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RESUMO

O desmembramento de software consiste em dividir um artefato de software existente em 

outros menores. Desmembramento pode ser útil para remover código em desuso do software, 

para  separar  funcionalidades que podem não estar  compartilhando o mesmo propósito  da 

aplicação como um todo, ou simplesmente para isolar uma funcionalidade emergente que 

merece ser uma aplicação por conta própria. Esse fenômeno é frequente em aplicativos para 

dispositivos  móveis  e  também  está  se  propagando  para  APIs.  Esta  pesquisa  propõe  um 

primeiro  estudo  empírico  sobre  o  desmembramento  para  entender  seus  efeitos  em  APIs 

populares.  Exploramos  as  possibilidades  de  dividir  bibliotecas  em pacotes  de  2  ou  mais 

blocos baseados no uso que os projetos de clientes fazem deles.  Nós mineramos mais de 

71.000 projetos clientes de 10 APIs de código aberto e geramos automaticamente 2.090 sub-

APIs para então estudar suas propriedades. Descobrimos que é possível desmemebrar APIs 

automaticamente em bundles menores a partir de conjuntos de uso disitintos formados por 

grupos  de  clientes;  os  bundles  de  código  gerados  podem  variar  em  termos  de 

representatividade e singularidade, o que é analisado minuciosamente neste estudo.

Palavras-chave: desmembramento de software; modularidade; uso de APIs; mineração de 

repositórios de software; estudo exploratório.



ABSTRACT

Software  unbundling  consists  of  dividing  an  existing  software  artifact  into  smaller  ones. 

Unbundling can be useful for removing clutter from an application or separating different  

features  that  may  not  share  the  same  purpose,  or  simply  for  isolating  an  emergent 

functionality that merits to be an application on its own. This phenomenon is frequent with 

mobile apps and it is also propagating to APIs. This research proposes a first empirical study 

on unbundling to understand its effects on popular APIs. The study explores the possibilities 

of splitting libraries into 2 or more bundles based on the use that their client projects make of  

them. I  mine over  than 71,000 client  projects  of  10 open source APIs and automatically 

generate 2,090 sub-APIs to then study their properties. Results show that it is possible to have 

sets of different ways of using a given API and to unbundle it accordingly; the bundles can 

vary their representativeness and uniqueness, which is analyzed thoroughly in this study.

Keywords: software unbundling; modularity; API usage; mining software repositories; 

exploratory study.
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1 INTRODUCTION

Software tends to evolve, often extending existing features or offering new ones. 

This  evolution  is  therefore  important  to  maintain  the  users’ acceptance  of  the  software.  

However, it can also lead to an uncontrolled growth. As the software absorbs new features, it  

may lose  focus  of  its  original  purpose  or  simply  may incorporate  unnecessary  code  and 

interface features, which in one way yields to lack of usability (feature fatigue (THOMPSON 

et  al.,  2005)),  and  from  the  point  of  view  of  development,  it  can  negatively  affect 

maintainability (ANDA, 2007; SZŐKE et al., 2017).

Recently,  it  has  been  observed  that  mobile  apps  go  through  an  evolutionary 

phenomenon of unbundling (FILHO  et al., 2016). Unbundling consists of dividing a given 

software into two or more bundles. This happens for reasons such as: there is an emergent 

functionality that merits to be a software on its own; there is a collection of features that are  

often  used  separately;  or  there  is  a  need  for  simplifying  user  experience,  easing 

maintainability and removing clutter.

For decades, software engineers have been studying ways to compose software 

artifacts  into  more  capable  and  complex  ones;  on  the  other  hand,  decomposing  is  also 

becoming important as software reaches a maturity level in which many applications, systems 

and APIs are too large to be efficiently maintained and used. However, dividing a software 

artifact is a challenging task from many perspectives. Conceptually, unbundling goes beyond 

modularizing, aspectualizing or simply componentizing a software, as the main goal of these 

approaches  is  to  enhance  non-functional  properties  of  a  program,  such  as  flexibility, 

comprehensibility  and maintainability.  (MORTENSEN, 2009;  MORTENSEN  et  al.,  2008; 

REBÊLO et al., 2014; WASHIZAKI; FUKAZAWA, 2005; AJILA et al., 2013); unbundling 

can benefit from all these good properties, but for the goal of simply dividing and having 2 or 

more different applications (sometimes only to cope with market trends), serving to different 

clients,  maintained by different  teams and used by different  users  (FILHO  et  al.,  2016). 

Commercially, changing a software risks its user acceptance, therefore its popularity (e.g., 

downloads, sales). From the engineering perspective, how can we efficiently identify, extract 

and isolate in a different program a given number of features that may be coupled to others? 

In other words, should we and how can we unbundle software?

In this study, I explore the unbundling of APIs. I analyze how APIs are used by 

their client projects and propose to split these APIs according to the different ways that groups 

of projects use them structurally – unbundling based on usage. Open source APIs/libraries 
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(e.g., Apache Commons IO, JUnit, and Google Guava) are used almost ubiquitously across a 

large span of other open source and industrial applications (LEITNER; BEZEMER, 2017), so 

this scenario favours large-scale studies and makes APIs the best fit for analyzing software 

and its usage by the community.

First, I selected 10 APIs and mined projects on GitHub that use each API. We 

collected over 71,000 client projects of those 10 APIs and we identified which classes of each 

API they are using. Second, for a given API, we tried to discover clusters of usages, each 

cluster being a group of client projects that use the API in a similar fashion (i.e., use the same 

classes from the subject API). Once we identify those clusters, we get the classes that they use 

and  try  to  automatically  separate  them  from  the  original  API,  together  with  all  their 

dependencies. By following this protocol and exploring the granularity of the unbundling (we 

divide each API from 2 to 20 bundles), we generated 2,090 sub-APIs and then studied some 

properties, such as their uniqueness and representativeness in regards to the other generated 

sub-APIs (i.e., bundles) and the client projects they attend, respectively.

Our  study  allows  to  understand  how  usage  can  drive  unbundling  in  APIs, 

identifying if a given API may have different groups of clients with respect to the usage and  

allowing for an automatic division. Our exploration on the number of bundles also gives an 

idea about how granular the division should be. For the sake of simplicity, we have used the 

words API and library interchangeably in this research.

The  remainder  of  this  research  is  structured  as  follows.  Chapter  2  gives  a 

background  about  how  software  evolves,  how  does  unbundling  occur  in  real  world 

applications  and  focuses  on  unbundling  based  on  usage  and  its  main  concepts,  such  as 

uniqueness and representativeness of bundles. Chapter 3 describes our empirical exploratory 

study and the methodology that supports it, along with a deep dive into the study protocol and 

the bundles clustering process. Chapter 4 presents results from the empirical study visiting all  

research questions and their main outcomes. We then discuss the results in details throughout 

the Chapter  4,  and touch the threats  to  validity  of  this  research in  Chapter  5.  Chapter  6  

consists of a comprehensive examination of related work. Finally, we present our conclusions 

and main ideas for further investigations in Chapter 7.
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2 THEORETICAL BACKGROUND

In this  Chapter,  I  discuss  the software engineering concepts  that  supports  this 

unbundling research, as well as the narrowed vision on unbundling based on usage. Through 

an overview of each component that composes the unbundling process and its outcomes, this 

contextualization prepares the field for more technical details over the APIs selection, client 

mining and source code splitting we drill down through the next chapters.

2.1 Software Evolution

There is  not  a  widely accepted definition for  Software Evolution (BENNETT; 

RAJLICH, 2000), but to understand it and how it relates to this study we can start from one of  

its simplest concepts, which is the tendency of software to change over time (PENNY et al., 

2003).

For many years authors have been discussing the difference between software 

evolution and maintenance, given that both address changes in the software; some people 

even argue that both terms can be used interchangeably. However, let’s draw a line between 

the terms for the sake of clarity of their usage in this research.

Following (GODFREY; GERMAN, 2008) perspective’, for software maintenance 

I will assume all the changes applied in a production version of the software in order to keep 

it running according to the original requirements, be it a series of bug fixes or performance 

adjustments. On the other hand, we will take software evolution as the changes in the software 

to reach new features that were not prospected by the time of its conception or to serve new 

users demands over time.

Lehman, Belady and colleagues (BELADY; LEHMAN, 1976; LEHMAN et al., 

1997)  observed  large-scale  proprietary  software  evolution  behaviour  for  over  20  years, 

proposing and updating what they call laws of evolution. The eight laws regard many aspects 

of software evolution, from which I can highlight the software nature of continuously increase 

in size and complexity, to change in order to meet users needs, and to decline in quality unless 

the proper design revision is not performed through its lifetime.

The  concept  of  reengineering,  which  includes  both  reverse  and  forward 

engineering  activities  (TRIPATHY;  NAIK,  2014),  also  captures  the  inner  idea  behind 

software evolution. In the reverse engineering phase, one must draw an abstract view of the 

target  piece  of  software  in  order  to  comprehend its  architecture  and modules.  From that  
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picture, an assessment can be performed to indicate a path the forward engineering tasks will  

follow to produce an improved version of this software. This process is defined by Jacobson 

and Lindstörm (JACOBSON; LINDSTRÖM, 1991) with the expression below:

Reengineering = Reverse engineering + Δ + Forward engineering (2.1)

This  study  moves  towards  the  discovery  of  metrics  that  support  software 

evolution, in such way one can run the unbundling process here proposed and understand to 

what extent the target software is prone to be unbundled, as well as the feasibility of this  

process.  This  approach  matches  Jacobson  and  Lindstörm  proposition  described  in  the 

equation 2.1.

2.2 Software Unbundling

The software unbundling, sometimes called the unbundling phenomenon, might 

be seen as a branch of software evolution studies, and consists on dividing software artifacts 

in smaller pieces. It does not happen only for the sake of modularization, but rather motivated 

by the presence of emergent functionalities in the software or due to business decisions, such 

as a company/department split.

According to Filho et al. (2015), a software project qualifies to be unbundled only 

when it is a mature product, i.e., it has passed its conceptual phase and consists in a dense 

piece of software that conveys a well defined class of features. The other characteristic is that  

this software already has its client corpus, so applying changes into it might have serious 

consequences to those clients, which in turn can leverage adoption issues to the software.

Once a unbundling scenario is identified, its execution will face some challenges 

(FILHO  et  al.,  2016),  which  permeate  subjective  decisions  and  technical  maintainability 

tasks.  From the business perspective,  unbundling a mature software means changing it  to 

pursue a new purpose or at least giving it space and resources to fully attack an identified 

niche.  This  risks  the  original  software  overall  image  and  clients  trust.  Therefore  the 

identification of causes and objectives for the emergent pieces of software must be clear. This  

then touches the existing user acceptance criteria.

When it  comes to software engineering challenges, like decomposing software 

and administration of code replication, teams can rely on the few decades of knowledge this 

field has on improving maintainability,  understandability,  flexibility and testability.  These 
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factors act like unbundling facilitators instead of end goals, so the easier it is for a software to 

be  divided,  for  instance  due  to  its  weak  coupling  parts,  the  more  successful  will  be  its  

unbundling from a code management point of view.

Notorious real cases of unbundling are the creation of Swarm app1 as a feature 

extracted from Foursquare2 , and the split of Linkedin3 into half dozen purpose oriented apps. 

But the phenomenon has been propagated on to API domain as well, like in the Machine 

Learning field, where MLib4 emerged from Apache Spark platform and Mahout came out 

from Apache Hadoop5. This research also investigate a change on JUnit, which released 3 

sub-projects as their new suite for testing.

2.3 Unbundling based on Usage

In Fig. 1, we illustrate an API with many client projects using its classes. API1 has 

groups  of  classes  that  are  commonly  used  together  for  different  reasons,  they  may have 

complementary functions, structural dependencies or may just represent a set of unrelated 

features required by their users. Eventually, as depicted in Fig. 1, it is possible to identify  

(almost)-distinct usages of the same API, forming clusters of client projects and therefore 

different purposes of use; PC1 ,  PC2 and PC3 are clusters of projects that use three different 

regions of API1 by calling its classes and interfaces in direct (CC1, CC2 and CC3) and indirect 

(B1, B2 and B3) ways.

Following, we explain the concepts that will help us guide this exploratory study, 

our main objective being unbundling an API (i.e., dividing the API into smaller bundles) and 

studying the properties of the parts resulted from this process.  Therefore we need to first 

understand A) if there are groups of clients of an API that use it in a similar fashion. We will  

use this information to unbundle the API accordingly. B) When unbundling, we need to seek 

ways of evaluating if we generate bundles that are different of one another and how so. Also,  

if these bundles are useful to a set of clients of the original API and how many. C) We need to 

understand and formalize an algorithm for the unbundling process.

1 https://www.swarmapp.com/
2 https://foursquare.com/
3 https://www.linkedin.com/
4 https://spark.apache.org/mllib/
5 https://hadoop.apache.org/
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Figure 1 – API usage by client projects.

Source: Produced by the author.

2.3.1 Similarity based on API Usage

We define the following concepts that allow us to express how similar one client  

project is to another based on their usage of a given API.

2.3.1.1 API usage

Let’s define what is usage in the context of this research. We say a project P1 uses 

API1 if there exists at least one reference from P1 to some class in API1 , being a reference an 

invocation  from any class  in  P1 to  any code  in  API1.  Here,  I  am most  interested  in  the 

granularity level of classes; therefore, the usage of API1 by a project P1, named U(API1 , P1) is 

the set of classes of API1 that P1 imports.

2.3.1.2 Clusters

Let’s define a cluster as a simply subset of API source code, but it the context of 

this research we have certain rules for building this cluster. When we select a target API and at 

least one of its client projects’, a cluster of this API can be built based on the usage this client 

or group of clients make of it. By collecting only the classes and interfaces which are directly  

demanded  by  the  API  client  (or  group  of  clients),  without  taking  in  consideration  any 
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compilation constraints,  we a cluster of this API that,  theoretically,  serves well  the client  

usage that dictated its shape.

2.3.1.3 Similarity of Usages

Defining how similar  is  the  usage that  a  project  makes  of  an API  to  another  

project can be complicated in some cases. The easiest situation is when their usage is equal, 

then we can state that the similarity s = 1. I expect s to be 0 if two projects do not share any 

references to the same classes of an API. Meanwhile, I want to have a ratio between the 

number  of  intersecting  usages  and  the  total  of  usages  of  the  two  projects.  A reasonable 

similarity measure with the aforementioned characteristics is the Jaccard index (JACCARD, 

1908), which denotes the intersection over the union of two sets. Therefore we define the 

similarity of usage s (2.2) between a project Pa and a project Pb as being:

s=
U (APIn ,Pa )∩U (APIn ,Pb )
U (APIn ,Pa )∪U (APIn ,Pb )

 (2.2)

2.3.1.4 Bundles

Having a cluster of classes CC1 from a given API1, composed only of classes and 

interfaces that are directly used by a set of client projects of this API, we name bundle the 

union of  CC1 and the complementary group of class and interfaces on which  CC1 depends 

(identified as  B1,  B2 and  B3 in  Fig.1).  This  definition guarantees that  a  client  project  can 

compile and run with one or more bundles from API1, instead of the whole API, but on the 

other hand might lead to the definition of bundles virtually equal to each other.

Our  concept  of  bundle  is  aligned  with  Parnas’ analysis  (PARNAS,  2018)  of 

Dijkstra’s paper “The structure of the “THE” multiprogramming system” (DIJKSTRA, 1968), 

where the use structure is defined as a relation in which for a program  A that depends on 

program B to work, the specification of B must be satisfied. In our case, B is a bundle of an 

API and A is a client project of this API.
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2.3.2 Similarity based on API Usage

To better evaluate the quality of the bundles taken from an API,  I  define two 

metrics related to the coverage these bundles offer over client projects of an API and the 

relationship  of  intersection  among  other  bundles  from  the  same  API,  named: 

representativeness and uniqueness.

Representativeness is the percentage of clients a bundle would serve. In the search 

for an optimal quantity of bundles to divide an API, a bundle that covers the needs of a large 

number of clients would emerge as a good option, meaning that there exists a smaller set of  

classes  from  the  API  that  can  support  those  clients.  For  a  given  APIn ,  the  i bundle 

representativeness RBi (2.3) is the number of clients covered (Cc) by a given bundle Bi divided 

by the total of (covered) clients (Cc (APIn )) its API has.

RBi=
Cc (B i )

Cc (APIn)
 (2.3)

The uniqueness of a bundle Bn, UBn , is the bundle size, divided by the size of the 

intersection among all bundles from the same split(2.3). In this study, I vary the number of 

bundles from 2 to 20. This metric, which is equivalent to the inverse of the similarity, tells us  

how unique a bundle is with respect to the other bundles generated after a given API split. By  

looking at uniqueness someone is able to group similar bundles and study the odd ones, in 

other  words,  those  that  do  not  share  much code  with  their  siblings,  therefore  serving to 

specialized group of clients. In the unbundling perspective, understanding the small usage 

niches might also turn out to reveal an important aspect of how clients consume a given API. 

To decide if these unique bundles are good choices for API splitting, I should also consider  

other metrics, such as its representativeness.

UBi=
size (Bi )

size (B1∩B2∩. ..∩B i∩. ..∩Bn)
 (2.4)

Ideally, I am interested in bundles that have high representativeness and are 

(almost-)unique among the possible bundles.
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2.3.3 Unbundling Algorithm

As part of this study, we should define a reproducible process for unbundling an 

API. Given one API to be unbundled, our algorithm (Fig. 2) receives as input the set of all 

classes and interfaces (S) of the API version under consideration; a set (C) initially composed 

of all classes and interfaces of a cluster, and a set of classes and interfaces (B) belonging to 

the derived sub-API (i.e., a bundle).

The set B is initially empty. Each element (class or interface) in the set C is added 

to the set B along with its dependencies. Those dependencies may induce other dependencies 

of their own, which will also compose the set  B. This process guarantees a given bundle is 

compilable and therefore might be a useful part of the API for those clients who only need the 

main set of classes and interfaces that originated the bundle.

Figure 2 – Unbundling algorithm.

Source: Produced by the author.

In other words, the algorithm initiates from a cluster, which is equivalent to the 

usage of a set of clients, and recursively includes all of its dependencies, until the cycle is  

closed. It is very important to understand the unbundling algorithm depends on the clustering 

process, and it’s only responsible for building viable alternative sub-APIs for at least the same 

group of clients a cluster should support. From the result bundles of each cluster, we may 

proceed into the analysis of their properties and came up with the best fit for API split.
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3 EMPIRICAL STUDY

In  this  chapter,  I  explore  unbundling a  number  of  popular  APIs  following an 

empirical method, defining research questions, a protocol, experiment variables and selecting 

subject  APIs.  Applying the  unbundling  algorithm,  we slice  an  APIs  into  smaller  bundles 

capable of meeting many of its clients’ needs. We want to measure some characteristics of 

these bundles, such as size and similarities to one another, and how many clients they cover. 

Furthermore, how we should proceed in order to better split a given API to maximize client 

coverage without producing identical bundles. Producing identical bundles would mean that 

an API could not be divided to attend different clients and therefore that all clients use the API 

in the same way structurally.

3.1 Methodology

This  research  is  based  on  a  exploratory  design,  divided  into  two  phases:  a 

software repository mining process, from which we collect several information of Java open 

source projects hosted on GitHub, followed by an extensive series of data analysis on the 

usage  these  client  projects  make  of  well  known  Java  APIs,  and  experimentation  on 

rearranging these APIs source code into smaller parts.

The underlying goal I strive to achieve by experimenting with API source code 

splitting is  to  understand whether  client  usage is  capable  of  dictating feasible  real  world 

scenarios for API division (unbundling), by either promoting sections of the code related to 

emergent features, isolating core functionalities that majority of clients depend on or even 

identifying API areas which that not in use to justify its presence in the code base.

3.2 Research Questions

The following questions  were  chosen to  guide  the  analysis  of  the  unbundling 

results,  as  they  emerged  as  natural  inquiring  about  the  feasibility  and  advantages  of 

unbundling an API.

RQ1. Can we automatically synthesize smaller APIs based on their usage by client projects?

This research question assesses the applicability of the unbundling process, if it is 

actually viable to divide well-established APIs of the market. The ability to generate a smaller 
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API automatically allows development and management teams to evolve their product based 

on an observable and measurable process. To answer this question, we rely on the API clients’ 

usage to build a new API that contains a set of features used by a group of clients. To be 

considered successfully built,  these new sub-APIs should compile and serve the group of 

clients it is derived from.

Quick peek: For each studied API, we were able to identify a set of clients that will be 

fully served by a smaller subset of the original API source code.

RQ1a. Can we find (almost-)disjoint usages of APIs by client projects?

To answer this question, we analyze the code structure of the clusters generated 

from the clients’ usage, by looking at the ratio between cluster intersections and union sizes. 

Both peer-to-peer and group analysis are welcome to help describing the usage silhouette, 

which in turn should help us understand whether there are client’s niches from a particular 

API.  Disjoint  usages can be seen as a trace of feasible API unbundling towards an ideal  

splitting  scenario,  where  each  bundle  serves  a  group  of  clients  and  those  groups  share 

minimum or even no code at all.

Quick peek: Fully disjoint usages were not found, but average cluster uniqueness

(from 2 to 20) is higher than 50%.

RQ1b. Do different usages result in disjoint APIs after unbundling?

Even if we start from disjoint usages described by API clients, by the moment we 

include their dependencies to make them compilable and usable bundles, we may find that 

these final bundles are equal, in comparison to each other or even to the original API, which is 

not a  favorable result. To answer this question, once the bundles are built, we analyze how 

their code structure compare to the clusters that originated them, and also compare their final 

composition to their siblings and the original API.

Quick peek: As expected, bundle uniqueness always drops compared to 

their original clusters.
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RQ1c. How representative are the bundles?

We want to investigate how useful are the bundles we generate when splitting an 

API, where by useful we mean how many clients a bundle can serve. We assume this relates 

mostly to how granular is the division. For instance, if we divide an API into 2 bundles, 

supposedly these bundles cover near half of client projects each one, however it  can also 

happen that one bundle covers more than 90% and the other one less than 10%. Thus, if this 

division is more granular, 10 or 20 bundles for example, we study if there are bundles that  

emerge as very representative, meaning they cover a huge set of clients, even though they are 

much smaller than the original API.

Quick peek: Bundles tend to inflate in size, depicting high representativeness.

RQ2. Can we reduce an API but keep it representative to the majority of its client projects?

This  question  relates  to  the  fact  that  an  API  may  contain  code  that  is  never 

actually used by the set of clients. We could consider it similar to dead code, but in this case, 

this code can still be reached during execution, however, there is no client project that invokes 

part of the API’s code that will run that other region of code. In summary, the original API 

offers code that was never used by any client, that may or may never be used. Considering 

this, we want to investigate if we could remove such "nearly"-dead code from these API’s but 

keep it still fully useful for the client projects.

Quick peek: Except for slf4j, all APIs were reduced in size with 

no orphan clients afterwards

3.2.1 Subject APIs

We have selected some of the most used APIs available and hosted on GitHub, 

such as web frameworks, test engines, data parsers and machine learning tools. These projects 

have at least half a decade of development and are used by numerous public open-source 

projects also hosted on GitHub. Table 1 lists the 10 APIs analysed in our study. Some of these 
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APIs are also listed in a recent study about the most popular Java libraries based on GitHub’s 

most popular projects (POIRIER, 2018).

Table 1 – Summary of selected APIs.
Name Version #KLoC #Classes #Years #Clients

CommonsIO 2.4 25 103 11 11396
Gson 2.3.1 12 60 10 775
Guava 18.0 128 454 9 12171
Hamcrest 1.3 2 39 10 220
JSoup 1.8.2 15 48 9 2792
JUnit 4.12 17 183 20 19636
Mockito 1.10.19 23 327 10 4894
slf4j 1.7.12 4 27 13 17212
Weka 3.7.12 450 1033 24 543
Xstream 1.4.7 33 318 13 2202

Source: Produced by the author.

The remaining of this section is a brief overview about these APIs, so we can 

better understand their structure when applying the unbundling process on them. The Apache 

CommonsIO offers a solid set of I/O (Input/Output) features such as file reading, writing, 

copy and event monitoring, implementations of filters and comparators, and other Java file 

and directory utilities. Gson is a Google library for JSON manipulation and parsing. Guava is 

another  library  from  Google  devoted  to  a  variety  of  utilities  like  specialized  types  of 

collections, including immutables, hashing functions and also I/O. Hamcrest is an original 

Java library for string matching that was ported to several languages like Ruby, Pyhton and 

PHP. Hamcrest is adopted in a large set of projects, including JUnit (by the time of 4.12 

version release).

JSoup is  a  HTML parser  library  capable  of  manipulate  and extract  data  from 

HTML content, offering an API that supports DOM, CSS and jQuery operations. JUnit is the 

de facto API for Java unit test, having dozen of thousands of open-source clients. The library 

was recently submitted to a major change, from version 4 to 5, where it was divided into 3 

new sub projects. Mockito is a mocking framework, which serves as a complement for unit 

testing by helping developers create mocks, blocks of information that simulates real world 

data for test execution.

The math/machine learning API we have in the studied group is Weka, produced 

by the Waikato University, offering a comprehensive set of algorithms for data preparation, 

classification,  regression  and clustering.  The  last  API  is  XStream,  which  performs a  key 

functionality for desktop apps, but mostly for web applications: the serialization of objects to 

XML format. In the era of web services, a variety of Java applications rely on the conversion 
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to  and from XML format,  in  order  to  process  both client  data  and configuration files  of 

themselves or other libraries. 

An important note to make clear at this point is which version of each API we 

took for analysis. Our dataset is based on a snapshot provided by the Boa (DYER et al., 2013) 

framework, which dates from late 2015. As by this study I do not perform an exact match 

between the client target version of the API and the one we took for analysis, the version 

listed on Table 1 corresponds to the very last stable version of them made available before 

September 2015.

3.2.2 Protocol

Fig. 3 shows the protocol of our study. In the figure, the bottom rounded corner 

boxes represent the process we apply on the inputs, while the straight shaped upper boxes are 

an input for a starting process, an output from a finalized process or both at same time.

For  each  API  of  the  data  set,  we  mine  a  public  open-source  dataset  of  Java 

projects that use the subject API. Second, we calculate the usage that each project makes of 

the current API, listing all the classes used in the API code; this allows us to then calculate a  

similarity matrix of the projects according to the classes they use from the given API. The 

similarity matrix is detailed defined in the next section (3.2.3).

When the  similarity  matrix  is  ready,  we  cluster  the  client  projects’ usages  as 

follow:  we  take  the  classes  that  compose  those  usages  and  pass  them  as  seeds  to  the 

unbundling algorithm. Finally, the implementation of our unbundling algorithm checks and 

includes the dependencies of the seeds, creating the bundles, and splits the API accordingly. 

Those bundles are the last artifact on Fig. 3 process chain, which we call sub-APIs.

Figure 3 – Unbundling process protocol.

Source: Produced by the author.
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3.2.3 Clustering

This study depends on a method to organize clients based on their usage, so then 

we can build the set of classes (seeds) that cover each usage and proceed with further analysis, 

such as package distribution of those classes or the relation between final bundle size and 

initial  seeds’  set  size.  The  adopted  method  is  hierarchical  clustering  following  an 

agglomerative approach.

To  start,  we  calculate  the  Triangular  Similarity  Matrix  for  each  API,  which 

consists of a triangular matrix filled with a similarity measure, in our case the Jaccard index, 

for each pair of client projects the API has. Fig. 4 exemplifies how does these matrix look like 

for our analysis over CommonsIO clients. We then proceed to build a tree structure using 

Ward hierarchical  clustering algorithm (WARD, 1963).  Each client is  assigned to its  own 

cluster and the algorithm works iteratively joining the two most similar clusters at each step. 

This process ends up with a unique cluster, which is the root node of the tree, and allows us to  

cut the result tree in k levels, being k the tree height.

Figure 4 – Section from CommonsIO Triangular Similarity Matrix.

Source: Produced by the author.

At each level, the tree provides a set of all clients organized in clusters by their  

similarity. By selecting these clusters at a given level, we can collect the classes their clients  

depends on, called seeds, include their internal dependencies (classes the seeds depend on) 

and build the bundles. Those bundles are compilable chunks of the original API, like sub-

APIs,  that  can  serve  a  particular  group  of  clients  and,  therefore,  may  represent  a  viable 

outcome of the API unbundling process.
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3.2.4 Experiment Variables

Table 2 lists all the variables that are used in this experiment and also guides the 

analysis of the results. Split Value is simply the amount of division we apply to an API based 

on clustering their clients usage. We decided to vary the splitting from 2 to 20, so we can 

study how different the sub-APIs are to each other when we make them smaller and smaller.

Cluster related variables helps us to understand the client usage and the cluster 

structure evolution since its automatic generation until the moment it becomes a bundle by the 

inclusion of all code dependencies. On the other hand, the bundle related variables (bundle 

size,  bundle uniqueness, and  bundle representativeness) relate directly to the quality of the 

unbundling process  output.  They also  can give  some hints  about  API  design and how it  

impacts bundle characteristic’s, through the comparison to the values previously acquired for 

clusters (e.g., how much a bundle has grown in comparison to its original cluster).

The Number of Clients served the criteria for selecting APIs at the beginning of 

the research, but here it composes the bundle analysis along with Orphan Clients and Bundle 

Representativeness to asses how the bundles are performing on client coverage.

Table 2 – Experiment variables.
Name Type Scale Type Unit Range Description

Split Value Controlled Number Integer [2, 20] Number of parts to divide a given 
API

Number of Clients Independent Number Integer [0, ∞] Quantity of API clients
Cluster Size Independent Ratio % [0, 100] Proportion of classes or interfaces 

imported
from an API over the API size

Average Cluster 
Uniqueness

Dependent Ratio % [0, 100] Overall difference in structure among 
a set of

clusters generated from the same split
Bundle Size Independent Ratio % [0, 100] Proportion of classes or interfaces 

imported
from an API by a set of clients in 

addition to their
dependencies, over the API size

Average Bundle 
Uniqueness

Dependent Ratio % [0, 100] Overall difference in structure among 
a set of

bundles generated from the same 
split

Bundle 
Representativeness

Dependent Ratio % [0, 100] Proportion of clients covered by the
bundle over the total of API clients

Orhpan Clients Dependent Ratio % [0, 100] Quantity of clients uncovered by
a bundle or a group of bundles

Source: Produced by the author.
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4 RESULTS

In  this  chapter,  we present  the  results  obtained after  applying our  unbundling 

strategy, from identifying clusters to the actual splitting. The steps to reproduce and the source 

code of the application are available online6.

Before  showing the results,  we illustrate  in  Fig.  5,  anecdotally,  what  an ideal 

splitting point for an API would be: a bundle B1 derived from a cluster CC1 containing half the 

API classes and interfaces, covering (almost)-half of the API client projects PC1, and a second 

bundle,  B2, derived from a cluster  CC2, containing the complement of the API classes and 

interfaces covers the remaining client projects, represented by PC2 . In an API such as API1, 

there would be no orphan clients after the unbundling process, and the two generated bundles 

have no overlapping dependencies.

Figure 5 – Ideal API unbundling scenario.

Source: 

Produced by the author.

As expected, this ideal scenario is utopical and is not translated into the actual 

results of this exploratory study. In quantitative terms, an ideal scenario would imply that for 

each API, we could find a splitting point in which we could create 2 or more clusters with 

zero intersection and that would generate bundles with also no intersection between them. 

Therefore, we aim at reporting how similar/different are the clusters and the bundles we 

can generate for each API, and how representative they are in terms of usage. We further 

discuss the reasons for this differentiation from the ideal to the actual scenario in Section 4.2. 

This section is devoted to answer the research questions presented in Section 3.

6 https://github.com/severoufc/junbundler
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4.1 Research Questions

4.1.1 RQ1. Can we automatically synthesize smaller APIs based on their usage by client 

projects?

The answer to this question is yes. For each API of the dataset, it was possible to 

identify, using our unbundling process, a set of clients that will be fully served by a smaller  

subset of the target API. For instance, dividing the 10 APIs into 2 parts, we were always able 

to reduce the size of at least one of the sub-APIs (bundles), which is shown in Table 3.

Table 3 – Bundle size and representativeness for split in 2.

API
Bundle 1 Bundle 2

Size Rep. Size Rep.
CommonsIO 94.2% 100.0% 5.8% 33.8%
Gson 86.7% 95.3% 96.7% 100.0%
Guava 35.5% 50.7% 92.7% 100.0%
Hamcrest 92.3% 100.0% 5.1% 18.6%
JSoup 91.7% 98.4% 95.8% 100.0%
JUnit 0.5% 20.1% 89.0% 100.0%
Mockito 89.0% 100.0% 77.7% 93.0%
slf4j 7.4% 89.3% 100.0% 100.0%
Weka 33.4% 62.4% 60.1% 100.0%
XStream 73.3% 100.0% 57.2% 76.0%

Source: Produced by the author.

4.1.2 RQ1a. Can we find (almost-)disjoint usages of APIs by projects?

We were not able to find a fully-disjoint usage for any studied API, but all of them 

have at least one split  value where the average uniqueness among the usages, clusters,  is 

higher than 95% and all  of them show more than 50% of cluster uniqueness through the 

clustering process (that goes from 2 to 20 clusters). This result, shown in Fig. 6, exposes that  

almost-disjoint usages are possible to acquire for all the studied APIs. In fact, the average 

uniqueness for all projects is 75.5%.

Fig. 6 allows us to conclude that it is possible to group clients of APIs according 

to the usage they make of the API and, most importantly,  that these group of clients are 

reasonably different with respect to the classes they use from the target API. However, as we 

are not able to ship modified APIs containing only the set of classes described by the usage 

(their dependencies must be included to make this sub-API usable), in the next subsection, 

RQ1b, we discuss this same finding under a bundle perspective.
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Figure 6 – Average uniqueness among clusters.

Source: Produced by the author.

4.1.3 RQ1b. Do different usages result in disjoint APIs after unbundling?

In Fig. 7, we plot the average uniqueness among bundles to identify, for each 

analyzed API,  if  there  is  an  optimum number  of  bundles  for  splitting (Split  Value).  This 

optimal point yields, on average, the most dissimilar set of bundles among themselves. For 

example,  if  we would divide the XStream API with the goal  of  having the most  distinct 

bundles, the best would be to divide it into four bundles, as their average uniqueness is close 

to the maximum. On the other hand, Guava may result in more different sub-APIs if split into 

between 3 to 6 parts. Some other APIs have their uniqueness peek when they get split further, 

like  Mockito,  which should be  divided into  11 bundles,  if  we only  take  uniqueness  into 

account.

If we compare the average uniqueness found through the cluster analysis with the 

bundle  analysis,  it  is  noticeable  that  the  inclusion  of  dependencies  erodes  the  bundle 

uniqueness considerably, especially for some APIs like Gson and JSoup. To better visualize 

the progression from cluster to bundle, we plotted the uniqueness per API, shown in Fig. 8. 

We can interpret these results as follows. There are APIs that have their classes structured in a  

way that it is easier to extract bundles according to some usages, while for others, their design 

does not facilitate unbundling by usage. This is rather realistic as we can assume that an 
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architect may not always divide the classes and their dependencies of a project according to 

the possible uses that a client will make.

Figure 7 – Average uniqueness among bundles.

Source: Produced by the author.

Thus,  these  numbers  gives  us  a  first  insight  about  the  possible  granularity  of 

bundles;  we  go  further  with  a  qualitative  analysis  of  each  sub-API  after  we  gather  the 

representativeness values for each bundle, which is discussed in the next subsection, RQ1c.

Figure 8 – Average cluster vs bundle uniqueness per API.

Source: Produced by the author.
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4.1.4 RQ1c. How representative are the bundles?

Looking at the big picture, the average representativeness for the set of all bundles 

generated in this study is 81.21%, which is a high value. But inspecting this value for each 

API, we see they have their particularities, in which we should rely on to understand the 

easiness or even the feasibility of unbundling an API.

Fig. 9 shows the average representativeness for all bundles, through the splitting 

process.  Some  APIs  representativeness’  never  comes  below  70%  (e.g.,  JSoup,  slf4j), 

regardless of how many parts we try to divide it in. Their bundles, which cover more than 3/4 

of the clients set, will contain a large number of classes, which implies large intersection areas 

with their siblings. On the other hand, we should inspect more closely to verify if there are  

some small bundles in both size and coverage that may fill up the gap for just a specific group 

of clients. This last scenario diverges from the ideal one we described at the beginning of this  

section (Fig. 5), but clearly serves well the unbundling goal.

Figure 9 – Average representativeness per API over the splitting process.

Source: Produced by the author.

Inspecting  the  API  bundles  we  found  that  the  aforementioned  expected 

assumptions  were  not  all  true  for  them.  Our  findings  are  summarized  in  three  groups 

represented in Fig. 10. For the first group, whose representativeness is the highest with JSoup 

and slf4j,  we see the bundles  extremely condensed on the right  hand of  the distribution, 

meaning that these high average values are isolated cases, but almost all the bundles have 

their representativeness above 80%. On the other hand, the second group represented by JUnit 
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and Guava reported well-distributed bundles  in  terms of  representativeness,  which makes 

them more prone to offer a set of bundles that complement each other in terms of coverage.

Figure 10 – Number of bundles vs representativeness.

Source: Produced by the author.

To check  a  representativeness  middle  case,  we  studied  Hamcrest  bundles.  Its 

average representativeness varied only between 48% to 59%. When looking more closely into 

the Hamcrest bundles, we found a stronger concentration on the upper half of the scale, but 

also some bundles in the region of 15% to 20%. This helped us understand that the average 

must not be taken as a good indicator for the representativeness, although higher averages in 

general indicate unbalanced values for representativeness at the top of the scale.

4.1.5 RQ2. Can we reduce an API but keeping it representative to the majority of its client

projects?

After running the unbundling process for all APIs, we successfully generated at 

least one bundle per split that reaches 100% of representativeness with some reduction in size, 

when compared to the original API, except for slf4j. This reduction varies between just half a 

dozen classes to over 30% of the API size, as shown in Fig 10. This result leads us to confirm 

that it is possible to produce smaller APIs based on their client’s usage without compromising 

the  client  coverage.  But  this  type  of  reduction  would  only  be  client  safe  for  real-world 
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situations if all clients usage was known by the API development team. In the case of this 

study, some clients were not taken into account, as described in Chapter 5.

Figure 11 – Reduced bundles sizes with high representativeness.

Source: Produced by the author.

If  we set  a  lower representativeness  bar,  to  95% coverage,  the API reduction 

results  go  even  further.  As  shown in  Fig.  12,  except  for  JSoup,  the  unbundling  process 

produced  bundles  at  least  10%  smaller  than  the  original  API,  with  some  of  them,  like 

Commons IO and slf4j, weighing less than half the classes their API have from start. This 

may derive a whole different study, on the presence and relevance of the source code that 

serves no client of these APIs.

Figure 12 – Smallest bundles with over 95% of representativeness.

Source: Produced by the author.
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4.2 Discussion

This section is devoted to discuss in deeper way the findings from each research 

question and their implications on this study and future work. To do so, we organised the 

discussion in groups that cover three keys aspects of this class of problem. Because we are 

analyzing APIs and the outcomes of their division on smaller parts oriented to client usage, it 

is  fundamental  to  assess  our  result  in  comparison  to  the  ideal  API  splitting  scenario,  to 

understand what is possible preventing us to unbundle these APIs as desired and which types 

of clients do compose the audience of the studied APIs. We will now address these topics.

4.2.1 On finding completely disjoint bundles

We found some similar results to the ideal split (see Fig. 5), but not exactly the 

same scenario. The best one in terms of division between bundles was found for JUnit, where 

the combination of two bundles from the same split, weighting 68, 31% and 7.65% of the 

original API size, covered 98.13% of clients. Even though almost 2% of clients were not 

covered, this bundle combination was the closest to the ideal scenario since its bundles are  

considerably smaller than the original API. This result came from a 20 part split, which is the 

maximum number of division we apply in the unbundling process.

It  was  also  possible  to  build  a  combination  of  two  bundles  from  Hamcrest 

weighting 89.74% and 30.77% of the original API size, covering 99.55% of clients. Although 

this case has better coverage (less than a half percent of uncovered clients), its bundles are 

bigger  than  those  found for  JUnit.  For  both  Commons IO and XStream,  the  unbundling 

algorithm was  capable  of  producing  a  combination  of  two bundles  which  covers  all  the 

clients, but the bundles’ size varies between 62% to 91% of the API size.

Other results are also important as a proof of concept, like the group of 3 bundles 

for slf4j, and 5 bundles for Weka, which cover more than 99.5% of clients but have a very low 

uniqueness among themselves. All selected bundle groupings are listed in Table 4 along with 

their names (which is formed by the letter ’B’ followed by the bundle index and the split  

index), size in comparison to the original API size and client coverage. The ’Final Coverage’ 

corresponds to the combination of coverage from each bundle selected for a given API. Note 

that every bundle for a API came from the same split.



35

Table 4 – Selected bundle groups for studied APIs.

API
Bundle 1

Final Coverage
Name Size Coverage

CommonsIO
B8.20 91.26% 99.70%

100.00%
B17.20 89.32% 99.92%

Gson
B5.20 91.67% 97.29%

99.98%
B15.20 85.00% 98.97%

Guava
B5.20 73.35% 95.36%

99.57%
B19.20 87.67% 99.55%

Hamcrest
B2.20 89.74% 96.82%

99.55%
B18.20 30.77% 61.36%

JSoup - - - -

JUnit
B8.20 68.31% 98.00%

98.13%
B15.20 7.65% 80.42%

Mockito - - - -

slf4j
B2.20 48.15% 98.10%

95.50%B14.20 66.67% 99.31%
B17.20 55.56% 98.26%

Weka

B4.20 54.40% 91.16%

99.64%
B5.20 41.05% 79.37%
B6.20 50.15% 90.42%
B11.20 49.08% 84.53%
B14.20 44.53% 89.13%

XStream
B2.20 62.58% 96.41%

100.0%
B12.20 72.33% 99.73%

Source: Produced by the author.

The mandatory aspect in the search of disjoint bundles is the uniqueness. Fig. 13 

represents the APIs in terms of average uniqueness. This chart shows the boxplot of average 

uniqueness between bundles for all the 20 splits of each API. We can highlight two APIs from 

this picture: JUnit stays up on the chart alone, with the highest median and the third shortest 

variability, which means it has the better bundle uniqueness ratio. At the bottom, JSoup is also 

isolated with extremely low variance but also the lowest median and upper uniqueness. This 

complies with the fact we were not able to join a set of at least 2 distinct bundles to work as  

new JSoup sub-APIs - its bundles are too big, usually weighing more than 90% of the original 

API size, which makes them virtually the same.

4.2.2 On API coupling

From the uniqueness boxplot analysis, we decided to investigate why some APIs 

presented a poor result, like JSoup, or a more split-prone result, such as JUnit. Considering 

the possible design flaws that would affect coupling, and therefore the unbundling result, we 

selected the fan-out measure as it  tells about dependency; high fan-out values for a class 

indicates it requires many other classes to accomplish its duties, so it has many dependencies. 
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From the perspective of software unbundling, if a class with high fan-out is present in a given 

cluster, this cluster size will inflate by the time its bundle is built. Moreover, this affects the 

uniqueness because the bigger the bundle, the smaller are its chances to be unique.

Figure 13 – Average uniqueness of bundles per API.

Source: Produced by the author.

After running a fan-out calculation for all classes of the studied APIs, we sorted 

them and selected only those which weight more than 3 times the standard deviation fan-out. 

This threshold is intended to help us pay attention only to those classes that are outside the  

API mean dependency level. Then, we identified which clusters and bundles contained those 

classes and plotted results, as shown in Fig. 14.

Some  of  the  API  configuration  drawn  in  the  boxplot  was  reinforced  by  this 

analysis. The most interesting one shows more than 99% of JSoup bundles containing the 

classes with the highest fan-out in the API. The 3 classes that fit  in the criteria represent 

18.23% of the total fan-out in the whole API source code. This symptom clarifies why we 

were not able to unbundle JSoup at all. On the other hand, JUnit has the lowest presence of 

high fan-out classes, with only 18.58% of the bundles containing some of the 6 classes that fit  

in the criteria (out of 160 classes). With this distribution of classes, JUnit has emerged as the 

best API for unbundling in our study.

Other APIs unbundling results also comply with the panorama we have got from 

the fan-out analysis as well,  but they yield more mixed output values, which makes their 

interpretation fuzzy. For example, slf4j and Mockito have similar profiles of high fan-out 

classes in their bundles, but they have only a small overlap in terms of uniqueness. We found 

that Mockito, which has lower uniqueness than slf4j, has a smaller proportion of high fan-out 
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classes, but more than 60% of those classes weighs at least twice as much as the slf4j ones 

(going up to 4.5 times).

That difference might help to explain why slf4j shows a better uniqueness than 

Mockito, but the trend does not apply to Hamcrest and Guava, which have virtually the same 

uniqueness and high fan-out classes distribution in bundles, but a very distinct fan-out weight 

profile among each other. So we consider that a deeper analysis with the support of other 

coupling indicators should be applied to highlight small specificities in such cases.

4.2.3 On categories of clients

We were also interested in analyzing the relationship between API features and 

how clients make use of them. So we ranked the classes from the raw usage mined data to 

identify which features better represent a given API, or if there is some smaller group of 

features deserving attention. For most of the studied APIs, client usage relies on root or core 

packages  and  presents  a  considerable  difference  in  volume  to  the  closer  packages.  This 

scenario enforces the idea of clients making use of the APIs main classes as an entry point to 

modularized features.

There are favorable cases to highlight usage categories, such as for Guava, which 

does not offer a root package or mandatory entry point class, forcing API clients to explicitly 

reference classes they will use. The List class stands out as the most used, followed by Maps 

and  ImmutableList.  Guava  clients  usage  shows  that  the  collections,  IO,  and  concurrent 

features are the most adopted, whereas hashing and reflection functions are less popular.

Figure 14 – Presence of classes with high fan-out in APIs clusters and 
bundles.

Source: Produced by the author.
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We  also  noticed  the  ’annotations’ package  usage  in  Guava.  The  adoption  of 

@VisibleForTesting annotation,  intended  to  indicate  relaxed  visibility  for  a  type  or 

member in order to facilitate tests, is as expressive as the use of the String class from the 

’base’ package. This annotation helps developers to markdown their code for later inspection 

about visibility choices, which relates more with code documentation and quality than the 

collections and IO features Guava are known for. The adoption of this annotation (along with 

@Beta annotation, designed to be internal to Guava but also adopted in some clients to denote 

their own public API may be changed or removed) may indicate a path for API expansion or  

split to cover specific clients needs.

For  Weka API,  which serves a  big number of  purposes in  math and machine 

learning, usage shows that clients adopt classifiers and GUI features the most if we take aside  

the  core  package.  Clusterization  comes  next  along  with  experiment  tools  and  filtering 

algorithms.  But  the  classifier  usage  alone  is  bigger  than  all  other  feature  groups  usage 

combined. From an unbundling perspective, the classification section of the API could be a 

suitable product on its own.

The JUnit usage tells us that clients follow the unit  tests main rules: initialize 

resources, run the tests, use assertions to make sure things are going as expected and, finally,  

free resources after tests run. The classes related to these mentioned features are at the top of 

usage ranking, followed by the RunWith that allows client classes to run the tests outside a 

JUnit-based runner. The first 6 classes on the usage ranking actually correspond to more than 

77% of total usage, meaning JUnit has a solid core for most of the clients.

This feature-oriented analysis is important as a post unbundling process must be 

carried out  in  a  real-world  unbundling scenario  to  help  managers  and development  team 

understand where their software is most used by the clients. Or, in an opposite approach,  

where lies the code that may become a candidate to split due to feature specificity.

4.3 Subject APIs Evolution

This study analyses 10 well known APIs from Java open source ecosystem, as 

their last stable versions of September 2015. We believe that since this research touches the 

Software Evolution field, we should also conduct an analysis on the 10 APIs source code 

evolution to  identify if  some of  the scenarios  we saw or  foresee through the unbundling 

process are present on these APIs current versions. The following sections discuss a back and 

then  comparison  for  each  API,  along  with  some  related  insights  from  the  unbundling 
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perspective. The API jars, source codes and few usage metrics were collected in the Maven 

Repository7 website.

4.3.1 CommonsIO

The Apache CommonsIO remained almost unchanged from our reference version, 

2.4 (June 2012), to the 2.6 (October 2017), in terms of structure, keeping the same distribution 

of files and packages, with the inclusion of a serialization package and some new classes 

in input, output packages, as well as in the root level. We did not find any change in code 

towards feature separation in this API, despite the 5 years of distance between them. These 

two  versions  of  CommonsIO  are  the  API  most  popular,  according  to  the  usage  metrics 

provided in Maven Repository. Because CommonsIO is a heavily used library in the Java 

ecosystem and also has a  focused niche,  we believe this  behaviour  should last  for  many 

versions to come.

4.3.2 Gson

GSon at 2.8.6 (October, 2019) doesn’t differ a lot from 2.3.1 (November 2014), 

from the unbundling perspective.  New packages were included for reflection and binding 

utilities. Like what we have seen in the CommonsIO scenario, Gson did not derived from its 

core functionalities, but it also might be a much less prone candidate for unbundling, due to 

its poor level of bundle uniqueness. All three classes that fit the high fan-out criteria discussed 

in Section 4.2.2 are present in over 93% of the Gson bundles we generated.

4.3.3 Guava

Guava has started to ship two separate versions since May 2017, when 22.0 was 

released along with 22.0-android. Since 23.1 the version naming changed to X-jre and X-

android, as it still is by the version 28.1. Although it seems like a feature isolation, we found 

the android version of Guava rather started as a sibling API in its first release, which was 

incrementally evolving to better attend the Android development requirements, than emerged 

from a natural unbundling process.

7 https://mvnrepository.com/
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4.3.4 Hamcrest

The Hamcrest  repository we took for analysis (version 1.3,  July 2012) moved 

from hamcrest-library, which is now deprecated, to just  hamcrest. In fact, Hamcrest 

has merged its side projects into a single one, bringing packages like core, comparator and 

io into the single supported release. So, in comparison to the last release, 2.2 (October 2019), 

there are only additions to the code base. Seems that for Hamcrest the unbundling process is  

not valuable, even though we found promising results (see Section 4.2.1), since the project is 

moving in the opposite direction, maybe because of its size and number of maintainers. This 

case illustrates that the unbundling process is ultimately a project decision based on many 

factors, not just a source code analysis trigger.

4.3.5 JSoup

JSoup is one of the special cases in this study, due to its extremely low bundle 

uniqueness levels. From 1.8.2 (April 2015) to 1.12.1 (May 2019) the API did not change in 

structure  or  parallel  distributions.  The  three  classes  ranked  on  high  fan-out  criteria  that  

appeared in more than 99% of generated bundles are still present in the API, and they are a  

requirement  for  at  least  35%  of  the  code  base  to  run,  especially  the 

org.jsoup.nodes.Element class.

4.3.6 JUnit

By the same measure JSoup is the strongest case against unbundling viability of 

this  study,  JUnit  has  emerged  as  the  most  unbundling  prone  API,  as  we  could  find  a 

combination of two bundles with 68.3% and 7.6% of the original API size that,  together, 

cover over 98% of the clients. More than that, we found JUnit has changed very much in 

structure since its 4.12 release from December 2014.

Since 2016, JUnit was divided into three distinct sub-projects: Platform, Jupiter 

and Vintage. The Vintage sub-project allows the clients to run their JUnit 3 or 4 tests on a  

compatible  TestEngine, assuring they can migrate to the new API version, whereas new 

JUnit 5 based tests can run over the Jupiter sub-project. On the other hand, the Platform sub-

project enables clients to build their own testing platform, and the official documentation 
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states that its purpose "... is to decouple the internals of discovering and executing tests from 

all the filtering and configuration that’s necessary from the outside.".

In our research we could not identify this shift to a environment that gives the 

client control over the test engine implementation as a source code feature that emerged from 

JUnit 4 and below. The hypothesis then is about this decision coming from community and 

development team expertise. To confirm this information we should proceed to a deeper JUnit 

usage analysis, which is out of scope for this research.

4.3.7 Mockito

Mockito is currently in version 3.1.0 (October 2019), and as Guava and Hamcrest,  

is now divided into purposes distributions (such as  scala,  testng,  android, etc), including a 

version aligned with the new junit-jupiter test format. Because Mockito is a mock library, it’s 

expected  it  provides  features  for  multiple  testing  environments,  and  since  2017  Mockito 

started publishing separate versions to accomplish this. Back in 1.10.19 version, which we 

took for reference in this study, everything Mockito offered was packed into a single jar file.  

On that version the support for Android platform was just briefly mentioned in the Mockito 

and MockMaker classes.

We understand a client usage analysis could be useful in this case, for instance, to 

understand which side library (e.g.: JUnit, TestNG) is more associated with Mockito use; also, 

to which environments Mockito could dedicate a distribution such as it  does for Android 

applications.

4.3.8 slf4j

The slf4j last stable version is 1.7.29 (October 2019), and comparing it to the one 

took as reference for this study, we saw a particular behaviour: nothing was deleted in slf4j in 

over than four years of development. All files either kept their structure, or got new lines of  

code. Some new files were also added to the code base.

But this API also publishes independent distributions since 2005, such as NOP 

(no-operations) and JCL (Job Control Language) binding, or the Android flavor, supported 

since 2010. So considering the good uniqueness level seen in the results for slf4j, like the set 

of three bundles weighting between 50% to 66% of the original code base (see Table 4), it is  

possible that new sub-projects that deserves to be distributed on their own, even still under the 
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slf4j environment, will follow the path of these  distributions we see for very long time in the 

project repository.

There are also some alpha and beta versions of slf4j default API published since 

2017, but it’s not clear to state about which change in the API they relate to, so we can not  

link them with evidence of unbundling without a much deeper analysis.

4.3.9 Weka

Weka is the largest API we studied, with more than a thousand classes in the 

reference version (3.6.12). Currently in version 3.8.3, there is a massive number of changes 

inside  Weka,  including  another  thousand  of  new files  and  over  200  files  removed.  It  is 

virtually  impossible  to  keep  track  of  Weka  changes  without  some  guidance  from  the 

community or the development team, which is outside the scope of this research.

On the other hand, we can affirm that this API also has some parallel releases of  

specialized machine learning and math features, like Rotation Forest algorithm, Partial Least  

Squares  filter  and Prefuse Graph,  among others.  These seem not  be very active projects, 

probably  due  to  the  strict  range  of  the  feature  scope  (once  the  concept  is  correctly 

implemented, only performance improvements should be added to the code base). They can 

be seen as plugins for Weka toolset, rather than inner features that arise to be a new project.

4.3.10 XStream

XStream is the last studied API that also has separated modules, such as Core, 

Hibernate, Benchmark, etc. We noticed that the Hibernate sub-project was first published as 

1.4 version in 2011, along with the Core 1.4. The Hibernate related classes were present in the 

1.3.1 version, as well as in the 1.4 version of the Core package, but does not appear in the 

current 1.4.11.1, released in October 2018. This evidence show that Hibernate capabilities that 

were  once  part  of  XStream Core  are  now fully  detached  to  its  own  sub-project,  which 

describes some simillarity with the unbundling characteristics.

We also noticed that XStream Core have been evolved in the same slf4j fashion, 

without any exclusion in the code base since the version we took for analysis in this study. 

This points to a concise evolution of the core library in the path of its purposes.
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5 THREATS TO VALIDITY

Following the best practices of most software engineering studies, we dedicate 

this  chapter  to  discuss  some  threats  to  this  research  validity,  as  we  understand  the 

experimental  investigation  may  suffer  from  various  inconsistencies  that  varies  from 

misalignment  between research questions to  faults  on the experiment  reproducibility.  The 

threats  to  validity  associated  with  our  investigation  are  discussed  using  the  four  threats  

classification (construct, internal, external, and reliability validity) presented in (RUNESON 

et al., 2012).

Construct Validity. The construct validity relates to the adherence of researchers 

ideas and the intent of research questions. To avoid interpretation inconsistencies about the 

results and research question divergences, a  peer debriefing approach was adopted for both 

research design validation and document review. These steps were performed multiple times 

during the study life span, especially to avoid misunderstandings between the unbundling and 

software evolution purposes.

Internal  Validity. This  validity  criteria  refers  to  the possibility  of  a  unknown 

factor  interference  over  a  identified  causal  relation,  and  therefore  the  risk  of  misleading 

results and conclusions. As discussed in Section 4.2, this investigation has found a possible 

causal relation between the higher fan-out level classes in an API and its unbundling  results, 

having uniqueness as the third variable for validation. A micro study was performed on this  

matter and we found evidences to support our hypothesis that high fan-out values lead to a  

worse unbundling scenario for APIs. However, I also agree the study lacks a deeper analysis 

taking into account other coupling measures or API design guidelines. This may be the subject 

to a follow-up study, and is briefly discussed on Chapter 7.

External  Validity. The  external  validity  concerns  about  the  extension  of  a 

particular research results for a bigger context or for a group outside the subject limits. In 

other words,  by thinking about external validity we are addressing the generalization this 

research can leverage in the field of software engineering.

Our study meant to draw a picture of API unbundling, which can be applied to any 

open  API  project  for  feature  acquisition  and  evolution.  However,  we  acknowledge  the 

limitation that we should not suggest a generic scenario for unbundling to the whole extent of 

existing APIs.

Reliability. This factor is mostly related to the reproducibility of the experiment 

and the data analysis, making possible for a completely different researcher to reach the same 
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results found by the original authors. To offer a decent level of reliability, a research needs to  

state very clearly the process and sources for data collection, processing and analysis. The 

authors should also acknowledge any interference made in the data that evades the expected 

workflow.

Some data preparation was applied to the mined projects in this study, such as the 

removal of clients that import “*” (which makes us unsure of which classes were actually  

used from a given package) and clients that import classes that do not exist in the API version  

we choose for analysis (e.g, a client imports a class or interface that was present in earlier  

versions of the API but was removed in the last  stable version prior to September/2015).  

Clients that fit these scenarios were excluded from the dataset and so their usages were not 

taken into account.

We also acknowledge that due to CPU and memory limitations of the machines 

available for experimentation, we randomly reduced the set of JUnit clients to a quarter of its 

original  size.  The quantity of  19.636 projects  listed on Table 1 corresponds to the actual 

number of  clients  used through the clustering process.  We did not  experimented multiple 

versions of this random client filtering, so the idea is briefly discussed in Chapter 7.

Like any exploratory research, this study had its boundaries and was limited to 

handle 10 well known APIs from the Java ecosystem. This can be interpreted as threat from 

the perspective of the variety of APIs niche, usage and maturity. Also, because only open 

source  APIs  and clients  are  analyzed,  this  study might  be  missing  a  relevant  number  of 

interesting scenarios in proprietary APIs.

Finally, another significant reliability threat of this study is the fact that it uses a 

dataset from September/2015 of public client projects hosted on GitHub. This dataset was 

mined using the Boa8 language and infrastructure, and from the results extracted in the form 

of text files, all the unbundling process was conducted as described in this document. One can  

reproduce this study by the same patterns as long as the source code for JUnbundler (see 

Chapter 4) is still available, along with the availability of the Boa infrastructure and dataset.

8 http://boa.cs.iastate.edu/
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6 RELATED WORK

This chapter describes previous contributions in API design, modularity, software 

evolution, usage and usability, that connect to this research by looking at the same source 

code splitting problem, design issues that lead to high levels of coupling or even propose tools 

and process for better results in repository mining.

Back in 1972, Parnas (PARNAS, 1972) was one of the very first to investigate 

software  modularization  as  a  mechanism  to  improve  software  flexibility  and 

understandability.  From those days to now, a lot of work has been done towards a better 

understanding of  software  modularity  and how such concern must  be  taken into  account 

during the software lifecycle (HOEK; LOPEZ, 2011; BECK; DIEHL, 2011). We investigated 

the API unbundling process based on clients usage, which can be seen as a dimension of 

software modularity. In this section, we describe selected related work.

Evolution is a core concern for any software project intended to follow up the 

industry changes. This is even stronger for APIs as they serve a number of client projects, 

which have themselves a particular evolution cycle (GRANLI  et al.,  2015; HORA  et al., 

2018).  So  as  far  as  clients  are  expected  to  accommodate  API  changes,  we  also  see  co-

evolution  where  the  API  change  to  meet  client  needs  based  on  their  usage  (JEZEK; 

DIETRICH, 2017; EILERTSEN; BAGGE, 2018). The usage oriented unbundling process has 

the  potential  to  play  important  role  in  this  task,  marking  clients  usage  as  structural  API 

changes candidates.

Haenni  et  al. (HAENNI  et  al.,  2014)  distinguish open source  API  developers 

view’ as upstream and downstream, based on their relation of authors or clients of the code, 

respectively. Through their survey they identified the main needs from both categories, but we 

are more interested in the upstream one. From the upstream perspective, of developers who 

maintain an API that is used by others,  the research highlighted "API usage details" as a 

valuable information, mainly about the API usability level, which methods are most called 

and which are not used. They also highlight an respondent note that indicates his interest in 

understanding  which  parts  of  the  API  are  used  in  conjunction  and  which  are  used 

independently. This result aligns very well to our effort to collect information about the APIs 

usage from their real clients, as a input for structural changes.

Departing from the assumption of client usage being relevant for API evolution, 

many authors  work  on tools  and process  to  collect  and asses  this  information.  To assist  

developers in the understanding API usage, Leuenberger et al. (LEUENBERGER et al., 2017) 
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developed a tool, KOWALSKI, that finds the API clients by exploiting the Maven dependency 

management system, drawing a representative picture of the API usage. It builds a tree of 

client based on the usage indexation provided by the Maven Central website, which serves a 

huge number of artifacts for Maven based projects. This factor limits the KOWALSKI reach 

to only Maven Central hosted clients, like JUnbundler limitation to GitHub hosted projects.  

From the set of downloaded client JAR files, the application process the method calls from 

these clients, which can help developers identify usage hotspots on the target API.

Härtel  et  al. (HäRTEL  et  al.,  2018)  explored  a  method  for  clustering  APIs 

according to programming domains (e.g., databases, collections, parsers, security). That work 

aims to improve the search and the understanding of technology stacks used in open source 

projects based on Maven repositories (e.g., Maven Central, JCenter) and hosted on GitHub. 

The authors proposed a curated API suite, built from a combination of selection based on 

GitHub activity of popular Java APIs, and the clustering of these using the categories and tags 

provided by Maven Central respository.

Sawant  and  Bacchelli  (SAWANT;  BACCHELLI,  2015)  and  Leuenberger 

(EILERTSEN; BAGGE, 2018) propose models for usage analysis exploiting components that 

rather than simply included through import statements are actually used through method calls. 

Their approach relies on bytecode analysis; Leuenberger work is based on the ASM analysis  

framework, which visits the entry points in the source code and validates it with the final 

bytecode  instructions.  This  method  allows  the  authors  to  build  a  call  tree  with  the  full 

qualified names of the objects involved, which is a more trustworthy call validation approach 

than  relying  on  class  imports  on  source  code.  This  fine-grained  inspection  improves  the 

quality of usage information and expands feature use characteristics from class to method 

level.

Rama and Kak (RAMA; KAK, 2015) developed a set of general-purpose metrics 

for  quantitative  assessment  of  API  usability.  Such  metrics  examine  the  API  method 

declarations from the perspective of several commonly held beliefs regarding what makes 

APIs difficult to use. These identified imply in how clients make use of the target API, so it 

might not just relate directly with refinements for the API design, but also engrave trends on 

the  unbundling  results,  which  is  an  aspect  we  could  analyze  in  a  near  future  research 

extension for our study.

Murphy-Hill|  et al. (MURPHY-HILL et al., 2018) studied usability problems in 

API when they scale-up. They identified that users tend to struggle when switching from 

methods that fail to convey their essence by their names (e.g., from of() to copyOf() in the 
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ImmutableList available in both Google API and Java default collections library). Their 

results might not be of interest from an unbundling perspective in its preparation phase, but 

draws attention to post-unbundling, when API developers should guarantee their clients can 

accomplish things with the same or better level of quality and comprehension the original API 

offered them.

Some proposed tools are meant to help developers to identify and change their 

code to conformity after API changes (NGUYEN  et al., 2010) or even identify if they are 

duplicating code already available in the API (KAWRYKOW; ROBILLARD, 2009). These 

also fall into the post-unbundling scenario, when the divided sub-APIs should be maintained 

with an extra effort to avoid duplication, when possible, or completely remove occurrences of 

features that were extracted in their old place.

We should also leave a note about the lack of related work on the same track this 

study follows: unbundling based on usage. The unbundling phenomenon itself is not yet a 

subject stressed in the community, being the contribution of Filho et al. (FILHO et al., 2015) 

one of the very few in the field, moreover, the usage based branch has not been discussed by 

the time this study was released. Our expectation is to motivate new investigations on how to 

interpret and benefit from the client usage role over software unbundling. Chapter 7 present 

some hints about where to go from here.
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7 CONCLUSION AND FUTURE WORK

This research explored in an empirical way the possibilities of unbundling well-

known APIs based on the use that their client projects make. We could find that it is possible 

to generate smaller APIs that still attend to most or all the clients, and that it can be done  

automatically. These sub-APIs were thoroughly studied to evidence how unique they were 

and how this uniqueness relate to their sizes and their capabilities of matching clients’ needs.

As expected and aligned with preliminary analysis,  we did confirm that  when 

assembling bundles from their clusters seeds, the uniqueness level of the later compared to the 

first drops due to size increase, which implies that bundles are much alike each other than 

clusters. From the same inflation aspect, bundles show higher representativeness than their 

original clusters. Finally, even if a best scenario was not found for any of the studied APIs 

(where we expected to see distinct and complementary bundles in which an API could be 

divided),  this  study was able to produce reduced profile  APIs with no orphan clients  for 

almost all the studied set, being slf4j the only exception. This result relates with the slf4j  

status of most difficult API to unbundle. JUnit has also emerged as the most unbundling prone 

API in our research.

This study may be used as a starting point for further investigation about API 

architecture and unbundling strategies. As mentioned before, the split measure for an API is 

strictly particular to the very API, in such a way that generic guidelines and formulas would 

not rise as silver bullets in this situation. Also, unbundling an API should take into account  

other engineering perspectives (e.g., feature distribution among bundles, refactoring effort and 

project goals), not only the measurable aspects of where to divide the code. So this work 

intends to support other researches moving towards the construction of tools and workflows 

to help in the execution of the unbundling, and reinforces the value of a specific analysis for 

each unbundling candidate.

The main contributions of this work are the experiment protocol, the unbundling 

algorithm and some metrics.  The proposed protocol  can be applied for  similar  studies or 

extended to reach more detailed aspects of the unbundling process. The algorithm defines the 

core of the bundle construction process, from which we guarantee some characteristics as the 

capacity to serve a group of clients, due to its bottom-up inclusion of dependencies approach. 

The uniqueness and representativeness metrics are the preliminary measures with which we 

can analyse the bundles, and help to decide which ones should compose the unbundled API.
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Before extending and surpassing this study model,  we see at least some small 

efforts that benefit from the existing infrastructure. Firstly, an October/2019 Boa dataset has 

been released, allowing a whole series of related studies, such as the evolution of clients and 

their adherence to new versions of the studied APIs. Also, by focusing on JUnit and its huge 

client base,  it  is  possible to perform multiple sessions of randomly selecting a quarter of  

clients, and then compare how similar are the results for JUnit unbundling when varying these 

clients. The idea is to analyse the impacts of diverse clients usage on splitting the same API.

Beyond this study limits, we comprehend a natural and enriching step would be to 

get API maintainers and users involved to validate some of the results found, and further 

discuss the applicability of this unbundling process. We can also imagine efforts for analyzing 

web API usages from the set of endpoints a group of clients consumes. From that information,  

we would able to extract the same dependency tree as we did in this study and build sub-APIs. 

This approach demands a more powerful scheme for repository mining, but most of the data 

processing tools we have by this date can be applied.

Another study we want to perform involves API evolution, and it’s an extension 

on the analysis made in section 4.3. We aim to analyze how the aspects discussed here, such  

as bundles uniqueness and representativeness, evolved in time on APIs that were submitted to 

the unbundling process. To do so, we should choose a fewer number of APIs and watch their  

unbundling characteristics through a timeline of released versions, grouping the clients by the 

version they were using, as well as compare the trends found with the real split applied to the 

API.  This  may  lead  to  some  understanding  of  the  criteria  for  unbundling  in  real-world 

situations.

A  paper  derived  from  this  study  was  published  on  the  16th  International 

Conference  on  Mining  Software  Repositories  (2019),  and  later  published  on  the  event 

proceedings under the DOI 10.1109MSR.2019.00062.
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APENDIX A – BOA SCRIPT FOR GSON CLIENTS MINING

The source code below shows an example of how to mine the Boa repository for 

client projects of Google Gson API.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

 # mining how many projects use Google GSON
 importsInProjects: output collection[string] of string;

 p: Project = input;

 visit(p, visitor {
# only look at the latest snapshot of Java files
before n: CodeRepository -> {

snapshot := getsnapshot(n, "SOURCE_JAVA_JLS");
foreach (i: int; def(snapshot[i]))

visit(snapshot[i]);
stop;

}
# look for imports
before node: ASTRoot ->
    exists(j: int; match("^com\\.google\\.gson\\.", node.imports[j])) {

            importsInProjects[node.imports[j]] << p.name;
stop;

    }
# look for FQN
before node: Type ->
    if (match("^com\\.google\\.gson\\.", node.name)) {

            importsInProjects[node.name] << p.name;
stop;

    }
 });


