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ABSTRACT

In this master’s thesis, a combination of experimental and theoretical techniques are employed to

investigate the hybrid lead-free vacancy-ordered perovskite material [(CH3)2NH2]2SnBr6 (or in

its abbreviated form: (DMA)2SnBr6) and its structural changes that happen at low temperatures.

Through the use of experimental techniques such as Single Crystal X-Ray Diffraction (SCXRD),

Differential Scanning Calorimetry (DSC) and Raman spectroscopy, it was possible to identify

that this compound undergoes three structural phase transitions near the temperatures of 200 K,

100 K and 50 K. The first two transitions were found in our SCXRD measurements, with the

first one being a displacive orthorhombic-monoclinic phase transition, while the second one was

found to be an order-disorder monoclinic-triclinic phase transition. The last transition was only

observed experimentaly through our Raman spectroscopy measurements and was confirmed as a

triclinic-triclinic phase transition based on our theoretical Γ-point phonon calculation.

Keywords: lead-free perovskite; phase transition;single crystal x-ray diffraction; Raman spec-

troscopy



RESUMO

Nesta dissertação de mestrado, uma combinação de técnicas experimentais e teóricas são uti-

lizadas para investigar as propriedades da perovskita híbrida, livre de chumbo e ordenada por

vacância [(CH3)2NH2]2 SnBr6 (ou na forma abreviada: (DMA)2SnBr6) e suas mudanças estru-

turais que ocorrem em baixas temperaturas. A partir do uso de técnicas experimentais como

Difração de Raios-x de Monocristal (SCXRD), Calorimetria de Varredura Diferencial (DSC)

e espectroscopia Raman, foi possivel identificar as transições de fase proximas às temperat-

uras de 200 K, 100 K e 50 K. As duas primeiras transições foram identificadas em nossas

medidas de SCXRD, onde a primeira foi identificada como uma transição do tipo displaciva

ortorrômbico-monoclínico, enquanto a segunda foi descoberta como uma transição ordem-

desordem monoclínico-triclínico. A última transição foi observada experimentalmente apenas

através das nossas medidas de espectroscopia Raman e foi confimada como uma transição

triclínica-triclínica a partir dos nossos cálculos teóricos de fônons no ponto Γ.

Palavras-chave: perovskita livre de chumbo; transição de fase; difração de raios-x de monocristal;

espectroscopia Raman
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1 INTRODUCTION

Halide perovskite semiconductors have marked the last years with their promising

properties that emerge in both their hybrid and inorganic variants, with Lead Halide Perovskites

(LHPs) getting the spotlight for the prospects of their application in optoelectronic devices, most

prominently as active layers of solar cells. However, recently many advances have been made

in attempts to replace the lead (Pb) in order to reduce the health risks caused by its toxicity.

Among the alternatives, the tin (Sn) based halide perovskites (THPs) present themselves as very

favorable candidates due to having similar ionic radius and similar electronic structure to that of

lead (CHOWDHURY et al., 2022), with recent studies already surpassing a power conversion

efficiency (PCE) of 13% on a Sn-based perovskite solar cell (NISHIMURA et al., 2020).

Nevertheless, the THPs still face strong drawbacks that stop its widespread applica-

tion in solar harvesting devices, with one of the main ones being the chemical instability the of

tin arising from the oxidation of the Sn2+, usually present in the B cation site on the classical

perovskite structures (ABX3), to its Sn4+ state, leading to an unwanted p-type self-doping that

increases charge carrier recombination and furthermore reduces carrier diffusion lengths (NOEL

et al., 2014; RICCIARELLI et al., 2020). In order to deal with the instability of the THPs,

methods such as the dimensionality reduction through the replacement of the A-site cation by

large organic cations like butylammonium ([C4H9NH3]+, or BA) and phenylethylammonium

([C6H5(CH2)2NH3]+, or PEA) (LIAO et al., 2017; ZHU et al., 2022) or the incorporation of

reducing agents such as SnX2 (X = F, Cl, Br, I) (WANG; YAN, 2020; SONG et al., 2017) or

hydrazine (N2H4) (SONG et al., 2017) have been moderately successfull, however a different

variety of the perovskite structure known as vacancy-ordered double perovskites (A2BX6) have

emerged as potential solution since tin can be incorporated in its more stable Sn4+ oxidation

state (GLOCKZIN et al., 2023; BHUMLA et al., 2022) and studies already show the potential

optoelectronic applications of the all inorganic Cs2SnX6 (X = I,Cs) (LEE et al., 2014; FAIZAN

et al., 2021a; TAN et al., 2018).

In this work, the hybrid vacancy-ordered tin-based perovskite material named bis

(Dimethylammonium) hexabromo-stannate(iv): [(CH3)2NH2]2SnBr6 or in its abbreviated form:

(DMA)2SnBr6 (DMA = [(CH3)2NH2]+), was comprehensively analyzed through its structural-

property changes under low-temperature conditions. Several experimental characterization tech-

niques, including Single Crystal X-Ray Diffraction (SCXRD), Differential Scanning Calorimetry

(DSC) and Raman spectroscopy were all employed to understand and characterize its properties.
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2 THEORETICAL FRAMEWORK

2.1 The perovskite structure

The term "perovskite" was originally attributed to the calcium titanite (CaTiO3)

mineral, initially discovered on the Ural Mountains of Russia. This mineral‘s name was coined

by the German mineralogist and crystallographer Gustav Rose, who named it after the Russian

politician and mineralogist Lev Perovski (KATZ, 2020). At ambient temperature, the crystal

structure of CaTiO3 can be described as the periodic repetition of the corner-sharing [TiO6]2−

octahedrons formed by the Ti4+ cations surrounded by six O2− anions. Meanwhile, the Ca2+

cations are found in the vacant spaces left by the octahedra (see Figure 1). Recently, many

coordination polymers have been classified as perovskites due to structural similarities with

this mineral. Many of these compounds are generally described the same general chemical

formula ABX3, where typically, A is a cation with an ionic radius larger that B and X is an anion,

usually a halide or the oxygen anion O2−. The ideal structure of a simple perovskite has a cubic

symmetry and is shown on Figure 1.

Figure 1 – The representation of the simple perovskite structure

Source: Adapted from Green et al. (GREEN et al., 2014)

Recently, perovskites have been attracting a lot of attention, due to properties such

as: high absorption coefficient, adjustable optical band gap, low exciton binding energies and

long charge carrier diffusion lengths (ALTINKAYA et al., 2021; NOH et al., 2013; DONG et al.,
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2015; SNAITH, 2013), which makes these materials ideal candidates for optoelectronic devices,

such as light emitting diodes (LEDs), photodetectors, lasers and especially the perovskite solar

cells (PSCs).

However, even though there is a large set of materials that can be classified as

the simple ABX3 perovskites, the geometrical restrictions of this structure impose certain

limitations over the possible choices of elements that can be incorporated. One of the most

important quantities related to these limitations is the Goldschmidt tolerance factor, given by

(GOLDSCHMIDT, 1926):

t =
RA +RX√
2(RB +RX)

where RA, RB e RX are the ionic radii of the A, B e X ions, respectively. In this way, the stability

of a potential simple perovskite, formed by the given A, B and X elements, can be predicted by

using the fact that, generally, a stable perovskite structure lies in the range 0.8 ≤ t ≤ 1, with t = 1

being the ideal cubic structure. This condition has a simple interpretation: in cases where t > 1,

the A-site cation is too large when compared to the B-site cation and, in this case, usually the

final structure is formed by layers of octahedrons separated by the (usually organic) A-site cation

(KIESLICH et al., 2014; BURGER et al., 2018) or, in some cases, different non-perovskite

structures become more energetically favorable, as is the case of FAPbI3, which is a compound

that has a photoactive α−FAPbI3 perovskite phase, however it is less stable than its δ−FAPbI3

non-perovskite phase (LIU et al., 2017). In cases where t < 0.8, the A-site cation is too small and

its size becomes more similar to the B-site cation, leading to the formation of the ilmenite-type

(FeTiO3) structures (KIESLICH et al., 2014).

Because of these geometric limitations, in order to explore new routes for materials

with similarly desirable properties, it becomes necessary to divert from the simple ABX3

perovskite formula. In this perspective, an interesting route that has been explored is the one of

the double perovskites (KHALFIN; BEKENSTEIN, 2019), with the general chemical formula

A2BB’X6, where the B-site cation has been replaced by the two different cations with different

oxidation states in order to maintain the charge balance. The double perovskite structure is

shown in Figure 2.
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Figure 2 – The representation of the double perovskite structure

Source: Created by the author

The double perovskite structure will still face similar geometric limitations, however,

their composition is much more tunable due to the possibility of choosing two different cations

for the B-site, which results in a large amount of new potential candidates for optoelectronic

applications. Among them, Cs2InSbCl6, Cs2AgInBr6, Rb2AgInBr6, and Rb2CuInCl6 have

shown great potential for their high theoretical efficiencies as perovskite solar cell active layers

(ZHAO et al., 2017).

On a similar note, the perovskite structures known as vacancy-ordered double per-

ovskite has been considered as an interesting alternative. Their structure is very similar to

the one of a double perovskite, however, instead of using two different cations for the B-site,

a single cation with higher oxidation state (usually a +4 state) is used, which causes half of

the B-sites to be occupied and the other half to be vacant (see Figure 3a)) (MAUGHAN et

al., 2019a; FAIZAN et al., 2022). This family of perovskite structures has been offering new

opportunities for environmentally friendly solar cell materials with interesting properties and

diverse compositions, such as: Rb2PdI6, Rb2PdBr6, Cs2PtI6 and Cs2SnX6 (X = Cl, Br, I), which

show high carrier mobility and adjustable bandgaps in the visible range, while being lead-free

(FAIZAN et al., 2021b; KALTZOGLOU et al., 2016).
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Figure 3 – Comparison between simple, double and vacancy-ordered perovskite
structures

Source: Adapted from Maughan et al. (MAUGHAN et al., 2019b)

2.2 Raman Scattering Theory

We will consider the case where a system of atoms interacts with an unpolarized

incident radiation with an electric field E expressed as:

E =Ae−2πiν0t +A∗e2πiν0t (2.1)

The A and A∗ represent a complex vector and its conjugate, this way we guarantee that

expression 2.1 is real, since if A= a+ ib (a and b being real vectors), then we get:

E = 2(acos(2πν0t)+bsin(2πν0t))

2.2.1 First-order perturbation theory

When interacting with the system, this electric field produces an induced dipole

moment M which in turn creates a perturbing potential H1 =−M ·E and the time-dependent

Schrödinger equation of the perturbed system can be written as:

(H0 −M ·E)Ψ(q, t) =− h̄
i

∂Ψ

∂ t
(q, t) (2.2)

where H0 is the Hamiltonian of the unperturbed system. Using the first-order perturbation theory

(COHEN-TANNOUDJI et al., 2019), we can express the perturbed wave function of the kth

state as :
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Ψk(q, t) = Ψ
0
k(q, t)+Ψ

1
k(q, t) (2.3)

where Ψ0
k(q, t) represents the solution to the unperturbed Schrödinger equation:

H0
Ψ

0
k(q, t) =− h̄

i
∂Ψ0

k
∂ t

(q, t) (2.4)

Therefore we can write that Ψ0
k(q, t) = ψk(q)e−

i
h̄ E0

k t , with ψk(q) being the solution

of the unperturbed time-independent Schrödinger equation:

H0
ψk(q) = E0

k ψk(q)

Using equations 2.3 and 2.4, equation 2.2 can be rewritten as:(
H0 − h̄

i
∂

∂ t

)
Ψ

1
k(q, t) = (E ·M)Ψ0

k(q, t) = (E ·M)ψk(q)e−
i
h̄ E0

k t (2.5)

and by replacing equation 2.1 in 2.5 we get:

(
H0 − h̄

i
∂

∂ t

)
Ψ

1
k(q, t) = (A ·M)ψk(q)e−

i
h̄ (E

0
k+hν0)t +(A∗ ·M)ψk(q)e−

i
h̄ (E

0
k−hν0)t (2.6)

which has a solution of the form:

Ψ
1
k(q, t) = ψ

+
k (q)e−

i
h̄ (E

0
k+hν0)t +ψ

−
k (q)e−

i
h̄ (E

0
k−hν0)t (2.7)

where ψ
+
k (q) and ψ

−
k (q) can be obtained from:

H0
ψ

+
k (q)− (E0

k +hν0)ψ
+
k (q) = (A ·M)ψk(q) (2.8)

H0
ψ

−
k (q)− (E0

k −hν0)ψ
−
k (q) = (A∗ ·M)ψk(q) (2.9)

Considering that, in the unperturbed state, the dipole moment operator has matrix

elements of the form Mkr =
∫

ψ∗
r Mψkdq, the right side of equations 2.8 and 2.9 can be written

in the form:

(A ·M)ψk(q) = ∑
r
(A ·Mkr)ψr(q)
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By writing the time-independent perturbed functions (ψ+
k (q) and ψ

−
k (q)) as linear

combinations of the unperturbed wave functions (ψr(q)):

ψ
±
k = ∑

r
a±krψr(q) (2.10)

and then replacing 2.10 in 2.8 and 2.9 we can obtain:

ψ
+
k = ∑

r

A ·Mkr

E0
r −E0

k −hν0
ψr(q) (2.11)

ψ
−
k = ∑

r

A∗ ·Mkr

E0
r −E0

k +hν0
ψr(q) (2.12)

Hence, when using that: E0
r −E0

k = hνrk the expression for the perturbation term in

the wave function can be written as:

Ψ
1
k(q, t) =

1
h ∑

r
ψr(q)

[
A ·Mkr

νrk −ν0
e−

i
h̄ (E

0
k+hν0)t +

A∗ ·Mkr

νrk +ν0
e−

i
h̄ (E

0
k−hν0)t

]
(2.13)

and now, the time-dependent dipole moments associated with the transition k -> n can be

calculated following that:

Mkn =
∫

Ψ
∗
nMΨkdq =

∫
(Ψ0

n +Ψ
1
n)

∗M(Ψ0
k +Ψ

1
k)dq (2.14)

2.2.2 Rayleight scattering

For the simplest case, when the final state is equal to the initial state (n = k), we

have:

Mkk = Mkk +(Ckke−2πiν0t +C∗
kke2πiν0t) (2.15)

Where the first term (Mkk) was previously mentioned and is a time-independent

unperturbed permanent dipole moment present in the system, while Ckk is given by:

Ckk =
1
h ∑

r

[
(A ·Mkr)Mrk

νrk −ν0
+

Mkr(A ·Mrk)

νrk +ν0

]
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Upon inspecting the second term (in parenthesis) in equation 2.15, it is easily seen

that it shares a similar form to the incident incoming light (equation 2.1) and its the term that

represents the coherent Rayleigh scattering.

2.2.3 Raman scattering

Now considering two different states (n ̸= k), in this case the transition dipole

moment can be divided in three terms:

Mkn =M0
kn +M1

kn +M2
kn (2.16)

where:

M0
kn = Mkne−2πiνknt (2.17)

M1
kn =

1
h ∑

r

[
(A ·Mkr)Mrn

νrk −ν0
+

Mkr(A ·Mrn)

νrn +ν0

]
e−2πi(νkn+ν0)t+

+
1
h ∑

r

[
(A∗ ·Mkr)Mrn

νrk +ν0
+

Mkr(A
∗ ·Mrn)

νrn −ν0

]
e−2πi(νkn−ν0)t

(2.18)

M2
kn =

1
h2 ∑

r,p

[
(A∗ ·Mkp)Mpr(A

∗ ·Mrn)

(νpk −ν0)(νrn −ν0)
+

(A∗ ·Mkp)Mpr(A
∗ ·Mrn)

(νpk −ν0)(νrn +ν0)

]
e−2πiνknt+

+
1
h2 ∑

r,p

[
(A∗ ·Mkp)Mpr(A

∗ ·Mrn)

(νrn +ν0)(νkp −ν0)

]
e−2πi(νkn−2ν0)t

+
1
h2 ∑

r,p

[
(A ·Mkp)Mpr(A ·Mrn)

(νrn −ν0)(νkp +ν0)

]
e−2πi(νkn+2ν0)t

(2.19)

Each of these components can be written as:

M i
kn =

(
M i

kn

)
e−2πiνt

which, according to Klein’s principle (KLEIN, 1927; PLACZEK, 1959), will correspond to a

classical radiating time-dependent dipole moment only if ν > 0. For the first term (M0
kn) seen in

equation 2.17, this requires that νkn = νk −νn > 0 and therefore Ek > En which represents an

induced transition between a higher energy initial state to a lower energy one (see Figure 4 a)).
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The second term (M1
kn) of the transition dipole moment can be seen in equation 2.18 and consists

of two parts, the first one corresponds to a classical radiating dipole moment if νkn +ν0 > 0 and

in this case the frequency difference νkn = νk −νn can assume both positive and negative values

which will correspond to the anti-stokes and stokes Raman scattering respectively, while the

second part corresponds radiating dipole if νkn −ν0 > 0, which is only accomplished when the

system is in excited states of high enough energy such that hνk −hνn > hν0.

Its important to note that, in contrast to 2.17 the terms in 2.18 and 2.19 contain sums

over all stationary states, which can be interpreted as the system passing through a non-stationary

intermediary state, hence it cannot be associated to one single stationary state with defined energy

value, but to combination of them. This intermediary state is called a virtual state and would

be transient, with the system quickly transitioning into the final state and emitting radiation

which, in the case of Raman stokes and anti-stokes scattering will have an energy equal to

E = h(ν0 ±|νkn|) (see Figure 4 b) and c)).

The third term (M2
kn) wont be discussed in full detail here, however its third part

represents the interaction of the system taking place with two photons of energy hν0 with the

emission of radiation of frequency νkn +2ν0 (assuming that hνn −hνk < 2hν0 ) and again, the

frequency difference νkn can be either positive or negative, with this type of scattering being

known as the hyper Raman effect (KONINGSTEIN, 2012).

Figure 4 – The depiction of some processes arising from the terms on equation 2.16: a) the induced transition
from a higher to a lower energy state arising from 2.17, b) stokes and c) anti-stokes Raman
scattering processes.

Source: Elaborated by the author
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The classical radiating dipole moment associated with the Raman scattering (M1
kn)

can then be written as a real quantity:

M1
kn =Ckne−2πi(νkn+ν0)t +C∗

kne2πi(νkn+ν0)t (2.20)

where Ckn is the complex vector:

Ckn =
1
h ∑

r

[
(A ·Mkr)Mrn

νrk −ν0
+

Mkr(A ·Mrn)

νrn +ν0

]
(2.21)

Each component of Ckn can be written as:

(Ci)kn = ∑
j
(αi j)kn A j (2.22)

where i and j stand for the Cartesian components: x,y and z and (αi j)kn is the transition

polarizability tensor:

(αi j)kn =
1
h ∑

r

[
(M j)kr(Mi)rn

νrk −ν0
+

(Mi)kr(M j)rn

νrn +ν0

]
(2.23)

In order that a Rayleigh or Raman transition becomes a physically observable

quantity, it is a prerequisite that (αi j)kn ̸= 0. The conditions for a non-vanishing polarizability

component, also called selection rules, can be derived directly from the symmetry properties

of the polarizability operator, which, from the definition of the dipole moment operator as

Mi = ∑l eli, can be written as:

αi j =
1
h ∑

r

[
∑l eli |ψr⟩⟨ψr|∑l el j

νrk −ν0
+

∑l el j |ψr⟩⟨ψr|∑l eli
νrn +ν0

]
(2.24)

This expression shows that αi j will transform under symmetry operations in the same way as

the product of coordinates: i× j. By using that (αi j)kn = ⟨ψn|αi j |ψk⟩, we readily see that the

transition polarizability is an integral that becomes zero in the case where the product of ψk,

ψn and αi j becomes antisymmetric with respect to any of the system’s symmetry operations.

In other words, the only way to guarantee that (αi j)kn ̸= 0 is if the product of the irreducible

representations: Γψn ×Γi j ×Γψk contains a totally symmetric irreducible representation.
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2.2.4 Vibrational Raman scattering

Up until this point, the discussion was based on generic quantum states, however

in the present work we are interested in the vibrational Raman effect, which arises when the

incident radiation interacts with the system and causes a change between vibrational energy

levels. In order to treat this specific case we first separate the degrees of freedom of the system

into the electron coordinates r and the nuclear vibrational normal coordinates Qm and then we

use the Born-Oppenheimer approximation in order to decouple the electronic wave functions

(χ(r,Qm)) from the vibrational wave functions (φ(Qm)):

ψ(r,Qm) = χk(r,Qm)φvm(Qm) (2.25)

The Hamiltonian of the electrons and consequently the electronic wave functions χk

cannot be completely decoupled from the nuclei vibrations and therefore will also depend on the

vibrational coordinates Qm, however when considering the harmonic approximation of small

displacements the electronic Hamiltonian can be expanded around the point Qm = 0 such that:

H(r,Qm)≈ H(r,Qm = 0)+
(

∂H
∂Qm

)
Qm= 0

Qm (2.26)

Since the second term in 2.25 is very small, the same procedure of first-order perturbation

theory can be applied if we consider it as the perturbing potential, which results in the perturbed

electronic wave functions:

χk(r,Qm) = χ
0
k +∑

t
hQm

tk Qmχ
0
t (2.27)

where χ0
k = χk(r,Qm = 0) and

hQm
tk =

〈
ψ0

t
∣∣ ∂H

∂Qm

∣∣ψ0
k

〉
E0

k −E0
t

The vibrational wave functions (φvm(Qm)) in the harmonic approximations assume

the form of the harmonic oscilator solutions:

φvm(Qm) = Nvme−
Q2

m
2α Hvm(

√
αQm) (2.28)
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where Nvm is the normalization constant, α = 4π2vm/h and Hvm are Hermite polynomials. With

the knowledge of the wave functions, the polarizability tensor can be calculated by considering

that:

(Mi)kr = (Mi)k,vm;r,v′′m =
〈
χrφv′′m

∣∣Mi |χkφvm⟩=
〈
χrφv′′m

∣∣∑
l

ei |χkφvm⟩ (2.29)

where, again i stands for the Cartesian coordinates x, y and z. Using 2.26 and 2.24, each term of

the sum in 2.28 can be written as:

〈
χrφv′m

∣∣ei |χkφvm⟩=
〈
χ

0
r
∣∣ei

∣∣χ0
k
〉〈

φv′m(Qm)
∣∣φvm(Qm)

〉
+

+∑
t

hQm
tk

〈
χ

0
r
∣∣ei

∣∣χ0
t
〉〈

φv′m(Qm)
∣∣Qm |φvm(Qm)⟩+

+∑
t

hQm
tr

〈
χ

0
k

∣∣ei
∣∣χ0

t
〉
⟨φvm(Qm)|Qm

∣∣φv′m(Qm)
〉 (2.30)

by defining (M0
i )kr =

〈
χ0

r
∣∣∑l ei

∣∣χ0
k

〉
and replacing 2.29 and 2.28 in 2.23 we can finally express

the polarizability tensor as:

(αi j)k,vm;n,v′m =
1
h ∑

r

[
(M0

j)kr(M
0
i )rn

νrk −ν0
+

(M0
i )kr(M

0
j)rn

νrn +ν0

]〈
φv′m(Qm)

∣∣φvm(Qm)
〉
+

+ ⟨φvm(Qm)|Qm

∣∣φv′m(Qm)
〉[

∑
t

hQm
tr ((M0

j)kr(M
0
i )nt +(M0

i )rn(M
0
j)kt)

νrk −ν0
+

+∑
t

hQm
tr ((M0

i )kr(M
0
j)nt +(M0

j)rn(M
0
i )kt)

νrn +ν0

]
(2.31)

Considering the case where the incident radiation doesn’t have enough energy to

cause a transition between electronic levels but only between vibrational levels, we would have

k = n and
〈
φv′m(Qm)

∣∣φvm(Qm)
〉
= 0 from the orthogonality of the vibrational eigenstates, with

the only term left being the second term:

(αi j)k,vm;k,v′m =
1
h ∑

r
⟨φvm(Qm)|Qm

∣∣φv′m(Qm)
〉[

∑
t

hQm
tr ((M0

j)kr(M
0
i )nt +(M0

i )rn(M
0
j)kt)

νrk −ν0
+

+∑
t

hQm
tr ((M0

i )kr(M
0
j)nt +(M0

j)rn(M
0
i )kt)

νrn +ν0

]
(2.32)
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which now depends on the result of the integral: ⟨φvm(Qm)|Qm

∣∣φv′m(Qm)
〉

and since the

φvm(Qm) wave functions have the form of 2.27, from the Hermite polynomials properties it

is possible to derive that (αi j)k,vm;k,v′m can only be non-vanishing if v′m = vm ±1, therefore we

arrive at the final conclusion that the only significant Raman lines will arise from the transitions

between neighboring vibrational states.

When considering that the system will be at the thermal equilibrium and near room

temperature (∼300 K) conditions, we expect that the ground state will be by far the most

populated and therefore, transitions from excited initial states (vm > 0) will be much less

common, which explains why the stokes Raman lines are more intense that ant-stokes ones.

With those considerations, the only transitions that need to be considered are the ones

from the ground state vm = 0 to the first excited state v′m = 1, then the selection rules come from

examining the product Γφ0 ×Γi j ×Γφ1 , which becomes more clear by inspecting the form of the

vibrational wave functions (2.28) or more specificaly, the first Hermite polynomials (ARFKEN

et al., 2012):

H0(x) = 1

H1(x) = 2x
(2.33)

Therefore, φ0(Qm) will correspond to a totally symmetric irreducible representation, while

φ1(Qm) will transform according to the symmetry of the mode Qm, which will significantly

simplify the selection rules by only requiring the product: Γi j ×Γφ1 = Γi j ×ΓQm to contain the

totally symmetric representation, which in turn will only happen if ΓQm = Γi j, or in other words,

if the vibrational mode Qm has the same symmetry properties as one of the quadratic products

i× j = x2, y2, z2, xy, xz, zy.

2.3 Lattice vibrations and Density Functional Perturbation Theory (DFPT)

As its already established, we will be mainly concerned with the vibrational Raman

spectrum, particularly we will be interested in the spectrum generated by the vibrational states of

a crystal structure. In order to estimate these modes in a theoretical level, the Density Functional

Perturbation Theory (DFPT) can be employed, however in order to contemplate this theoretical

framework we must go back to the fundamental problem of solving the Schrödinger equation.
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2.3.1 Basics of density functional theory

The main concern of Density Functional Theory (DFT) is with solving the many-

body problem in quantum mechanics for a system of interacting electrons and atomic nuclei,

based on the foundations from the Hohenberg-Kohn theorem (HOHENBERG; KOHN, 1964),

which states that the energy of the ground electronic state is a unique functional of the electron

density n(r). The procedure is then summarized into solving the Kohn-Sham equations (KOHN;

SHAM, 1965):

[
−h̄2

∇2

2me
+VR

ei (r)+
e2

4πε0

∫ n(r’)
|r− r’|

dr’+Vxc(r)
]

ϕn(r) = εnϕn(r) (2.34)

where VR
ei (r) is the interaction potential between a static configuration of ions R and the

electrons, while Vxc is called the exchange-correlation potential and is defined as the functional

derivative of the exchange-correlation correction of the energy: Vxc =
δεxc[n]

δn , which accounts for

the correction of the errors introduced from the decoupling of the electrons into the independent

single-particle Kohn-Sham wave functions ϕn(r). Then, the total energy of the fundamental state

and the electronic density are given by:

E0 ≈ ∑
n

εn (2.35)

n(r) = ∑
n
|ϕn(r)|2 (2.36)

The combination of equations 2.34-2.36 can be solved self-consistently, i.e. by using

an initial guess for the functions ϕn(r), the initial electronic density in 2.36 can be computed

and used to estimate the new functions ϕnew
n (r), which can then be used to compute a new

electronic density, generating an iterative cycle that continues until the total energy of the ground

state in 2.35 is minimized. In principle, these equations can be exactly solved to obtain the

ground-state of the system, however in practice the exchange-correlation functional εxc[n] is not

known exactly. The success of DFT comes from the fact that εxc[n] can be estimated with simple

enough approximations, among those, some of the most famous ones include the Local Density

Approximation (LDA) (CEPERLEY; ALDER, 1980), which considers the parametrizations of a

homogeneous interacting electron gas and the Generalized-Gradient Approximations (GGA), de-

rived initially from the Pardew-Burke-Ernzerhof (PBE) (PERDEW et al., 1996b) approximation,
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which in addition to LDA, introduces a dependence of εxc[n] on the local gradient of the electron

density to better account for inhomogeneous density distributions (HEID, 2013).

2.3.2 Lattice dynamics

DFT is mainly concerned with the electron system, however, we will be interested in

how these electrons will impact on the vibrations of a crystal lattice. In order to evaluate this

interaction, we must resort again to the Born-Oppenheimer approximation and decouple the two

systems, however this time, the main concern will be the effective potential felt by the atomic

lattice (HEID, 2013):

V (R) =Vii(R)+E0(R) (2.37)

where R represents the set of all positions of the ions in the lattice, Vii is the term containing the

ion-ion interactions, while E0(R) represents the ground-state energy of the electrons for a given

set of ionic positions R, which can be estimated from equation 2.35 by solving the Kohn-Sham

equations.

If we consider the limit of small displacements around the equilibrium positions:

R=R0+u, then the effective potential can be expanded as:

V (R) =
1
2 ∑

α,i;β , j
(Φαi;β j)uαiuβ j (2.38)

where Φαi;β j are the set of atomic force constants between atoms α and β , with i and j

representing the Cartesian directions. Here, the zeroth-order term V (R0) was chosen as the

reference value for the potential, the first-order term vanishes in the equilibrium configuration R0

and the second-order term represents the harmonic approximation, with the harmonic interatomic

force constants given by:

Φαi;β j =
∂ 2V

∂Rαi∂Rβ j
(2.39)

When considering a crystal lattice, each atom has to be characterized by two indices:

α = (a,k), with a denoting the unit cell index k the index of the atom inside a unit cell such that:

uαi = ua
ki. The problem then turns to the solution of the set of Newtonian equations of motion:



29

mk
d2ua

ki
dt2 =− ∑

b,k′, j
(Φa;b

ki;k′ j)u
b
k′ j (2.40)

when considering periodic boundary conditions, the solution of 2.40 becomes:

ua
ki =

1
√

mk
ηki(nq)eiq·R0a

k e−iω(nq)t (2.41)

with R0a
k as the equilibrium position of the k-th atom in the a-th unit cell. Replacing this solution

into 2.40 results in:

ω
2(nq)ηki(nq) = ∑

k′ j
Dki;k′ j(q)ηk′ j(nq) (2.42)

and the solutions come from the diagonalization of the dynamical matrix:

Dki;k′ j(q) =
1

√
mkmk′

∑
b
(Φa;b

ki;k′ j)e
iq·(R0b

k′ −R0a
k ) (2.43)

and the result will be the set of eigenvectors ηki(nq) and frequencies ω(nq) that will correspond

to the phonon displacements and frequencies.

2.3.3 The linear response formulation

The procedure outlined above is only possible if the interatomic force constants

(2.39) are known and that requires the knowledge of second-order derivatives of the energy of the

system. In the approximations utilized here, the lattice dynamics depends only on ground-state

properties of the electronic system and its derivatives, which can be obtained in the framework of

density functional theory by using perturbative schemes, hence the name of the method: Density

functional Perturbation Theory.

In contrast to the procedure of 2.37, we now consider the coupled interactions

between electrons and ions as an external potential VR
ei (r), such that the potential felt by the ions

becomes:

V (r,R) =Vii(R)+VR
ei (r) (2.44)
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Using the Hellmann–Feynman theorem, the first-order derivative of the potential

given in 2.37 can be expressed as (GIANNOZZI; BARONI, 2005):

∂V
∂Rαi

= ⟨ϕ(R)| ∂H
∂Rαi

|ϕ(R)⟩=
∫

n(r)
∂VR

ei (r)
∂Rαi

dr+
∂Vii(R)

∂Rαi
(2.45)

The second-order derivative can then be obtained as:

∂ 2V
∂Rαi∂Rβ j

=
∫

∂n(r)
∂Rβ j

∂VR
ei (r)

∂Rαi
dr+δαβ

∫
n(r)

∂ 2VR
ei (r)

∂Rαi∂Rβ j
dr+

∂ 2Vii(R)

∂Rαi∂Rβ j
(2.46)

In this way, the calculation of the interatomic force constants mainly becomes the

task of finding both ground-state electronic density n(r) as well as its linear response to a

displacement in the atomic positions ∂n(r)
∂R . The first can be found from the regular DFT self-

consistent procedure, while the latter can derived by applying the derivative to the equation 2.36

as:
∂n(r)
∂Rαi

= 2Re
{

∑ϕ
∗
n (r)

∂ϕn(r)
∂Rαi

}
(2.47)

And the first-order derivative (linear response) of the Kohn-Sham states can be obtained from

equation 2.34 as (GIANNOZZI; BARONI, 2005):

(HSCF − εn)
∂ϕn(r)

∂Rαi
=−

(
∂VSCF(r)

∂Rαi
− ∂εn

∂Rαi

)
ϕn(r) (2.48)

where:

VSCF =VR
ei (r)+

e2

4πε0

∫ n(r’)
|r− r’|

dr’+Vxc(r) (2.49)

HSCF =− h̄2

2me

∂ 2

∂r2 +VSCF (2.50)

and:

∂VSCF(r)

∂Rαi
=

∂VR
ei (r)

∂Rαi
+

e2

4πε0

∫ 1
|r− r’|

∂n(r’)
∂Rαi

dr’+
∫

δVxc(r)
δn(r′)

∂n(r′)
∂Rαi

dr′ (2.51)

∂εn

∂Rαi
= ⟨ϕn|

∂VSCF

∂Rαi
|ϕn⟩ (2.52)
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Equations 2.47–2.52 form another set of self-consistent linear equations. Based

on the regular DFT electronic density and on an initial guess for the linear responses of the

wave functions ∂ϕn(r)
∂Rαi

, we can use an iterative process to refine the linear responses until self-

consistency is achieved and the derivatives in 2.46 can be calculated to finally construct and

diagonalize the dynamical matrix (2.43).
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3 MATERIALS AND METHODS

3.1 Material Synthesis

[(CH3)2NH2]2SnBr6: The compound was grown by the slow evaporation method

dissolving 1 mmol of SnBr2 in N, N-dimethylformamide (DMF), adding an aqueous solution

of HBr at 90 ºC. The resulting solution was stirred and then kept at room temperature. After 2

weeks, gradual evaporation of the solution led to the growth of high-quality, transparent crystals

exhibiting a bright-yellow coloration in the form of bars. The reagents used in synthesizing were

from commercial sources purchased from Sigma Aldrich and Alfa Aesar.

3.2 Differential Scanning Calorimetry (DSC)

The thermal analysis was performed on a Netzsch Maia 200 F3. Measurements were

obtained from several cooling and heating cycles in different temperatures; the used rates were 5

K/min from 200K to 140K. In a typical measurement, in which all the sensors and crucibles were

kept under a constant flow of nitrogen during the experiment, 10 mg of sample were deposited

in a pierced aluminum pan and analyzed with the same conditions as the reference one pierced

aluminum pan.

3.3 Single-Crystal x-ray diffraction (XRD)

Single crystal X-ray diffraction data (φ scans and ω scans with κ and θ offsets)

were collected on a Bruker D8 Venture κ-geometry diffractometer equipped with a Photon II

CPAD detector and an IµS 3.0 Incoatec Mo Kα (λ = 0.71073 Å) microfocus source. Suitable

crystals from each sample were harvested and mounted on MiTeGen MicroMount using im-

mersion oil. The APEX 4 software was used for the unit cell determination and data collection.

The data reduction and global cell refinement were made using the Bruker SAINT+ software

package, and a multi-scan absorption correction was performed with SADABS (KRAUSE et al.,

2015). Using the Olex2 (DOLOMANOV et al., 2009) interface program to the SHELX suite

(SHELDRICK, 2008), the structure was solved by the intrinsic phasing method implemented in

ShelXT (SHELDRICK, 2015), allowing the location of most of the atoms. The remaining atoms

were located from different Fourier maps calculated from successive full-matrix least-squares

refinement cycles on F2 with ShelXL and refined using anisotropic displacement parameters.
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MERCURY (MACRAE et al., 2020) and VESTA (MOMMA; IZUMI, 2011) were used to

prepare the artwork representations for publication.

3.4 Raman Spectroscopy

The low-temperature Raman active dependence spectra, from 10 K until room

temperature, were collected using a T64000 Jobin–Yvon spectrometer equipped with an Olympus

microscope and an LN2-cooled CCD to detect the scattered light. The spectra were excited

with an Argon ion laser (λ = 514.5 nm). The spectrometer slits were set to give a spectral

resolution better than 2 cm−1. All measurements were performed using a long working distance

plan-achromatic objective (20.00×0.35×20.50 mm). The temperature-dependent spectra were

obtained by keeping the sample in a vacuum inside a He-compressed closed-cycle cryostat. A

Lakeshore 330 controller controlled the temperature, keeping the precision around 1 K. Each

Raman spectrum was deconvoluted in the sum of Lorentzian functions, using the Fityk software

(WOJDYR, 2010).

3.5 Computational Methods

In this work, the calculations were performed under the aproximations of the density

functional theory (DFT) implemented in the Quantum-ESPRESSO package (GIANNOZZI et al.,

2009; GIANNOZZI et al., 2017). A structural optimization was initially performed using a 6 x 6

x 3 Monkhorst-Pack grid and a 65 Ry kinetic energy cutoff for wavefunctions followed by the

Γ-point phonon calculations, which used 8 x 8 x 4 grid and a 80 Ry cutoff. All calculations were

done using the SG15 Optimized Norm-Conserving Vanderbilt pseudopotentials (HAMANN,

2013). The the phonon frequencies were calculated within the density functional perturbation

theory (DFPT) using an exchange-correlation term determined within the generalized gradient

approximation (GGA) parameterized by Perdev–Burke–Ernzerhof (PBE) (PERDEW et al.,

1996a). All calculations present in this work were performed using the computational resources

of the "Centro Nacional de Processamento de Alto Desempenho em São Paulo (CENAPAD-SP)."
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4 RESULTS AND DISCUSSIONS

4.1 Structural Details

Through Single-Crystal X-Ray Diffraction (SCXRD) measurements it was found

that, at room temperature, (DMA)2SnBr6 crystallizes in the orthorhombic Pnmn space group. In

this structure, the Sn4+ cations are centered inside the isolated [SnBr6]2− octahedra that form a

zero-dimensional vacancy-ordered double perovskite structure (A2BX6) with the A site being

occupied by the DMA+ cations (see Figure 5). Upon cooling the sample, two other phases were

found: a monoclinic phase with P2/m space group at 160 K and a triclinic phase with P1 space

group at 100 K. Figure 5 displays the unit cell at each different phase and Table 1 provides the

crystallographic data for each temperature where SCXRD measurements were performed.

Figure 5 – Unit cell of (DMA)2SnBr6 at the temperatures of: 300K, 160K and 100K.
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Table 1 – Crystal data and refinement parameters of [(CH3)2NH2)]2SnBr6 at different tempera-
ture conditions.

Chemical Formula [(CH3)2NH2)]2SnBr6

Temperature (K) 300 280 250 230 200 160 130 100

Space Group Pnmn P2/m P1

Unit cell Dimensions

a (Å) 7.5967(14) 7.5830(5) 7.5698(4) 7.5554(6) 7.5396(8) 7.5215(8) 7.5157(9) 7.5021(7)

b (Å) 7.5782(13) 7.5590(4) 7.5443(3) 7.5346(4) 7.5229(6) 7.5062(6) 7.4964(7) 7.4904(6)

c (Å) 14.848(3) 14.8061(9) 14.7914(7) 14.7735(11) 14.7564(15) 14.7314(15) 14.7010(17) 14.6591(12)

α 90 90 90 90 90 90 90 88.520(3)

β 90 90 90 90 90 90.336(4) 90.426(5) 88.885(2)

γ 90 90 90 90 90 90 90 88.049(2)

Volume (Å3) 854.8(3) 848.68(9) 844.72(7) 841.01(10) 836.98(14) 831.69(14) 828.24(16) 822.86(12)

Density (mg/m3) 2.682 2.701 2.714 2.726 2.739 2.757 2.768 2.786

µ (mm−1) 28.105 15.602 15.675 15.744 15.820 15.921 15.987 16.092

F/000 628

Z 2

Radiation MoKα (λ = 0.71073)

2θ range for data collection
5.960 to

70.292

2.752 to

28.262

2.75 to

28.99

2.757 to

28.111

2.761 to

28.433

1.382 to

30.758

1.385 to

30.742

2.717 to

30.590

Reflections collected 8825 10093 33445 26838 25461 39272 37814 5056

Crystal Size (mm3) 0.378 x 0.22 x 0.098

Index ranges

-8 ≤ h ≤ 9,

-18 ≤ k ≤ 18,

-9 ≤ l ≤ 9

-10 ≤ h ≤ 10,

-19 ≤ k ≤ 16,

-9 ≤ l ≤ 10

-10 ≤ h ≤ 10,

-19 ≤ k ≤ 19,

-10 ≤ l ≤ 10

-10 ≤ h ≤ 10,

-19 ≤ k ≤ 19,

-10 ≤ l ≤ 10

-10 ≤ h ≤ 10,

-19 ≤ k ≤ 19,

-10 ≤ l ≤ 10

-10 ≤ h ≤ 10,

-10 ≤ k ≤ 10,

-21 ≤ l ≤ -21

-10 ≤ h ≤ 10,

-10 ≤ k ≤ 10,

-21 ≤ l ≤ -21

-10 ≤ h ≤ 10,

-10 ≤ k ≤ 10,

-21 ≤ l ≤ -21

Goodness-of-fit on F2 1.063 1.164 1.258 1.223 1.260 1.161 1.193 1.071

Final R indexes

[I ≥ 2σ (I)]

R1 = 0.0433

wR2 = 0.1180

R1 = 0.0309

wR2 = 0.0524

R1 = 0.0398

wR2 = 0.0896

R1 = 0.0625

wR2 = 0.1498

R1 = 0.1034

wR2 = 0.2646

R1 = 0.0367

wR2 = 0.0681

R1 = 0.0394

wR2 = 0.0744

R1 = 0.0889

wR2 = 0.2626

Final R indexes

[all data]

R1 = 0.0469

wR2 = 0.1220

R1 = 0.0442

wR2 = 0.0574

R1 = 0.0440

wR2 = 0.0914

R1 = 0.0676

wR2 = 0.1520

R1 = 0.1077

wR2 = 0.2660

R1 = 0.0455

wR2 = 0.0727

R1 = 0.0458

wR2 = 0.0772

R1 = 0.1018

wR2 = 0.2746
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Figures 6 a), b) and c) show the temperature-dependent behavior of the lattice

parameters and the cell volume. From the a and b lattice parameters, we can identify two

different behaviors before and after 200 K, while the c lattice parameter shows a discontinuous

decrease around 280 K.

Figure 6 – (a) lattice parameters a and b vs T, (b) lattice parameter c vs T and (c) unit cell volume
vs T

The SCXRD results are also supported by DSC analysis (see Figure 7) through the

presence of a heat anomaly with onsets at about 190 K and 200 K on the heating and cooling run

respectively. However, at least three other heat events/anomalies also appear close to 220 K, 260

K and 270 K.

The [SnBr6]2− octahedra are found to be distorted relative to the octahedra in the

classic cubic perovskite structures. The Sn-Br bond lengths are found in the range between

2.6056(12) Å and 2.5825(15) Å across all the three phases. At both the orthorhombic (300 K)

and the monoclinic (160 K) phases, [SnBr6]2− ions are found in a C2h site and two independent
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Figure 7 – DSC traces for (DMA)2SnBr6 between 160 K and 280 K showing both the cooling
and the heating run

Sn-Br bond lengths are found for each symmetry-independent octahedron while, at the triclinic

phase, the octahedra are found in lower symmetry Ci sites and the two symmetry-independent

octahedra have three independent Sn-Br bond lengths. The Br-Sn-Br angles also differ slightly

from the 90° octahedral angles and to better represent both the angle distortion (σ ) and the length

distortion (∆d) we use the following expressions:

∆d =

(
1
6

)
∑

(
dn −d

d

)2

(4.1)

σ =

(
1

12

)
∑

(
θn −90

90

)2

(4.2)

Where d is the average Sn-Br bond length of the octahedron, while dn and θn represent the nth

Sn-Br bond length and Br-Sn-Br angle respectively.

The temperature dependence of the calculated distortions are displayed in Figure 8,

which immediately shows how both of these quantities suffer discontinuities during the phase

transitions, with the bond length distortions suffering an increase while the angular distortions

suffers an overall reduction at the lower temperatures. Another feature that is important to point

out is the discontinuous reduction of the angular distortion that appears at 280 K, which could be
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Figure 8 – (a) Bond length and angle distortions for each symmetry independent octahedron (b)
Symmetry-independent cations (DMA+ and [SnBr6]2−) inside the unit cell at the
orthorhombic (O), monoclinic (M) and triclinic (T) phases.

another evidence for the previously mentioned event that is observed for the lattice parameter c

and also could be related to one of the heat anomalies observed in the DSC trace at the higher

temperatures.

The hydrogens of the NH2 group of the DMA+ cation have well defined positions in

all phases, with the N-H bond length only increasing slightly from 0.890 Å at the orthorhombic

phase to 0.910 Å at the monoclinic phase and ranging from 0.906 Å to 0.912 Å at the triclinic

phase. The H-N-H angle also varies by a very small amount, ranging from 107.39° to 107.32°

across all phases. This protonic ordering effect can be attributed to the formation of hydrogen

bonds with the Br atoms from the [SnBr6]2− octahedra (see Figure 9) which are also expected to

largely contribute to the overall crystal lattice stability (EL-MELLOUHI et al., 2016), however,

the relative weakness of these bonds is what could enable the highly dynamic behavior of the

DMA molecules inside the structure.

Meanwhile, the hydrogens of the CH3 groups are shown to be disordered both in the



39

Figure 9 – Hydrogen bonds between the NH2 group of the DMA+ cation and the [SnBr6]2−

octahedrons

orthorhombic phase (300 K) and in the monoclinic phase (160 K) and furthermore, both of these

phases only differ by small atomic displacements, indicating that this first phase transition has a

displacive nature, however in the triclinic phase (100 K) the disorder disappears, indicating that

the second phase transition has an order-disorder nature.

4.2 Symmetry mode analysis

Since it was already possible to identify the nature of the observed phase transitions,

before proceeding to the analysis of the vibrational Raman spectra, we can use symmetry

considerations to comprehend some of the mechanisms that are involved in the observed events.

Here, the focus will be given to the displacive phase transition, since its more straight forward to

relate the high symmetry phase to the low symmetry one. Furthermore, the initial objective is

to gain insight into the observed structural distortions in a way that allows to relate them to the

vibrational modes that will be later analyzed in the Raman spectrum.

Generally, the lattice modes that drive the symmetry break during a displacive phase

transition transform according to a single irreducible representation (irrep) of the crystal’s point

group, which is known as the active irrep of the phase transition (PEREZ-MATO et al., 2010).

Since the structure under study can be thought as an ordered arrangement of two very distinct

components: the organic DMA+ cation and the inorganic [SnBr6]2− anion, being somewhat

weakly coupled due to their opposite excess charges and the formation of hydrogen bonds, it

becomes necessary to analyze them separately, meaning that the separate degrees of freedom and

symmetries of each component will need to be linked to the degrees of freedom and the point

group of the crystal. Hence a factor group analysis was carried out and the irreps of each the

internal modes from the ionic components (DMA+ and [SnBr6]2−) have been correlated to the

irreps of (DMA)2SnBr6 point group (D2h) as is displayed in Table 2.
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Table 2 – Correlation diagram between the irreps of the free ions and the irreps of the
(DMA)2SnBr6 point group

Ion Vibration Free ion symmetry Site symmetry Factor group symmetry

DMA+ C2v (C2(z)) Cs (σ (zx)) D2h

νs(NH2) A1 A’ Ag + B2g + B1u + B3u

νas(NH2) B2 A” B1g + B3g + Au + B2u

δ (NH2) A1 A’ Ag + B2g + B1u + B3u

ρ(NH2) B2 A” B1g + B3g + Au + B2u

ω(NH2) B1 A’ Ag + B2g + B1u + B3u

τ(NH2) A2 A” B1g + B3g + Au + B2u

νs(CNC) A1 A’ Ag + B2g + B1u + B3u

νas(CNC) B1 A’ Ag + B2g + B1u + B3u

δ (CNC) A1 A’ Ag + B2g + B1u + B3u

νs(CH3) A1 + B1 2A’ 2Ag + 2B2g + 2B1u + 2B3u

νas(CH3) A1 + B1 + B2 + A2 2A’ + 2A”
2Ag + 2B1g + 2B2g + 2B3g
+2Au + 2B1u + 2B2u + 2B3u

δs(CH3) A1 + B1 2A’ 2Ag + 2B2g + 2B1u + 2B3u

δas(CH3) A1 + B1 + B2 + A2 2A’ + 2A”
2Ag + 2B1g + 2B2g + 2B3g
+2Au + 2B1u + 2B2u + 2B3u

ρ(CH3) A1 + B1 + B2 + A2 2A’ + 2A”
2Ag + 2B1g + 2B2g + 2B3g
+2Au + 2B1u + 2B2u + 2B3u

τ(CH3) A2 + B2 2A” 2B1g + 2B3g + 2Au + 2B2u

L A2 + B1 + B2 A’ + 2A”
Ag + 2B1g + B2g + 2B3g
+2Au + B1u + 2B2u + B3u

T A1 + B1 + B2 2A’ + A”
2Ag + B1g + 2B2g + B3g
+Au + 2B1u + B2u + 2B3u

[SnBr6]2− Oh C2h (C2(y)) D2h

ν1 A1g Ag Ag + B2g

ν2 Eg Ag + Bg Ag + B1g + B2g + B3g

ν3 T1u Au + 2Bu Au + 2B1u +B2u + 2B3u

ν4 T1u Au + 2Bu Au + 2B1u + B2u + 2B3u

ν5 T2g 2Ag + Bg 2Ag + B1g + 2B2g + B3g

ν6 T2u 2Au + Bu 2Au + B1u + 2B2u + B3u

L T1g Ag + 2Bg Ag + 2B1g + B2g + 2B3g

T T1u Au + 2Bu Au + 2B1u + B2u + 2B3u

The free DMA+ cation has C2v symmetry and 30 internal modes (including libra-

tions) which are distributed among the irreducible representations as: ΓDMA = 9A1 + 6A2 +

8B1 + 7B2. In an ideal cubic perovskite structure the [SnBr6]2− octahedron would have Oh
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symmetry and 7 internal modes (also including librations) that can be distributed as: Γoct = A1g

+ Eg + T2u + T2g + 2T1u + T1g. In this way, all degrees of freedom have been accounted and

from the factor-group splitting they become the total of 174 modes of the complete mechanical

representation Γ = 24Ag + 18B1g + 24B2g + 18B3g + 19Au + 26B1u + 19B2u + 26Bu.

To find the active irrep of the displacive phase transition, the AMPLIMODES tool

on the Bilbao Crystallographic Server (OROBENGOA et al., 2009) was employed using the

structures at 300 K and 160 K without the disordered hydrogens as inputs. To summarize short,

the program initially transforms the high-symmetry structure to the basis of the low-symmetry

phase and then maps the atoms in the actual low symmetry phase to the atoms on this new

transformed (high-symmetry) structure. After this mapping, the set of displacement vectors for

each atom uk can be calculated and expressed in a basis symmetry-adapted distortion modes:

uk = ∑ j A jkϵ jk, where the symmetry properties of a mode ϵj are characterized by an irrep of

the high-symmetry space group G, defining its transformation properties under the operations

of this group. Finally, the program will output the set of ϵj modes and a total amplitude

A j =
[
∑(A jk)

2] 1
2 for each irrep involved in the phase transition.

The obtained results (see Table 3 and Figure 10) show that the displacements of the

atoms can be described by two vector basis sets: one that transforms according to the A1g irrep,

that is not responsible for any symmetry reduction, and one that transforms according to B2g that

reduces the symmetry to P2/m and as expected for the active irrep, has a higher amplitude and

therefore represents most of the structural distortion.

Table 3 – Summary of AMPLIMODES output
K-point Irrep Isotropy Subgroup Basis Dimension Amplitude (Å)
Γ A1g Pnnm 14 0.1917
Γ B2g P2/m 14 1.0330

Knowing that B2g is the active irrep and from inspecting Table 2, we can find all

the internal modes that could possibly be directly involved/affected by the phase transition.

For DMA+, these include: a librational mode (L), all types of the C-N-C skeleton vibrations

(νs(CNC), νas(CNC) and δ (CNC)), symmetric NH2 stretch (νs(NH2)), NH2 bending (δ (NH2)),

NH2 wagging (ω(NH2)), CH3 stretchings (νs(CH3) and νas(CH3)) and CH3 Bendings (δs(CH3)

and δas(CH3)). For [SnBr6], only ν1, ν2, ν5 and the librational mode (L) could be involved.

Figure 10 shows the displacement vectors from the B2g irrep basis (scaled for better visibility) of

both [SnBr6]2− and DMA+.
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Figure 10 – Scaled displacement vectors from the B2g irrep basis for: a) the [SnBr6] octahedra
and b) the DMA molecule inside the unit cell.

From the displacement vectors on Figure 10, the structural distortions of both

components seem to be closely related to librational modes (L), however in the displacements

of the DMA molecules (Figure 10b)), the NH2 group stays fixed and the two carbon atoms

have noticeably different displacement amplitudes, which shows that the final result contains the

frozen displacement of a bending vibration of the C-N-C skeleton (δ (CNC)).

Additionally, using the IR and Raman selection rules, we found that, for the high

symmetry (orthorhombic) structure, the IR-active modes belong to the B1u, B2u and B3u irreps,

which (excluding the translational accoustic modes) make in total the 68 IR modes: ΓIR = 25B1u

+ 18B2u + 25Bu, while the Raman-active modes belong to the Ag, B1g, B2g and B3g irreps, totaling

the 84 Raman modes: ΓRaman = 24Ag + 18B1g + 24B2g + 18B3g. Since the displacements that

lead the phase transition have B2g symmetry, it is expected that the modes related to those will

appear directly in the Raman spectrum.

4.3 Theoretical (DFPT) vibrational modes

To begin the theoretical investigation, the structure of (DMA)2SnBr6 was used in its

orthorhombic 300 K phase, however, in order to use the structure in this high symmetry setting,

the disordered hydrogens have been modified before the calculations. Instead of choosing one of

the sets of three hydrogens, their final positions were chosen as the midpoint of each disordered

pair of hydrogens.
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The structure was then relaxed and the obtained structural parameters were: a =

7.8089 Å, b = 7.6698 Å and c = 14.8194 Å, which is in line with the usual overestimations from

GGA DFT (FISCHER et al., 2016). Finally the 174 modes were calculated in the framework

of Density Functional Perturbation Theory (DFPT) at the Γ-point. The calculated theoretical

frequencies and symmetries of each mode, together with their estimated IR intensities can be

found in Appendix A.

From the initial results, it can already be seen that a total of seven theoretical

frequencies were found to be imaginary, however three of those are the B1u, B2u and B3u acoustic

modes and furthermore their frequencies are close to zero, indicating that this can be taken as a

small error in the calculation. Meanwhile, the other four modes can be seen on Figure 11 and

they seem to actually indicate structure instability, which is further supported by the appearance

of the mode ν4 (B2g) that exactly matches the previously discussed B2g mode that drives the

symmetry break in the orthorhombic (Pnmn) to monoclinic (P2/m) transition (see Figure 10).

Figure 11 – The first four calculated modes with imaginary frequency

Following this interpretation, the other modes should also indicate the loss of other

symmetries. In the case of the v1(B3g) and v2(B1g) modes, which in the monoclinic phase will

both become Bg modes (See Figure 12 a)), we clearly note that they are antisymmetric with

respect to the C2 axis and the σh plane but symmetric with respect to the center of inversion i
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(See Figure 12 b)), leading to the conclusion that these are the modes related to the monoclinic

(P2/m) to triclinic (P1) phase transition.

Figure 12 – a) Correlations between the orthorhombic phase (D2h) and monoclinic phase (C2h) irreducible
representations and b) character table of the C2h point group

These three modes alone are already in agreement with the experimentally observed

phase transitions, however the extra v3(Au) mode indicates yet another symmetry break, this time

associated with the loss of the inversion center i (see Figure 12 b)) which would correspond to a

new triclinic (P1) to triclinic (P1) phase transition that was not observed in the temperature range

investigated by our SCXRD measurements, but as will be discussed in the following section,

appears to be linked to several events at ∼50 K in the Raman spectrum.

4.4 Temperature-dependent Raman Spectroscopy

We then start the investigation of the Raman spectra by analyzing the changes on the

octahedral modes and the rigid body motions of the DMA+ cations (translation and libration

modes) displayed Figure 13. From our theoretical calculations (see Appendix A), the modes at

110 and 120 cm−1 can be assigned as DMA translational modes (T), while the modes at 100,

140 and 186 cm−1 can be respectively assigned as the octahedron’s ν5 (T2g), ν2 (Eg) and ν1 (Ag)

modes. All modes show the standard softening on heating and, even though a discontinuous

jump was observed both in the bond length distortion and in the angle distortion (see Figure 8 a)),

the changes on the frequencies of the octahedral modes near the expected transition points (200

K and 100 K) were very small (< 1 cm−1). This could be explained by the previously mentioned
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fact that both Sn-Br bond lengths and Br-Sn-Br angles don’t show sizable variations over the

investigated temperature range.

Figure 13 – a): Temperature-dependent normalized Raman spectra obtained for (DMA)2SnBr6 between
10-290 K in the 100–195 cm−1 range, b): Temperature-dependent behavior of the observed peak
centers in this wavenumber region.

The 760–930 cm−1 region shown on Figures 14 and 15 is assigned as a lower

frequency region of the DMA+ cation vibrations, where the first the modes appearing between

770 and 800 cm−1 are associated with the NH2 rocking mode(ρ(NH2)), the modes at 840,

860 and 885 cm−1 are associated with the symmetric C-N-C stretchings (νs(CNC)), the two

modes at 895 cm−1 are associated with the NH2 torsions (τ(NH2)) and the mode at 915 cm−1

could be associated with the assymetrical C-N-C stretchings (νas(CNC). In this region, most

of the observed modes suffer a bigger discontinuous softening of about 1-2 cm−1 near 200

K, except for the τ(NH2) modes that appear to be the least sensible to the distortions of the

orthorhombic-monoclinic transition, however, the event that appears at 280 K (Figure 15) matches

the previously observed discontinuous jump in the lattice parameter c (Figure 6 b)) and in the

octahedral distortions (Figure 8 a)), therefore, this can be attributed to the coupling between

octahedrons to the DMA Molecules through the N-H ... [SnBr6] hydrogen bonds (see Figure 9)

that form in this structure.

Figure 15 also shows weaker discontinuities at ∼ 160 K, which wasn’t observed in

any of the previous measurements but it cannot be a phase transition since the structure was
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Figure 14 – a): Temperature-dependent normalized Raman spectra obtained for (DMA)2SnBr6 between
10-290 K in the 760–880 cm−1 range, b): Temperature-dependent behavior of the observed peak
centers in this wavenumber region.

Figure 15 – a): Temperature-dependent normalized Raman spectra obtained for (DMA)2SnBr6 between 10-290 K
in the 870–930 cm−1 range, b): Temperature-dependent behavior of the observed peak centers in this
wavenumber region.
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still found to be monoclinic between 160 K and 130 K, and at ∼ 100 K which could be the

monoclinic-triclinic phase transition, but the most important feature of this region seems to be

changes at ∼50 K, where some discontinuities appear on the frequencies and most remarkably,

the relative intensities of the peaks change abruptly, especially to the peaks at 790 and 885 cm−1

which almost vanish below 55 K. This event seems to repeat in other regions as well, allowing us

to attribute it as the triclinic (P1) to triclinic (P1) phase transition that was found in our theoretical

calculations.

In Figure 16 the first three modes can be assigned as the asymmetric C-N-C stretch-

ings (νas(CNC)) while above 1000 cm−1 we have the beginning of the CH3 rocking modes which

continues in Figures 17 and 18. Again, many peaks show a discontinuous softening close to

200 K, but differently from other regions, we identify a splitting of the peak at 1060 cm−1, most

likely occurring due to the appearance of a second symmetry independent DMA molecule in the

unit cell (see Figure 8 b)). Together with the NH2 modes, the CH3 modes are also regarded as es-

pecially susceptible to changes in the hydrogen bonds between the DMA cation and the inorganic

framework (RODRÍGUEZ-HERNÁNDEZ et al., 2022), therefore the discontinuities observed in

this region provide a complement to the previous analysis by showing the involvement of the

disordered hydrogens from the CH3 group in all the previously observed events, with Figures 17

and 18 even showing the events close to 280 K which were previously attributed to the change in

octahedral distortions affecting the hydrogen bonds with the NH2 group. However, even though

a few peaks show softenings that could indicate the order-disorder (monoclinic-triclinic) phase

transition are observed around 100 K (see Figure 17), they are still weaker when compared to

the softening at 200 K caused by the displacive (orthorhombic-monoclinic) phase transition,

revealing that the ordering of the hydrogens doesn’t cause very significant changes in the C-H

interactions.
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Figure 16 – a): Temperature-dependent normalized Raman spectra obtained for (DMA)2SnBr6 between 10-290 K
in the 980–1080 cm−1 range, b): Temperature-dependent behavior of the observed peak centers in this
wavenumber region.

Figure 17 – a): Temperature-dependent normalized Raman spectra obtained for (DMA)2SnBr6 between 10-290 K
in the 1140–1190 cm−1 range, b): Temperature-dependent behavior of the observed peak centers in
this wavenumber region.
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Figure 18 – a): Temperature-dependent normalized Raman spectra obtained for (DMA)2SnBr6 between
10-290 K in the 1280–1360 cm−1 range, b): Temperature-dependent behavior of the observed
peak centers in this wavenumber region.

Figure 19 shows the region of the symmetrical and asymmetrical CH3 bending

modes (δs(CH3) and δas(CH3)). Again, the phase transition at 200 K (orthorhombic-monoclinic)

appears as a discontinuous jump in the frequencies of all the observed modes, however, all

modes in this region also suffer an unusual hardening on heating which could be explained by

the weakening of the hydrogen bonds on higher temperatures, reducing the coupling between the

organic and inorganic components and leading to the observed frequency increases. This region

also shows a notable splitting of the mode at 1440 cm−1 event occurring at 100 K, which could

be linked with the order-disorder phase transition.

The last three regions displayed in Figures 20, 21 and 22 are associated with the

higher frequency modes of the DMA molecule, i.e. the CH3 and NH2 stretchings (νs (CH3), νas

(CH3), νs (NH2) and νas (NH2)). In these regions, the events at 50 K become more visible with

substantial frequency shifts appearing on Figure 20. The modes in the 3080 - 3220 cm−1 (Figure

22) range seem to be the least affected by the 200 K transition (orthorhombic-monoclinic),

however this is expected, since these modes are associated with the NH2 stretchings and the NH2

group was the least involved in the displacements that lead the transition (see Figure 10 b)).
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Figure 19 – a): Temperature-dependent normalized Raman spectra obtained for (DMA)2SnBr6 between
10-290 K in the 1420–1480 cm−1 range, b): Temperature-dependent behavior of the observed
peak centers in this wavenumber region.

Figure 20 – a): Temperature-dependent normalized Raman spectra obtained for (DMA)2SnBr6 between
10-290 K in the 2840–2950 cm−1 range, b): Temperature-dependent behavior of the observed
peak centers in this wavenumber region.
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Figure 21 – a): Temperature-dependent normalized Raman spectra obtained for (DMA)2SnBr6 between
10-290 K in the 2950–3020 cm−1 range, b): Temperature-dependent behavior of the observed
peak centers in this wavenumber region.

Figure 22 – a): Temperature-dependent normalized Raman spectra obtained for (DMA)2SnBr6 between
10-290 K in the 3080–3220 cm−1 range, b): Temperature-dependent behavior of the observed
peak centers in this wavenumber region.
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5 CONCLUSIONS

The analysis of the phase transitions of (DMA)2SnBr6 existing between 10 K and

300 K was carried out. Temperature-dependent SCXRD and DSC measurements revealed an

orthorhombic (Pnmn) to monoclinic (P2/m) displacive phase transition and a monoclinic (P2/m)

to triclinic (P1) order-disorder phase transition which, based on the events observed on the Raman

spectrum, were found to happen at ∼200 K and ∼100 K, respectively. The displacive phase

transition was further studied through a symmetry mode analysis which reveald the primary

mode i.e. the collective displacements that lead to the symmetry break in the orthorhombic

to monoclinic phase transition, which was later found as an unstable mode in our theoretical

Γ-point phonon calculations. Additionaly, the phonon calculations also predict another triclinic

(P1) -> triclinic (P1) that was confirmed to be at ∼50 K by the Raman measurements.
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APPENDIX A – THEORETICALLY CALCULATED Γ-POINT PHONON MODES

mode wavenumber irrep classification IR intensity mode wavenumber irrep classification IR intensity

1 45.46i B3g octahedron L 0.0 88 985.03 Au τ(NH2) 0.0

2 39.60i B1g octahedron L 0.0 89 986.32 B3g τ(NH2) 0.0

3 30.85i Au DMA L 0.0 90 989.04 B1g τ(NH2) 0.0

4 20.56i B2g octahedron L 0.0 91 997.51 Ag νas(CNC) 0.0

5 3.61i B2u accoustic T 0.0162 92 999.02 B3u νas(CNC) 0.9201

6 3.56i B3u accoustic T 0.0 93 1001.74 B2g νas(CNC) 0.0

7 2.12i B1u accoustic T 0.0002 94 1002.78 B1u νas(CNC) 0.6639

8 13.71 B1g octahedron L 0.0 95 1050.93 B2g ρ(CH3) 0.0

9 15.16 B2u DMA L 0.8015 96 1051.28 Ag ρ(CH3) 0.0

10 20.80 Au DMA L + DMA T 0.0 97 1054.13 B3u ρ(CH3) 0.0338

11 22.91 B1u octahedron T 0.0223 98 1055.21 B1u ρ(CH3) 0.011

12 23.09 B3g octahedron L 0.0 99 1213.98 B1u ρ(CH3) 1.8009

13 25.50 Ag octahedron L 0.0 100 1215.67 B3u ρ(CH3) 0.0057

14 32.32 B3u octahedron T 0.0595 101 1216.8 B2g ρ(CH3) 0.0

15 40.74 Au octahedron v6(T2u) 0.0 102 1218.48 Ag ρ(CH3) 0.0

16 48.27 B2u octahedron L 0.0605 103 1224.2 B1g ρ(CH3) 0.0

17 50.98 B1u DMA T 0.4937 104 1227.55 Au ρ(CH3) 0.0

18 51.55 B1g DMA L 0.0 105 1227.65 B3g ρ(CH3) 0.0

19 52.84 B3u DMA L 0.0647 106 1229.49 B2u ρ(CH3) 1.7349

20 53.21 B3g DMA L 0.0 107 1323.05 Au ρ(CH3) 0.0

21 54.75 B3u DMA T 0.9624 108 1324.59 B2u ρ(CH3) 0.0573

22 55.78 Ag DMA L 0.0 109 1326.29 B1g ρ(CH3) 0.0

23 61.53 B1u DMA T 0.0037 110 1327.82 B3g ρ(CH3) 0.0

24 65.34 B2g DMA T 0.0 111 1362.00 Ag ω(NH2) 0.0

25 68.45 B3g DMA L 0.0 112 1364.05 B2g ω(NH2) 0.0

26 68.85 B1g DMA L 0.0 113 1372.33 B3u ω(NH2) 2.4821

27 71.47 Ag DMA T 0.0 114 1373.57 B1u ω(NH2) 2.9324

28 75.24 Au DMA L 0.0 115 1389.75 B2g δs(CH3) 0.0

29 75.34 B2u DMA L 1.6445 116 1390.61 Ag δs(CH3) 0.0

30 76.08 B2g DMA L 0.0 117 1391.19 B1u δs(CH3) 0.8077

31 80.70 B1u DMA L 0.0688 118 1391.98 B3u δs(CH3) 1.4555

32 81.24 Ag octahedron v5(T2g) 0.0 119 1414.35 Ag δs(CH3) 0.0

33 82.11 B3g DMA L 0.0 120 1415.21 B3u δs(CH3) 1.5045

34 82.58 B2u DMA L 0.1097 121 1415.54 B2g δs(CH3) 0.0

35 86.09 B1g DMA L 0.0 122 1417.05 B1u δs(CH3) 1.773

36 86.70 B2g octahedron v5(T2g) 0.0 123 1431.37 Ag δas(CH3) 0.0

37 88.95 Au octahedron v6(T2u) 0.0 124 1432.07 B2g δas(CH3) 0.0

38 88.99 B3u octahedron v3(T1u) 0.5434 125 1432.84 B3u δas(CH3) 4.3736

39 92.45 B1u octahedron v3(T1u) 0.8451 126 1433.2 B1u δas(CH3) 3.3695

40 92.69 B2u DMA L 4.5383 127 1434.01 B1g δas(CH3) 0.0

41 94.63 B3u DMA L 0.1261 128 1434.07 B3g δas(CH3) 0.0

42 95.32 B1g octahedron v5(T2g) 0.0 129 1437.71 Au δas(CH3) 0.0

43 97.25 Ag octahedron v5(T2g) 0.0 130 1438.06 B2u δas(CH3) 0.7927

44 98.12 B2g octahedron v5(T2g) 0.0 131 1442.48 Ag δas(CH3) 0.0
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45 98.28 Au DMA L 0.0 132 1443.03 B3u δas(CH3) 3.2854

46 100.07 B3u octahedron v5(T2u) 0.8785 133 1445.77 B1u δas(CH3) 6.5102

47 100.94 B1u octahedron v5(T2u) 0.068 134 1446.14 B2g δas(CH3) 0.0

48 106.23 B2u octahedron v5(T2u) 0.2241 135 1453.79 B3g δas(CH3) 0.0

49 109.51 B3g DMA T 0.0 136 1456.12 Au δas(CH3) 0.0

50 109.76 Au DMA T 0.0 137 1457.09 B1g δas(CH3) 0.0

51 110.9 B2g DMA T 0.0 138 1459.6 B2u δas(CH3) 7.0888

52 112.86 B1u DMA T 3.3967 139 1579.78 B1u δ (NH2) 5.1951

53 116.5 B3u DMA T 0.2432 140 1580.87 B3u δ (NH2) 1.5202

54 116.53 Ag DMA T 0.0 141 1585.75 B2g δ (NH2) 0.0

55 128.04 B3g octahedron v2(Eg) 0.0 142 1586.05 Ag δ (NH2) 0.0

56 128.88 B1g octahedron v2(Eg) 0.0 143 2999.51 Ag νs(CH3) 0.0

57 134.92 Ag octahedron v2(Eg) 0.0 144 2999.99 B3u νs(CH3) 0.303

58 141.56 B2g octahedron v2(Eg) 0.0 145 3000.49 B2g νs(CH3) 0.0

59 167.65 Ag octahedron v1(Ag) 0.0 146 3000.55 B1u νs(CH3) 0.0233

60 167.86 B2g octahedron v1(Ag) 0.0 147 3010.9 B3u νs(CH3) 1.0715

61 169.77 B1g τ(CH3) 0.0 148 3011.73 B2g νs(CH3) 0.0

62 173.45 B3g τ(CH3) 0.0 149 3012.17 B1u νs(CH3) 0.0503

63 177.89 B2u τ(CH3) 0.0007 150 3012.32 Ag νs(CH3) 0.0

64 178.6 Au τ(CH3) 0.0 151 3096.86 Au νas(CH3) 0.0

65 194.39 B3u octahedron v4(T1u) 5.9727 152 3096.99 B1g νas(CH3) 0.0

66 194.84 B1u octahedron v4(T1u) 7.0285 153 3097.02 B2u νas(CH3) 0.3402

67 196.76 B2u octahedron v4(T1u) 7.945 154 3097.03 B3g νas(CH3) 0.0

68 197.3 Au octahedron v4(T1u) 0.0 155 3108.75 Ag νas(CH3) 0.0

69 198.95 B1u octahedron v4(T1u) 0.0163 156 3109.01 B3u νas(CH3) 0.0

70 209.24 B3u octahedron v4(T1u) 0.1061 157 3109.07 B2g νas(CH3) 0.0

71 253.97 B1g τ(CH3) 0.0 158 3109.15 B1u νas(CH3) 0.0002

72 256.61 B2u τ(CH3) 0.3068 159 3109.69 B1g νas(CH3) 0.0

73 256.64 B3g τ(CH3) 0.0 160 3109.9 B2u νas(CH3) 1.0147

74 260.86 Au τ(CH3) 0.0 161 3109.98 Au νas(CH3) 0.0

75 383.25 B2g δ (CNC) 0.0 162 3110.2 B3g νas(CH3) 0.0

76 383.65 B3u δ (CNC) 0.0295 163 3116.79 B3u νas(CH3) 0.0086

77 383.73 B1u δ (CNC) 0.0001 164 3116.98 B1u νas(CH3) 0.7167

78 384.89 Ag δ (CNC) 0.0 165 3117.39 Ag νas(CH3) 0.0

79 789.3 B3g ρ(NH2) 0.0 166 3117.54 B2g νas(CH3) 0.0

80 789.62 B1g ρ(NH2) 0.0 167 3209.68 B1u νs(NH2) 30.6809

81 790.28 B2u ρ(NH2) 4.0147 168 3211.15 Ag νs(NH2) 0.0

82 791.58 Au ρ(NH2) 0.0 169 3211.52 B3u νs(NH2) 8.7428

83 878.92 B3u νs(CNC) 0.3995 170 3213.19 B2g νs(NH2) 0.0

84 880.08 Ag νs(CNC) 0.0 171 3231.76 B1g νas(NH2) 0.0

85 880.38 B1u νs(CNC) 1.7863 172 3231.99 B3g νas(NH2) 0.0

86 882.22 B2g νs(CNC) 0.0 173 3235.86 B2u νas(NH2) 69.1423

87 984.99 B2u τ(NH2) 0.1102 174 3236.06 Au νas(NH2) 0.0
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