurácia<br>Vertical | Referências                       |
|--------------------|-----------|--------------------------|-----------------------|----------------------|----------------------|-----------------------------------|
| SRTM (v3)          | 56°S-60°N | 3" (2004) e<br>1" (2015) | InSAR<br>(Banda C)    | Ortométrica<br>EGM96 | 6 m (MAE)            | Farr <i>et al.</i> (2007)         |
| ASTER<br>GDEM (v3) | 83°S-83°N | 1" (~30m)                | Multispectral optical | Ortométrica<br>EGM96 | 17 m<br>(95%conf.)   | Tachikawa<br><i>et al.</i> (2011) |

Tabela 1 - Seleção de conjuntos de dados topográficos globais e regionais distribuídos de forma gratuita.

| Copernicus<br>DEM<br>GLO30 e<br>GLO90 | 85°S-90°N        | 3" e 1"                    | Radar de<br>banda X,<br>WorldDEM<br>editado | Ortométrica<br>EGM2008 | < 4m (Erro<br>linear de<br>90%) | Airbus<br>(2022)                       |
|---------------------------------------|------------------|----------------------------|---------------------------------------------|------------------------|---------------------------------|----------------------------------------|
| ALOS<br>AW3D30                        | 82°S-82°N        | 1" (~30 m)                 | Multispectral optical                       | Ortométrica<br>EGM96   | 4.4 m<br>(RMSE)                 | Tadono <i>et</i><br><i>al.</i> (2016)  |
| TanDEM-X<br>DEM                       | Globo<br>Inteiro | 3" (~90 m)                 | X Banda<br>Radar                            | Elipsoidal<br>WGS84    | Desconhecida                    | Rizzoli <i>et</i><br><i>al.</i> (2017) |
| MDE<br>ALOS<br>PALSAR                 | 75°S-87°N        | Reamostrado<br>para 12,5 m | SRTM de 1"<br>reamostrado<br>para 12,5 m    | Ortométrica<br>EGM96   | Desconhecida                    | JAXA<br>(2023)                         |
| NASADEM                               | 56°S-60°N        | 1" (~30 m)                 | Reprocessad<br>o (Banda C –<br>SRTM)        | Ortométrica<br>EGM96   | Desconhecida                    | Buckley<br>(2020)                      |
| FABDEM                                | 60°S-80°N        | 1" (~30 m)                 | Reprocessam<br>ento da<br>COPDEM30          | -                      | Variável                        | Hawker <i>et</i><br><i>al.</i> (2022)  |

Fonte: Elaborado pela autora.

Além dos MDEs globais mencionados anteriormente, existem muitos outros conjuntos de dados de elevação disponíveis com uma precisão muito maior, porém, em áreas menores. Por exemplo, o EU-DEM para a Europa, com uma resolução de 25 m (Demarchi *et al.*, 2020), o MDT05/MDT05-LIDAR (5 m) e MTD02/MDT02-LiDAR (2 m) para a Espanha, o TINITALY com resolução de 10 m para a Itália (Tarquini *et al.*, 2012).

Os MDEs são divididos em duas categorias, com base em sua precisão e utilidade para diferentes aplicações (Figura 4). Os Modelos Digitais de Superfície (MDS) medem a altura de objetos como árvores e edifícios, um MDS capta o primeiro contato de um laser ou uma onda de rádio interage com o primeiro objeto que encontra - seja a copa de uma árvore, um edifício ou o solo exposto (Croneborg *et al.*, 2015). Enquanto os Modelos Digitais de Terreno (MDT) medem a elevação da superfície do solo, ou "terra nua". O termo "Modelo Digital de Terreno" é sinônimo de Modelo Digital de Elevação (MDE), no entanto, os MDTs são uma versão mais refinada de um MDE, em que o processamento adicional é usado para representar com mais precisão as formas e características do terreno (Croneborg *et al.*, 2015).



Figura 4 - Diferença entre um MDS e um MDT.

Fonte: Modificado de Mudd (2020).

Essa diferenciação é importante para garantir a escolha do MDE mais adequado à aplicação desejada (Mudd, 2020). Dessa forma, escolher um conjunto de dados topográficos para um projeto específico é um desafio devido à variedade de opções existentes. É importante ressaltar que a qualidade dos dados de entrada tem um impacto significativo nos resultados de cálculos derivados de superfície e em aplicações complexas (Hutchinson e Gallant, 2000). Ao escolher o tamanho da célula para a análise geomorfométrica, é necessário ter cuidado, uma vez que existe o risco de que picos e canais desapareçam devido a variações significativas entre a elevação da superfície interpolada e a superfície real do terreno (Nelson, Reuter e Gessler, 2009) (Figura 5).





Fonte: Modificado de Reuter et al., 2009.

Conforme Mesa-Mingorance e Ariza-López (2020), a resolução espacial pode afetar a acurácia das medições, enquanto a escala pode impactar a capacidade de registrar detalhes de pequenas feições de superfície. Portanto, é necessário analisar cuidadosamente as demandas do projeto e as restrições dos dados disponíveis para escolher o conjunto de dados topográficos mais adequado.

Adicionalmente, a interferência de características naturais, como cobertura vegetal, rochas expostas e outros obstáculos, na coleta de dados de elevação pode ser uma das principais causas da redução da precisão vertical em gradientes topográficos mais elevados (Hutchinson e Gallant, 2000). Além disso, fatores técnicos, como o tamanho da célula do MDE e a densidade de pontos de medição, também podem afetar a precisão vertical (Mudd, 2020).

A precisão vertical pode variar significativamente de local para local e de modelo para modelo, dependendo dos métodos de aquisição, equipamentos e resolução espacial. Além disso, o grau de processamento, como mistura, filtragem e reamostragem, utilizado para alterar a resolução espacial, preencher lacunas, remover dados errôneos ou simular a paisagem, também é um fator importante a ser considerado (Ouerghi *et al.*, 2015).

É importante ressaltar que estudos têm sido realizados para determinar a precisão vertical de diferentes conjuntos de dados MDE, comparando-os com pontos terrestres muito precisos ou MDEs de referência (Liu *et al.*, 2020). Com o avanço das tecnologias de aquisição e processamento de dados, a precisão dos MDEs tem melhorado, permitindo modelos com precisão na ordem de alguns centímetros em áreas planas e alguns metros em áreas com relevo mais acidentado.

### 2.1.2 Modelos obtidos por Veículo Aéreo Não-Tripulado (VANT)

Inicialmente desenvolvidos para fins militares, os Veículos Aéreos Não Tripulados (VANTs) têm sido utilizados como ferramentas de pesquisa científica nos últimos anos (Everaerts, 2008). Com sensores adequados, os VANTs fornecem imagens de alta resolução espacial, permitindo o cálculo de diversas variáveis do terreno, tornando-os uma tecnologia valiosa para a análise geomorfológica (Tarolli, 2014).

Para criar um Modelo Digital de Elevação (MDE) a partir de imagens de VANT, é importante que as imagens sejam coletadas com uma sobreposição adequada, cuja extensão varia conforme a aplicação em questão (Tarolli, 2014). O processo de registro envolve a identificação de píxeis em várias fotos que correspondem ao mesmo local no terreno. A alta resolução espacial das imagens de VANT permite que os cientistas obtenham informações

precisas sobre o terreno, sem as limitações de períodos orbitais ou horários de voo. Estudos mostram a utilidade dessas imagens na criação de MDEs e análises topográficas (Li *et al.*, 2010; Shahbazi *et al.*, 2014).

Outro benefício das fotografias obtidas por VANT é a capacidade de mapear a textura com alta resolução em modelos digitais de superfície (MDS) e modelos 3D existentes, além de permitir a correção de imagens. A combinação de mosaicos de imagens, mapas, desenhos e fotografias corrigidas permite a interpretação mais precisa das imagens obtidas. Essa precisão pode ser aumentada com o uso de pontos de controle e modelos digitais de elevação de alta qualidade (Zhang *et al.*, 2020).

Além disso, os VANTs são úteis na coleta de dados em áreas de difícil acesso ou em locais de risco. A possibilidade de ajuste das trajetórias de voo também permite obter informações em locais de interesse específico. No entanto, ressalta-se que a utilização de VANTs continua em desenvolvimento e há desafios a serem superados, como a interferência de condições climáticas, a seleção de sensores apropriados e a precisão da calibração dos equipamentos (Garcia e Oliveira, 2021). Portanto, é necessário realizar uma avaliação cuidadosa das limitações e possibilidades desses equipamentos em cada aplicação.

#### 2.2 Aspectos Fundamentais para Análise Quantitativa de Relevos

A geomorfologia é um campo de pesquisa que tenta compreender a origem, a morfometria, a cronologia e o desenvolvimento de formas de relevo e paisagens (Dramis *et al.*, 2011). Um mapa geomorfológico oferece uma descrição abrangente e objetiva das formas de relevo (morfografia), informações sobre as características espaciais das formas de relevo (morfometria), informações sobre sua origem e evolução em relação a agentes e processos genéticos endógenos e exógenos (morfogênese), informações sobre sua idade relativa ou absoluta (morfocronologia) e informações sobre seu status de atividade atual e taxa de processos genéticos (morfodinâmica) (Dramis *et al.*, 2011).

A produção de novos dados espaço-temporais tem sido favorecida pelos avanços metodológicos na detecção remota (Bishop *et al.*, 2012). Essa detecção remota é essencial para a geomorfologia (Wilson e Gallant, 2000) na criação de modelos digitais de elevação (MDEs) de alta qualidade, pois a topografia expressa a forma geomórfica e reflete a interação dos processos climáticos, tectônicos e de superfície. Transformar uma representação conceitual do relevo em características quantificáveis é fundamental na geomorfometria, ao permitir capturar de maneira precisa, exata e reprodutível a ideia de forma (Pike, 2000).

Geomorfometria foi definida por Chorley *et al.* (1957, p. 138), como a ciência "que trata da geometria da paisagem," e, segundo Mark (1975), ela busca quantificar de forma precisa a configuração da superfície terrestre. Nesse contexto, as formas de relevo surgem como padrões distintos do terreno, apresentando variações específicas no tamanho, escala e geometria dos componentes geomorfológicos, ocorrendo em locais contextuais característicos em relação a outras propriedades geomorfológicas (Macmillan e Shary, 2009).

O tamanho e a forma dos relevos são considerados indicadores claros dos processos que supostamente os geraram (Evans, 2012). Nesse sentido, formas de relevo que compartilham características físicas e morfológicas semelhantes podem ser usadas para classificar as paisagens, funcionando como uma condição de limite para várias investigações em ciências da terra e em áreas correlatas. Métodos morfométricos são utilizados para identificar a homogeneidade espacial das feições através de uma abordagem qualiquantitativa das propriedades geométrico-topológicas do relevo, incluindo seus atributos topográficos primários, como elevação, declive e aspecto (orientação) (Evans e Cox, 1999).

O termo relevo (*relief*) é usado para descrever a dimensão vertical ou a amplitude da topografia (Wood e Snell, 1959; Mark, 1975). As características de elevação podem ser qualitativamente observadas através da análise das linhas de contorno presentes em mapas topográficos (Kweon e Kanade, 1994), onde as linhas mais externas correspondem ao ponto menos elevado (base) e as linhas mais internas ou pontos no topo representam as áreas mais elevadas (Figura 6). O relevo local (*Local Relief*) de uma superfície é definido como a diferença entre as elevações mais altas e mais baixas que ocorrem em uma determinada área finita (Ahnert, 1984).



Figura 6 - Relação entre os dados altimétricos (representados pelas linhas de contorno) e as formas relevo.

Fonte: Modificado de Kweon e Kanade (1994).

Segundo Evans (1972), a inclinação é, possivelmente, o aspecto de maior relevância na configuração da superfície, visto que as superfícies são essencialmente moldadas por inclinações, e os ângulos de inclinação determinam a força gravitacional que influencia os processos geomorfológicos. A inclinação em qualquer ponto é caracterizada como a inclinação de um plano tangente à superfície nesse ponto (Mark, 1975).

Essa medida pode ser representada por um vetor com dois componentes: o gradiente, que corresponde ao ângulo de inclinação, e o aspecto, que indica a direção da descida mais íngreme. O espaçamento entre as linhas de contorno no mapa indica a inclinação (Figura 7). Quando as linhas estão próximas, indica uma variação abrupta de elevação em distância curta, representando um declive íngreme. Se estão espaçadas, sugere uma mudança gradual de elevação ao longo de uma área extensa, revelando um declive suave.

Figura 7 - Ilustração indicando o gradiente de inclinação onde a distância horizontal curta indica declive íngreme e distância horizontal mais extensa indica declive suave.



Fonte: Elaborado pela autora (2023).

As encostas, componentes fundamentais dos sistemas geomorfológicos, são essenciais em todas as paisagens. Sua análise envolve a subdivisão em diferentes unidades, frequentemente padronizadas por termos qualitativos que descrevem variações na inclinação, curvatura e processos ao longo do perfil da encosta (Dikau *et al.*, 2004).

A classificação dos elementos do relevo envolve a segmentação de encostas individuais em classes ou facetas mais ou menos homogêneas ao longo de uma sequência, desde o topo até o fundo do vale (MacMillan e. Shary, 2009). A complexidade do declive se refere à variação na inclinação do solo, com declives simples apresentando suavidade e poucas interrupções no fluxo do terreno, enquanto declives complexos exibem irregularidades significativas ao longo da superfície (Wysocki *et al.*, 2000). Em algumas situações, certos elementos da encosta podem faltar ou ocorrer em um padrão alternado.

Figura 8 - Ilustração exemplificando uma encosta simples e uma encosta complexa. SU - Summit/Topo; SH - Shoulder/Ombro; BS - Backslope/Encosta posterior; FS -Footslope/Talude e TS - Toeslope/base da encosta.



Encosta simples X Encosta complexa

Fonte: Modificado de Wysocki et al. (2000).

Essas características são identificáveis pelas mudanças na inclinação do terreno ao longo da encosta. Segundo Wysocki *et al.* (2000), o "*summit*" (topo) é a área plana e estável, enquanto o "*shoulder*" (ombro) é a parte convexa abaixo do topo, mais propensa a erosão e com maior fluxo de água lateral. A "*backslope*" (Encosta posterior) é a seção mais íngreme e linear, com maior escoamento superficial (Wysocki *et al.*, 2000). O "*footslope*" (Talude) vem em seguida, com um declive mais suave que facilita o acúmulo de sedimentos devido à diminuição do transporte da água (Wysocki *et al.*, 2000). Finalmente, o "*toeslope*" (base da encosta) é predominantemente linear ou ligeiramente côncavo, permitindo a predominância dos processos

aluviais quando há água suficiente proveniente das partes superiores ou de cursos d'água próximos (Wysocki *et al.*, 2000).

Ruxton e Berry (1961) observaram que os perfis de inclinação em relevo granítico possuem quatro unidades de declive separadas por três inflexões ou ângulos, ou seja, a superfície plana, o base/talude (*footslope*), a encosta (*hillslope*) e o topo (*hilltop*) são separados pelo ângulo de base, o ângulo *piedmont* (*piedmont angle*) e uma inflexão convexa. (Figura 09). O ângulo de piemonte é definido como a linha de mudança máxima no gradiente no perfil da inclinação (White, 2004).





Fonte: Modificado de Ruxton e Berry (1961).

### 2.3 Definição e tipos de Inselbergs

Para uma análise abrangente deste estudo, é imprescindível estabelecer uma base conceitual sólida focada no termo *'Inselberg'*. Uma compreensão precisa desse conceito é fundamental, já que ele constitui o fundamento da nossa pesquisa. As definições de "*Inselbergs*" na Tabela 02 evidenciam uma uniformidade em relação a definição dessas formas.

| DEFINIÇÃO DE <i>INSELBERG</i>                                                                                                                                                                  | AUTOR(S)  | ANO  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------|
| É uma colina isolada ou um grupo de colinas que se ergue abruptamente<br>de uma área plana, como uma ilha se eleva do mar.                                                                     | Willis    | 1934 |
| A partir de uma paisagem escalonada, surgem maciços individuais e acentuadamente ascendentes chamados <i>inselbergs</i> .                                                                      | Thorbecke | 1973 |
| A partir das áreas planas, os <i>inselbergs</i> se elevam abruptamente, formando colinas e morros isolados com lados muito íngremes, até mesmo pequenas montanhas, de rocha mais ou menos nua. | Cotton    | 1973 |

Tabela 2 - Definição de inselbergs com base em vários autores.

| Colinas residuais que se elevam abruptamente das áreas planas adjacentes.                                                                                                                                                                                                                                                                             | Twidale                   | 1981 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------|
| Os <i>inselbergs</i> são cordilheiras, cumes ou colinas isoladas de lados<br>íngremes que se elevam tão abruptamente das áreas planas adjacentes que<br>parecem ilhas rochosas surgindo do mar.                                                                                                                                                       | Twidale                   | 1982 |
| Em sua forma original, o termo <i>inselberg</i> significava "uma montanha<br>insular". Um <i>inselberg</i> pode ser uma cordilheira ou colina isolada que se<br>ergue como uma ilha em meio às áreas planas. Embora os nomes variem,<br>assim como as formas, todos eles têm forma de domos e lados íngremes,<br>daí o termo <i>inselberg</i> .       | Musarurwa e<br>Mandaza    | 1983 |
| Os <i>inselbergs</i> são montanhas isoladas de lados íngremes que se erguem abruptamente das áreas planas adjacentes. As formas também ocorrem em grupos ou maciços. A forma das colinas individuais varia.                                                                                                                                           | Campbell                  | 1997 |
| Uma classe geral de grande colina residual que geralmente se sobrepõe a uma área plana erodida.                                                                                                                                                                                                                                                       | Thomas e<br>Goudie        | 2000 |
| Os <i>inselbergs</i> são elevações isoladas acima de uma área plana que<br>consistem em rocha dura. Se tiverem uma cobertura de solo, ela será<br>muito esparsa. Eles variam em altura, dependendo do desenvolvimento, e<br>assumem diferentes formas, tanto em relação à planta quanto à seção<br>transversal, de acordo com sua gênese e litologia. | Barthlott e<br>Porembski  | 2000 |
| Uma proeminente colina de lados íngremes composta de rocha resistente e maciça que fica isolada em uma área plana desértica.                                                                                                                                                                                                                          | Nagel                     | 2004 |
| <i>Inselberg</i> é um termo descritivo, derivado do alemão <i>(inselberg</i> significa literalmente "colina da ilha") e adotado em inglês, usado para descrever uma colina isolada que se eleva acentuadamente acima do nível da área plana circundante.                                                                                              | Migoń                     | 2004 |
| <i>Inselberg</i> é uma colina residual de lado íngreme composta predominantemente de rocha resistente e que se eleva abruptamente acima de uma área plana, encontrada principalmente em áreas tropicais e subtropicais.                                                                                                                               | Schaetzl e<br>Anderson    | 2005 |
| Colinas rochosas proeminentes, geralmente de granito e com perfil em forma de cúpula.                                                                                                                                                                                                                                                                 | Thomas                    | 2005 |
| <i>Inselbergs</i> são cordilheiras, cumes e colinas isoladas que se destacam abruptamente das áreas planas circundantes, como ilhas do mar.                                                                                                                                                                                                           | Twidale e<br>Vidal Romani | 2005 |
| Uma grande colina residual de lado íngreme, geralmente acima de áreas planas erosivas.                                                                                                                                                                                                                                                                | Sharma                    | 2010 |
| <i>Inselberg</i> é um remanescente de montanha isolado característico do estágio final da erosão em uma região árida.                                                                                                                                                                                                                                 | Tarbuck <i>et al</i> .    | 2012 |
| Literalmente, uma "montanha-ilha" ou uma colina isolada, geralmente de rocha resistente, que se eleva de uma superfície desnuda.                                                                                                                                                                                                                      | Orme                      | 2013 |

| Colina ou cume isolado de rocha que se eleva abruptamente de uma área plana circundante suavemente inclinada ou praticamente nivelada.                                                                                                  | Kamp e Owen                       | 2013 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------|
| Um pico ou saliência isolada que se eleva abruptamente de uma área plana circundante (os resíduos em etchplains são um exemplo).                                                                                                        | Taylor                            | 2013 |
| Literalmente, "montanha da ilha", uma colina ou pico resistente derivado de intemperismo profundo, pode ser um domo único ou uma rocha.                                                                                                 | Роре                              | 2013 |
| Os planaltos residuais proeminentes, isolados e íngremes, cercados por<br>extensas planícies, foram denominados " <i>inselbergs</i> ", literalmente<br>"montanhas-ilhas", que se projetam sobre as planícies como ilhas sobre o<br>mar. | Bourman,<br>Ollier,<br>Buckman    | 2015 |
| Os <i>inselbergs</i> são uma classe especial de formas de relevo residuais com configuração de paisagem marcada por um contraste entre elevações proeminentes (altura > 100 m) e as áreas planas circundantes.                          | Lima e Côrrea-<br>Gomes           | 2015 |
| Os <i>inselbergs</i> são colinas isoladas que ficam acima de uma topografia plana ou suavemente ondulada.                                                                                                                               | Goudie e Viles                    | 2014 |
| <i>Inselberg</i> é uma palavra alemã que significa "colina da ilha". Refere-se a colinas proeminentes de lados íngremes de rocha resistente que se elevam abruptamente em uma área plana erosiva.                                       | Gutiérrez e<br>Gutiérrez          | 2016 |
| Um <i>inselberg</i> pode ser uma colina de rocha isolada, uma saliência, um<br>cume rochoso ou uma pequena montanha que se eleva abruptamente de<br>uma área plana circundante suavemente inclinada ou praticamente<br>nivelada.        | Nenonen <i>et al</i> .            | 2018 |
| Os <i>inselbergs</i> são colinas isoladas que se elevam acentuadamente acima do nível de sua área plana circundante, plana ou suavemente ondulada.                                                                                      | Goudie                            | 2023 |
| O <i>inselberg</i> é uma colina rochosa isolada, uma saliência, um cume ou uma pequena montanha que se eleva abruptamente de uma área plana circundante suavemente inclinada ou praticamente nivelada.                                  | Jeje,<br>Orimoogunje e<br>Olusola | 2023 |

Fonte: Elaborado pela autora. Tradução nossa.

A partir das descrições ao longo das décadas por meio das contribuições de vários autores, fica evidente que os *inselbergs* são colinas isoladas ou agrupadas que se destacam abruptamente de uma superfície plana circundante, muitas vezes exibindo encostas íngremes e composto de rocha resistente. A analogia recorrente de "ilhas emergindo do mar" ressalta a singularidade dessas estruturas geomorfológicas, no entanto pouco é debatido sobre as características morfométricas dessas formas.

As características morfológicas distintas encontradas em terrenos graníticos ao redor do mundo, seja em áreas montanhosas ou planas, são notavelmente diferentes das paisagens comuns. Portanto, não existe um padrão "típico" para as paisagens graníticas (Migoń, 2005), uma vez que há variações significativas mesmo em proximidade umas das outras. Em

geral, o granito tende a criar topografias mais "montanhosas" devido à sua resistência superior às condições climáticas e à erosão em comparação com as rochas circundantes, embora essa característica nem sempre seja observada (Migoń, 2006).

De acordo com Migoń (2006), geomorfólogos alemães adotaram o termo *"inselberg*" para descrever colinas isoladas e íngremes que emergem abruptamente das superfícies aplainadas. Essas formações rochosas, conhecidas como *Inselbergs*, são menos suscetíveis à erosão e às intempéries em comparação com as rochas que compõem a superfície plana ao redor (Twidale, 1982). Em Willis (1934), foi proposto que *inselbergs* em formato dômico fossem chamados de *"bornhardts"*, em homenagem ao estudioso alemão Wilhelm *Bornhardt*, que realizou descrições e estudos relevantes sobre essas características geomorfológicas na região da Tanzânia.

Em 1923, Bain identificou dois tipos de *inselbergs* que parecem ocorrer na Nigéria, sendo eles: aqueles em forma de cúpula, que se erguem abruptamente das superfícies aplainadas e geralmente não são escalonáveis; e os de formato menos regular, por vezes com um lado íngreme, ocasionalmente inclinando-se suavemente em direção à superfície plana e geralmente são escalonáveis.

De acordo com Twidale e Vidal Romani (2005), *inselbergs* exibem uma ampla variação em tamanho e forma, mas podem ser agrupados em três tipos principais. Dependendo de sua estrutura, algumas pesquisas os classificam como: *Inselbergs* dômicos (*bornhardt*), *inselbergs* castelados (*castellated inselberg/Castle Koppies*) e *inselbergs* de blocos (*Boulders/Nubbins*) (Twidale, 1982; Gerrard, 1988; Goudie, 2004; Migoń, 2006; Gutiérrez e Gutiérrez, 2016).

*Bornhardts* (Figura 10) são *inselbergs* em forma de cúpula/domos com encostas íngremes que geralmente se tornam mais abruptas em direção à base, e sem a presença de tálus (Gerrard, 1988). Conforme observado por Bourne e Twidale (2002), os *bornhardts* exibem variações em termos de geometria, morfologia e complexidade, podendo adotar formas semelhantes a semiesferas, meias laranjas (*half oranges*), dorsos alongados em formato de "tartarugas" (*turtlebacks*), "baleias" (*whalebacks* ou dos de baleine) ou "elefantes" assimétricos (dos d'elephant).



Figura 10 - Inselbergs do tipo bornhardt. (a) Pancas, Brazil e (b) Ulruru, Austrália.

Fonte: (a) Pancas, Brazil (Varajão e Alkmim, 2015) e (b) Ulruru, Austrália (Twidale, 2009).

Em contraste, os *inselbergs* castelados (Figura 11), de acordo com Twidale (1981), exibem uma configuração angular, composta por uma série de torres que lembram um castelo, evidenciando uma morfologia com fraturas ortogonais maciças ou clivagem vertical bem desenvolvida. Segundo Migoń (2006), os *castle koppies* exibem uma configuração escalonada, caracterizada por faces verticais intercaladas com taludes sub-horizontais, onde as primeiras estão associadas a fraturas verticais e as últimas a fraturas horizontais; eles costumam ser menores que os *inselbergs* maciços (*bornhardt*).
Figura 11 - *Inselbergs* do tipo castelados. (a) Montes Hoggar, sul da Argélia e (b) Mojave Desert, California.



Fonte: (a) Montes Hoggar, sul da Argélia (Twidale, 1982) e (b) Mojave Desert, California (Migoń, 2006).

*Inselbergs* de blocos (Figura 12), são elevações caóticas de compartimentos de rocha destacados, que geralmente cobrem um núcleo mais maciço enraizado na rocha ou repousando em uma plataforma de rocha de baixo ângulo (Migoń, 2006).

Figura 12 - *Inselbergs* de blocos. (a) Naraku, noroeste Queensland e (b) Mojave Desert, California.



Fonte: (a) Naraku, noroeste Queensland (Twidale, 1982) e (b) Mojave Desert, California (Migoń, 2006).

A distribuição global dos *inselbergs*, como apontado por Migoń (2006) (Figura 13), abrange uma ampla variedade de ambientes. Os *inselbergs* do tipo *bornhardt* são comuns em regiões tropicais, savanas, desertos, além de ambientes temperados no norte da Europa e América do Norte. Os *inselbergs* castelados são característicos das savanas do sul e leste da África, embora também sejam encontrados em diversas zonas climáticas. Enquanto isso, os *inselbergs* de blocos predominam em regiões tropicais sazonalmente úmidas, mas também são observados em outros ambientes globais.



Figura 13 - Distribuição Global dos inselbergs.

Fonte: Modificado de MIGON, 2006.

Cookie e Goudie (1993), em seu livro "*Desert Geomorphology*", apresentam as duas formas principais de *inselbergs*: *Inselbergs* abobadados (*bornhardts*) e *inselbergs* de rochas menores (*koppies*, tors e *nubbins*). Enquanto Campbell (1997), propõe uma classificação das formas graníticas baseada nos trabalhos de Twidale (1982, 1993). Segundo ele, as formas principais de relevo são aquelas que se destacam na paisagem, como *inselbergs*, *bornhardts*, *nubbins* e *castle koppies*. Os *bornhardts*, a principal forma básica de relevo positivo, dão origem aos *nubbins* e aos *castle koppies*, sendo os *nubbins* compostos por blocos devido à ruptura parcial das estruturas da camada, enquanto os *castle koppies* menores, com encostas íngremes, são resultado de domos modificados pelo intemperismo marginal ao longo de fraturas verticais e na subsuperfície (Campbell, 1997).

Bastos *et al.* (2021) classifica de maneira semelhante as formas graníticas encontradas no nordeste brasileiro. Eles fazem a classificação dos relevos graníticos em macroformas e microformas. Para eles, as macroformas são categorizadas hierarquicamente de acordo com critérios dimensionais, incluindo maciços, lajedos, *inselbergs* e *bornhardt*s. Por outro lado, as microformas são classificadas com base em sua morfologia associada ao seu desenvolvimento, podendo ser microformas associadas com blocos graníticos (*boulders*, caos

de blocos, *nubbin*s, tors e *castle koppies*), com feições de dissolução (tafoni, alvéolos, caneluras ou *karren, gnammas* e *flared slopes*) e com feições de fraturamento (*split rock e polygonal cracking*) (Bastos *et al.*, 2021).

Lima *et al.* (2009) classificaram os *inselbergs* da Bahia em quatro tipos, destacando os castelos como os mais imponentes, frequentemente influenciados por falhas e fraturas verticais, apresentando paredes íngremes, enquanto os *bornhardt*s se assemelham a domos com superfícies arredondadas, lembrando tanto o dorso de tartaruga quanto o dorso de baleia, os *castle koppies* são estruturas menores semelhantes a castelos, com uma crista plana e encostas íngremes, e, por fim, os tors são torres ruiniformes, reduzidas a pilares de dimensões decamétricas, podendo ocorrer isolados ou integrar a superfície dos *inselbergs*.

Na área de estudo, campo de *inselbergs* de Quixadá e Quixeramobim, Maia *et al.* (2015) propuseram uma classificação conforme as propriedades morfogenéticas e de localização em três tipos: *inselbergs* com feições de dissolução, *inselbergs* com feições de fraturamento e maciços. Segundo Maia *et al.* (2015), os *inselbergs* que exibem características de dissolução (Figura 14) são distinguíveis por sua menor altitude, presença significativa de *gnammas* e caneluras, uma morfologia convexa relacionada à dissolução e uma ausência de características erosivas bem definidas provenientes de fraturas ou escamação. Nas escarpas, forma-se uma rede complexa de dissolução, exibindo sulcos contínuos do tipo caneluras ou intercalados com bacias de dissolução escalonadas (Maia *et al.*, 2015).



Figura 14 - Inselberg caracterizado por feições de dissolução.

Fonte: Maia (2022).

De acordo com Maia *et al.* (2015), os *inselbergs* caracterizados por feições de fraturamento se destacam pela alta densidade de fraturas, o que resulta na fragmentação da rocha e no colapso de blocos, gerando uma morfologia caótica devido sobretudo à meteorizarão termoclástica e esfoliação. Nas áreas mais íngremes, a esfoliação leva à formação de tafonis de colapso, e os blocos resultantes do processo originam depósitos desordenados de detritos na base das escarpas (Maia *et al.*, 2015).



Figura 15 - Inselberg caracterizado por feições de fraturamento.

Fonte: Maia (2022).

Os maciços (Figura 14C) são caracterizados pela ausência de feições de dissecação e erosão significativas e apresentam escarpas íngremes com morfologia convexa (Maia *et al.*, 2015).





Fonte: Gomes (2022).

Seguindo as classificações mencionadas anteriormente (Twidale, 1982; Gerrard, 1988; Goudie, 2004; Migoń, 2006), Migoń e Maia (2020) classificaram os *inselbergs* da região em diferentes tipos, com as cúpulas (*bornhardts*) sendo as mais comuns, muitas vezes apresentando contornos complexos devido à interseção de juntas verticais e superfícies de esfoliação ou foliação de grande dimensão, incluindo paredes rochosas de mais de 50 metros de altura, com a presença ocasional de torres ou fragmentos rochosos nas partes mais altas, além de outros tipos como os castelados, marcados por juntas verticais, e os *nubbin*s, que consistem em blocos sobre uma base rochosa mais resistente.

Outra classificação encontrada no Brasil, é composta pelos três tipos de *inselbergs* propostos por Maia *et al.* (2015) com adição dos *inselbergs* compostos (Claudino-Sales, 2020). Os *inselbergs* compostos são aqueles que possuem tanto feições de fraturamento quanto feições de dissolução, podendo alcançar cotas altimétricas semelhantes a *inselbergs* maciços. No campo de *inselbergs* Quixadá-Quixeramobim, optou-se por não utilizar o tipo composto, visto que ele abrangeria a maioria dos *inselbergs* em Quixadá. Em vez disso, classificou-se os *inselbergs* de acordo com as feições mais evidentes.

Uma maneira de aprimorar a descrição e classificação dos *inselbergs* é através do uso de características morfométricas, medindo aspectos como forma e tamanho. No entanto, é importante observar que a classificação morfométrica por si só pode não ser suficiente para distinguir os *inselbergs* de outras feições topográficas. As definições de *inselbergs* não são unânimes, com critérios variados propostos por diferentes autores, mas essas definições arbitrárias podem representar desafios práticos na aplicação (Migoń, 2013).

Migoń (2006) menciona alguns parâmetros morfométricos utilizados por pesquisadores internacionais na definição dos *inselbergs*. Por exemplo, Faniran (1974, apud Migoń, 2006) propôs um critério que envolve uma distância mínima de 0,8 km até o vizinho mais próximo, uma altura mínima de 15 metros e um ângulo mínimo de 25° para o declive mais íngreme.

Outros trabalhos que adotam a relação de distribuição e morfometria de relevos graníticos, caracterizam as formas de acordo com a área de estudo. Gibbons (1981), mapeou 2171 tors em Suazilândia com base em suas características morfométricas, e criou critérios morfométricos de definição dessas formas. Para ele tors seriam como remanescentes de base rochosa exposta entre 2,5 e 30 m de altura, com uma relação comprimento/altura de 5 para 1 (ou maior). Ebert *et al. (2012)*, com base em trabalhos anteriores definiu *inselbergs* como características convexas, inclinadas em todas as direções, com um relevo relativo mínimo de 50 m em um raio de 2,5 km.

De forma mais detalhada, Nenonen *et al.* (2018) examinou sete *inselbergs* na Lapônia finlandesa conforme os critérios de Kaitanen (1985), classificando-os em "*inselbergs* puros", "*inselbergs* menos puros" e "*inselbergs* não puros", com especificações de inclinação: os "*inselbergs* puros" exigem que a maioria das encostas tenha inclinação superior a 18° (pelo menos 95%) e uma porção significativa supere 27° (pelo menos 50%), enquanto nos "*inselbergs* menos puros" é necessário que no mínimo 75% das encostas tenham inclinação superior a 18° e 25% tenham inclinação superior a 27°, e nos "*inselbergs* não puros" são exigidos no mínimo 50% das encostas com inclinação superior a 18° e 5% com inclinação superior a 27°.

A pesquisa realizada por Afolabi e Ogunkoya (2018) na Nigéria empregou uma metodologia específica para definir os *inselbergs*, usando critérios de altura mínima e área mínima. De acordo com o estudo, os *inselbergs* foram identificados como formas de relevo com pelo menos quatro linhas de contorno bem espaçadas, com intervalos de 10 metros entre elas no mapa topográfico. Essa característica indicava que a elevação mínima do relevo deveria ser de aproximadamente 30 metros em relação às áreas circundantes. Além disso, o estudo estabeleceu um critério de área mínima, incluindo apenas os *inselbergs* com uma área de pelo menos 0,1 km<sup>2</sup> na análise.

## 2.4 Morfometria e Morfologia dos Lajedos

Afloramentos graníticos que surgem em áreas isoladas, apresentando topografias horizontalizadas (Maia *et al*, 2018), são comumente referidos no semiárido nordestino como "lajedo" (Prado, 2003). Segundo Maia *et al*. (2018), esses afloramentos permitem o desenvolvimento de microformas relacionadas a blocos rochosos, bem como microformas de dissolução e fraturamento, dependendo das características estruturais e mineralógicas do granito exposto.

A maioria dessas formações rochosas apresenta um formato de domo alargado, semelhante ao dorso de uma baleia (Lages *et al.*, 2014). Os lajedos possuem tamanhos variados, que vão desde algumas dezenas de metros quadrados até grandes regiões com vários quilômetros quadrados. Eles podem ser encontrados em uma variedade de ambientes, incluindo as áreas de caatinga e cerrado do Brasil (Lages *et al.*, 2014).

Em muitas regiões no Nordeste são encontrados vastos lajedos cobertos por grandes rochas, apresentando formas e graus de arredondamento diversos. Um exemplo bastante conhecido, é o Lajedo de Pai Mateus - PB, onde encontram-se aproximadamente uma centena

de enormes blocos e rochas esfoliadas, criando uma paisagem conhecida como o "Mar de bolsas" (Lages *et al.*, 2014) (Figura 17A). E pode atingir até 100 m de altura (Figura 17B).

Figura 17 - A. Lajedo de Pai Mateus. B. Diferença de altitude do Lajedo de Pai Mateus



Fonte: A. Lages et al., 2014 e B. Google Earth (acesso em 25. jun. 2023).

De acordo com Mabbutt (1952), o processo de chapeamento comumente rebaixa as bases dos domos (*inselbergs* maciços), resultando em domos amplos e planos que se elevam ligeiramente acima de superfícies aplainadas, muitas vezes localizados na periferia de grandes *inselberg* maciços e *whalebacks*, enquanto os maiores podem evoluir a partir de domos secundários destacados, separados dos principais por lacunas transversais.

Em Twidale (1981), o autor menciona que os domos são uma das formas de *inselbergs*, mas que são considerados pequenas elevações que muitas vezes são pouco mais do que plataformas convexas. De acordo com autor, os domos são geneticamente relacionados aos *bornhardt*s, já que o domo seria ponto de partida para o seu desenvolvimento. A diferença do *bornhardt*s para os domos está ligada ao fato de que *bornhardt*s possuem colinas íngremes com uma quebra abrupta de inclinação (Twidale, 1981).

A determinação exata do que constitui um lajedo é um problema, dada a diversidade de condições topográficas. Nesta perspectiva, a identificação da quebra abrupta do declive, também conhecida como ângulo de *piedmont*, torna-se crucial para classificar e separar os *inselbergs* dos lajedos. Está métrica é crucial para definir as características únicas destas formações rochosas e estabelecer padrões claros para a sua categorização geomorfológica.

# 2.5 Aplicações e limitações do mapeamento geomorfométrico em diferentes escalas

Conforme apontado por Zhilin (2008), o MDT (Modelo Digital do Terreno), semelhante a um mapa topográfico, está inerentemente ligado à escala, enquanto vários acadêmicos destacam a falta de uma escala fixa nos conjuntos de dados digitais, o que representa um desafio significativo na representação e análise de superfícies de terreno. Na cartografia, os mapas são produzidos em escalas específicas, como 1:10.000 e 1:100.000, cada escala apresenta um nível diferente de detalhamento na representação do terreno.

A resolução espacial dos processos e/ou padrões de interesse deve ditar a resolução utilizada para a análise e modelação digital do terreno. Em geral, a resolução é restringida pela nossa capacidade limitada de detectar, coletar e manipular grandes quantidades de dados, como resultado, é fundamental que os dados utilizados para representar um determinado processo tenham todos os elementos relevantes necessários para uma modelagem bem-sucedida desse processo (Wilson, 2018).

O último quarto de século foi marcado por avanços significativos na disponibilidade de dados de elevação de altíssima resolução, impulsionados pela inovação tecnológica (Wilson, 2018). Estes e outros Modelos Digitais de Elevação (MDE) mostram como a interpretação estereoscópica da fotografia aérea pode fornecer elevações com precisão de metros e até centimétricos (Lemmens, 1988). Esses avanços têm promovido uma ferramenta para a caracterização morfométrica cada vez mais detalhada.

A morfometria e as técnicas de modelagem 3D são muito úteis para identificar e entender as formas de relevo. Ao caracterizar essas formas em diferentes escalas, podemos interpretar melhor não só as grandes estruturas, mas também formas menores que são essenciais para compreender o processo geomorfológico em uma área específica (Gomez-Heras *et al.*, 2019). Métodos como fotogrametria são cada vez mais acessível e estão entre os desenvolvimentos técnicos que tiveram um forte impacto na capacidade de coletar dados em geomorfologia (Viles, 2016).

Viles (2016) afirma que as melhorias na utilização de VANT incluem a capacidade de recolher dados a uma distância consideravelmente mais próxima do que as plataformas convencionais de detecção remota, o que é vantajoso para muitas aplicações geomorfológicas que exigem dados de alta resolução. Além disso, as câmeras instaladas nos VANTs tornam simples a aquisição de imagens utilizando uma variedade de comprimentos de onda, e a fotografia infravermelha (IR) dos VANTs pode um dia ser muito benéfica para a biogeomorfologia e os estudos de intemperismo (Viles, 2016).

Segundo Mohsan *et al.* (2023), as limitações que os VANTs enfrentam em termos de operacionalidade está relacionado com autonomia de voo limitada, planejamento de trajetória, resistência de bateria, tempo de voo limitado e capacidade limitada de carga útil. Além disso, condições climáticas adversas e ambientes complexos também podem impor limitações ao desempenho dos VANTs (Mohsan *et al.*, 2023).

# **3** METODOLOGIA

# 3.1 Levantamento bibliográfico e cartográfico

Foram realizadas buscas bibliográficas e cartográficas em diversas fontes, incluindo artigos, livros, dissertações, teses e produtos técnicos de órgãos ligados ao tema examinado. Além disso, foram coletados bens cartográficos, como mapas, cartas, arquivos vetoriais e matriciais, visando obter dados primários e secundários para o estudo. Como resultado, os principais recursos digitais reunidos para a investigação foram:

- a) Cartas geológicas em formato *shapefile* (.shp), em escalas de 1:250.000 e 1:100.000, disponibilizadas gratuitamente pela Companhia de Pesquisa e Recursos Minerais do Brasil (CPRM). Sendo elas, Quixadá (SB. 24-VB-IV) e Itapiúna (SB. 24-XA-IV) (Costa e Palheta, 2017) e Folha Quixeramobim SB-24-V-D-III (Parente, Almeida e Arthaud, 2008);
- b) Informações referentes a divisão municipal, localidades, sedes, distritos, rodovias, rede de drenagem, corpos d'água em formato *shapefile* (.shp), adquiridas pelo IPECE;
- c) Imagens do Google Earth Pro, adquiridas de forma gratuita e online;
- d) Imagens orbitais do satélite SENTINEL-2A, formato geotiff (.tif), sensor *MultiSpectral Instrument* (MSI), cena 24MVV e 24MWV, de 20 de novembro de 2022. Baixadas gratuitamente no site da Agência Espacial Europeia (*European Space Agency* ESA). Possuindo 12 bandas espectrais, com resoluções espaciais distintas de 10m (bandas 2, 3, 4 e 8), 20 m (bandas 5, 6, 7, 8A, 11, 12) e 60 m (bandas 1, 9 e 10). A resolução radiométrica das mesmas é de 32 bits;
- e) Dados de Radar de Abertura Sintética (SAR), em formato geotiff (.tif), referentes a Modelo Digital de Elevação (MDE) – FABDEM (*Florest And Buildings removed Copernicus* DEM), obtidas através do site da *University of Bristol* com licença *Creative Commons* "CC BY-NC-AS 4.0" (Hwaker e Neal, 2021);
- f) Imageamento de dados de alta resolução espacial. O equipamento empregado foi o drone *Phantom* 4, produzido pela empresa DJI. Esse modelo possui peso leve (1,38 kg) e um alcance de 5 km. Além disso, o equipamento possui um sensor CMOS de 12,4 MP, podendo capturar imagens de 4000×3000 de dimensão.

#### 3.2 Reconhecimento e digitalização dos Inselbergs e lajedos

A partir da revisão bibliográfica a respeito da descrição morfológica e morfométrica de *inselbergs* e verificando as características particulares da área de estudo, foram elaborados critérios de classificação para delimitação dos *inselbergs*. Parte desses critérios tem como base o trabalho realizado por Nenonen *et al.*, 2019, onde os dados de declive das escarpas seriam um dos dois principais parâmetros utilizados no reconhecimento dessas formas. Em nossa área de estudo, estabeleceu-se como *inselbergs* as elevações graníticas com no mínimo 20 metros de altura, e com 85% das encostas com declividade superior a 20° e aproximadamente 50% das encostas com declividade superior a 30°.

Sendo assim, os principais parâmetros para reconhecimento e caracterização dos *inselbergs* e lajedos foram altura e declividade. As análises das áreas de Quixadá e Quixeramobim foram realizadas no *software* QGIS 3.28.4 Firenze, utilizando a imagem FABDEM, a qual foi dividida em duas classes de acordo com a elevação. A primeira classe levou em conta as elevações acima de 160 m de altitude e a segunda classe as elevações entre 170 e 400 m de altitude. Isso foi feito porque a elevação mais baixa encontrada dos *inselbergs* foi de 160 metros de altitude durante a verificação de campo.

De modo a garantir maior precisão no reconhecimento dessas formas, a escala de análise utilizada no mapeamento em SIG foi definida como 1:10000. Foi realizada a digitalização manual das margens de cada *inselberg* com auxílio das duas classes do MDE e com base em imagens fornecidas pelo Google Earth. Em seguida, foi criado um *buffer* (zona de amortecimento) de 50 m ao redor da margem de cada *inselberg*. Uma zona de amortecimento de 50 m foi selecionada por ser grande o suficiente para ser representativa das áreas circunjacentes e pequena o suficiente para atenuar o impacto das características topográficas próximas (ou seja, outros *inselbergs*, lajedos).

Após delinear as bordas dos *inselbergs*, o Modelo Digital de Elevação FABDEM passou por uma segunda etapa de classificação, durante a qual foi calculada a declividade do terreno. É importante ressaltar que a declividade depende da distância entre os pontos de medição e, portanto, o resultado obtido é uma estimativa. Em outras palavras, a declividade do terreno medida leva em consideração as diferenças de altitude entre pontos próximos e a distância entre esses pontos (Valeriano, 2008).

Para calcular a declividade, utilizamos o algoritmo "*Slope*", derivado do utilitário GDAL DEM, acessível por meio do *software* QGIS. A ferramenta *Slope* pode ser encontrada no menu "Raster"  $\rightarrow$  "Análise"  $\rightarrow$  "*Slope*". No decorrer deste estudo, determinamos os valores

de declividade por meio da triangulação entre a Altura, a Base e a Declividade, como mostrado na Figura 18. Esses valores foram expressos em Graus sexagesimais (°).



Figura 18 - Representação da relação altura, base e inclinação em ortomosaico.

Para entender melhor como o algoritmo calcula a declividade de uma imagem no Sistema de Informações Geográficas (SIG), será realizada uma análise dos valores dos pixels (Figura 19). A determinação da declividade no contexto do SIG é realizada com base em uma máscara móvel de três em três sobre um Modelo Digital de Elevação (MDE) para prever o declive da célula central a partir das suas oito vizinhas (Dunn e Hickey, 1998).

Figura 19 - Análise de valores dos pixels, realizada com base em uma grade móvel de três em três onde cada célula contém um valor altimétrico.



Fonte: Modificado de Santos, Melo e Rovani (2017).

Segundo Dunn e Hickey (1998), este método não considera a elevação do ponto central, o que pode levar a imprecisões em áreas com pouca área plana, assim como em cadeias

Fonte: Modificado de Santos, Melo e Rovani (2017).

montanhosas ou vales. É importante notar que os valores de declividade devem ser vistos como uma estimativa, podendo variar dependendo da qualidade da imagem ou da grade utilizada. Quando se emprega um MDE de alta resolução, por exemplo, com uma grade de 1 metro, a influência da precisão dos dados se torna significativa (Figura 20).

Figura 20 - Áreas de alto declive em *inselbergs*. Comparação entre o MDE FABDEM e o MDE gerado pelo VANT.



Fonte: Elaborado pela autora (2023).

Portanto, considerando que os modelos de 30 metros exibem uma variação no que diz respeito ao parâmetro de declividade, optou-se por uma estimativa na qual as áreas com declividade com ângulos superiores a 20° seriam consideradas aproximadamente um ângulo de 30°. Essa abordagem foi sujeita a verificações em campo, *Street View* e em MDEs adquiridos por VANT (Figura 21).

Figura 21 - Delimitação e reconhecimento de *inselbergs*. A – Altitude de *inselbergs* segundo FABDEM. A1e A2– *Inselberg* do tipo *nubbin*. B1 – Foto capturada em campo. B2 – Imagem obtida através do *streetview* (google maps).



Fonte: Elaborado pela autora (2023).

A continuação da extração dos dados de declividade e altura envolveu a conversão da camada raster de declividade em vetor. Com o vetor de declividade em mãos, foi realizado um recorte baseado no buffer criado anteriormente. Esse procedimento permitiu obter informações específicas sobre a declividade dos *inselbergs*, identificando áreas com classes de declividade entre  $0-5^{\circ}$ ,  $5^{\circ}-10^{\circ}$ ,  $10^{\circ}-15^{\circ}$ ,  $15^{\circ}-20^{\circ}$ ,  $25^{\circ}-30^{\circ}$  e >  $30^{\circ}$ .

Para extração das elevações mínimas e máximas foi utilizado a ferramenta de processamento "Estatísticas Zonais", no qual calcula as estatísticas de uma camada rasterizada (neste caso, o MDE FABDEM) para cada recurso de uma camada vetorial de polígono sobreposta, com esse recurso otimizou-se o tempo e minimizou possíveis erros de extração. Outro campo criado no algoritmo de "Estatísticas Zonais" foi o "*range*", onde é possível descobrir a variação de altura, para isso é subtraído a elevação da superfície rebaixada do plúton/base (Elevação Mínima) da elevação do topo (Elevação Máxima), como mostrado na Figura 18B.

Figura 22 - Extração de estatísticas zonais de camada rasterizada. A. Imagem de satélite mostrando MDE com *inselbergs*. Margens individuais dos *inselbergs* (linhas vermelhas).

Amortecedores de 50 m de diâmetro (linhas amarelas) ao redor das margens, e pontos (preto). B. Cálculo para extração das alturas dos *inselbergs*.



Fonte: Elaborado pela autora.

Tendo os dados de altura e declividade, foi feita uma análise com base nos critérios anteriormente mencionados, ou seja, elevações graníticas com no mínimo 20 metros de altura, e com 85% das encostas com declividade superior a 20° e aproximadamente 50% das encostas com declividade superior a 30°.

Foi sugerida uma definição de lajedo como afloramentos graníticos que apresentam a forma de domos, caracterizados por um perfil achatado, com 85% das encostas apresentando declividade superior a 10° e aproximadamente 50% das encostas com declividade superior a 20°. Em relação ao critério de altura, na área de estudo, as elevações inferiores a 20 metros foram designadas como lajedos.

A identificação dos lajedos foi realizada por meio da análise de imagens adquiridas pelo satélite SENTINEL 2A. A seleção das imagens mais apropriadas levou em consideração critérios como a minimização da cobertura de nuvens e a data de aquisição. A classificação supervisionada (Figura 21) foi efetuada usando o *Semi-Automatic Classification Plugin*, disponível no *software* QGIS. Inicialmente, um conjunto de bandas do SENTINEL (B02, B03, B04, B05, B06, B07, B08, B8A, B11, B12) foi configurado, aproveitando os parâmetros de comprimento de onda central já definidos no plugin. Em seguida, um raster virtual foi criado, permitindo a geração de uma composição de falsa cor 4-3-2, correspondendo às faixas vermelha, verde e azul.

Posteriormente, foram delineadas áreas de treinamento, constituindo conjuntos de classes, e o algoritmo de Máxima Verossimilhança foi aplicado para a criação das classes identificativas. A técnica de Máxima Verossimilhança foi utilizada nesta pesquisa porque classifica cada célula do raster de entrada à classe com a maior probabilidade de pertencimento.





Fonte: Modificado de Andrade e Silva (2011).

Em seguida, foi realizada uma verificação manual para confirmar quais polígonos correspondiam a lajedos (Figura 24A). Assim como a verificação dos *inselbergs*, os lajedos foram verificados em campo (Figura 24B) e no *Google Street View*, uma funcionalidade do programa Google Earth que oferece vistas panorâmicas horizontais de 360° e verticais de 290°, em áreas que são difíceis de serem notadas em fotografias aéreas.

Figura 24 - Caracterização de lajedo. A. Vista aérea de área com predominância de lajedos em Quixadá e representação do critério de inclinação. B. Foto vertical do lajedo, indicando área maior com superfícies de baixo ângulo de inclinação.



Fonte: Elaborado pela autora (2023).

No que diz respeito às características morfológicas, o mapeamento permitiu a identificação de quatro tipos de *inselbergs*, categorizados com base na pesquisa de Maia *et al*. (2015) e Maia e Migoń (2020). Sendo eles: Fraturamento, dissolução, *nubbin*s e maciços.

*Inselbergs* com predominância de feições de fraturamento são caracterizados, sobretudo, pela presença de rampa de tálus, compondo aproximadamente 180° das adjacências das escarpas e pela incipiente ocorrência de feições de dissolução (Figura 25). *Inselbergs* com predominância de feições de dissolução, por sua vez, revelam feições como caneluras (*karren*), *gnammas* e tanques de dissolução, além da não ocorrência de expressivos depósitos de tálus (Figura 26). Para os *inselbergs* predominantemente maciços, observaram-se aqueles relevos cujas escarpas apresentavam poucas feições de intemperismo e ausência ou incipientes blocos de colapso (Figura 27). Os *nubbin*s, identificados sobretudo pela presença de um conjunto de blocos arredondados, separados por padrões de fraturas (Figura 21, B1 e B2).

Figura 25 - Caracterização de *inselbergs* de fraturamento. A. Vista aérea do *inselbergs* Muxió, localizado em Quixadá. A1. Vista no *streetview* onde é possível observar ângulo e blocos de colapso. A2. Foto mostrando outra perspectiva do *inselberg* Muxió.



Fonte: Elaborado pela autora (2023).

Figura 26 - Caracterização de *inselbergs* de dissolução. A. Vista aérea do *inselbergs* Pedra do Herval, localizado em Quixadá. A1, A2 e A3. Vista aérea vertical mostrando escarpas com feições de dissolução.



Fonte: Elaborado pela autora (2023).

Figura 27 - Caracterização de *inselbergs* maciços. A. Vista aérea do *inselbergs* Pedra do bolo, localizado em Quixeramobim. A1. Vista do *streetview*. A2. Foto vertical tirada em campo.



Fonte: Elaborado pela autora (2023).

Como forma de analisar a densidade dos plútons, usou-se o método de Kernel que consiste em quantificar as relações dos pontos dentro de um raio (R) de influência. Foi utilizado um raio de influência de 3,5 km, uma vez que um raio de pesquisa menor mostra mais variação de local. Com base nas informações obtidas pelo mapa de densidade Kernel, foram criadas áreas core (áreas centrais/áreas nucleares), que consiste na porção no território onde predominam as características representativas do agrupamento de *inselbergs*.

Neste trabalho, foram testadas várias dimensões de grid. No entanto, devido à área de estudo, foi utilizado um grid em forma de diamante com dimensões de 3,5 x 3,5 km para contar as ocorrências em pontos dos *inselbergs*. A contagem foi inserida em uma tabela de atributos e, posteriormente a escolha das áreas core se deu por apresentar níveis de densidade maiores.

Além das análises já mencionadas, uma ferramenta utilizada neste estudo foi o *software* OpenStereo, que permitiu a elaboração de um diagrama de roseta para identificar as orientações preferenciais de *inselbergs* com formas alongadas. Ressalta-se que, muitos *inselbergs* não apresentam um formato alongado, nesses casos, a orientação preferencial não foi extraída. O mapeamento das orientações preferenciais se deu com criação de arquivo em formato vetorial do tipo linha no *software* ArcGIS, onde foram extraídos os azimutes correspondentes a orientação com a ferramenta *Spatial Data Modeller Tools*. A roseta resultante foi então integrada ao mapa de tipos de *inselbergs* para uma visualização mais completa e detalhada dos resultados.

## 3.3 Análise de Dados

Realizamos a análise dos dados estatísticos com o auxílio do *software* Excel. Esse programa dispõe de várias fórmulas que permitem o cálculo, o tratamento e a compreensão das informações de forma mais eficiente. Para calcular a distribuição dos *inselbergs*, foram utilizadas algumas medidas estatísticas centrais e de dispersão. O conjunto de dados fora dividido em três: (i) conjunto relativo ao campo de *inselbergs* de Quixadá-Quixeramobim, (ii) conjunto dos *inselbergs* localizados no plúton Quixadá e (iii) conjunto dos *inselbergs* localizados no plúton Quixeramobim.

Para sintetizar ou caracterizar os dados quantitativos dos *inselbergs*, usamos medidas de tendência central que mostram os valores mais típicos ou representativos dos conjuntos de dados. As medidas que usamos foram: média (o resultado da divisão da soma dos valores pelo número de observações), mediana (o valor central quando os dados são organizados) e moda (o valor que ocorre com mais frequência). Essas três medidas nos ajudaram a compreender as propriedades dos conjuntos de dados e a fazer comparações entre os três conjuntos sugeridos.

Analisamos o grau de variabilidade dos conjuntos de *inselbergs* utilizando estatísticas de dispersão, que indicam o grau de variação dos dados em torno de um valor central, como a média ou a mediana. Essas medidas de dispersão nos permitiram analisar a homogeneidade ou heterogeneidade desses dados. Neste estudo, usamos o desvio padrão e o coeficiente de variação (CV) como medidas de dispersão. Essas medidas mostram o grau de variação dos dados dos *inselbergs*, sendo maiores quando há mais dispersão e menores quando há mais homogeneidade.

Uma etapa importante desta pesquisa foi estimar a densidade dos *inselbergs*, que é a relação entre a área que eles ocupam e a área total da região. Esse cálculo nos ajudou a medir o grau de concentração de *inselbergs* nas áreas core. Usamos a porcentagem para comparar as proporções relativas dos diferentes conjuntos de dados, a porcentagem facilitou a visualização e a interpretação dos dados, pois pudemos mostrá-los em gráficos de pizza nos mapas.

## **4 RESULTADOS**

# 4.1 Mapeamento e distribuição dos Inselbergs e lajedos

Os *inselbergs* foram mapeados baseando-se em parâmetros morfométricos como altitude máxima, altitude mínima e inclinação média. No total, foram identificados 195 *inselbergs* nos plútons Quixadá e Quixeramobim. Destes, 86 *inselbergs* estão localizados em Quixadá e 109 *inselbergs* em Quixeramobim.

A densidade de *inselbergs* nos dois plútons é verificada por meio do mapeamento e agrupamento de seis áreas core, três em Quixadá (Figura 28, A1, A2 e A3) e três em Quixeramobim (Figura 26, B1, B2 e B3). As áreas core representam porções do campo de *inselbergs* onde há maior concentração de *inselbergs* em uma zona específica.

Os *inselbergs* são predominantemente encontrados nas regiões NW e SW do plúton Quixadá, bem como nas regiões NE, SE e SW do plúton Quixeramobim.

| Pluton       | Contagem<br>( <i>Inselbergs</i> ) | Área (km²) | Densidade ( <i>Inselbergs</i> /km <sup>2</sup> ) |
|--------------|-----------------------------------|------------|--------------------------------------------------|
| Quixadá      | 86                                | 204,5      | 0,42                                             |
| Quixeramobim | 109                               | 744,7      | 0,15                                             |

Tabela 3 - Densidade de inselbergs na totalidade dos plútons Quixadá e Quixeramobim.

Apesar de ter uma área menor, o Plúton Quixadá possui uma densidade de *inselbergs* mais alta do que Quixeramobim (Tabela 3). Isso sugere que a distribuição dos *inselbergs* é mais concentrada em uma área relativamente menor no Plúton Quixadá, enquanto em Quixeramobim eles estão mais espalhados devido à sua maior extensão.

Figura 28 - Mapeamento e agrupamento de *inselbergs* nos plútons de Quixadá e Quixeramobim, A e B respectivamente. Áreas core de Quixadá A1, A2 e A3 e áreas core de Quixeramobim, B1, B2 e B3.



O mapa representado na Figura 28 apresenta dados relacionados à quantidade de *inselbergs*, medida em quilômetros quadrados (km<sup>2</sup>), em seis áreas core (zonas centrais com alta concentração de *inselbergs*). Os valores podem ser examinados ao consultar a Tabela 4:

| Áreas core | Contagem<br>( <i>Inselbergs</i> ) | Área <i>Core</i><br>(km²) | Área ocupada por<br><i>inselbergs</i> (km²) | Densidade<br>( <i>Inselbergs</i> /km²) |
|------------|-----------------------------------|---------------------------|---------------------------------------------|----------------------------------------|
| A1         | 12                                | 12,5                      | 1,3                                         | 0,96                                   |
| A2         | 13                                | 12,5                      | 0,8                                         | 1,04                                   |
| A3         | 18                                | 12,5                      | 1,9                                         | 1,44                                   |
| B1         | 10                                | 12,5                      | 3,1                                         | 0,80                                   |
| B2         | 14                                | 12,5                      | 3,4                                         | 1,12                                   |
| B3         | 11                                | 12,5                      | 1,4                                         | 0,88                                   |

Tabela 4 - Densidade de inselbergs nas áreas core dos plútons Quixadá e Quixeramobim

A partir desses dados, a extensão de todas as áreas core é a mesma (12,5 km<sup>2</sup>). No entanto, a densidade de *inselbergs* varia em diferentes partes do plúton, sendo mais alta nas áreas A3 e B2, o que indica uma concentração significativa nesses locais.

Com base nos dados apresentados na tabela 1, densidade média de *inselbergs* nas áreas core de Quixadá é de 1,14 *inselbergs*/km<sup>2</sup>, embora a densidade média em todo o plúton seja relativamente mais baixa (0,42 *inselbergs*/km<sup>2</sup>). Além disso, metade dos *inselbergs* (50%) estão localizados nessas áreas core, distribuídos da seguinte forma: 14% em A1, 15% em A2 e 21% em A3, enquanto a outra metade 50% estão dispersos fora das áreas core.

Ainda na Tabela 4, é possível observar que a densidade média de *inselbergs* nas áreas core de Quixeramobim é de 0,93 *inselbergs*/km<sup>2</sup>, representando seis vezes a densidade média de *inselbergs* em todo o plúton. A distribuição dos *inselbergs* em Quixeramobim mostra que 32% deles estão concentrados nas áreas core, enquanto 68% estão dispersos em outras partes do plúton.

Os valores de densidade de *inselbergs* nas áreas core de Quixeramobim são aproximadamente quatro vezes menores do que os encontrados em Quixadá. Apesar de Quixadá ter uma contagem maior de *inselbergs*, em Quixeramobim, os *inselbergs* possuem dimensões maiores, com áreas de até 7,8 km<sup>2</sup>, duas vezes maiores do que as encontradas em Quixadá (cerca de 4 km<sup>2</sup>). Em Quixeramobim, as áreas B1 e B2 possuem uma área significativa ocupada pelos *inselbergs* em relação à sua área total, resultando em densidades de *inselbergs* mais baixas. Em contraste, em Quixadá, as áreas centrais A1 e A2 possuem aproximadamente a mesma densidade de *inselbergs*, apesar de terem áreas de ocupação diferentes para os *inselbergs*.

Na Figura 29 os lajedos são predominantemente encontrados sobretudo na região central do plúton Quixadá e na região oeste do plúton Quixeramobim. O mapa apresenta dados relacionados à quantidade de lajedos em uma área específica, medida em quilômetros quadrados (km<sup>2</sup>), em quatro áreas core (zonas centrais com alta concentração de lajedos). A densidade de lajedos nos dois plútons é verificada por meio do mapeamento e agrupamento de seis áreas core, duas em Quixadá (Figura 29, A1 e A2) e três em Quixeramobim (Figura 29, B1 e B2). Os valores da totalidade de lajedos nos plútons pode ser observado na Tabela 05:

| Plúton       | Contagem<br>(Lajedos) | Área (km²) | Densidade<br>(lajedos/km²) |
|--------------|-----------------------|------------|----------------------------|
| Quixadá      | 560                   | 204,5      | 2,74                       |
| Quixeramobim | 3951                  | 744,7      | 5,31                       |

Tabela 5 - Densidade de lajedos na totalidade dos plútons Quixadá e Quixeramobim.

Quixeramobim possui uma densidade de lajedos mais alta, o que significa que há mais lajedos por unidade de área em comparação com Quixadá. Além disso, devido à sua área maior, Quixeramobim tem um número muito maior de lajedos em comparação com Quixadá, o que pode ser observado na Figura 29.





Os valores apresentados na Figura 29 podem ser examinados ao consultar a Tabela

| Áreas core | Contagem<br>(Lajedos) | Área (km²) | Área ocupada por<br>lajedos (km²) | Densidade<br>(Lajedos/km²) |
|------------|-----------------------|------------|-----------------------------------|----------------------------|
| A1         | 138                   | 12,5       | 0,57                              | 11,4                       |
| A2         | 117                   | 12,5       | 0,40                              | 9,4                        |
| B1         | 142                   | 12,5       | 1,00                              | 11,4                       |
| B2         | 139                   | 12,5       | 0,74                              | 11,2                       |

Tabela 6 - Densidade de lajedos nas áreas core dos plútons Quixadá e Quixeramobim.

06:

A tabela fornece informações detalhadas sobre a contagem, área ocupada e densidade de lajedos em quatro áreas core, permitindo uma análise das variações na concentração dessas formas. As áreas A1 e B1 têm a maior contagem de lajedos, com densidades de lajedos muito altas em relação à área, indicando alta concentração dessas formações nessas áreas core. A área B2 também tem uma densidade considerável de lajedos, embora um pouco menor do que A1 e B1. A área A2 tem uma contagem menor de lajedos em relação às outras, resultando em uma densidade mais baixa.

É possível observar que, apesar de haver uma concentração de lajedos nas áreas core de Quixadá (10 lajedos/km<sup>2</sup>), a densidade média na extensão total do plúton é relativamente baixa (2,7 lajedos/km<sup>2</sup>). Além disso, cerca de 31% dos lajedos estão nas áreas core, sendo A1 (17%) e A2 (14%), enquanto a maioria está distribuída fora das áreas core (69% dos lajedos).

A densidade média de lajedos nas áreas core de Quixeramobim é 11,24 lajedos/km<sup>2</sup>, sendo duas vezes maior que a densidade média total do plúton (5,31 lajedos/km<sup>2</sup>). A distribuição dos lajedos em Quixeramobim nas áreas core é de 3% em ambas as áreas. Nota-se que, em Quixeramobim, 6% dos lajedos estão nas áreas core, enquanto 94% estão distribuídos em outras partes do plúton.

Esses cálculos mostram que, embora ambos os plútons tenham áreas core com alta concentração de *inselbergs* e lajedos, a distribuição dessas formas de relevo difere em cada um deles.

# 4.2 Classificação Morfológica dos Inselbergs

Seguindo o padrão morfológico proposto em estudos anteriores na região (Maia *et al.*, 2015; Migoń e Maia, 2020), mapeamos a distribuição dos *inselbergs* segundo as suas morfologias. As categorias morfológicas identificadas foram: *Inselbergs* com predominância de feições de fraturamento, *inselbergs* com predominância de feições de dissolução, *nubbins* e *inselbergs* predominantemente maciços.

Em Quixadá, as feições de dissolução predominam, representando 47% da região e se distribuindo por toda a sua extensão, conforme ilustrado na Figura 30A. Por outro lado, os *inselberg*s de fraturamento, correspondentes a 43%, são caracteristicamente encontrados no sudoeste do plúton, no Complexo da Pedra da Galinha Choca, e em algumas áreas ao norte. Além disso, esses *inselberg*s exibem uma marcante presença de rampas de tálus. Dos 86 *inselberg*s identificados em Quixadá, 40 são classificados como de dissolução, 37 como de fraturamento, e apenas 9 (10%) como nubbins. É importante ressaltar que não foram encontrados *inselberg*s maciços na área.

Ao integrar os dados de morfologia (Figura 30) e distribuição (Figura 28), é possível observar que a área A1 e A2 apresentam uma predominância de feições de dissolução sendo respectivamente 8 e 10 *inselbergs*, enquanto na área A3 há uma concentração de 16 *inselbergs* do tipo fraturamento. Neste contexto, o plúton Quixeramobim (Figura 30B), representado pelas áreas B1, B2 e B3, não há uma diferenciação clara em termos de morfologia, devido à predominância de *inselbergs* maciços nessas áreas.

Considerando a totalidade do campo de *inselbergs* de Quixadá-Quixeramobim, foi identificado que 75% dos *inselbergs* analisados possuem forma elipsoidal, havendo uma predominância dessas formas no plúton Quixeramobim. Em Quixeramobim é possível observar um padrão sistemático de disposição de formas alongadas em sua parte NE, onde 6 *inselbergs* ocorrem de maneira justaposta. O diagrama de roseta expressa a direção preferencial dos *inselbergs* com formas alongadas nos dois plútons. Em Quixadá, os *inselbergs* alongam-se na direção NE-SW (Figura 30, A1), e os *inselbergs* em Quixeramobim, NNE-SSW (Figura 30, B1).

Figura 30 - Distribuição dos *inselbergs* por morfologia. A) Delimitação e distribuição de *inselbergs* em Quixadá. B) Delimitação e distribuição de *inselbergs* em Quixeramobim. A1 e B1) corresponde a tendência de orientação do agrupamento de formas dos *inselbergs*, onde A1 corresponde a Quixadá e B1 corresponde a Quixeramobim.



#### 4.3 Propriedades Morfométricas dos Inselbergs

A Figura 31 mostra a classificação dos *inselbergs* de acordo com suas alturas, calculadas a partir da diferença entre a altura da superfície rebaixada do plúton e a altura máxima de cada *inselberg*. Os *inselbergs* podem ser categorizados em três grupos, com base em sua altura: acima de 100 m, entre 50 e 100 m e abaixo de 50 m. É possível notar que em Quixadá as classes < 50 e 50-100 possuem aproximadamente o mesmo percentual, já em Quixeramobim as classes < 50 e > 100 possuem os mesmos valores.

| Intervalo de | Contagem Quixadá | Contagem Quixeramobim |  |
|--------------|------------------|-----------------------|--|
| Alturas (m)  | (Inselbergs)     | (Inselbergs)          |  |
| < 50         | 28               | 26                    |  |
| 50-100       | 36               | 46                    |  |
| > 100        | 22               | 37                    |  |
|              |                  |                       |  |

Tabela 7 - Intervalo de altura de inselbergs no plúton Quixadá e Quixeramobim.



Figura 31 - Classificação dos *inselbergs* segundo a altura. A - Delimitação e distribuição de *inselbergs* em Quixadá e Quixeramobim. B e C distribuição de alturas nos dois plútons em classes de <50, 50 - 100 e >100m.

Os *inselbergs* de Quixadá-Quixeramobim exibem uma faixa de alturas que varia de 22 m a 377 m, com uma média de 90 m. A mediana é 75, significando que metade das contagens de *inselbergs* é menor ou igual a 75 m, e a outra metade é maior ou igual a 75 m. Essa variação é notável, pois o desvio padrão alcança 63 m, resultando em um coeficiente de variação de 70%. Em relação aos dados de altitude dessa área, os valores variam entre 159 m e 572 m, tendo uma média de 237,90 m.

Observa-se uma predominância de *inselbergs* com alturas situadas na faixa de 50 a 100 m em ambos os plútons. Dos 195 *inselbergs* analisados, 82 (42%) encontram-se dentro desse intervalo. Adicionalmente, há 59 (30%) *inselbergs* com alturas inferiores a 50 m e 54 (28%) *inselbergs* com alturas superiores a 100 m. As áreas onde ocorrem *inselbergs* de menor altura são encontradas ao norte do plúton Quixadá e na parte sudoeste do plúton Quixeramobim.

Em Quixadá, há 86 *inselbergs*, sendo que 28 deles têm menos de 50 m de altura (Figura 31A). A altura máxima observada em Quixadá foi de 241 m, com uma média de 77 m. A variação de altura é relativamente baixa, tendo um desvio padrão de 46 m e um coeficiente de variação de 59%.

Os *inselbergs* em Quixeramobim possuem alturas máximas mais elevadas em comparação com os do plúton Quixadá. O pico de altura observado no primeiro é de 377 m, enquanto o *inselberg* mais elevado no segundo chega a 241 m. Observando as estatísticas, verifica-se que que *inselbergs* de dissolução apresentam médias relativamente mais baixas de alturas, sugerindo uma distribuição de alturas mais concentrada, ao passo que *inselbergs* de fraturamento e maciços possuem médias mais altas (Tabela 8). É valido ressaltar que cada tipo de *inselberg* exibe uma distribuição única de alturas.

| Tino Morfológiao do | Média<br>(alturas) | Mediana (alturas) | Amplitude                                    |
|---------------------|--------------------|-------------------|----------------------------------------------|
| Inselberg           |                    |                   | (Variação entre altura<br>mínima e máxima) * |
| Dissolução          | 65 m               | 59 m              | 355 m                                        |
| Fraturamento        | 102 m              | 92 m              | 203 m                                        |
| Nubbins             | 31 m               | 31 m              | 2 m                                          |
| Maciços             | 99 m               | 76 m              | 355 m                                        |

Tabela 8 - Correlação entre tipo morfológicos dos *inselbergs* e estatísticas básicas das alturas.

\* para ver dados de todos os inselbegrs nos plútons, ver material suplementar.

Foi verificado também que as alturas dos *inselbergs* tendem a crescer à medida que a área ocupada por eles aumenta. No contexto do campo de *inselbergs*, a área coberta por esses relevos varia desde 0,01 km<sup>2</sup> a 1,93 km<sup>2</sup>, com uma média de 0,21 km<sup>2</sup>. Os *inselbergs* maciços no plúton Quixeramobim, por exemplo, ocupam áreas maiores, e, coincidentemente, apresentam alturas superiores em comparação com os *inselbergs* de outros tipos morfológicos.

# 5 DISCUSSÃO

Os resultados apresentados permitem verificar que apesar da alta concentração de *inselbergs* nos plútons Quixadá e Quixeramobim, a distribuição dos *inselbergs* e seus tipos morfológicos variam em cada um deles, sugerindo que fatores geológicos, geomorfológicos e topográficos influenciam nesses parâmetros. O mapeamento de áreas core demonstrou uma não uniformidade na distribuição dos *inselbergs* em cada plúton, havendo concentração de *inselbergs* nas regiões NW e SW do Plúton Quixadá, e nas áreas NE, SE e SW do Plúton Quixeramobim. Verifica-se que a localização das áreas core no Plúton Quixeramobim tem relação com as características faciológicas, uma vez que a maior concentração desses relevos se dá nas fácies graníticas (Muxerê Novo) e granodioríticas (Serra Branca) (Torquato *et al.*, 1989).

Por outro lado, no plúton Quixadá há relativa homogeneidade litológica (Almeida, 1999), que não parece ser um fator óbvio de controle na espacialização das formas de relevo dos *inselbergs*. Entretanto, vale ressaltar a presença de uma sub-fácies granítica na forma de corpos tabulares centímetros (Silva, 1989) cortando a fácies principal de monzonitos (Silva, 1989), que ocorrem com maior concentração no setor sudoeste do plúton Quixadá (Nogueira, 2004). A esse respeito, Souza *et al.* (2023) apontaram que a composição dos diques, com alto teor de sílica (> 70%), e a orientação dos enxames (baixos ângulos de mergulho) favorecem a manutenção de núcleos de maior resistência, uma vez que dificultam o fraturamento vertical. Esses fatores, portanto, corroboram os resultados apresentados de maior densidade de *inselbergs* no setor SW do plúton.

Outro fator que pode influenciar a distribuição das formas de relevo é o padrão de fraturamento no plúton. Maia *et al.* (2015) apontam que a maior densidade de lineamentos coincide com espaçamentos mais amplos entre os *inselbergs*, de modo que, nas áreas core, a densidade de lineamentos seria menor, e, portanto, processos erosivos foram menos intensos nesses setores.

Um importante fator que se correlaciona com a distribuição das formas de relevo é a morfometria. Os resultados apresentados demonstram que, no plúton Quixeramobim, os *inselbergs* têm maior área individual, e portanto, menos *inselbergs* ocupam as área core, levando a uma diminuição nos valores de densidade. Em Quixadá ocorre o inverso. A área individual dos *inselbergs* nesse plúton é aproximadamente duas vezes menor que em Quixeramobim, propiciando que haja mais *inselbergs* por km<sup>2</sup>.

O mapeamento de *inselbergs* conforme sua tipologia morfológica em categorias de fraturamento, dissolução, *nubbin*s e maciços permitiu visualizar a diversidade de formas de relevo nos plútons graníticos. O fator notável é o contraste de variação das morfologias no plúton de Quixadá em comparação com o plúton Quixeramobim, marcado por *inselbergs* maciços.

Maia *et al.* (2015), já apontava que características faciológicas dos granitoides em Quixadá promovem a modelagem de microfeições nas escarpas dos *inselbergs*. Particularmente, os dados mostram que mais da metade dos *inselbergs* no plúton Quixadá são do tipo com predominância de feições de dissolução. Esse resultado corrobora as descrições mineralógicas dos granitoides nesse plúton, cuja matriz das rochas é constituída principalmente por anfibólios e biotitas que compõem de 30 – 35% do volume total da rocha (Torquato *et al.*, 1989) e os quais possuem generalizada ocorrência de enclaves máficos, que são reconhecidos locais preferenciais para desenvolvimento de dissoluções como *gnammas* (Maia *et al.* 2015; Maia e Nascimento, 2018). Os autores (Maia *et al.*, 2015) também afirmaram que os *inselbergs* de dissolução possuem altitudes menores, apontamento convergente aos resultados desse estudo, tal como indicado por menores valores médios das alturas, em comparação a *inselbergs* de fraturamento e maciços.

Vale ressaltar que a amplitude (variação entre alturas máx. e min.) nos *inselbergs* de dissolução é maior que *inselbergs* de fraturamento. Isso pode ter como causa a variabilidade das características desses *inselbergs* e termos evolutivos das feições de dissolução que neles ocorrem, sobretudo caneluras. Por exemplo, o *inselberg* Pedra do Cruzeiro, com 63 m de altura, apresenta caneluras profundas que ultrapassam 1 m de profundidade em toda a extensão de sua escarpa, e contrasta com outro *inselberg* de tipo dissolução, cuja altura é 145 m (Pedra Riscada), o qual, por sua vez, apresenta caneluras de profundidade centimétrica. Essas diferenciações se dão como resultado da atuação diferencial dos processos de intemperismo químico sobre as rochas em diferentes setores do plúton e que hoje se revelam no relevo. É provável que onde esses processos foram relativamente mais intensos, mantos de alteração mais espessos foram formados (Thomas, 1965) e, com sua posterior remoção, os *inselbergs* revelam relevos mais rebaixados em comparação a locais onde o aprofundamento dessas feições foi menos intenso. Ainda são poucos os dados que elucidam essas diferenciações dos processos de estágios de etchplanação do plúton, e, portanto, requerem posterior investigação a fim de elucidar tais mecanismos que se relevem em padrões morfológicos e alturas dos *inselbergs*.

Os *nubbin*s presentam pouca representatividade no agrupamento (13%) de formas mapeadas, e suas alturas encontram-se com os menores valores médios. Isso se dá, pois, esses

relevos já não resguardam morfologia contínua de uma escarpa, como nos outros *inselbergs*, dada a intensa individualização de setores por controle de fraturas ortogonais e formação de *boulders* (Twidale, 1981). Nota-se o contraste dessas formas, fortemente controladas pelas fraturas em sua evolução com *inselbergs* fraturados. Estes, por sua vez, apresentam alturas similares a *inselbergs* maciços (média de 90 m, e valores máximos de 200 m). Essa característica leva a analisar fatores que contribuem para a manutenção dessas alturas apesar do fraturamento. Alguns estudos demonstram relevos íngremes controlados por intenso fraturas verticais individualizam relevos que exibem escarpas declivosas que refletem o padrão estrutural. Tal fato é similar ao observado em alguns *inselbergs* na área de estudo, como a Pedra da Galinha Choca.

Os *inselbergs* maciços apresentam as maiores alturas e morfologias predominantemente maciças. Essas características se relacionam provavelmente com as características dos granitos, cuja matriz de textura mais fina (em comparação aos granitoides de Quixadá) pode fornecer à coerência das escarpas e menor papel de microinteremperismo intergranular. Nesse sentido, Migoń e Vieira (2014) apontou que texturas finas podem ser relativamente mais resistentes que as variações de granulação grossa em rochas graníticas. Entretanto, esse fator também é influenciado pela mineralogia (ex.: percentual de quartzo) e fatores estruturais. Um aspecto importante dos *inselbergs* de Quixeramobim que os diferencia dos *inselbergs* de Quixadá é a tendência de orientação das formas sobretudo na porção mais leste do plúton. Aí, é possível sugerir que a zona de cisalhamento Senador Pompeu, que bordeja o corpo granítico, influenciou na erosão diferencial e modelagem do relevo nesses setores. Isso é reificado uma vez que os *inselbergs* mais próximos à essa zona se encontram alongado em direção preferencial NE-SW, em conformação à estrutura regional. A influência de fatores estruturais nos plútons graníticos tem sido ressaltada previamente por Maia e Bezerra (2020), entretanto, não foi dado enfoque na escala da morfologia dos *inselbergs*.
## 6 CONCLUSÕES

Os resultados desse trabalho permitem concluir que a distribuição e concentração de *inselbergs* nos plúton de Quixadá e Quixeramobim tende a ser influenciado por fatores geológicos locais, tais como a faciologia. Nesse sentido, fácies e sub-facies graníticas sensu stricto tendem a favorecer concentração e localização das formas de relevo. Ademais, verificou-se que a avaliação das áreas nucleares de *inselbergs* (alta densidade de formas) responde à metodologia do mapeamento individual dos *inselbergs*, cujas delimitações devem considerar a altura e a inclinação de suas escarpas.

Padrões morfológicos dos *inselbergs*, associados aos processos de intemperismo nas escarpas são correlacionáveis às características morfométricas. Estas, por sua vez, refletem fatores na evolução das formas. Os relevos com menores altura são *nubbin*s, devido ao prolongado processo de desintegração do núcleo rochoso por individualização de setores guiados por padrões de fraturas, levando à perda de escarpas. Dentre os *inselbergs*, aquele caracterizados por dissolução, por sua vez, apresentam médias de altura menores, e especificamente, exibem correlação inversamente proporcional entre o grau de evolução das feições de dissolução e suas alturas. *Inselbergs* de fraturamento e maciços possuem maiores alturas e escapas mais íngremes, tanto como resultado da configuração estrutural, no primeiro caso, quanto pela coesão dada pela incipiência do desenvolvimento de microformas, influenciado por texturas do granito.

## REFERÊNCIAS

AFOLABI, M. R.; OGUNKOYA, O. O. Morphology and evolution of *Inselbergs* on a part of the Basement Complex of Western Nigeria. **Zaria Geographer** v. 25, n. 1, p. 13-27, 2018.

AHNERT, F. Local relief and the height limits of mountain ranges. American Journal of Science, v. 284, n. 9, p. 1035-1055, 1984.

AIRBUS. **Copernicus DEM:** Copernicus Digital Elevation Model Product Handbook. RFP/RFI-No.: AO/1-9422/18/I-LG, Version: 5. 2022. Disponível em: https://spacedata.copernicus.eu/documents/20123/122407/GEO1988-CopernicusDEM-SPE-002\_ProductHandbook\_I5.0+%281%29.pdf/706ee17d-2cce-f1fa-a73e-1686d28f09dd?t=1679657087883. Acesso em: 20 jan. 2023.

ALMEIDA, A. R. de; ULBRICH, H. HGJ; MCREATH, I. O batólito Quixadá-petrologia e geoquímica. 1999.

ARTHAUD, M. H. **Evolução neoproterozóica do grupo Ceará (domínio Ceará central, NE Brasil):** da sedimentação à colisão continental brasiliana. 2007. 170 f. Tese (Doutorado em Geologia) - Universidade de Brasília, Brasília, 2007.

BASTOS, F. H., LIMA, D. L. S., CORDEIRO, A. M. N., & MAIA, R. P. Relevos graníticos do nordeste brasileiro: uma proposta taxonômica. **Revisões de literatura da Geomorfologia brasileira**, p. 737-762, 2021.

BISHOP, M. P., JAMES, L. A., SHRODER Jr, J. F., & WALSH, S. J. Geospatial technologies and digital geomorphological mapping: Concepts, issues and research. **Geomorphology**, v. 137, n. 1, p. 5-26, 2012.

BOURMAN, R. P.; OLLIER, C. D.; BUCKMAN, S. *Inselbergs* and monoliths: a comparative review of two iconic Australian landforms, Uluru (Ayers Rock) and Burringurrah (Mount Augustus). **Zeitschrift für Geomorphologie**, v. 59, n. 2, p. 197-227, 2015.

BOURNE, J. A.; TWIDALE, C. R. Morphology and origin of three *Bornhardt Inselbergs* near Lake Johnston, Western Australia. **Journal of the Royal Society of Western Australia**, v. 85, p. 83, 2002.

BUCKLEY, S. **NASADEM:** Creating a new NASA digital elevation model and associated products. 2020. Disponível em: https://earthdata. nasa. gov/earth-science-data-systems-program/competitive-programs/measures/nasadem. Acesso em: 20 jan. 2023.

CAMPBELL, E. M. Granite landforms. Journal of the Royal Society of Western Australia, v. 80, p. 101, 1997.

CHIGIRA, M. Rock pillars shaped by columnar joints in granite at Mt. Mizugaki, Central Japan. Island Arc, v. 30, n. 1, p. e12424, 2021.

CHORLEY, R. J.; MALM, D. EG; POGORZELSKI, H. A. A new standard for estimating drainage basin shape. American journal of science, v. 255, n. 2, p. 138-141, 1957.

CLAUDINO-SALES, V. **Potencialidades da Geodiversidade: monólitos de Quixadá**. In: Ciclo de Palestras: conhecer para AMMAr e Preservar. 2020. Disponível em: https://www.youtube.com/watch?v=s6TR7ITr0oA. Acesso em: 05 jul. 2023.

COOKE, R. U.; WARREN, A.; GOUDIE, A. S. Desert geomorphology. CRC Press, 1993.

COSTA, F. G. da; PALHETA, E. S. de M. Geologia e recursos minerais das folhas Quixadá (SB. 24-VB-IV) e Itapiúna (SB. 24-XA-IV). CPRM, 2017.

COSTA, L. R. F; MAIA, R. P.; BARRETO, L. L.; CLAUDINO-SALES, V. C. Geomorfologia do nordeste setentrional brasileiro: uma proposta de classificação. **Revista Brasileira de Geomorfologia**, São Paulo, v. 21, n. 1, p. 185-208, jan./mar. 2020. DOI: 10.20502/rbg.v21i1.1447

COTTON, C. A. The theory of savanna planation. In: DERBYSHIRE, E.D. (ed.) Climatic Geomorphology. Palgrave, London, 1973. p. 171-185.

CRONEBORG, L., SAITO, K., MATERA, M., MCKEOWN, D., & VAN AARDT, J. A Guidance Note on how Digital Elevation Models are created and used–includes key definitions, sample Terms of Reference and how best to plan a DEM-mission. **Global Facility for Disaster Reduction and Recovery**, 2015

THOMAS, D. S.; GOUDIE, A. S. (Ed.). The dictionary of physical geography. John Wiley & Sons, 2009.

DEMARCHI, L.; VAN DE BUND, W.; PISTOCCHI, A. Object-based ensemble learning for pan-european riverscape units mapping based on copernicus VHR and EU-DEM data fusion. **Remote Sensing**, v. 12, n. 7, p. 1222, 2020.

DIKAU, R.; RASEMANN, S.; SCHMIDT, J. Hillslope form. In: GOUDIE. Encyclopedia of Geomorphology, p. 516-521, 2004.

DRAMIS, F.; GUIDA, D.; CESTARI, A. Nature and aims of geomorphological mapping. In: SMITH, PARON, GRIFFITH (Editors). **Developments in earth surface processes: Geomorphological Mapping – Methods and Applications**. Elsevier, p. 39-73, 2011.

DUNN, M.; HICKEY, R. The effect of *slope* algorithms on *slope* estimates within a GIS. **Cartography**, v. 27, n. 1, p. 9-15, 1998.

EBERT, K.; HALL, A. M.; HÄTTESTRAND, C. Pre-glacial landforms on a glaciated shield: the *inselberg* plains of northern Sweden. **Norwegian Journal of Geology**, v. 92, p. 1-17, 2012.

EMBRAPA. Sistema Brasileiro de Classificação de Solos. 3. ed. Brasília: Embrapa, 2011.

EVANS, I. S. General geomorphometry, derivatives of altitude, and descriptive statistics. In: **Spatial analysis in geomorphology**. Routledge, p. 17-90, 1972.

EVANS, I. S. Geomorphometry and landform mapping: What is a landform?. **Geomorphology**, v. 137, n. 1, p. 94-106, 2012.

EVANS, I. S.; COX, N. J. Relations between land surface properties: altitude, slope and curvature. In: S. Hergarten, H. Neugebauer (Eds.), **Process Modelling and Landform Evolution**, Volume 78 of Lecture Notes in Earth Sciences, 3-540-64932-8, Springer, Heidelberg, p. 13-45, 1999.

EVERAERTS, J. The use of unmanned aerial vehicles (UAVs) for remote sensing and mapping. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, v. 37, n. 2008, p. 1187-1192, 2008.

FARR, T.G., ROSEN, P.A., CARO, E., CRIPPEN, R., DUREN, R., HENSLEY, S., KOBRICK, M., PALLER, M., RODRIGUEZ, E., ROTH, L., SEAL, D., SHAFFER, S., SHIMADA, J., UMLAND, J., WERNER, M., OSKIN, M., BURBANK, D., AND ALSDORF, D. (2007). The Shuttle Radar Topography Mission. **Reviews of Geophysics** 45. https://doi.org/10.1029/2005RG000183

FREITAS, L. C. B., MONTEIRO, F. A. D., FERREIRA, R. V., & MAIA, R. P. Projeto Geoparques: Geoparque Sertão Monumental, CE: proposta. [CPRM], 2019.

FUNCEME. Fundação Cearense de Meteorologia e Recursos Hídricos. **Chuva média do ano por município – 2022.** Disponível em: <a href="http://www.funceme.br/app-calendario/ano/municipios/media/2022">http://www.funceme.br/app-calendario/ano/municipios/media/2022</a>>. Acesso em: 15 out. 2022.

GARCIA, M.V.Y.; OLIVEIRA, H.C. The influence of flight configuration, camera calibration, and ground control points for digital terrain model and orthomosaic generation using unmanned aerial vehicles imagery. **Bulletin of Geodetic Sciences**. 27(2): e2021015, 2021.

GERRARD, A.J. Landforms on granitic rocks. In: GERRARD A.J., (ed.) Rocks and Landforms. Springer Netherlands, Dordrecht. P. 208–230, 1988.

GIBBONS, C. L. M. H. Tors in Swaziland. Geographical Journal, p. 72-78, 1981.

GOMEZ-HERAS, M., ORTEGA-BECERRIL, J. A., GARROTE, J., FORT, R., & LOPEZ-GONZALEZ, L. Morphometric measurements of bedrock rivers at different spatial scales and applications to geomorphological heritage research. **Progress in Earth and Planetary Science**, v. 6, n. 1, p. 1-18, 2019.

GOUDIE, A. (Ed.). Encyclopedia of geomorphology. Psychology Press, 2004.

GOUDIE, A. Desert Landscapes of the World with Google Earth. Springer Nature, 2023.

GOUDIE, A.; VILES, H. Landscapes and landforms of Namibia. Springer, 2014.

GUTIÉRREZ, F.; GUTIÉRREZ, M. Landforms of the earth: an illustrated guide. Springer, 2016.

HAWKER, L., UHE, P., PAULO, L., SOSA, J., SAVAGE, J., SAMPSON, C., & NEAL, J. A 30 m global map of elevation with forests and buildings removed. **Environmental Research Letters**, 17(2), 024016. 2022.

HAWKER, L.; NEAL, J. : **FABDEM V1-0**. 2021. DOI: 10.5523/bris.25wfy0f9ukoge2gs7a5mqpq2j7.

HUTCHINSON, M. F.; GALLANT, J. C. Digital elevation models and representation of terrain shape. In: WILSON, J. P.; GALLANT, J. C. (Ed.). **Terrain analysis:** principles and applications. New York: John Wiley and Sons, p. 29-50, 2000.

INSTITUTO NACIONAL DE METEOROLOGIA - INMET. **Banco de Dados Meteorológicos do INMET**. Disponível em < https://bdmep.inmet.gov.br/>>. Acesso em: 2 fev. 2023.

JAXA. ALOS Global Digital Surface Model "ALOS World 3D-30 m (AW3D30). 2023. Disponivel em: https://www.eorc.jaxa.jp/ALOS/en/alos/science\_program\_e.htm#concept. Acessos em: 2 fev. 2023.

JEJE, L. K.; ORIMOOGUNJE, O.; OLUSOLA, A. Hills and Ridges in Southwestern Nigeria. In: FANIRAN, A., JEJE, K. L., FASHAE, O. A., & OLUSOLA, A. O. (Eds.). Landscapes and Landforms of Nigeria. Cham: Springer Nature Switzerland, p. 71-87, 2023.

KAMENOV, B. K.; BILLI, P.; MIGOŃ, P. *Inselberg* Landscape of the Bur Area in Southern Somalia. In: BILLI, P. (Ed.). Landscapes and Landforms of the Horn of Africa: Eritrea, Djibouti, Somalia. Cham: Springer International Publishing, p. 249-263, 2022.

KAMP, U.; OWEN, L. A. Tectonic Geomorphology - Polygenetic Landscapes. In: J. Shroder; A. R. Orme; D. Sack (Orgs.); **Treatise on Geomorphology**. San Diego: Academic Press - Elsevier Inc. v. 5, p.370–393, 2013.

KWEON, I. S.; KANADE, T. Extracting topographic terrain features from elevation maps. **CVGIP: image understanding**, v. 59, n. 2, p. 171-182, 1994.

LAGES, G. D. A., MARINHO, M. D. S., NASCIMENTO, M. D., MEDEIROS, V. D., DANTAS, E. L., & FIALHO, D. Mar de Bolas do Lajedo do Pai Mateus, Cabaceiras, PB: Campo de matacões graníticos gigantes e registros rupestres de civilização précolombiana. **Sítios Geológicos e Paleontológicos do Brasil. 1**<sup>a</sup> ed. Brasília: CPRM, v. 3, p. 99-112, 2014.

LEMMENS, M. J. P. M. A survey on stereo matching techniques. International Archives of Photogrammetry and Remote Sensing, v. 27, n. B8, p. 11-23, 1988.

LI, N.; ZHOU, D.; DUAN, Z.; WANG, S. and CUI, Y. 'Application of unmanned airship image system and processing techniques for identifying of fresh water wetlands at a community scale'. In: **Proceedings of IEEE 18th Geoinformatics International Conference**. Beijing: IEEE. 2010.

LIMA, G. M. P.; CORRÊA-GOMES, L. C. Itatim geomorphological site: Largest concentration of *Inselbergs* in Brazil. In: Vieira, B. C., Salgado, A. A. R., & Santos, L. J. C. (Eds.). Landscapes and landforms of Brazil, p. 371-380, 2015.

LIU, Z., ZHU, J., FU, H., ZHOU, C., & ZUO, T. Evaluation of the vertical accuracy of open global DEMs over steep terrain regions using ICESat data: a case study over Hunan Province, China. **Sensors**, v. 20, n. 17, p. 4865, 2020.

TARBUCK, E. J.; LUTGENS, F. K.; TASA, D. Earth Science. Pearson, 2012.

MABBUTT, J. A. A study of granite relief from South-West Africa. **Geological Magazine**, v. 89, n. 2, p. 87-96, 1952.

MACMILLAN, R. A.; SHARY, P. A. Landforms and landform elements in geomorphometry. In: HENGL, T., REUTER, H.I., editors. Geomorphometry — Concepts, *Software*, Applications. vol. 33. Elsevier; Amsterdam: p. 637–652, 2009.

MAIA, R. P.; BEZERRA, F. H. R. Structural geomorphology in northeastern Brazil. Springer International Publishing, 2020.

MAIA, R. P., BEZERRA, F. H. R., NASCIMENTO, M. A. L., DE CASTRO, H. S., DE ANDRADE MEIRELES, A. J., & ROTHIS, L. M. Geomorfologia do campo de *Inselberg*ues de Quixadá, nordeste do Brasil. **Revista Brasileira de Geomorfologia**, v. 16, n. 2, 2015.

MAIA, R. P.; BASTOS, F. de H.; NASCIMENTO, M. A. L.; LIMA, D. L. de S.; CORDEIRO, A. M. N. **Paisagens graníticas do nordeste brasileiro**. Edições UFC, 2018.

MAIA, R. P.; DO NASCIMENTO, M. A. L. Relevos graníticos do Nordeste brasileiro. Revista Brasileira de Geomorfologia, v. 19, n. 2, 2018.

MARK, D. M. Geomorphometric parameters: a review and evaluation. Geografiska Annaler: Series A, Physical Geography, v. 57, n. 3-4, p. 165-177, 1975.

MESA-MINGORANCE, J. L.; ARIZA-LÓPEZ, F. J. Accuracy assessment of digital elevation models (DEMs): A critical review of practices of the past three decades. **Remote Sensing**, v. 12, n. 16, p. 2630, 2020.

MIGOŃ, P. Granite landscapes, geodiversity and geoheritage—Global context. **Heritage**, v. 4, n. 1, p. 198-219, 2021.

MIGOŃ, P. *Inselberg*. In: Goudie, A. S. **Encyclopedia of geomorphology**. Routledge, p. 564-566, 2004b.

MIGOŃ, P. Spitzkoppe: the world of granite landforms. In: Migoń P (ed) Geomorphological landscapes of the world. Springer, Berlin, pp 155–162, 2010.

MIGOŃ, P. Structural control in the evolution of granite landscape. Acta Universitatis Carolinae: Geographica, v. 39, n. 1, p. 19, 2004a.

MIGOŃ, P. Weathering and Hillslope Development. In: SHRODER, J. F. (ed.) **Treatise on Geomorphology**, Volume 4, pp. 159-178. San Diego: Academic Press, 2013.

MIGOŃ, P. Granite landscapes of the world. Oxford University Press Inc., New York, USA, 417p, 2006.

MIGOŃ, P.; MAIA, R. P. Pedra da Boca, Pai Mateus, and Quixadá—Three Possible Key Geoheritage Sites in Northeast Brazil. **Geoheritage**, v. 12, n. 3, p. 51, 2020.

MIGOŃ, P.; VIEIRA, G. Granite geomorphology and its geological controls, Serra da Estrela, Portugal. **Geomorphology**, v. 226, p. 1-14, 2014.

MOHSAN, S. A. H., OTHMAN, N. Q. H., Li, Y., ALSHARIF, M. H., & KHAN, M. A. Unmanned aerial vehicles (UAVs): Practical aspects, applications, open challenges, security issues, and future trends. **Intelligent Service Robotics**, *16*(1), 109-137. 2023

MUDD, S. M. Topographic data from satellites. In: TAROLLI, P.; MUDD, S. M. Remote Sensing of Geomorphology. Elsevier, 2020.

MUNIZ, L. F.; PEREIRA, J. M. RODRIGUES; XIMENES JÚNIOR, C. L.; STUDART, T. M. de C. **Classificação climática para o Estado do Ceará utilizando distintos sistemas de caracterização**. In: SIMPÓSIO BRASILEIRO DE RECURSOS HÍDRICOS - SBRH, XXII., 26 nov. a 01 dez. 2017, Florianópolis, Santa Catarina Brasil. Anais [...] Florianópolis, Santa Catarina, 2017.

MUSARURWA, C.; MANDAZA, L. Theories of *Inselberg* formation: can their differences be explained by equifinality?. **Geographical Educ. Mag. Zimbabwe**, v. 16, n. 2, p. 8-17, 1983.

NAGEL, R. Encyclopedia of Landforms and Other Geologic Features, vol. 2. Fault, Floodplain, Geyser and Hot Spring, Glacial Landforms and Features, Landslide and other Gravity Movements, Mesa and Butte, Meteorite Crater, Mountain, Gale: UXL, 2004.

NELSON, A.; REUTER, H. I.; GESSLER, P. DEM production methods and sources. In: HENGL, T., REUTER, H.I., editors. **Geomorphometry** — **Concepts**, *Software*, **Applications**. vol. 33. Elsevier; Amsterdam: p. 65-85, 2009.

NENONEN, K., JOHANSSON, P., SALLASMAA, O., SARALA, P., & PALMU, J. P. The *inselberg* landscape in Finnish Lapland: a morphological study based on the LiDAR data interpretation. **Bulletin of the Geological Society of Finland**, v. 90, n. 2, 2018.

NOGUEIRA, J. F.. Estrutura, geocronologia e alojamento dos batólitos de Quixadá, Quixeramobim e Senandor Pompeu - Ceará central. 2004. xii, 123 f. Tese (doutorado) - Universidade Estadual Paulista, Instituto de Geociências e Ciências Exatas, 2004. Disponível em: <a href="http://hdl.handle.net/11449/103013">http://hdl.handle.net/11449/103013</a>>. Acesso em: 2 fev. 2023.

ORME, A. R. Geomorphology and Late Cenozoic Climate Change. In: SHRODER, J. F. (ed.). **Treatise on Geomorphology**, v. 1, p. 271, 2013.

OUERGHI, S., ELSHEIKH, R. F. A., ACHOUR, H., & BOUAZI, S. Evaluation and validation of recent freely-available ASTER-GDEM V. 2, SRTM V. 4.1 and the DEM derived from topographical map over SW Grombalia (test area) in North East of Tunisia. Journal of Geographic Information System, v. 7, n. 03, p. 266, 2015.

PARENTE, C. V.; ALMEIDA, A. R. de; ARTHAUD, M. H. Geologia da folha Quixeramobim SB. 24-VD-III. CPRM, 2008.

PAULINO, R. C.; SILVEIRA, A.P.; GOMES, V. S.. Flora de *Inselberg*ues do Monumento Natural Monólitos de Quixadá, no sertão central do Ceará. **Iheringia, Série Botânica.**, v. 73, n. 2, p. 182-190, 2018.

PIKE, R. J. Geomorphometry-diversity in quantitative surface analysis. **Progress in physical geography**, v. 24, n. 1, p. 1-20, 2000. DOI: https://doi.org/10.1177/030913330002400101

PINÉO, T. R. G; PALHETA, E. S. M.; COSTA, F. G.; VASCONCELOS, A. M.; GOMES, I. P.; GOMES, F. E. M. G.; BESSA, M. D. M. R.; LIMA, A. F.; HOLANDA, J. L. R.; FREIRE, D. P. C. **Mapa Geológico do estado do Ceará**. 2020. CPRM. Disponível em: http://rigeo.cprm.gov.br/jspui/handle/doc/20418. Acesso em: 02 fev. 2023.

POPE, G. A. Weathering in the tropics, and related extratropical processes. In: SHRODER, J. F. (ed.). **Treatise on geomorphology**, p. 279-298, 2022.

POREMBSKI, S.; BARTHLOTT, W. (Ed.). *Inselbergs*: biotic diversity of isolated rock outcrops in tropical and temperate regions. Springer Science & Business Media, 2012.

PRADO, D. E. Seção I-Cap. 1: Padrões de Diversidade e Distribuição de Espécies em Escala Regional: As Caatingas da América do Sul. **Ecologia e conservação da Caatinga**/editores Leal, IR, Tabarelli, M., Silva, JMC. Recife: Ed. Universitária da UFPE, 2003.

RIZZOLI, P., MARTONE, M., GONZALEZ, C., WECKLICH, C., TRIDON, D. B., BRÄUTIGAM, B., ... & MOREIRA, A. Generation and performance assessment of the global TanDEM-X digital elevation model. **ISPRS Journal of Photogrammetry and Remote Sensing**, v. 132, p. 119-139, 2017.

RÖMER, W. The distribution of *inselbergs* and their relationship to geomorphological, structural and lithological controls in Southern Zimbabwe. **Geomorphology**, v. 72, n. 1-4, p. 156-176, 2005.

RUXTON, B. P.; BERRY, L. Notes on faceted slopes, rock fans and domes on granite in the east-central Sudan. American Journal of Science, v. 259, n. 3, p. 194-206, 1961.

SANTOS, H. G. dos; CARVALHO JUNIOR, W. de; DART, R. de O.; AGLIO, M. L. D.; SOUSA, J. S. de; PARES, J. G.; FONTANA, A.; MARTINS, A. L. da S.; OLIVEIRA, A. P. de. **O novo mapa de solos do Brasil**: legenda atualizada. Rio de janeiro: Embrapa Solos, 2011. 67 p. (Embrapa Solos. Documentos, 130.) 1 mapa, color. Escala 1:5.000.000. Disponível em:

<a href="https://ainfo.cnptia.embrapa.br/digital/bitstream/item/123772/1/DOC-130-O-novo-mapa-de-solos-do-Brasil.pdf">https://ainfo.cnptia.embrapa.br/digital/bitstream/item/123772/1/DOC-130-O-novo-mapa-de-solos-do-Brasil.pdf</a>>. Acesso em: 22 jan. 2022.

SANTOS, H. G. dos; JACOMINE, P. K. T.; ANJOS, L. H. C. dos; OLIVEIRA, V. A. de; LUMBRERAS, J. F.; COELHO, M. R.; ALMEIDA, J. A. de; ARAUJO FILHO, J. C. de; OLIVEIRA, J. B. de; CUNHA, T. J. F. EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA - EMBRAPA. **Sistema brasileiro de classificação de solos**. 5. ed. rev. e ampl. - Brasília,DF. 356 p., 2018.

SANTOS, R. L. R.; MELO, D. H. C. T. B.; ROVANI, F. M. Decifrando a ferramenta *SLOPE* com arquivo raster (MDE) no no ArcGIS. **Revista MundoGEO**. Curitiba: MundoGEO, ano 19, n. 82, jul. 2017. (Conteúdo Complementar, on-line). Disponível em: < http://mundogeo.com/blog/2017/07/26/artigo-decifrando-a-ferramenta-*slope*-com-arquivo-raster-mde-noarcgis/>. Acesso em: 03 jul. 2023.

SCHAETZL, R. J. ANDERSON. S. Soils: Genesis and geomorphology. Cambridge University Press, Cambridge, 2005

SHAHBAZI, M.; THÉAU, J.; MÉNARD, P. Recent applications of unmanned aerial imagery in natural resource management. **GIScience & Remote Sensing**, v. 51, n. 4, p. 339-365, 2014.

SHARMA, V. K. Introduction to process geomorphology. CRC Press, 2010.

SILVA, H. F. Alguns aspectos petrograficos e geoquimicos do batolito de Quixada, CE. **Revista brasileira de geociências**, v. 19, n. 1, p. 101-107, 1989.

SOUZA, A. S., MAIA, R. P., BEZERRA, F. H., MIGOŃ, P., & SIAME, L. L. Granitic *inselberg* erosion controlled by dike swarm array in semiarid Brazil. **Geomorphology**, p. 108865, 2023. DOI: 10.1016/j.geomorph.2023.108865

TACHIKAWA, T., HATO, M., KAKU, M., & IWASAKI, A. Characteristics of ASTER GDEM version 2. In: **2011 IEEE international geoscience and remote sensing symposium**. IEEE, p. 3657-3660, 2011.

TADONO, T., NAGAI, H., ISHIDA, H., ODA, F., NAITO, S., MINAKAWA, K., & IWAMOTO, H. Generation of the 30 M-mesh global digital surface model by ALOS PRISM. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, v. 41, 2016.

TAROLLI, P. High-resolution topography for understanding Earth surface processes: Opportunities and challenges. **Geomorphology**, v. 216, p. 295-312, 2014.

TARQUINI, S., VINCI, S., FAVALLI, M., DOUMAZ, F., FORNACIAI, A., & NANNIPIERI, L. Release of a 10-m-resolution DEM for the Italian territory: Comparison with global-coverage DEMs and anaglyph-mode exploration via the web. **Computers & geosciences**, v. 38, n. 1, p. 168-170, 2012.

TAYLOR, G., 2013. Regolith and soils of mountains and slopes. In: Shroder, J. (Ed.), **Treatise on Geomorphology**. Academic Press, San Diego, CA, vol. 7, Mountain and Hillslope Geomorphology, pp. 4–19, 2013.

THOMAS, M. F. Some aspects of the geomorphology of domes and tors in Nigeria. Zeit. Geomorph. [s.l.], v. 9, 63–81, 1965.

THORBECKE, F. Landforms of the savanna zone with a short dry season. In: **Climatic Geomorphology**. Palgrave, London, p. 96-103, 1973.

TORQUATO, J.R.; ALMEIDA, A.R.; SIDRIM, A.C.G., MARANHÃO, C.M.L.; PARENTE, C. V.; NOGUEIRA, J. A., Neto; ANDRADE, J.F., P; SOUZA, J.V.; NOGUEIRA DE SOUSA, M.J.; ARTHAUD, M.H. Granitóides do Ceará - Região de Quixadá - Solonópple. **Rev. Geol.**, 2(1,2):5-143. 1989.

TWIDALE, C. R. *Bornhardts*, *boulders*, *Inselbergs*. Cadernos Laboratory Xeolóxico de Laxe Coruña 20:347–380, 1995.

TWIDALE, C. R. Castellated *Inselberg*. Australian Geographer, v. 14, n. 6, p. 368-371, 1980.

TWIDALE, C. R. Granitic *Inselbergs*: domed, block-strewn and castellated. Geographical Journal, p. 54-71, 1981.

TWIDALE, C. R. The research frontier and beyond: granitic terrains. In: Geomorphology: The Research Frontier and Beyond. Elsevier, p. 187-223, 1993.

TWIDALE, C.R. **Granite Landforms**. Elsevier Science Publishing Company, Amsterdam, The Netherlands, 1982.

TWIDALE, C.R. Uluru (Ayers Rock) and Kata Tjuta (The Olgas): *Inselbergs* of Central Australia. In: Migoń, P. (eds) **Geomorphological Landscapes of the World**. Springer, Dordrecht, p. 321-332, 2009. DOI: https://doi.org/10.1007/978-90-481-3055-9\_33

TWIDALE, C.R., & VIDAL ROMANI, J.R. Landforms and Geology of Granite Terrains (1st ed.). CRC Press, 2005. DOI: https://doi.org/10.1201/9780367803407

VALERIANO, M. M. **Topodata:** guia para utilização de dados geomorfológicos locais. Boletim. São José dos Campos, SP: INPE: Coordenação de Ensino, Documentação e Programas Especiais. 72p. (INPE-15318-RPE/ 818), 2008.

VARAJÃO, C.A.C., de ALKMIM, F.F. Pancas: The Kingdom of Bornhardts. In: VIEIRA, B., SALGADO, A., SANTOS, L. (eds) Landscapes and Landforms of Brazil. World Geomorphological Landscapes. Springer, Dordrecht, p. 381–388, 2015. DOI: https://doi.org/10.1007/978-94-017-8023-0\_35

VILES, H. Technology and geomorphology: Are improvements in data collection techniques transforming geomorphic science? **Geomorphology**, v. 270, p. 121-133, 2016.

WHITE, K. Piedmont Angle. In: Goudie, A. S. Encyclopedia of geomorphology. Routledge, p. 768-771, 2004.

WILLIS, B. *Inselbergs*. Annals of the Association of American Geographers, v. 24, n. 2, p. 123-129, 1934.

WILSON, J. P. Environmental applications of digital terrain modeling. John Wiley & Sons, 2018.

WILSON, J.P.; GALLANT, J. C. Digital terrain analysis. **Terrain analysis:** Principles and applications, v. 6, n. 12, p. 1-27, 2000.

WOOD, J. **The geomorphological characterisation of digital elevation models**. University of Leicester (United Kingdom), 1996.

WOOD, W. F.; SNELL, J. B. Predictive Methods in Topographic Analysis: I: Relief, Slope, and Dissection on Inch-to-the-mile Maps in the United States. Quartermaster Research & Engineering Center, Environmental Protection Research Division, 1959.

WYSOCKI, D. A.; SCHOENEBERGER, P. J.; LAGARRY, H. E. Geomorphology of soil landscapes. In: **Handbook of soil science**, v. 1, p. 315-321, 2000.

ZHANG, B., FAN, Z., DU, Z., ZHENG, J., LUO, J., WANG, N., & WANG, Q. A geomorphological regionalization using the upscaled DEM: the Beijing-Tianjin-Hebei area, China case study. **Scientific Reports**, v. 10, n. 1, p. 10532, 2020.

ZHILIN, L. I. Multi-scale digital terrain modelling and analysis. Advances in digital terrain analysis, p. 59-83, 2008.

| COD | CIDADE  | NOME                  | COORD_X    | COORD_Y     | MORFOLOGIA | AREA<br>(m²) | ALTURA<br>(m) | MAX_ELEV | MIN_ELEV |
|-----|---------|-----------------------|------------|-------------|------------|--------------|---------------|----------|----------|
| 150 | QUIXADÁ | Pedra do Cruzeiro     | 498410.784 | 9451025.936 | Dissolução | 76672        | 59            | 243,742  | 184,722  |
| I44 | QUIXADÁ | Euripedes             | 499954.308 | 9451781.109 | Dissolução | 122398       | 122           | 298,751  | 177      |
| I43 | QUIXADÁ | Pedra do Barney       | 499941.042 | 9452270.300 | Dissolução | 47254        | 53            | 231,387  | 178,292  |
| 129 | QUIXADÁ | Pedra Riscada         | 501068.082 | 9455211.389 | Dissolução | 318571       | 150           | 334,445  | 184,342  |
| 105 | QUIXADÁ |                       | 504865.326 | 9458184.430 | Dissolução | 70246        | 66            | 234,7    | 168,895  |
| 128 | QUIXADÁ |                       | 501409.163 | 9456205.876 | Dissolução | 265087       | 114           | 291,459  | 177,155  |
| I31 | QUIXADÁ |                       | 500377.729 | 9455238.718 | Dissolução | 87065        | 73            | 258,288  | 184,838  |
| I32 | QUIXADÁ |                       | 499877.376 | 9454920.548 | Dissolução | 248363       | 107           | 289,526  | 182,29   |
| I34 | QUIXADÁ |                       | 499117.621 | 9454944.729 | Dissolução | 225652       | 86            | 270,76   | 184,841  |
| 137 | QUIXADÁ |                       | 498665.751 | 9454908.543 | Dissolução | 31208        | 32            | 213,921  | 181,941  |
| I01 | QUIXADÁ |                       | 509320.881 | 9455956.369 | Dissolução | 75157        | 59            | 221,425  | 161,992  |
| I41 | QUIXADÁ | Pedra dos Monges      | 498084.712 | 9453137.022 | Dissolução | 49124        | 58            | 244,778  | 186,913  |
| I04 | QUIXADÁ |                       | 507889.970 | 9454583.240 | Dissolução | 43197        | 45            | 210,35   | 165,122  |
| 109 | QUIXADÁ |                       | 505875.267 | 9455634.287 | Dissolução | 108755       | 81            | 252,744  | 171,995  |
| I17 | QUIXADÁ |                       | 504820.012 | 9455438.892 | Dissolução | 30508        | 30            | 208,66   | 178,173  |
| I18 | QUIXADÁ |                       | 504516.806 | 9454776.692 | Dissolução | 27460        | 33            | 208,604  | 175,436  |
| I12 | QUIXADÁ |                       | 506192.963 | 9452794.242 | Dissolução | 172863       | 124           | 292,127  | 167,895  |
| I13 | QUIXADÁ |                       | 505814.497 | 9452639.610 | Dissolução | 65683        | 98            | 271,18   | 173,63   |
| I15 | QUIXADÁ | Serrote Sao Francisco | 506104.366 | 9452238.000 | Dissolução | 82766        | 108           | 282,237  | 174,25   |
| I23 | QUIXADÁ | Pedra Cabeluda Grande | 503743.062 | 9452155.879 | Dissolução | 87871        | 63            | 238,646  | 175,445  |
| I25 | QUIXADÁ |                       | 502901.914 | 9452235.665 | Dissolução | 53847        | 59            | 231,246  | 172,433  |

## APÊNDICE A – TABELA DE DADOS DOS *INSELBERGS* DE QUIXADÁ E QUIXERAMOBIM

| I26 | QUIXADÁ | Pedra Cadeira do Papa     | 502659.836 | 9452029.652 | Dissolução   | 53821  | 53  | 228,103 | 175,202 |
|-----|---------|---------------------------|------------|-------------|--------------|--------|-----|---------|---------|
| I53 | QUIXADÁ | Pedra do Sorriso          | 495743.980 | 9452229.789 | Dissolução   | 72358  | 78  | 272,413 | 194,243 |
| I54 | QUIXADÁ | Pedra da Capivara         | 495565.561 | 9451668.251 | Dissolução   | 81258  | 77  | 275,981 | 198,793 |
| I27 | QUIXADÁ |                           | 501532.980 | 9456931.216 | Dissolução   | 117722 | 80  | 250,805 | 170,779 |
| 135 | QUIXADÁ |                           | 499676.551 | 9453732.077 | Dissolução   | 87591  | 75  | 254,946 | 179,592 |
| I47 | QUIXADÁ |                           | 497692.890 | 9452237.390 | Dissolução   | 42415  | 45  | 233,482 | 188,192 |
| I48 | QUIXADÁ |                           | 497730.119 | 9452025.574 | Dissolução   | 65891  | 76  | 262,341 | 186,009 |
| I49 | QUIXADÁ | Pedra do Herval           | 497822.319 | 9451817.151 | Dissolução   | 78881  | 70  | 253,868 | 183,745 |
| I16 | QUIXADÁ | Gruta Sao Francisco       | 504722.404 | 9452419.048 | Dissolução   | 16206  | 25  | 186,778 | 175,438 |
| I22 | QUIXADÁ |                           | 503993.143 | 9452373.378 | Dissolução   | 55176  | 47  | 218,871 | 171,646 |
| 107 | QUIXADÁ |                           | 504118.994 | 9458235.729 | Dissolução   | 19910  | 25  | 186,43  | 173,245 |
| I06 | QUIXADÁ |                           | 504392.647 | 9458227.728 | Dissolução   | 41920  | 25  | 194,6   | 169,46  |
| I19 | QUIXADÁ |                           | 503903.934 | 9455193.896 | Dissolução   | 56743  | 37  | 214,309 | 177,473 |
| I68 | QUIXADÁ | Complexo da Galinha Choca | 494416.465 | 9448288.365 | Dissolução   | 39169  | 31  | 221,73  | 190,583 |
| 136 | QUIXADÁ |                           | 498816.525 | 9456056.256 | Dissolução   | 22418  | 23  | 193,32  | 179,464 |
| I52 | QUIXADÁ |                           | 496611.300 | 9452315.376 | Dissolução   | 67656  | 38  | 227,375 | 189,59  |
| I08 | QUIXADÁ | Serrote Muxio             | 504480.523 | 9456713.655 | Fraturamento | 233282 | 164 | 332,423 | 168,677 |
| I30 | QUIXADÁ |                           | 500371.262 | 9456102.203 | Fraturamento | 415998 | 129 | 304,601 | 175,747 |
| I02 | QUIXADÁ |                           | 508784.598 | 9457229.731 | Fraturamento | 72926  | 72  | 231,268 | 159,5   |
| I45 | QUIXADÁ | Pedra do Mage             | 497430.001 | 9453134.409 | Fraturamento | 15337  | 22  | 219,928 | 197,817 |
| I14 | QUIXADÁ |                           | 505486.578 | 9452726.218 | Fraturamento | 65583  | 92  | 261,954 | 169,718 |
| I42 | QUIXADÁ |                           | 501003.405 | 9452508.784 | Fraturamento | 108859 | 58  | 232,226 | 174,333 |
| 158 | QUIXADÁ |                           | 494382.971 | 9450172.158 | Fraturamento | 161390 | 125 | 312,675 | 187,524 |

| I61 | QUIXADÁ |                           | 492907.023 | 9449585.262 | Fraturamento | 9006   | 42  | 211,204 | 195,488 |
|-----|---------|---------------------------|------------|-------------|--------------|--------|-----|---------|---------|
| I65 | QUIXADÁ | Complexo da Galinha Choca | 493710.174 | 9448794.722 | Fraturamento | 584621 | 178 | 370,217 | 192,585 |
| 175 | QUIXADÁ |                           | 492640.956 | 9447313.513 | Fraturamento | 56688  | 91  | 292,74  | 202,229 |
| 155 | QUIXADÁ | Serrote Verde             | 495443.595 | 9453184.577 | Fraturamento | 406348 | 135 | 345,079 | 210,564 |
| 156 | QUIXADÁ |                           | 495155.683 | 9452499.272 | Fraturamento | 74235  | 60  | 270,417 | 210,764 |
| 176 | QUIXADÁ |                           | 491910.940 | 9446869.768 | Fraturamento | 138692 | 83  | 289,814 | 206,615 |
| I77 | QUIXADÁ |                           | 491390.731 | 9445469.058 | Fraturamento | 863208 | 182 | 387,143 | 204,972 |
| 179 | QUIXADÁ |                           | 489560.463 | 9444088.459 | Fraturamento | 326490 | 109 | 332,343 | 223,084 |
| I84 | QUIXADÁ |                           | 488131.341 | 9443625.378 | Fraturamento | 216656 | 134 | 351,672 | 217,359 |
| 186 | QUIXADÁ |                           | 487667.350 | 9442604.688 | Fraturamento | 50340  | 55  | 285,996 | 230,797 |
| I72 | QUIXADÁ | Complexo da Galinha Choca | 492159.433 | 9448419.027 | Fraturamento | 89484  | 129 | 335,308 | 206,395 |
| I71 | QUIXADÁ | Complexo da Galinha Choca | 492666.447 | 9448530.552 | Fraturamento | 147791 | 95  | 300,137 | 204,786 |
| I64 | QUIXADÁ | Complexo da Galinha Choca | 493076.435 | 9449012.232 | Fraturamento | 66251  | 92  | 290,837 | 199,154 |
| I63 | QUIXADÁ | Complexo da Galinha Choca | 492194.590 | 9449263.272 | Fraturamento | 38412  | 111 | 317,735 | 206,925 |
| 173 | QUIXADÁ | Pedra da Galinha Choca    | 492195.249 | 9448860.524 | Fraturamento | 183740 | 180 | 416,584 | 236,44  |
| 139 | QUIXADÁ | Pedra da Santa            | 498267.589 | 9453936.906 | Fraturamento | 132416 | 111 | 300,522 | 189,841 |
| I67 | QUIXADÁ | Complexo da Galinha Choca | 493740.733 | 9448196.129 | Fraturamento | 34062  | 75  | 265,562 | 190,835 |
| I66 | QUIXADÁ | Complexo da Galinha Choca | 493914.020 | 9448381.561 | Fraturamento | 24129  | 48  | 241,162 | 192,871 |
| 157 | QUIXADÁ |                           | 494815.721 | 9450353.626 | Fraturamento | 142188 | 153 | 348,422 | 195,183 |
| 170 | QUIXADÁ | Complexo da Galinha Choca | 492788.470 | 9448294.459 | Fraturamento | 94117  | 66  | 265,069 | 199,258 |
| I74 | QUIXADÁ | Complexo da Galinha Choca | 491586.218 | 9448774.338 | Fraturamento | 39163  | 52  | 249,494 | 197,357 |
| I78 | QUIXADÁ |                           | 490336.274 | 9444729.335 | Fraturamento | 189567 | 66  | 283,707 | 217,507 |
| 185 | QUIXADÁ |                           | 487718.352 | 9443275.037 | Fraturamento | 98506  | 70  | 295,012 | 224,672 |

| 180 | QUIXADÁ      |                           | 487766.507 | 9445494.866 | Fraturamento | 1930132 | 241 | 447,88  | 206,875 |
|-----|--------------|---------------------------|------------|-------------|--------------|---------|-----|---------|---------|
| I82 | QUIXADÁ      |                           | 487080.139 | 9444035.348 | Fraturamento | 299635  | 172 | 391,555 | 219,918 |
| I81 | QUIXADÁ      |                           | 487280.631 | 9444891.534 | Fraturamento | 638344  | 164 | 372,053 | 207,679 |
| I60 | QUIXADÁ      | Serrote do Cedro          | 493496.850 | 9450088.961 | Fraturamento | 97699   | 59  | 248,482 | 189,855 |
| I21 | QUIXADÁ      |                           | 504361.415 | 9453711.554 | Fraturamento | 45108   | 38  | 207,546 | 169,87  |
| I69 | QUIXADÁ      | Complexo da Galinha Choca | 493288.169 | 9448164.820 | Fraturamento | 96439   | 79  | 271,772 | 192,58  |
| 162 | QUIXADÁ      |                           | 492640.349 | 9449148.043 | Fraturamento | 71665   | 92  | 292,602 | 200,721 |
| 159 | QUIXADÁ      |                           | 495467.489 | 9448726.416 | Fraturamento | 63512   | 51  | 237,841 | 186,47  |
| 183 | QUIXADÁ      |                           | 488473.785 | 9444098.607 | Fraturamento | 70599   | 43  | 255,558 | 212,688 |
| 120 | QUIXADÁ      |                           | 503568.971 | 9456868.410 | Nubbin       | 37177   | 43  | 212,321 | 169,537 |
| 103 | QUIXADÁ      |                           | 506519.471 | 9457193.985 | Nubbin       | 44671   | 31  | 195,027 | 164,047 |
| I11 | QUIXADÁ      |                           | 506792.110 | 9453451.298 | Nubbin       | 17785   | 24  | 197,055 | 172,563 |
| I10 | QUIXADÁ      |                           | 505964.435 | 9454960.029 | Nubbin       | 24268   | 26  | 194,555 | 168,678 |
| I40 | QUIXADÁ      |                           | 498628.497 | 9453985.887 | Nubbin       | 24142   | 25  | 210,137 | 185,071 |
| I46 | QUIXADÁ      |                           | 497299.739 | 9452568.606 | Nubbin       | 29670   | 26  | 223,11  | 197,301 |
| 151 | QUIXADÁ      |                           | 497539.470 | 9451063.561 | Nubbin       | 37022   | 35  | 220,6   | 185,568 |
| I24 | QUIXADÁ      |                           | 503295.842 | 9451743.952 | Nubbin       | 42913   | 31  | 206,727 | 175,959 |
| 138 | QUIXADÁ      |                           | 497797.452 | 9455070.663 | Nubbin       | 16728   | 42  | 195,485 | 182,054 |
| 133 | QUIXADÁ      |                           | 499866.296 | 9455624.640 | Nubbin       | 12787   | 26  | 185,947 | 179,905 |
| 196 | QUIXERAMOBIM | Pedra do Reduto           | 490401.384 | 9429890.702 | Maciço       | 619929  | 309 | 489,005 | 180,284 |
| 195 | QUIXERAMOBIM | Pedra do Augusto          | 490774.048 | 9430543.776 | Maciço       | 598098  | 307 | 484,977 | 177,699 |
| 194 | QUIXERAMOBIM |                           | 491122.405 | 9430973.411 | Maciço       | 335316  | 156 | 331,864 | 175,574 |
| 197 | QUIXERAMOBIM |                           | 489714.970 | 9429334.270 | Maciço       | 453135  | 161 | 333,53  | 172,671 |

| I101 | QUIXERAMOBIM | Pedra do Capim    | 489049.634 | 9430238.023 | Maciço | 908436  | 190 | 371,782 | 181,932 |
|------|--------------|-------------------|------------|-------------|--------|---------|-----|---------|---------|
| 193  | QUIXERAMOBIM |                   | 491274.630 | 9431484.184 | Maciço | 368000  | 83  | 255,056 | 172,06  |
| 192  | QUIXERAMOBIM |                   | 491732.339 | 9431903.412 | Maciço | 387754  | 123 | 290,281 | 166,942 |
| I103 | QUIXERAMOBIM |                   | 490225.412 | 9428283.010 | Maciço | 87616   | 86  | 255,484 | 169,712 |
| I100 | QUIXERAMOBIM |                   | 491136.812 | 9429661.038 | Maciço | 94060   | 61  | 236,189 | 175,245 |
| I114 | QUIXERAMOBIM |                   | 488588.080 | 9427136.529 | Maciço | 79677   | 71  | 244,6   | 173,684 |
| I115 | QUIXERAMOBIM |                   | 488348.826 | 9426906.185 | Maciço | 138016  | 117 | 292,636 | 175,389 |
| I119 | QUIXERAMOBIM | Pedra do Cabloco  | 484384.870 | 9421536.342 | Maciço | 379109  | 139 | 302,154 | 162,884 |
| I132 | QUIXERAMOBIM |                   | 465187.464 | 9414188.008 | Maciço | 275820  | 129 | 339,447 | 210,943 |
| I134 | QUIXERAMOBIM | Pedra Salva Vidas | 465762.662 | 9414583.86  | Maciço | 146237  | 136 | 351,499 | 215,149 |
| I142 | QUIXERAMOBIM |                   | 462608.005 | 9410964.026 | Maciço | 1763259 | 340 | 546,908 | 206,856 |
| I138 | QUIXERAMOBIM | Serra do Meio     | 463601.302 | 9412531.124 | Maciço | 314904  | 134 | 345,782 | 212,072 |
| I145 | QUIXERAMOBIM |                   | 460394.959 | 9412873.377 | Maciço | 359381  | 157 | 372,145 | 215,502 |
| I177 | QUIXERAMOBIM |                   | 469430.855 | 9402358.232 | Maciço | 354267  | 211 | 391,559 | 180,817 |
| I175 | QUIXERAMOBIM |                   | 469835.089 | 9403151.098 | Maciço | 149620  | 103 | 277,645 | 174,66  |
| I184 | QUIXERAMOBIM |                   | 464648.625 | 9394808.424 | Maciço | 203802  | 135 | 336,298 | 201,687 |
| I186 | QUIXERAMOBIM |                   | 464468.137 | 9394052.611 | Maciço | 203461  | 168 | 355,665 | 187,681 |
| I192 | QUIXERAMOBIM |                   | 463991.989 | 9392078.021 | Maciço | 53762   | 130 | 310,335 | 180,344 |
| I193 | QUIXERAMOBIM |                   | 463481.718 | 9392124.631 | Maciço | 195161  | 133 | 341,368 | 208,778 |
| I191 | QUIXERAMOBIM |                   | 463892.425 | 9392528.688 | Maciço | 202488  | 185 | 391,06  | 206,116 |
| I190 | QUIXERAMOBIM |                   | 464081.140 | 9393000.772 | Maciço | 20296   | 54  | 273,509 | 219,358 |
| I189 | QUIXERAMOBIM |                   | 464414.080 | 9393107.617 | Maciço | 39022   | 93  | 294,15  | 201,301 |
| I188 | QUIXERAMOBIM |                   | 464592.836 | 9393451.976 | Maciço | 107100  | 91  | 277,365 | 186,424 |

| I185 | QUIXERAMOBIM |                 | 465137.308  | 9394660.106 | Maciço | 140303  | 132 | 328,167 | 195,862 |
|------|--------------|-----------------|-------------|-------------|--------|---------|-----|---------|---------|
| I187 | QUIXERAMOBIM |                 | 465576.817  | 9394480.886 | Maciço | 308461  | 128 | 316,044 | 188,429 |
| I159 | QUIXERAMOBIM |                 | 457045.986  | 9408260.457 | Maciço | 205640  | 144 | 355,72  | 211,89  |
| I158 | QUIXERAMOBIM |                 | 457347.308  | 9409119.862 | Maciço | 179253  | 91  | 301,8   | 210,473 |
| I157 | QUIXERAMOBIM |                 | 457858.603  | 9409734.590 | Maciço | 308607  | 54  | 271,799 | 218,144 |
| I164 | QUIXERAMOBIM |                 | 456425.935  | 9406200.779 | Maciço | 474458  | 163 | 380,955 | 217,903 |
| I160 | QUIXERAMOBIM |                 | 458969.751  | 9407103.124 | Maciço | 750168  | 130 | 336,924 | 206,507 |
| I137 | QUIXERAMOBIM |                 | 470752.049  | 9406139.687 | Maciço | 820526  | 246 | 420,361 | 174,632 |
| I106 | QUIXERAMOBIM |                 | 485030.911  | 9432243.405 | Maciço | 1393091 | 294 | 499,811 | 206,156 |
| I107 | QUIXERAMOBIM | Pedra da Baleia | 484370.24   | 9431375.242 | Maciço | 1295503 | 350 | 572,482 | 222,181 |
| I87  | QUIXERAMOBIM | Pedra do Bolo   | 493483.203  | 9435062.020 | Maciço | 1166372 | 377 | 558,416 | 181,044 |
| I173 | QUIXERAMOBIM |                 | 456566.270  | 9396953.777 | Maciço | 1030839 | 178 | 386,067 | 208,214 |
| I118 | QUIXERAMOBIM |                 | 485315.926  | 9423955.590 | Maciço | 348989  | 112 | 315,399 | 203,121 |
| I117 | QUIXERAMOBIM |                 | 487159.604  | 9425646.731 | Maciço | 85436   | 92  | 289,259 | 197,416 |
| I180 | QUIXERAMOBIM |                 | 468207.427  | 9398912.055 | Maciço | 587687  | 194 | 371,995 | 178,046 |
| I181 | QUIXERAMOBIM |                 | 467841.505  | 9396945.397 | Maciço | 204952  | 135 | 324,772 | 189,965 |
| I116 | QUIXERAMOBIM |                 | 487901.973  | 9426346.336 | Maciço | 132875  | 57  | 242,868 | 185,672 |
| I139 | QUIXERAMOBIM |                 | 465001.1763 | 9411823.225 | Maciço | 438413  | 76  | 288,372 | 212,463 |
| I131 | QUIXERAMOBIM |                 | 464921.1044 | 9415021.369 | Maciço | 332172  | 79  | 294,943 | 215,65  |
| I147 | QUIXERAMOBIM |                 | 460311.409  | 9412207.369 | Maciço | 202937  | 74  | 289,552 | 215,153 |
| I152 | QUIXERAMOBIM |                 | 461630.790  | 9409789.607 | Maciço | 117711  | 95  | 303,233 | 208,252 |
| I144 | QUIXERAMOBIM |                 | 461202.550  | 9411954.992 | Maciço | 307368  | 76  | 289,71  | 213,428 |
| I155 | QUIXERAMOBIM |                 | 459340.674  | 9409759.853 | Maciço | 245276  | 60  | 265,134 | 205,407 |

| I162 | QUIXERAMOBIM | 459603.048 | 9405991.550 | Maciço | 243519 | 101 | 320,916 | 219,729 |
|------|--------------|------------|-------------|--------|--------|-----|---------|---------|
| I178 | QUIXERAMOBIM | 469677.527 | 9400362.336 | Maciço | 196605 | 132 | 294,649 | 163,036 |
| I179 | QUIXERAMOBIM | 467747.390 | 9400991.314 | Maciço | 149713 | 86  | 269,192 | 183,001 |
| I183 | QUIXERAMOBIM | 466038.263 | 9395463.768 | Maciço | 108491 | 76  | 274,205 | 197,885 |
| I182 | QUIXERAMOBIM | 466936.251 | 9395500.501 | Maciço | 328117 | 85  | 275,06  | 189,858 |
| I174 | QUIXERAMOBIM | 460613.821 | 9397263.392 | Maciço | 90768  | 82  | 277,463 | 195,849 |
| I171 | QUIXERAMOBIM | 462133.287 | 9401470.331 | Maciço | 392635 | 90  | 286,919 | 196,773 |
| I153 | QUIXERAMOBIM | 463732.418 | 9408429.297 | Maciço | 369821 | 106 | 306,962 | 201,362 |
| I126 | QUIXERAMOBIM | 472329.629 | 9413187.843 | Maciço | 117931 | 98  | 307,176 | 209,297 |
| I135 | QUIXERAMOBIM | 472451.597 | 9412257.311 | Maciço | 244988 | 69  | 274,991 | 206,461 |
| I127 | QUIXERAMOBIM | 468206.298 | 9417037.733 | Maciço | 229109 | 66  | 280,577 | 214,611 |
| I167 | QUIXERAMOBIM | 451219.796 | 9401332.025 | Maciço | 436884 | 63  | 291,952 | 229,083 |
| I166 | QUIXERAMOBIM | 453004.162 | 9402803.177 | Maciço | 134545 | 48  | 275,664 | 227,914 |
| I176 | QUIXERAMOBIM | 468296.461 | 9402506.937 | Maciço | 289877 | 69  | 250,873 | 181,587 |
| 189  | QUIXERAMOBIM | 493100.421 | 9433563.425 | Maciço | 348690 | 76  | 244,877 | 169     |
| I111 | QUIXERAMOBIM | 486695.037 | 9429055.174 | Maciço | 161815 | 89  | 267,443 | 178     |
| I109 | QUIXERAMOBIM | 483128.869 | 9430686.642 | Maciço | 278600 | 116 | 313,014 | 197,372 |
| I108 | QUIXERAMOBIM | 483338.035 | 9431569.067 | Maciço | 153150 | 64  | 276,316 | 212,619 |
| I104 | QUIXERAMOBIM | 486337.611 | 9433370.606 | Maciço | 91779  | 79  | 277,439 | 198,32  |
| I102 | QUIXERAMOBIM | 488033.206 | 9430389.153 | Maciço | 124378 | 86  | 285,569 | 199,246 |
| I194 | QUIXERAMOBIM | 463363.484 | 9391661.706 | Maciço | 108962 | 76  | 268,885 | 193,168 |
| 188  | QUIXERAMOBIM | 493744.436 | 9433911.509 | Maciço | 230430 | 47  | 222,03  | 174,841 |
| 190  | QUIXERAMOBIM | 492404.911 | 9432497.194 | Maciço | 73429  | 44  | 211,123 | 166,939 |

| I91  | QUIXERAMOBIM | 492860.665 | 9432190.953 | Maciço | 99576  | 43 | 207,926 | 164,522 |
|------|--------------|------------|-------------|--------|--------|----|---------|---------|
| 198  | QUIXERAMOBIM | 492140.170 | 9431132.118 | Maciço | 158692 | 70 | 238,402 | 168,21  |
| 199  | QUIXERAMOBIM | 491729.519 | 9430507.236 | Maciço | 62772  | 46 | 237,871 | 191,648 |
| I105 | QUIXERAMOBIM | 485363.974 | 9433225.994 | Maciço | 86183  | 52 | 256,236 | 204,265 |
| I110 | QUIXERAMOBIM | 485959.842 | 9429984.244 | Maciço | 173388 | 71 | 260,74  | 189,804 |
| I112 | QUIXERAMOBIM | 486122.92  | 9429233.164 | Maciço | 68289  | 51 | 232,684 | 181,228 |
| I113 | QUIXERAMOBIM | 489607.421 | 9427783.288 | Maciço | 66310  | 51 | 225,184 | 174,16  |
| I120 | QUIXERAMOBIM | 483901.944 | 9420760.030 | Maciço | 187103 | 76 | 239,85  | 163,419 |
| I140 | QUIXERAMOBIM | 461917.387 | 9412323.879 | Maciço | 174478 | 47 | 260,27  | 213,425 |
| I141 | QUIXERAMOBIM | 462284.004 | 9412164.210 | Maciço | 96575  | 36 | 250,909 | 214,662 |
| I133 | QUIXERAMOBIM | 464484.229 | 9414175.817 | Maciço | 199859 | 39 | 253,474 | 214,046 |
| I148 | QUIXERAMOBIM | 459427.877 | 9411560.082 | Maciço | 117780 | 36 | 257,973 | 222,253 |
| I154 | QUIXERAMOBIM | 459699.162 | 9410201.393 | Maciço | 129223 | 36 | 241,684 | 205,392 |
| I195 | QUIXERAMOBIM | 459979.29  | 9409699.261 | Maciço | 100701 | 23 | 226,823 | 203,653 |
| I143 | QUIXERAMOBIM | 461786.117 | 9410585.55  | Maciço | 344586 | 64 | 272,215 | 208,224 |
| I151 | QUIXERAMOBIM | 461181.091 | 9409836.306 | Maciço | 220161 | 67 | 271,137 | 204,55  |
| I150 | QUIXERAMOBIM | 460550.223 | 9410369.205 | Maciço | 63111  | 23 | 228,633 | 205,595 |
| I156 | QUIXERAMOBIM | 459623.294 | 9409104.806 | Maciço | 68058  | 47 | 259,23  | 212,553 |
| I146 | QUIXERAMOBIM | 460147.811 | 9412569.640 | Maciço | 80995  | 29 | 244,153 | 215     |
| I149 | QUIXERAMOBIM | 460331.752 | 9410858.197 | Maciço | 227070 | 34 | 240,484 | 206,055 |
| I163 | QUIXERAMOBIM | 457402.779 | 9406485.797 | Maciço | 387936 | 53 | 268,168 | 214,995 |
| I170 | QUIXERAMOBIM | 461989.270 | 9403299.732 | Maciço | 426906 | 59 | 258,462 | 199,843 |
| I172 | QUIXERAMOBIM | 456092.711 | 9397707.322 | Maciço | 384104 | 82 | 302,63  | 220,537 |

| I161 | QUIXERAMOBIM | 460554.199 | 9406573.165 | Maciço | 163081 | 60 | 266,535 | 206,929 |
|------|--------------|------------|-------------|--------|--------|----|---------|---------|
| I165 | QUIXERAMOBIM | 457026.857 | 9403500.972 | Maciço | 365509 | 53 | 265,754 | 212,644 |
| I168 | QUIXERAMOBIM | 456636.711 | 9401291.572 | Maciço | 234514 | 47 | 264,319 | 217,67  |
| I169 | QUIXERAMOBIM | 456577.379 | 9400832.203 | Maciço | 242450 | 35 | 256,385 | 221,428 |
| I125 | QUIXERAMOBIM | 474381.759 | 9411783.685 | Maciço | 87062  | 29 | 220,238 | 191,42  |
| I136 | QUIXERAMOBIM | 472434.200 | 9410993.039 | Maciço | 168054 | 22 | 227,009 | 204,936 |
| I128 | QUIXERAMOBIM | 467358.886 | 9417216.302 | Maciço | 203887 | 33 | 245,816 | 213,15  |
| I129 | QUIXERAMOBIM | 465129.955 | 9417526.335 | Maciço | 75478  | 37 | 268,359 | 230,96  |
| I130 | QUIXERAMOBIM | 463983.909 | 9415556.799 | Maciço | 77246  | 34 | 263,044 | 228,903 |
| I121 | QUIXERAMOBIM | 479462.397 | 9424599.281 | Maciço | 49051  | 28 | 213,496 | 185,626 |
| I122 | QUIXERAMOBIM | 479131.374 | 9425041.087 | Maciço | 75851  | 33 | 221,945 | 188,975 |
| I123 | QUIXERAMOBIM | 475929.241 | 9425501.423 | Maciço | 130903 | 34 | 217,827 | 183,496 |
| I124 | QUIXERAMOBIM | 475634.417 | 9427217.781 | Maciço | 189222 | 37 | 237,506 | 200,689 |