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Abstract: Three-Phase Induction Motors (TPIM) is a fundamental part, as they are the main
responsible for carrying out the mechanical work process in the industry. It is estimated that
they are responsible for consuming more than half of all energy destined for the industrial
sector. Thus, any failure of operation in motors of this type is reflected in energy, economic and
environmental losses. Among the most common failures is the unbalance of the supply voltages,
which can cause total loss of the machine depending on the magnitude of the unbalance. This
article addresses a comparative analysis between the Machine Learning K-Nearest Neighbors
(KNN), Random Forest (RF), Suport Vector Machine (SVM), Principal Component Analysis
(PCA) and Multilayer Perceptron Neural Network (MLP) techniques applied to the classification
of unbalanced supply voltages of a three-phase induction motor. For this, a database was used
with mechanical and electrical variables related to the balanced and unbalanced operation of the
motor, divided into classes of different levels of unbalance according to the National Electrical
Manufactores Association (NEMA).

Keywords: Fault Diagnostic; Machine Learning; Pattern Recognition; Three-Phase Induction
Motor; Unbalanced Supply Voltages.

1. INTRODUCTION

The Three-Phase Induction Motor (TPIM) is a rotating
electrical machine designed to perform the process of
converting electrical energy into mechanical energy, being
widely used in the industrial sector. In this process of
energy conversion, TPIM uses rotating magnetic fields.

It is estimated that TPIMs are responsible for consum-
ing more than 70% of all energy destined for industrial
plants and for more than 40% of a country’s total energy
consumption (Nascimento et al., 2020). The widespread
use of these machines in the industry is justified not only
by their robustness, but also by their simplicity and low
maintenance cost (Santos et al., 2015).

In this way, it is evident that any failures in machines of
this type will reflect in energy losses, due to the drop in
performance; economic, by spending wasted energy; and
environmental, due to the natural resources used in the
generation of unused energy. As a consequence of unbal-
anced voltages, a TPIM may exhibit sequence current and
pulsating torque sequence, which causes an increase in the
winding temperature and motor losses (Adekitan and Ab-
dulkareem, 2019). In addition, the efficiency of the motor
is also impaired due to increased losses and harmonics of
current, also reducing the life of the machine (Adekitan
and Abdulkareem, 2019).

In general, the voltage unbalance can be found at any
level, with the possibility of exceptions for levels below
2%. In most cases, the greatest voltage unbalance appears
in the electrical installations of the final consumer. It
is estimated that 98% of concessionaires have less than
3% unbalance, with more than half between 0 and 1%
unbalance (Fernando Mantilla, 2008).

In Adekitan and Abdulkareem (2019), a comparison was
made between the performance of the Tree Emsemble
(TE), Decision Tree (DT), Random Forest (RF) and
Support Vector Machine (SVM) techniques applied in the
classification of under voltage (2-10%), rated voltage and
over voltage (2-10%)

In Bazan et al. (2019), an unbalanced voltage diagnosis was
carried out, along with load torque variations and short-
circuit levels, in the first stage C4.5 DT was used and
in the second stage, it used Multilayer Perpectron Neural
Networks (MLP).

In addition, in Sawitri et al. (2013), the detection of
unbalanced supply voltages was performed using SVM
with the extraction of features from the Wavelet transform
and the Principal Component Analysis (PCA) algorithm.

Therefore, the purpose of this work is to perform a com-
parative analysis between the techniques of K-Nearest
Neighbors (KNN), Random Forest (RF), Suport Vector
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Machine (SVM), Principal Component Analysis (PCA)
and Multilayer Perceptron Neural Network (MLP) in or-
der to find out which technique has the highest hit rate
for the problem of unbalanced power supply voltages in
TPIM. For this, a stratified database strategy is used
for a more detailed analysis with subsequent reduction of
dimensionality with PCA and based on the importance of
each feature for the model.

The differential of this work is the application of the
techniques mentioned in a database different from the one
used by previous works, obtained in Adekitan et al. (2019).
In addition, the use of Machine Learning techniques does
not require the use of traditional features for the calcula-
tion of unbalance of supply voltages, being therefore, an
alternative for cases in which the features of traditional
methods are unavailable.

The structure of this work is divided into four more sec-
tions. Section 2 presents the theoretical basis for the prob-
lem of unbalanced supply voltages. Section 3 describes the
methodology adopted. In section 4, the results obtained
in section 3 are shown. And finally, in section 5 is the
conclusion of the work and indications of future work.

2. THEORETICAL BACKGROUND

2.1 Voltage Unbalance

The balanced voltage is characterized by having the same
magnitude value and a difference of 120° between the
phases, when this condition is not ture the voltage is
characterized as unbalanced. When there is an unbalance
in the supply voltage, a TPIM can present some problems
such as decreased performance and reduced machine life
(Alham et al., 2020).

The most frequent causes of unbalanced voltages in a
TPIM occur due to unstable power, single-phase loads
distributed in the same energy system unevenly, an open
circuit in the primary distribution system and atmospheric
discharges in distribution circuits (Araújo et al., 2020).
Unbalances considered small can reflect a great unbalance
in the current of the TPIM, which can result in an increase
in temperature and, thus, compromise the isolation of the
TPIM (Alham et al., 2020).

2.2 Measuring the Voltage Unbalance

It is possible to measure the level of unbalanced supply
voltages through three definitions: the definition of the
National Electrical Manufacturer Association (NEMA),
the definition of the Institute of Electrical and Electron-
ics Engineers (IEEE) and the definition of International
Electrotechnical Commission (IEC) (Refaat and Abu-Rub,
2015).

The NEMA definition says that the line voltage unbalance
rate (LVUR) is the maximum deviation from the average
line voltage in relation to the average value of the line
voltages. This definition takes into account only the mag-
nitudes or modules of the voltages, in this case, the phase
angles are not considered (Refaat and Abu-Rub, 2015)

LVUR(%)

=
Max volt deviation from avg line volt

Average Line V oltage
× 100 (1)

The definition given by the IEEE says that a rate of
phase voltage unbalance (PVUR) is given by the maximum
deviation from the average phase voltage related to the
average value of the voltages of the three phases (Refaat
and Abu-Rub, 2015).

PVUR(%)

=
Max volt deviation from avg phase volt

Average Phase V oltage
× 100 (2)

The definition given by the IEC says that the voltage
unbalance factor (VUF) is the ratio between the negative
sequence voltage component and the positive sequence
voltage component (Refaat and Abu-Rub, 2015).

VUF(%)

=
Negative Sequence V oltage Component

Positive Sequence V oltage Component
× 100 (3)

Normally, the effect of voltage unbalance in a TPIM
according to NEMA is reflected in the behavior of the
negative sequence voltage, in this case, the rotation of
the TPIM occurs in the opposite direction to that of
the voltage unbalance. Therefore, positive and negative
sequence voltages can be used to analyze the behavior of
a TPIM in an unbalanced condition (Sawitri et al., 2013).

Thus, the voltage of the positive (Vsp) and negative (Vsn)
sequence components are obtained from the unbalance of
each phase (Vab, Vbc and Vca). For the balanced condition,
we have (Sawitri et al., 2013):

Vsp =
Vab + a′ × Vbc + a′′ × Vca

3
(4)

Vsn =
Vab + a′′ × Vbc + a′ × Vca

3
(5)

Where:

a′ = 16 120◦ and a′′ = 16 240◦ (6)

2.3 Machine Learning Techniques

The techniques of KNN, SVM, RF, MLP and PCA are
well known and used in the classification of phenomena
of one or more classes. Thus, the PCA technique can be
used to reduce the dimensionality of the data and the
criterion for excluding features due to their importance for
the classification can give greater accuracy to the problem
to be solved.

The KNN is an algorithm that implements the classifica-
tion of unknown samples based on the distance between
the unknown samples and the samples associated with
the problem classes. For this, it is necessary to define
the number of k neighbors, the metric of the distance
calculation and the decision rule (Soares et al., 2020).

In addition, SVM aims to find the hyperparameter of
separation between the classes of the problem, in order to
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find the maximum distance between the closest samples
(Soares et al., 2020).

Furthermore, RF can be described as a combination of tree
predictors so that each tree is dependent on the values of a
random vector sampled independently and with the same
distribution for all trees in the forest (Breiman, 2001).

On the other hand, MLP is a neural network used to solve
non-linearly separable problems. For this, the network uses
one or more intermediate layers of neurons and an output
layer normally fully connected (Faceli et al., 2011).

In addition, the PCA transforms high-dimensional data
into a low-dimensional subspace component and a noise
component. This decomposition is quite useful for data
compression and noise elimination tasks, thus being an
important step for many data processing tasks (Minka,
2000).

Finally, feature importance applied in DT is based on
the average reduction of impurity. Feature importances
are calculated as the mean and standard deviation of
accumulation of the reduction of impurities within each
tree (Cassidy and Deviney Jr, 2014).

3. METHODOLOGY

A methodology used in this procecdure follow a steps
sequential of according with a specific database charac-
teristics . How data contains one unique dataframe with
all six conditions of unbalance, three steps was necessary
for identification of failures on the TPIM.

In the first stage, database was apportion in five new
dataframes contains the five levels of unbalance in five
dataframes, where each dataframe contais each condition
of unbalance concatened with balance condition (0%). The
intention of this step is to apply in each new base several
classification techniques to select the four best algorithms
for the next stage.

In the second stage, the dataframes used before, are
concatened resulting on unique dataframe with a six labels,
in the other words, the new dataframe is a multiclass
database.

In the last stage, some hypotheses are applied to try
to improve the performance of the best algorithms. The
hypotheses are the reduction of size by two techniques
explained later.

3.1 Dataset

In this work was used a dataset that contains several
scenarios of voltage change of a Three-Phase Induction
Motor (TPIM), to obtain the variations of the motor oper-
ational parameters for 6 unbalancing conditions (0%, 1%,
2%, 3%, 4% e 5%). The conditions mentioned before vary
independently to obtain the 5% unbalance according to the
National Electrical Manufacturers Association (NEMA)
(Pillay and Manyage, 2001).

In the experimental procedure to obtain the data, was
used one TPIM of 415 V with the specifications, Xm =
7.9636Ω, Xs = 0.3965Ω, Rr = 0.2775Ω and Rs =
0.2412Ω. The data presented here, in terms of slip refers

to the interval where, −1 ≤ slip ≤ 2, thus ensuring all
conditions for slip acordding NEMA .With this the specific
data base the obtains electrical and mechanical data of the
motor how, rotor current, stator current, winding copper
losses, real input power, reactive input power the apparent
power, and air gap power, torque and electromechanical
power (Adekitan et al., 2019).

3.2 Stage 1

As the database used here initially consisted of a single
CSV file containing the motor unbalance data on each
sheet (0 %, 1 %, 2 %, 3 %, 4 %, 5 %), it was necessary to
subdivide the database into 5 new files each containing an
unbalance condition (1 %, 2 %, 3 %, 4%, 5 %) concatened
with the efficiency condition (0 % unbalance) and add a
label column for each condition , 0 for balancing and 1
for unbalance. Thus, the initial problem was divided into
5 new binary variable problems. The first stage of the
method can be seen in the Figure 1.

Figure 1. Methodology of Stage 1

As showed in the previous figure, the intention of this
step is the application of several classification techniques
in machine learning using the Python Scikit Learning
library, to obtain the 4 best classifiers. This step acts as a
selection filter for the best models. This method is based
on the model proposed in (Tanwani et al., 2009),where by
applying several algorithms in a generic way in a database,
it is possible to obtain the tendency of which may be the
best algorithm for the next stage of the methodology. The
classifying algorithms were selected from some evaluation
metrics evidenced in the next section.

3.3 Evaluation metrics

For to evaluate the classifiers, was used the some metrics
based on confusion matrix for each dataframe. They were,
accuracy, precision and recall.

accuracy =
TP + TN

TP + TN + FP + FN
(7)
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precision =
TP

TP + FP
(8)

recall =
TP

TP + FN
(9)

where, TP, TN, FN and FP stand for True-Positive, True
Negative, False Negative and False Positive. In addition
for the F1-Score was used:

F1-Score =
2(precision)(recall)

(precision) + (recall)
(10)

3.4 Stage 2

With the procedure of the previous stage, a select group of
classifiers algorithms was obtained . However, the purpose
of this stage is to join the previously segmented database
to a single dataframe containing all the unbalance data.
Thus, the four best algorithms from the previous stage will
be used to address the new multiclass problem, with the
aim of analyzing the performance of the fault identification
task in TPIM. The Figure 2, show the diagram of the
second stage.

Figure 2. Methodology of Stage 2

3.5 Stage 3

In the last stage, as the methodology addressed so far
is sequential, the results obtained in the second stage
were used to finally select the best classification algorithm,
evaluating again based on the evaluation metrics of stage
1 and stage 2.

In addition, the hypothesis that irrelevant or related data
existed led to the application of two dimensionality reduc-
tion techniques: Principal Component Analysis (PCA) and
Feature Importance.

The figure 3, denotes the flowchart of the last stage of the
methodology.

Figure 3. Methodology of Stage 3

4. RESULTS

In this section, is presented at results obtained according
to the theory proposed in the methodology stages. Thus,
as each stage has a specific objective, they will be divided
into 3 sections for results.

4.1 Results for First Stage

The proposal of the first stage, was to select the best
classifiers in the segmented databases in binary problems,
containing the unbalance of the engine from 1 % to 5 %.
Thus, the following tables present the 4 best algorithms
for each unbalance dataframe.

Table 1. Results for dataframe with 1% unbal-
ance

Classifier Precision Recall F1-Score Accuracy

Decision Tree 94,5 % 98,2 % 96,3 % 99,6%

Quadratic SVM 93,8 % 95,6 % 94,7 % 99,5%

KNN 92,1 % 90,0 % 91,1 % 98,3%

Bagged Trees 97,5 % 99,3 % 98,4 % 99,9%

Table 2. Results for dataframe with 2% unbal-
ance

Classifier Precision Recall F1-Score Accuracy

Decision Tree 96,5 % 98,9 % 97,4 % 99,6%

Quadratic SVM 95,8 % 94,7 % 94,7 % 99,6%

KNN 92,1 % 95,1 % 92,6 % 99,2%

Bagged Trees 98,5 % 99,1 % 98,8 % 99,6%

Table 3. Results for dataframe with 3% unbal-
ance

Classifier Precision Recall F1-Score Accuracy

Decision Tree 96,5 % 97,9 % 93,4 % 99,4%

Quadratic SVM 94,8 % 95,7 % 92,7 % 99,7%

KNN 92,1 % 95,1 % 92,6 % 99,6%

Bagged Trees 98,5 % 98,1 % 98,1 % 99,8%
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Table 4. Results for dataframe with 4% unbal-
ance

Classifier Precision Recall F1-Score Accuracy

Decision Tree 96,5 % 97,9 % 93,4 % 99,6 %

Quadratic SVM 94,8 % 95,7 % 92,7 % 99,6 %

Subspace
Discriminant

95,2 % 95,1 % 94,6 % 98,7 %

Bagged Trees 98,6 % 98,1 % 98,2 % 99,8 %

Table 5. Results for dataframe with 5% unbal-
ance

Classifier Precision Recall F1-Score Accuracy

Decision Tree 96,2 % 96,9 % 95,4 % 99,6 %

Quadratic SVM 96,8 % 95,8 % 92,8 % 99,6 %

Subspace
Discriminant

94,2 % 95,2 % 94,1 % 98,2 %

Bagged Trees 98,6 % 98,1 % 98,2 % 99,8 %

As expected, good results were obtained in view of the
initial data provision taking into account only one decimal
place (1 %, 2 %, 3 %, 4 % and 5 %) concatenated with the
effective case (0 % unbalance).

4.2 Results for the Second stage

As in the methodology, the second stage aims to apply the
4 bests classification techniques in the base containing all
types of unbalance and select the best hyperparameters
for them. Thus, the following tables shows the best results
and the worst results for: Decision Tree, Quadratic SVM,
KNN and Bagged Trees.

Table 6. Multiclass problem with all unbal-
ances of TPIM. (Best results)

Classifier Precision Recall F1-Score Accuracy

Decision Tree
(Best result)

92,2 % 94,9 % 91,4 % 95,1 %

Quadratic SVM
(Best result)

94,8 % 95,8 % 93,8 % 96,6 %

KNN
(Best result)

89,2 % 82,2 % 85,1 % 89,2 %

Bagged Trees
(Best result)

98,6 % 95,1 % 97,2 % 98,8 %

Table 7. Multiclass problem with all unbal-
ances of TPIM. (Worse results)

Classifier Precision Recall F1-Score Accuracy

Decision Tree
(Worse result)

87,2 % 91,9 % 89,4 % 91,1 %

Quadratic SVM
(Worse result)

90,8 % 94,8 % 93,8 % 93,6 %

KNN
(Worse result)

82,2 % 81,2 % 83,1 % 84,2 %

Bagged Trees
(Worse result)

94,6 % 91,1 % 93,2 % 94,8 %

With this sequence of tests, after the variation of the hy-
perparameters, the best classifier was obtained in the mul-
ticlass problem. The best classifier for this database was
Random Forest with the ”bootstrap” agregation method.
The best hyperparameters are: ’bootstrap’ aggregation
method, a type of classifier like the ”Decision Tree”with 30
learners. The following figures show the confusion matrix’s
of the best and worst case respectively.

Figure 4. Confusion Matrix for the Bagged Trees in your
best case

Figure 5. Confusion Matrix for the Bagged Trees in your
worse case

4.3 Results for last Stage

According to stage 3, the hypothesis of improving the
model by reducing the size of the data was applied using
PCA and Feature Importance.

4.4 PCA results

The Figure 6, presents the data of accuracy and precision
with reduction by PCA

Figure 6. Reducion with PCA, results

As showed in the graph, reducing the dimension of data
is advantageous until the point of drop of the graph,
6 components. However, with the previous results, the
accuracy and precision decreases, however, there is a gain
in training time.
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4.5 Feature Importance results

The Figure 7 demonstrates the results obtained in the
accuracy and precision with the dimension reduction em-
broidering using Feature Importance.

Figure 7. Reducion with Feature Importance, results

In the figure it can be seen that with the use of the Feature
Importance function, there is a drop in the accuracy value.
However, there is an increase in the model’s precision
value. Thus, with the objective of the two techniques
approached, it is to improve the model, that is, to make
it more efficient in a short time, the best option for
reducing the dimension for this database, with the voltage
unbalance data, is reduction with Feature Importance.

5. CONCLUSION

In this work presented the application/selection of machine
learning techniques, applied in the detection of failures
in TPIM. In addition, the method applied in the work
constitutes a theorical background framework for future
work, that will analyze the similar database, as in the
detection of failures analytically it is necessary data on
the electric current in the sectors of the motor.

The results showed that in the analysis of the unbalance of
a TPIM under voltage unbalance conditions, the Random
Forest algorithm with bagged tree algorithm with the
possibility of improving the precision and the training
time with the reduction of dimensionality with the PCA
and Feature Importance techniques. In addition, it was
defined that reducing the dimension using the Feature
Importance function is more advantageous than using the
reduction by the PCA that is commonly used in the area
of computational intelligence.
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