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ABSTRACT

Data transmission in wireless systems brings numerous challenges, particularly in

scenarios characterized by multipath propagation within rapidly changing channels

in time. In this context, Orthogonal Time-Frequency Space (OTFS) modulation has

recently emerged as a promising solution designed to operate effectively in doubly

selective channels, encompassing variations in both time and frequency, even in high

mobility scenarios. OTFS modulation entails the initial multiplexing of digital symbols

in the Doppler-delay domain, subsequently transforming them into the time-frequency

domain by Orthogonal Frequency Division Multiplexing (OFDM). Extensive research

indicates that OTFS offers several performance advantages over conventional OFDM in

many aspects, including a robust increase in data rates under high mobility conditions.

Another advantage is the sparsity of the channel produced by OTFS, facilitating the

utilization of low-complexity algorithms for accurate data detection. This thesis explores

the performance of OTFS modulation within a doubly dispersive channel is evaluated in

different versions of the message passing algorithm (MPA) in terms of computational

complexity and bit error rate (BER). The findings reveal that MPA algorithms, espe-

cially their approximate versions (AMP), such as Expectation Propagation (AMP-EP)

demonstrate superior performance. However, when considering the trade-off between

computational complexity and BER performance, AMP simplified first-order (AMP-First

Order) emerges as the optimal choice for both known and estimated channels. Methods

for channel estimation are used, including the Finite Element Method (FEM) and the

Natural Cubic Splines Method, both presenting good tradeo-ff between channel estima-

tion accuracy and complexity. Comparative analyses between OTFS and OFDM are

conducted, highlighting the advantages of OTFS, particularly within macrocell channel

environment.

Keywords: OTFS. Delay-Doppler domain. Message passing. Channel estimation.

FEM.



RESUMO

A transmissão de dados em sistemas sem fio traz inúmeros desafios, particular-

mente em cenários caracterizados pela propagação de múltiplos caminhos em canais

que variam rapidamente no tempo. Neste contexto, a modulação Orthogonal Time-

Frequency Space (OTFS) emergiu recentemente como uma solução promissora proje-

tada para operar eficazmente em canais duplamente seletivos, abrangendo variações

tanto no tempo quanto na frequência, mesmo em cenários de alta mobilidade. A

modulação OTFS envolve a multiplexação inicial de símbolos digitais no domínio

atraso-Doppler, transformando-os posteriormente no domínio tempo-frequência por

Orthogonal Frequency Division Multiplexing (OFDM). Extensas pesquisas indicam que

o OTFS oferece diversas vantagens de desempenho em relação ao OFDM conven-

cional em muitos aspectos, incluindo um aumento robusto nas taxas de dados sob

condições de alta mobilidade. Outra vantagem é a esparsidade do canal produzido

pelo OTFS, facilitando a utilização de algoritmos de baixa complexidade para detecção

precisa de dados. Esta tese explora o desempenho da modulação OTFS dentro de um

canal duplamente dispersivo e avaliado em diferentes versões do Algoritmo de Pas-

sagem de Mensagens (Message Passing Algorithm - MPA) em termos de complexidade

computacional e bit error rate (BER). Os resultados revelam que os algoritmos MPA,

especialmente suas versões aproximadas (Approximate Message Passing - AMP),

como Expectation Propagation (AMP-EP), demonstram desempenho superior. No

entanto, ao considerar o compromisso entre a complexidade computacional e o de-

sempenho do BER, o AMP simplificado de primeira ordem (AMP-First order ) surge

como a escolha ideal para canais conhecidos e estimados. Métodos para estimação de

canal são utilizados, incluindo o Método dos Elementos Finitos (MEF) e o Método das

Splines Cúbicas Naturais, ambos apresentando uma boa compensação entre precisão

e complexidade da estimativa de canal. São realizadas análises comparativas entre

OTFS e OFDM, destacando as vantagens do OTFS, particularmente no ambiente de

canais de macrocélulas.

Palavras-chaves: OTFS. Domínio atraso-Doppler. Passagem de mensagens. Esti-

mação de canal. MEF.
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1 INTRODUCTION

The escalating demand for data rates, and User Equipments (UE) restricted

to a limited electromagnetic spectrum for wireless communications makes the project

requirements along the evolution of the generations more challenging. Notably, the

success of 4th Generation (4G) networks is attributed to their ability to deliver high data

rates to a substantial user base through the utilization of the Orthogonal Frequency

Division Multiplexing (OFDM) modulation (CARMON et al., 2015; DIXIT; KATIYAR,

2015).

OFDM, a specialized multicarrier modulation technique, is particularly well-

suited for transmissions over dispersive channels, where distinct subcarriers exhibit

orthogonality. This wideband modulation scheme effectively addresses the intricacies of

multipath channels. It subdivides the wideband frequency-selective fading channel into

numerous narrowband subchannels. When the number of subchannels is sufficiently

large, each subchannel can be treated as flat, essentially enabling the simultaneous

transmission of multiple narrowband digital signals within a wideband context. Neverthe-

less, OFDM encounters challenges, primarily stemming from its high peak-to-average

power ratio (PAPR), which can result in in-band radiation and out-of-band distortion

(HARDAS; POKLE, 2017; GOPIKRISHNAN et al., 2009). Researchers diligently ex-

plored various techniques to mitigate these issues (ARORA; GUPTA, 2017; KIM et al.,

2018).

However, while OFDM found its place in 4G mobile systems, it exhibits vul-

nerability in scenarios characterized by time-varying channels with substantial Doppler

spread, such as high-speed rail mobile communications (RAVITEJA, 2018). Remark-

ably, despite these shortcomings in high mobility scenarios, OFDM modulation was

chosen for the 5th Generation (5G) due to its commendable complexity-performance

trade-off (GERZAGUET et al., 2017). In response to this, Orthogonal Time-Frequency

Space (OTFS) modulation, recently introduced by Hadani et al., emerges as a promising

solution tailored to channels characterized by high Doppler spread and time-varying

conditions (HADANI et al., 2017). OTFS modulation is well-positioned to address the

requirements of 5G mobile systems, demanding higher data rates and enhanced user

equipment speeds.

OTFS exhibits considerable advantages over OFDM in the context of doubly
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dispersive channels, as demonstrated in previous studies (WIFFEN et al., 2018a; REY-

HANI et al., 2017; ZEMEN et al., 2017). delay-Doppler domain provides an alternative

representation for modeling Linear Time Varying (LTV) channels arising from moving

objects within multipath environments. To achieve this, the OTFS modulator disperses

each symbol, such as Quadrature Amplitude Modulation (QAM), over a set of two-

dimensional orthogonal basis functions spanning the frequency-time resources needed

to transmit a burst. This basis function set is purposefully designed to accommodate

the dynamics of time-varying multipath channels.

By employing two-dimensional transformations, OTFS effectively transforms

a doubly dispersive channel into an almost non-fading channel within the delay-Doppler

domain (MURALI; CHOCKALINGAM, 2017). Consequently, each symbol within a frame

experiences nearly constant fading, resulting in significant performance improvements

over existing modulation schemes that are susceptible to strong Doppler effects, such

as OFDM. Additionally, given the typically limited number of physical reflectors with

associated Doppler shifts and delays in multipath channels, channel modeling and

estimation in the delay-Doppler domain require fewer parameters.

The impulse response of the channel in the delay-Doppler domain is inher-

ently sparse, represented as a sparse matrix (SHEN et al., 2019), This characteristic

facilitates the utilization of low-complexity detection algorithms, such as the Message

Passing Algorithm (MPA), and bears significance for channel estimation, prediction, and

tracking (HADANI et al., 2017).

The primary objective of this thesis is to investigate, assess, and compare

various low-complexity MPA-based detectors designed for OTFS systems operating

within time-frequency selective channels characterized by high Doppler shifts. This

evaluation encompasses both the Bit Error Rate (BER) performance and complexity

analysis of the considered algorithms. The algorithms under examination include: i)

Factor Graph with Gaussian Approximation of Interference (FG-GAI) proposed in (SOM

et al., 2011) known for its linear complexity, making it particularly appealing for detection

in large-dimension channels; ii) AMP (Approximate Message Passing) using Gaussian

Approximation (AMP-GA), wherein probability messages are updated through mean

and variance calculations between nodes iii) AMP simplified by Expectation Propagation

(AMP-EP) and iv) AMP simplified by First-Order (AMP-FO), as proposed in (WU et al.,
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2014).

Furthermore, given that the channel is typically unknown to the system in

practical scenarios, we introduce an interpolation method distinct from the spline method

presented in (DAS et al., 2020). This method relies on one-dimensional finite element

techniques to solve the Poisson equation, accounting for the waveform’s characteristics,

and effectively estimates the impulse response of the channel in the time domain.

1.1 State of the art of OTFS

The concept of OTFS modulation was first introduced by Hadani in 2016

(HADANI et al., 2017) and since then, it has garnered substantial attention, resulting in

numerous studies exploring its applications across various domains. These applications

span vehicular communications (CHENG et al., 2020; BLAZEK; RADOVIC, 2020; YUAN

et al., 2021b), millimeter-wave communication (AL., 2017; WIFFEN et al., 2018a),

satellite communication (AL., 2022; SHI et al., 2022), mobile communication (AN;

RYU, 2019; TUSHA et al., 2022; LIU, 2020; ALBATAINEH et al., 2020), underwater

acoustic communication (BOCUS et al., 2019; JING et al., 2022), Internet of Things

(IoT) networks (WU et al., 2021; MA et al., 2022), radar systems (RAVITEJA et al.,

2019; GAUDIO et al., 2019; DEHKORDI et al., 2022; KESKIN et al., 2021), and Non-

orthogonal Multiple Access (NOMA) (DEKA et al., 2020; DEKA et al., 2021; DING et al.,

2019; DING, 2020).

Many of the referenced works employ a rectangular pulse-shaping waveform

that theoretically satisfies the conditions of orthogonality in both time and frequency.

However, in practical implementations, these conditions are often challenging to meet

due to Heisenberg’s uncertainty principle. To address this limitation, numerous re-

searchers have delved into the study of various waveforms within the context of OTFS.

For instance, in (RAVITEJA et al., 2018), the authors compare rectangular pulses

with prolate spheroidal waveforms and propose a block-circulant matrix decomposition

method for arbitrary pulse-shaping waveforms to facilitate reduced cyclic prefix OTFS.

This work also introduces a vector analysis of the modulation, a methodology adopted

in this thesis that simplifies OTFS implementation. Additionally, a circular Dirichlet pulse-

shaped OTFS waveform is proposed in (TIWARI; DAS, 2019), which effectively reduces

out-of-band radiation when compared to rectangular pulses in OTFS systems. In (WEI
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et al., 2021), another approach is presented, involving the use of a Dolph-Chebyshev

window either at the transmitter or at the receiver. This approach is particularly useful

when channel state information is unavailable at the transmitter but can be estimated at

the receiver, enhancing the sparsity of the channel in the delay-Doppler domain.

Numerous other applications and waveform shaping proposals exist for

OTFS modulation, alongside receiver and transmitter designs for OTFS systems (SHAN;

WANG, 2020; GE et al., 2021; CAO et al., 2021). However, the primary focus of

this thesis is the evaluation of data detection techniques. Here, the emphasis is on

low-complexity algorithms, capitalizing on the channel’s inherent sparsity in the delay-

Doppler domain. Additionally, a novel channel estimation method for OTFS is proposed,

distinct from existing approaches found in the literature. Consequently, the subsequent

subsections, 1.1.1 and 1.1.2, delve into these specific areas of study applied to OTFS

modulation..

1.1.1 Data detection

Given the remarkable sparsity observed in OTFS systems, research pertain-

ing to data detection focuses on the application of low-complexity algorithms. Among

these, the MPA stands out, with variations such as Approximate Message Passing (AMP)

gaining considerable attention. These variants aim to further reduce the computational

complexity associated with the original MPA.

One noteworthy study on MPA-based detection was conducted by Raviteja

at al. in their 2017 paper titled "Low-Complexity Iterative Detection for Orthogonal Time-

Frequency Space Modulation" (RAVITEJA et al., 2017). In this work, the authors adapt

the MPA to compensate for inter-Doppler interference, thereby enhancing BER perfor-

mance. The following year, they released another article along similar lines, this time

addressing interference cancellation techniques (RAVITEJA, 2018). Besides providing a

comprehensive mathematical analysis of OTFS, they developed a novel low-complexity

message passing algorithm for joint interference cancellation and symbol detection. In

both works, the authors demonstrate significant error performance advantages of OTFS

over OFDM under identical channel conditions.

Towards the end of 2019, three works concerning data detection emerged.

The first (CHENG et al., 2019) presents a comparative study between the linear equaliz-
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ers based on Zero Forcing (ZF) and Minimum Mean Square Error (MMSE) applied to a

double block circulant feature of the OTFS channel representation in the delay-Doppler

domain. The authors efficiently implement these equalizers using two-dimensional

fast Fourier transforms and demonstrate that their proposal offers lower computational

complexity without compromising performance when compared to other existing lin-

ear equalizers. The second work (YUAN et al., 2019) introduces a simple variational

Bayesian approach as an approximation of maximum a posteriori detection to reduce

receiver complexity for OTFS. The authors illustrate the performance gains of this tech-

nique compared to conventional MPA. The third work (TIWARI et al., 2019) introduces

a low-complexity linear MMSE receiver that exploits the sparse structure of the OTFS

channel matrix during the demodulation process through a factorization of singular ma-

trices from the received signal. This proposed receiver achieves significant complexity

reduction compared to conventional MMSE without any performance degradation.
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From 2020 onwards, various novel proposals have emerged, including: 1.

a low-complexity iterative rake detector proposed by (THAJ; VITERBO, 2020), which

extracts and combines received multipath components in the delay-Doppler domain

using a scheme similar to Maximal Ratio Combining (MRC). BER performance com-

parisons with MPA and MMSE demonstrate that the MRC detector can achieve similar

performance as MPA but with lower complexity; 2. a low-complexity Neural Network

(NN)-based detector developed from a Bayesian Parallel Interference Cancellation

(BPIC) method as proposed in (KOSASIH et al., 2022), and referred to as BPICNet; and

3. a 2D convolutional NN detector that employ data augmentation techniques based

on MPA to enhance learning as proposed in (ENKU et al., 2021). Results indicate that

the NN-based approach outperforms conventional MPA with lower complexity. It is note-

worthy that a majority of recent publications explore various low-complexity message

passing algorithms (LI et al., 2022a; WANG et al., 2022; LONG et al., 2022; LIU et al.,

2022).

1.1.2 Channel estimation

The literature already boasts a considerable number of publications address-

ing channel estimation within the OTFS system. From 2017 to 2022, approximately

forty works have explored this topic across various scenarios and applications. These

applications encompass millimeter wave (mmW) communication (LI et al., 2022b; SRI-

VASTAVA et al., 2022), radar systems (GAUDIO et al., 2022), massive Multiple-Input

and Multiple-Output (MIMO) setups (SHEN et al., 2019; RAMACHANDRAN; CHOCK-

ALINGAM, 2018; SHI et al., 2021), and high-mobility mobile communication systems

(DAS et al., 2020; HASHIMOTO et al., 2021), for example.

Many of the channel estimation techniques under investigation employ a pilot

scheme. In this scheme, higher power is allocated to pilot points distributed across

the delay-Doppler grid of transmitted symbols. A threshold-based method is often

applied to facilitate the identification of scattered pilot samples within the received

signal, taking into account the interference encountered when propagating through the

doubly-selective channel. Once the scattered pilot points are recognized, the goal is

to estimate the necessary parameters for channel estimation, following the adopted

model’s formulation.
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The earliest works on channel estimation emerged in 2018 with the publi-

cation of Raviteja at al., titled "Embedded Pilot-Aided Channel Estimation for OTFS in

Delay–Doppler Channels" (RAVITEJA et al., 2019), though it was officially published in

2019. Since then, this study has garnered significant attention due to its straightforward

approach and detailed mathematical explanations, which greatly facilitate comprehen-

sion. The method revolves around a simple arrangement of transmitted symbols, relying

on just one pilot symbol positioned near the center of the delay-Doppler grid. The

resolution of this pilot symbol depends on the number of subcarriers employed and

the quantity of symbols utilized in the system. In this configuration, the pilot symbol

is enclosed by guard symbols, and the remaining grid positions are filled with useful

symbols. The symbols being transmitted, as these symbols propagate, they experience

multipath scattering. The primary objective is to incorporate a sufficient number of guard

symbols to identify scattered pilot symbol points within the guard region. This identifica-

tion process provides information about delays, Doppler shifts, coefficient estimation,

and tap counts. Subsequently, these estimates are used to model the channel based

on the estimated parameters. The proposed threshold-based scheme plays a vital role

in discerning the pilot symbol’s spread within the grid.

Shen et al. (SHEN et al., 2019) were among the pioneers in implementing a

compressive sensing method based on the Orthogonal Matching Pursuit (OMP) algo-

rithm. They introduced a channel estimation technique named "3D-structured orthogonal

matching pursuit," designed to address downlink channel estimation, particularly in

scenarios involving a substantial number of base station antennas within OTFS massive

MIMO systems. The term "3D-structured" relates to the type of sparsity considered in

this context: regular sparsity along the delay dimension, block sparsity along the Doppler

dimension, and burst sparsity along the angle dimension. This approach effectively

frames downlink channel estimation as a problem of sparse signal recovery.

Another innovative proposal for channel estimation through compressed

sensing in practical environments, which the authors refer to as the "non-integer delay-

Doppler domain," is presented in Gómez-Cuba’s work (GóMEZ-CUBA, 2021). This

approach relies on the OMP algorithm coupled with binary-division refinement. It aims

to estimate delay and Doppler shifts within a continuous domain, substantially reducing

estimation errors while maintaining reasonable computational complexity.
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Jian Pan’s work (PAN, 2021) takes a different approach by introducing the

Cramer-Rao Low Bound (CRLB) estimation perspective. This perspective serves as a

benchmark for evaluating various channel estimation algorithms within the framework of

a discrete-time system model, focusing on non-ideal pulse-shaping OTFS scenarios. In

this work, he derives the CRLB for channel estimation in both single cyclic prefix and

multiple cyclic prefix cases, providing valuable insights into the achievable estimation

performance.

Efforts to improve practical channel estimation, particularly in scenarios

involving fractional Dopplers, have led to the development of various techniques aimed

at better approximating the original channel while reducing estimation complexity. In one

study (SHI et al., 2021), authors propose a downlink Channel State Information (CSI)

acquisition scheme for massive MIMO-OTFS systems, featuring a deterministic pilot

design structured around a pilot matrix. This approach minimizes pilot overhead and

memory consumption by employing a modified sensing matrix technique for channel

estimation. Another work (HASHIMOTO et al., 2021) tackles fractional Doppler scenarios

with lower computational complexity than conventional channel estimation methods.

Using a pseudo-random sequence in the delay-Doppler domain, this approach achieves

performance comparable to conventional MMSE equalization with matrix inversion.

In (LI et al., 2021), channel gains and fractional Doppler shifts are estimated from

identified pilots within the received signal. However, in (DAS et al., 2020), the channel

estimation under multiple fractional Dopplers performed in time domain is sparser than

delay-Doppler domain channel matrix in the presence of fractional Doppler. For this

comprehension, our study about channel estimation in the thesis, in Chapter 5, was

based on this work, that is, in time domain, where the authors apply an interpolation

method to obtain the estimation of the others channel coefficients from pilot samples of

received signal.

Lastly, it is noteworthy that while previous proposals sought to minimize

the use of pilot symbols within the delay-Doppler grid of transmitted symbols, Mishra

et al. (MISHRA et al., 2022) and Yuan et al. (YUAN et al., 2021a) introduced a

novel framework for channel estimation and data detection. Their approach involves

superimposing low-powered pilots onto data symbols, effectively freeing up slots for

pilots. This innovation leads to significantly improved spectral efficiency.
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1.2 Motivation and objectives

Meeting the growing demand from users for high data rates and ensuring

Quality of Service (QoS) guarantees in wireless communication systems represent sig-

nificant contemporary challenges. Overcoming channel diversity within the constraints

of limited bandwidth and available resources, particularly in high mobility scenarios,

presents a complex undertaking.

Furthermore, the advent of 5G, an evolutionary step beyond 4G technology,

introduces even more demanding requirements. While 5G aims to enhance data trans-

mission rates, it extends its focus beyond mere speed enhancement. This technology

introduces specifications that impact access infrastructure, consequently enabling new

applications and services. Its objectives extend to connecting not only people but also

objects, including the glsIoT.

Within the parameters defined by the International Mobile Telecommunica-

tions (IMT) for 5G, which encompass increased transmission rates and higher speeds,

the new technology demands low latency, denoting the minimal time between transmis-

sion and network response. Additionally, it demands a higher density of connections,

representing a surge in the number of devices interconnected within a given area. The

pursuit of greater spectral efficiency is also crucial, implying an upsurge in the volume

of data transmitted per unit of electromagnetic spectrum. Furthermore, there is an

emphasis on enhanced energy efficiency, marked by reduced energy consumption and

a resultant boost in sustainability.

Despite the selection of OFDM modulation for this new generation of wireless

technology, it faces substantial challenges in terms of BER performance and spectral

efficiency, especially when contemplating an evolution towards environments charac-

terized by ultra-high speeds Beyond 5th generation (B5G). In this context, the OTFS

modulation, as proposed by (HADANI et al., 2017), emerges as a solution to tackle

channel diversity, particularly in addressing Doppler and delay scattering. It offers the

promise of achieving greater success in data recovery.

In light of this motivation, this thesis is dedicated to a comprehensive study

of OTFS modulation, specifically focusing on BER performance within high-mobility

multipath wireless systems. It involves the exploration of low-complexity detection tech-

niques based on message passing, comparing them with linear techniques. Additionally,
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the thesis proposes a time-domain channel estimation methodology utilizing the Finite

Element Method (FEM). This channel estimation approach aligns with an empirically

tested and standardized channel model specified by the 3rd Generation Partnership

Project (3GPP) for urban environments, particularly urban macrocells.

1.3 Methodology

The core of this work revolves around evaluating low-complexity detection

techniques employing message passing and other approximations, even in comparison

with linear filters. Additionally, the thesis proposes a novel channel estimation technique

based on interpolation, utilizing a one-dimensional FEM approach, grounded in solving

the Poisson equation within each subinterval to be interpolated. This approach differs

from the one proposed by (DAS et al., 2020), which relies on cubic spline interpolation

and does not take into account the inherent nature of the signal. Notably, the proposed

one-dimensional FEM, involving Ordinary Differential Equation (ODE) calculations,

offers a less complex alternative.

Regarding detection techniques, owing to the high sparsity of the wireless

channel’s impulsive response, which effectively represents a channel matrix, capturing

the input-output relationship of the system concerning delay and Doppler scattering

associated with each multipath, this thesis conducts a comprehensive comparison of

various message passing approximations, including an unprecedented study of OTFS

with AMP-FO. The latter approach proves more advantageous, albeit with a cost-benefit

analysis.

The methodology employed in this work relies on computer simulations

conducted using the Matlab® program. These simulations are aimed at generating

performance curves for BER concerning Signal to Noise Ratio (SNR) for the evaluation

of detector algorithms. Additionally, the methodology involves generating curves for the

Normalized Mean Square Error (NMSE) as a function of SNR, facilitating the assessment

of channel estimation approximations, comparing the FEM method with cubic spline

interpolation.
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1.4 Scientific production and contributions

The thesis contributes to scientific knowledge and research through several

publications and ongoing work:

• A published article in the Journal of Communication and Information Systems

(JCIS) authored by D. G. C. Bandeira, D. L. Ruyet, M. Pischella and J. C. M.

Mota: “Performance evaluation of low-complexity algorithms for orthogonal time-

frequency space modulation,” Vol. 35, No. 1, pp. 138-149, June 2020. DOI:

10.14209/jcis.2020.15.

• A published article in the proceedings of the XXXVIII Brazilian Symposium on

Telecommunications and Signal Processing (SBrT 2020) authored by D. G. C.

Bandeira, D. L. Ruyet, M. Pischella and J. C. M. Mota: “Study of low-complexity

detectors for MIMO-OTFS systems”.

https://www.sbrt.org.br/sbrt2020/papers/1570649889.pdf.

• An article currently in preparation, authored by D. G. C. Bandeira, D. L. Ruyet, K.

Z. Nóbrega and J. C. M. Mota: “Time domain channel estimation based on FEM-

Poisson Method for orthogonal time-frequency space modulation under multiple

fractional Dopplers”, scheduled for release in 2023.

1.5 Work structure

The subsequent chapters of this thesis are structured as follows:

• Chapter 2 - This chapter provides an extensive review of fundamental concepts

within a wireless communication system, focusing on the influence of Doppler scat-

tering and delay effects. It introduces a foundational model of the system and the

associated channel, primarily in the context of a high-mobility urban environment.

The chapter also expounds upon OFDM modulation, elucidating key principles

such as orthogonality and Cyclic Prefix (CP). Furthermore, it presents empirical

findings on the performance of OFDM within a high-mobility channel, incorporating

linear equalizers.
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• Chapter 3 - This chapter delves into the essentials of OTFS modulation. It com-

mences with a comprehensive survey of applications related to modulation and

subsequently defines the core principles of processing in the delay-Doppler do-

main. The chapter introduces the concept of precoding, founded on the Symplectic

Sinite Fourier Transform (SFFT), for QAM symbol allocation. Additionally, it out-

lines the system architecture employed in the modulation process. The chapter

culminates with a vector analysis of OTFS and OFDM, underpinning the computa-

tional processing of the ensuing results.

• Chapter 4 - This chapter unveils low-complexity algorithms rooted in message

passing techniques. These algorithms are integral to the evaluation of BER perfor-

mance for OTFS. The chapter’s primary objective is to identify the algorithm that

exhibits the optimal complexity-BER trade-off across the SNR range under scrutiny.

• Chapter 5 - Within this chapter, the thesis takes on the subject of channel esti-

mation, concentrating specifically on the time domain and employing interpolation

methods. The results are presented through the measured NMSE of the urban

macrocell channel, estimated using cubic spline interpolation and the proposed

method, which employs FEM to solve Poisson’s equation within each interpolation

subinterval.

• Chapter 6 - The concluding chapter offers a synthesis of the contributions made

throughout the thesis and articulates the key conclusions drawn from the results

presented herein. Moreover, it proffers recommendations for future research

endeavors.
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2 FUNDAMENTALS OF WIRELESS COMMUNICATION SYSTEM

The bedrock of wireless communication entails the transmission and re-

ception of data via electromagnetic waves. Cellular technology, pioneered by Bell

Laboratories during the 1960s and 1970s (MACDONALD, 1979; NOBLE, 1962), intro-

duced the challenge of mobility. This implies that a user’s receiving device must maintain

a connection to the network, even when in motion. This challenge has intensified over

time, driven by the demands of 5G and B5G networks.

Numerous global standards for mobile radio systems have been established.

A comprehensive understanding of channel characteristics to mitigate interference is a

pivotal tool in the realm of wireless communication solutions (ROHLING, 2011).

In the subsequent sections, we will delve into the system model in Section

2.1, followed by an exploration of wireless communication channel characteristics in

Section 2.2. Here, we will elucidate the channel model’s significance and the pivotal role

of channel equalization in signal reception. Finally, Section 2.3 will provide an in-depth

explanation of OFDM modulation, as it has held significant relevance across multiple

generations of Global System Mobile (GSM) technology and has even been adopted for

5G networks.

2.1 System model

In a communication system, data bits resulting from message or information

encoding undergo transmission via a physical medium known as a communication

channel. This channel facilitates the propagation of data from the transmitter’s output

to the receiver’s input. In the context of multicarrier systems, which is our focal point,

the transmitter can be conceptualized as consisting of two primary components: one

that converts input bits into data symbols, and another that modulates these symbols to

impart robustness to the signal for transmission. The channel itself may encompass

either guided communication (where the signal travels through a cable) or unguided

communication (where the signal is emitted by an antenna and propagates through

free space or wirelessly). At the receiver, the inverse process is executed for data

retrieval. This involves demodulation of the received signal, followed by conversion of

the demodulated symbols into data bits, which are subsequently decoded to reconstruct
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the original message.

Understanding the characteristics of the channel is of paramount importance

in this process. This understanding aids in combatting signal interference during

propagation and facilitates optimization of transmitter and receiver designs for the

specific channel conditions to which the signal will be subjected. In our context, the study

focuses on wireless systems, where the signal is transmitted from a transmitting antenna

and, after propagating through a time-varying channel, it reaches a receiving antenna.

Along this journey, the signal incurs delays (τ ) and Doppler shifts (ν), associated to the

multipaths of the trajectory.

Figure 1 serves as a general illustration of the system model for the wireless

system under discussion. Here, x[m] represents the transmitted symbols for each

subcarrier m, and s(t) signifies the transmitted signal following modulation. This signal

experiences interference from channel h(τ, ν). The interaction between the transmitted

signal and the channel yields the received signal r(t), which is subsequently demod-

ulated by the receiver. The resulting received symbols y[m] are then converted into

output bits.

Figure 1 – Basic wireless system model
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Source: adapted by author from (RAPPAPORT, 2002).

While Figure 1 can depict an ideal scenario when considering a single,

direct line-of-sight path between the transmitter and receiver, the reality is far more

complex due to electromagnetic wave propagation, which involves phenomena such

as reflection, diffraction, and scattering. When multipath scenarios come into play, the

situation becomes considerably more complex. According to (RAPPAPORT, 2002),

the interaction of these waves induces multipath fading at specific locations, with wave

strengths diminishing as the distance between the transmitter and receiver increases.

Furthermore, the channel introduces additional elements, including Additive

White Gaussian Noise (AWGN) and potentially carrier frequency shifts if either the

transmitter or receiver is in motion (Doppler effect). These complexities are exacerbated

in high-mobility scenarios. Intersymbol interference, delay spread, and other forms
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of interference further contribute to the variability in link quality. A comprehensive

understanding of these effects is imperative for applying techniques that can enhance

data detection performance.

2.2 Wireless communication channel

According to (GOLDSMITH, 2005), electromagnetic signals experience ran-

dom fluctuations over time when either the transmitter, receiver, or surrounding objects

are in motion during wireless channel propagation. These fluctuations arise due to

changing reflections and attenuation caused by phenomena such as reflection, refrac-

tion, and diffraction, which result in both power attenuation and phase variation of the

transmitted signal (CHO et al., 2010). These signal variations lead to a phenomenon

known as multipath fading, which characterizes the random fluctuations in the envelope

of the transmitted signal as it travels from the transmitter to the receiver.

Multipath fading occurs because multiple versions of the transmitted signal

arrive at the receiver with different time delays. Each of these paths exhibits distinct

characteristics, including amplitude, phase, time of arrival, and angle of arrival. These

multiple signals may experience constructive or destructive interference at the receiver

and can also cause Inter-symbol Interference (ISI) because the transmitted signal,

arriving at different times, can overlap with one another (RAPPAPORT, 2002).

As per (TSE; VISWANATH, 2004), fading, or variations in channel strength

over time and frequency, can be broadly categorized into two types:

• Large-scale fading: This type pertains to path loss or signal power decay with

respect to distance and shadowing caused by large reflectors.

• Small-scale fading: This type deals with the constructive and destructive interfer-

ence of multipath signals between the transmitter and receiver.

Furthermore, according to (TSE; VISWANATH, 2004), large-scale fading is

more pertinent to concerns such as cell-site planning, whereas small-scale fading is of

greater significance in designing reliable and efficient communication systems.

Modeling a channel for a specific study scenario, whether large-scale or

small-scale, necessitates defining parameters that closely approximate the channel’s

characteristics through which the transmitted signal propagates. Among these parame-
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ters are the time scale and frequency of channel variation, known as coherence time

and coherence bandwidth, respectively. These parameters are inherently linked to

Doppler spread and delay spread, as explained below.

2.2.1 Delay spread and coherence band

Multipath fading can be described in two domains: the frequency response

in the frequency domain and the impulse response in the time domain (YUAN, 2007).

The impulse response of a multipath channel typically exhibits a delay spread, which

is defined by considering a maximum excess delay (τmax) that must be less than the

inverse of the bandwidth. This is done to prevent ISI, which occurs when delayed

multipath signals overlap with subsequent symbols. ISI can introduce significant errors,

particularly in high-bit-rate digital systems (PROAKIS; SALEHI, 2008). The level of ISI

increases as the transmitted bit rate rises.

As elucidated in Chapter 5, the two-dimensional delay-Doppler channel

response, denoted as h(τ, ν), can be derived from the two-dimensional delay-time

varying response, h(τ, t) by applying a Fourier transform in the Doppler domain ν. . In

this context, the values for the Channel Impulse Response (CIR) represent samples

of a random process defined with respect to time t and multipath delay τ . Similarly to

(GOLDSMITH, 2005) any random process, the general autocorrelation function is given

by:

Rh(τ1, τ2; t1, t2) = E{h(τ1, t1)h∗(τ2, t2)}. (2.1)

where t1 and t2 denote time instants, ∆t = t2− t1 is the time difference between instants,

and τ1 and τ2 are delays associated with multipaths 1 and 2, respectively, composing

the CIR multipath set, each associated with different scatterers.

Based on this generic autocorrelation function (Eq. (2.1)), we can narrow

down the channel model to a specific category. In this instance, we consider the 2D

delay-time response to be Wide Sense Stationary Uncorrelated Scattering (WSSUS),

implying that it depends solely on the temporal difference of two time instants, and that

there is no correlation between different multipath delays (τ1 = τ2 = τ ). Consequently,
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the channel is modeled as random using the autocorrelation function:

Rh(τ ; ∆t) = E{h(τ, t1)h∗(τ, t1 +∆t)}. (2.2)

According to (GOLDSMITH, 2005), when Rh(τ ;∆t) = Rh(τ ; 0), Eq. (2.2)

is denoted as the Power Delay Profile (PDP) of the channel. The PDP is a function

that delineates the signal intensity received over a multipath channel as a function of

propagation delays and can be expressed as:

Ah(τ) = Rh(τ ; 0) = E{|h(τ, t)|2}. (2.3)

Then, the average delay spread µτ and its root mean square (rms) value are

given by (GHOSH et al., 2010):

µτ =

∫∞
0

τAh(τ)dτ∫∞
0

Ah(τ)dτ
(2.4)

τrms =

√∫∞
0
(τ − µτ )2Ah(τ)dτ∫∞

0
Ah(τ)dτ

. (2.5)

where the largest non-negligible value of Ah(τ) is referred to as the maximum delay

spread, τmax.

Another crucial concept is the coherence bandwidth, which represents the

range of frequencies where the channel exhibits nearly flat characteristics. In other

words, for two frequencies, f1 and f2, located within the coherence bandwidth, the

correlation between the channel’s frequency responses at these frequencies is high.

Therefore, the channel behaves very similarly at these frequencies in terms of gain and

phase. A channel is considered frequency-selective if its frequency response undergoes

significant changes within the transmitted signal’s bandwidth, while it is considered

flat fading if these changes are negligible. The coherence bandwidth Bc is defined as

(RAPPAPORT, 2002):

Bc ≈
1

τmax

≈ 1

5τrms

. (2.6)

Hence, coherence bandwidth is inversely related to delay spread. A shorter

delay spread corresponds to a larger coherence bandwidth. When the symbol duration

significantly exceeds the delay spread, ISI can be expected to be minimal, ensuring

effective communication.
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2.2.2 Doppler spread and coherence time

The Doppler effect comes into play when a receiver experiences relative

motion with respect to the transmitter, leading to a shift in the frequency of the received

signal compared to the source frequency. This frequency shift, denoted as fD, hinges

on factors such as the relative motion between the transmitter and receiver, the wave’s

propagation speed, and the angle θ between the direction of motion of the mobile device

and the propagation direction of the multipath signal. It can be expressed as:

fD = ±fcv

c
cosθ. (2.7)

where, fc denotes the carrier frequency, θ represents the angle between the direction of

motion of the mobile and the direction of incidence of propagation of the signal of the

multipath, v is the relative velocity and c is the speed of light.

The Doppler power spectrum provides insight into the distribution of channel

power across frequencies for the transmitted signal. The Doppler spread effect can

be problematic, particularly for transmission techniques sensitive to carrier frequency

offsets or higher relative speeds, as seen in the case of OFDM (TSE; VISWANATH,

2004).

On the other hand, coherence time represents the temporal period during

which the channel maintains a high degree of correlation. The relationship between the

Doppler effect and coherence time is given by (GHOSH et al., 2010):

Tc ≈
1

fD
. (2.8)

In summary, both delay spread and coherence bandwidth are essential

parameters in digital communications. For optimal system performance, it is desirable

for τmax to be significantly smaller than the symbol time to prevent ISI. Conversely, the

parameter Bc should be significantly larger than the bandwidth of the transmitted signal

to qualify as flat fading. Otherwise, frequency-selective fading occurs, leading to varying

signal degradation across different frequencies within the transmitted band.
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2.2.3 Channel model

This thesis centers on the OTFS modulation designed for high-mobility sce-

narios, which implies a time-varying channel, commonly referred to as an LTV channel.

Our study adopts the same channel model as presented in (HADANI et al., 2017), which

describes the channel impulse response concerning Doppler spread and delay spread,

as follows:

h(τ, ν) =
P∑
i=1

hiδ(τ − τi)δ(ν − νi) (2.9)

where P denotes the number of propagation paths, hi, τi and νi represent the path gain,

delay, and Doppler shift (or frequency) associated with ith path, respectively, and δ(·)

denotes the Dirac delta function.

By performing an inverse Fourier transform within the Doppler domain ν,

spanning from [−νmax, νmax], on Eq. (2.9), we can derive h(τ, t), as follows:

h(τ, t) =

∫ +∞

ν=−∞
h(τ, ν)ej2πνtdν.

=

∫ νmax

ν=−νmax

h(τ, ν)ej2πνtdν. (2.10)

This equation, denoted as the time-varying impulse response of the LTV

channel (GHOSH et al., 2010), demonstrates that the impulse response h(τ, t) changes

over time t. This model is also known as the Tap Delays Line (TDL), which provides

information about the gain and delay associated with each path P (JAIN, 2007).

However, real-world environments are far too intricate to create precise chan-

nel models, especially in high-mobility scenarios. In practice, most simulation studies

employ empirical models developed based on measurements conducted in various real-

world scenarios, commonly known as empirical models (ERCEG, 2001). These models

are standardized by groups and institutions interested in obtaining results that closely

resemble real-world scenarios for digital signal processing in the telecommunications

field.

For practical comparisons with 5G technology in urban environments, we

have chosen the channel model standardized by 3GPP, known as urban macrocell
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(UMa), as presented in (AL-JZARI; IVIVA, 2015). The power delay profile parameters

aligned with the channel TDL are outlined in Table 1:

Table 1 – Power Delay Profile for
3GPP channel - UMa

Tap No. Delay (µs) Power (dB)
1 0 0
2 0.36 -2.22
3 0.25 -1.72
4 1.04 -5.72
5 2.7 -9.05
6 4.59 -12.50

Source: AL-JZARI and IVIVA (2015).

In this macrocell model, as per Table 1, six taps or paths are considered, with

each having an associated power in dB for delays in the order of microseconds (µs).

2.3 OFDM modulation

In the realm of telecommunications, wireless communication applications in

multipath scenarios are commonplace, especially in the presence of high mobility. As

discussed in Section 2.2, terrestrial propagation environments can be challenging due to

factors like reflected waves, leading to selective fading of the transmitted signal, among

other effects. Many solutions have been explored, particularly equalization techniques

at the receiver. However, practical challenges arise, including the design of compact,

cost-effective hardware, especially when dealing with high bit rates.

Modern applications demand ever-increasing data rates and grapple with

issues related to selective fading. Traditional serial transmission systems that rely on

a single carrier require equalization techniques to combat ISI, a common degradation

type in multipath propagation channels. As the bit rate increases, the complexity of the

equalizer also increases (CRUZ-ROLDáN et al., 2020). To address these challenges,

multicarrier modulation, sometimes called parallel or multiplexed transmission, emerges

as an alternative. A significant advantage of multicarrier transmission over single-carrier

systems, and perhaps the most prominent one, is its ability to reduce the impact of

channel delay scattering and ISI (BAHAI; SALTZBERG, 1999). The concept involves

dividing the high-rate input signal into lower-rate signals, each transmitted by multiple

subcarriers. These new signals experience approximately flat fading in frequency.
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In this context, where the goal is to transmit a large number of bits per

second (bps) while maintaining service quality, various modulation techniques have

been explored. One extensively studied candidate that eliminates the need for complex

equalizers is Orthogonal Frequency Division Multiplexing (OFDM) (GOPIKRISHNAN et

al., 2009; ANJU; AHLAWAT, 2016; HARDAS; POKLEB, 2017).

OFDM was first introduced by Chang and Gibby in 1968 (CHANG; GIBBY,

1968) in 1968 and patented in 1970 (R. W. CHANG, 1970). It evolved from the Frequency

Division Multiplexing (FDM) technique, which used guard bands to separate signal

frequencies, resulting in spectrum wastage. OFDM remains a subject of extensive

research in various wireless communication applications, including Wireless Local Area

Network (WLAN), Digital Audio Broadcasting (DAB), Digital Video Broadcasting (DVB),

vehicular communications, and cellular systems. It addresses several key challenges,

including combating ISI and Inter-carrier Interference (ICI) through the insertion of the

CP in multipath channels, as well as its straightforward and efficient implementation via

the Inverse Fast Fourier Transform (IFFT).

OFDM is a data transmission technique that divides a given bandwidth into

M orthogonal subcarriers while maintaining orthogonality among them. Each subcarrier

carries QAM or Phase Shift Keying (PSK) symbols. Consequently, the transmission rate

per subcarrier is lower than that of the serial data input. In essence, OFDM converts a

high-rate serial data stream into multiple low-rate parallel sub-streams. The summation

of these bandlimited OFDM subcarriers efficiently utilizes the available bandwidth,

maximizing the number of transmitted symbols (DINIZ et al., 2012). Additionally, the

reduction in transmission rate, i.e., an increase in the duration of symbols transmitted

on each subcarrier, leads to reduced sensitivity to frequency selectivity (time dispersion)

caused by multipath effects (GUPTA; MEHRA, 2008).

It is worth noting that while the term "multiplexing" is part of OFDM’s name,

the actual multiplexing does not occur in an OFDM system. Instead, it entails the parallel

transmission of an originally singular sequence of bits.

2.3.1 Orthogonality

Given ideal synchronization, the fundamental principle underlying OFDM

modulation is the isolation of information transmitted by each subcarrier through appro-
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priate correlators. The output of these correlators corresponds to the projection of the

received OFDM signal onto its respective carrier (ROHLING, 2011). In essence, the

concept revolves around achieving orthogonality among subcarriers. This is accom-

plished by selecting a uniform subcarrier spacing, typically represented as ∆f , which is

generally set to the inverse of the symbol duration T , i.e., ∆f = 1/T .

Orthogonality enables spectral overlap, ensuring efficient utilization of the

allocated bandwidth. One approach to achieve this objective is by using rectangular

pulses for transmitting each subcarrier. According to the properties of the Fourier

transform, the spectrum of each subchannel takes the shape of a sinc function centered

on the subcarrier frequency. Crucially, the zero crossings of the sinc function occur

precisely at intervals of 1/T . Since all subcarriers are multiples of this spacing, no

spectrum overlap occurs at the central frequencies containing the information. This

design allows for complete information recovery through modulation and equalization in

the frequency domain.

Figure 2 illustrates an example of the frequency spectrum of a baseband

OFDM signal, highlighting the superposition of three orthogonal subcarriers that collec-

tively form the overall spectrum. These subcarriers assume the shape of sinc functions,

with zero crossings at multiples of 1/T . Notably, each normalized frequency value on

the horizontal axis of this figure corresponds to the frequency of a subcarrier.

Figure 2 – Orthogonality in the frequency domain
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In the time domain, orthogonality is a fundamental principle that ensures

that each subcarrier precisely completes an integer number of cycles within the interval

of an OFDM symbol duration. This phenomenon arises because the subcarriers are

separated in frequency by a multiple of 1/T . Consequently, in the time domain, it

becomes evident that any two subcarriers within the baseband OFDM transmission

signal exhibit a difference equal to an integer number of cycles, as visually depicted in

Figure 3.

Figure 3 – Orthogonality in the time domain
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Next, we discuss OFDM modulation and the particularities of a classical

system model.

2.3.2 Discrete-time OFDM system model

In essence, the direct generation and subsequent demodulation of an OFDM

signal traditionally requires the deployment of coherent oscillators, leading to a complex

and costly implementation, especially when a substantial number of subcarriers are

involved (ROHLING, 2011). Nevertheless, the complexity of these modulation and

demodulation processes can be significantly mitigated through the employment of IFFT

and Fast Fourier Transform (FFT) algorithms, respectively. In this context, Figure 4

provides an illustrative depiction of the fundamental block diagram of a conventional

OFDM system.



48

Figure 4 – OFDM system model
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As previously mentioned, the core concept of OFDM involves partitioning the

transmission bandwidth into M sub-bands, each capable of carrying a complex symbol.

As illustrated in Figure 4, the initial step involves modulating the input data stream using

either QAM or PSK modulation techniques. These modulation symbols are systemati-

cally mapped onto a constellation diagram using Gray coding, wherein only a single bit

differs between adjacent symbols (HAYKIN; MOHER, 2005). Subsequently, this collec-

tion of complex symbols undergoes processing through a serial-to-parallel converter,

yielding a set of M parallel QAM or PSK symbols denoted as X[q], q = 0, 1, ...,M − 1,

each corresponding to the symbols transmitted over individual subcarriers. At this stage,

it is important to note that the symbols are assumed to be shaped by a rectangular

window, and cyclic prefix (CP) is not yet considered (as will be discussed in the following

section), To generate the time-domain signal s(t), the frequency components are trans-

formed into time samples by employing an IDFT (IFFT algorithm) on these N symbols.

Consequently, the transmitted signal s(t) in base-band (s[m′]), is given by:

s[m′] =
1√
M

M−1∑
q=0

∑
n′

Xqn′gtx[m
′ − n′M ]ej2π

qm′
M

=
1√
M

M−1∑
q=0

X[q]ej2π
qm′
M

(2.11)

where X[q] =
∑

n′ Xqn′gtx[m
′ − n′M ] is a complex symbol stream, Xqn represents the

set of symbols transmitted on subcarrier q at a discrete time instant n ∈ Z, and gtx[m
′] is
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the transmitter filter, which assumes a value of 1 if 0 ≤ m′ ≤ M − 1 and 0 otherwise.

Subsequent to the modulation process, the signal undergoes conversion into

a parallel format, resulting in M separate data streams denoted as X[q]. Each of these

individual signals modulates a subcarrier, giving rise to a vector of M sub-symbols that

collectively constitute the OFDM symbol. These X[q] subcarriers are then combined

through a computational implementation of the Inverse Discrete Fourier Transform

(IDFT), commonly referred to as IFFT. This process yields samples in the time domain,

represented as x[m], which subsequently pass through a serial-to-parallel converter.

Following this conversion, an analog-to-digital conversion takes place, preparing the

signal for transmission over a channel. Our study focuses on the transmission over

time-varying channels.

As a result, when the receiver is in synchronization with the transmitter, the

received signal can be sampled at a rate of 1/T . The DFT algorithm is applied to

each block of M received samples. Under ideal propagation channel conditions, this

operation yields the estimated values X̂[q] or Y [q] from the received signal y[m], as

expressed by:

Y [q] ≡ DFT (y[m])

≡ 1

M

M−1∑
m=0

y[m]e−j2π qm
M

(2.12)

Subsequently, during the reception phase, the inverse operations of those

performed at the transmitter are carried out to facilitate the recovery of binary data at the

output of the QAM demodulator. Nevertheless, in multipath fading channels, especially

in scenarios characterized by high mobility, the time variation of a fading channel across

an OFDM symbol’s duration directly influences the orthogonality between subchannels,

thus giving rise to the issue of ICI (LI; KAVEHRAD, 1999). The incorporation of a CP to

each OFDM symbol effectively mitigates the challenges posed by both ISI and ICI, a

topic that will be explored in the subsequent subsection.

2.3.3 Cyclic prefix

In classical OFDM, maintaining the orthogonality between subcarriers is

a fundamental requirement for generating OFDM symbols accurately. Achieving this
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demands not only appropriate spacing between the carriers but also the synchronization

of the receiver and transmitter, along with the incorporation of guard intervals.

The guard interval can be established by cyclically extending the symbol or

by filling it with zeros. In the former scenario, the guard interval is affixed at the outset

of each OFDM symbol, giving rise to Cyclic Prefix - OFDM (CP-OFDM) transmission. In

the latter approach, zeros are inserted at the end of each OFDM symbol, resulting in

Zero Padding - OFDM (ZP-OFDM) transmission.

For the purposes of this work, we refer to the guard interval utilized in classical

OFDM as CP-OFDM (HE; SCHMEINK, 2015). From here, we will just call CP-OFDM of

OFDM. Therefore, we primarily focus on this variant for the purpose of comparison with

the subject of this study, OTFS modulation.

One of the notable advantages of employing OFDM transmission is its ro-

bustness against channel delay scattering, denoted as τrms, (ZHANG; LIU, 2006). The

increasing symbol duration enhances the system’s ability to withstand with the effects of

this dispersion, as it reduces the τrms-to-T , rendering the system less susceptible to ISI.

To mitigate interference effects on the received signal, a guard interval

duration, denoted as TL, is introduced within each OFDM symbol. This duration must be

carefully chosen to ensure that the convolution response between the transmitted signal

and the propagation channel does not interfere with the reception of the subsequent

symbol (AL-JZARI; IVIVA, 2015). To achieve this goal, the CP length must exceed

the delay spread of the multipath channel (SHAH et al., 2010). An OFDM symbol (of

duration Tofdm) thus consists of the useful OFDM symbol with duration Tu = 1/∆f and

the guard interval of duration TL, i.e., Tofdm = T = Tu + TL.

However, it is essential to note that the inclusion of the CP comes at a cost.

It reduces bandwidth efficiency and diminishes the data rate (system capacity) because

it carries no information, thereby dispersing the transmitter’s energy, and thus impacting

the SNR. To optimize the choice of CP length, it is typically selected based on the

duration of the multipath channel in a specific operational environment (NESS et al.,

2002).

As shown in Figure 4, during OFDM transmission, the CP is inserted immedi-

ately following the IFFT-derived signal, denoted as xcp[m]. This sequence comprises the

last L samples of the x[m] sequence, where L is the length of the CP, and then, each
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useful symbol was allocated in a subcarrier. According to (GOLDSMITH, 2005), we can

express xcp[m] for the range −L ≤ m ≤ M − 1, as follows:

xcp[−L], ..., xcp[M − 1] = x[M − L], ..., x[M − 1], x[0], ..., x[M − 1]

xcp[m] = x[m]M =⇒ xcp[m− n] = x[m− n]M . (2.13)

where −L ≤ [m− n] ≤ M − 1, and [.]M is the module operator of size M .

Tu represents the duration of an OFDM symbol, and each OFDM symbol

comprises a collection of M subsymbols generated through QAM or PSK modulation.

Therefore, cyclic extension entails inserting a duplicate of the block formed by the last

L = TL/Tsb samples of this OFDM symbol at the beginning of each OFDM symbol. At

the receiver, the information contained within the guard interval is discarded (WEN et

al., 2021), and only the M samples, confined within the Tu interval, are employed in the

DFT operation.

With CP insertion, Eq. (2.11) for the baseband transmitted signal can be

reformulated simply by adding the last L samples of symbols allocated at the start of

the OFDM useful frame (q = 0, 1, ...,M − 1). This results in a transmitted signal scp[m]

comprising M + L samples, as expressed below:

scp[m] =
1√
M

M−1∑
q=0

∑
n′

Xqn′g[m− n′(M + L)]ej2π
qm
M (2.14)

As illustrated in Figure 4, during reception and following the A/D and S/P

conversion processes of the signal r(t), we obtain ycp[m], where m = 0, 1, ...,M + L− 1.

The CP length L is subsequently removed to yield y[m]. An M-point FFT is then applied

to y[m], followed by an equalization process, resulting in a block of M complex QAM

symbols Y [q], as detailed in Eq. (2.12).

In this context, recognizing that the multipath channel functions as a trans-

mitted linear filter on the OFDM symbols scp[m], mathematically in discrete domain,

these symbols undergo linear convolution with the CIR h[m] and are affected by AWGN

(w[m]) (MALIK; TRIPATHI, 2017). Denoting linear convolution as "∗", the received signal

in discrete time can be represented, disregarding the noise, as: y[m] = h[m] ∗ s[m].

Within this context, the primary objective behind introducing CP is to transform this

linear convolution into a circular convolution (denoted by ⊛). This transformation can be

observed in Eq. (2.13), where xcp[m] ≡ scp[m] and ignoring the noise, resulting in:



52

y[m] = xcp[m] ∗ h[m]

=
L∑

n=0

h[n]xcp[m− n]

=
L∑

n=0

h[n]x[m− n]M

= x[m]⊛ h[m] (2.15)

Subsequently, following the removal of the CP at the reception and the

application of a DFT, we have:

Y [q] = DFT (x[m]⊛ h[m])

= X[q]H[q] (2.16)

Consequently, the adverse effects of the channel can be effectively mitigated at the

receiver using a straightforward frequency domain equalizer. This equalizer essentially

inverts the estimated Channel Impulse Response (CIR) and multiplies it by the frequency

response of the received signal, yielding a robust estimation of the OFDM symbols Y [q],

consistent with the equalizer described in Eq. (2.17).

As previously mentioned, as long as the delay spread of the channel remains

smaller than the guard interval, it can be ensured that delayed replicas of the OFDM

symbol will consistently exhibit an integer number of cycles within the FFT calculation

interval, thereby preserving orthogonality conditions. It is worth noting that high con-

stellation modulations (e.g., QAM-64, QAM-128, and beyond) are more susceptible

to ICI and ISI, compared to lower-order modulations (PRASAD; NEE, 2000). In such

scenarios, the adoption of more intricate error correction codes becomes essential to

effectively manage the interference effects.

2.4 Equalization

The fundamental objective within a telecommunication system revolves

around the detection of each transmitted symbol from the received signal, a process

known as equalization (TSE; VISWANATH, 2004).
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Moreover, considering that channel characteristics are typically either un-

known or subject to change over time, the primary aim of an equalizer is to mitigate ISI to

facilitate the recovery of transmitted symbols (PROAKIS; SALEHI, 2008). In this context,

the equalization techniques implemented at the receiver are designed to counteract the

impairments introduced by the multipath propagation inherent in wireless channels. In

addition, equalizers restore the frequency spectrum of the transmitted signal.

This aspect underscores one of the significant advantages of OFDM systems,

as elaborated upon in Section 2.3. OFDM’s distinctive feature is its capacity to conduct

equalization in the frequency domain. Through equalization, it becomes possible to

estimate the transmitted symbols after applying the FFT, provided that the complex gain

of the channel for each subcarrier is known. The symbols estimated by the equalizer in

the frequency domain are mathematically represented as follows (GOLDSMITH, 2005):

X̂[q] =
Y [q]

Ĥ[q]
. (2.17)

where q designates the q-th subcarrier, Y [q] represents the received signal, and Ĥ[q] is

the complex response of the estimated channel. The equalizer outlined in Eq. (2.17) is a

linear filter, commonly referred to as ZF per subcarrier. This filter essentially provides an

approximate inverse of the channel’s response. Notably, despite the channel inversion,

there is no amplification of noise, as both the channel and the noise experience power

scaling by the inverse of the estimated channel (GHOSH et al., 2010).

When the channel response exhibits variations across time and frequency,

it becomes feasible to apply ZF over a set of OFDM frames. In this scenario, it is

essential to construct a vector y representing the received signal with dimensions

MN × 1 and a matrix H characterizing the channel with dimensions MN ×MN . This

can be expressed as follows:

x̂ZF =
(
HHH

)−1
HHy

= H−1y
(2.18)

When considering the transmission of M subcarriers and N OFDM symbols,

where: σ2
0 signifies noise variance, σ2

d represents signal variance, H represents the

channel matrix, and y corresponds to the received signal vector excluding the CP.
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One limitation of the ZF equalizer is the phenomenon known as noise

enhancement, particularly when the received signal is weak at certain frequencies

(PROAKIS; SALEHI, 2008). This limitation can be mitigated by replacing the ZF equal-

izer with a linear MMSE equalizer (HAYKIN; MOHER, 2005). The MMSE equalizer

optimizes its coefficients to minimize both ISI and the effects of AWGN by employing

the minimum mean squared error (MMSE) criterion. The MMSE equalizer is derived as

follows:

x̂MMSE =

(
σ2
0

σ2
d

IM +HHH

)−1

HHy (2.19)

The results detailed in 2.5 present the BER performance of OFDM in a high

mobility scenario, considering the macrocell channel.

2.5 Simulations: OFDM under high mobility

While OFDM modulation offers numerous advantages, it is not without its

challenges, particularly concerning the occurrence of high-amplitude peaks that result

in a high PAPR. These peaks can potentially lead to amplifier saturation, consequently

causing ICI (ANN et al., 2016). Furthermore, as the signal propagates through a chan-

nel, issues related to system synchronism loss arise, introducing complexity into the

transmission of symbols. This complexity can manifest as phase rotations, interference,

and additional degradation imposed by the channel on the subcarriers. These compli-

cations are further exacerbated when the signal is transmitted through a time-varying

channel, especially one characterized by high mobility.

Numerous studies have explored proposals in both time and frequency

domains aimed at mitigating the effects of a doubly selective channel on the performance

of OFDM systems, particularly when multipaths exhibit high-speed motion (YALCIN et

al., 2008; GOPALA; SLOCK, 2014; SOULEYMANE et al., 2016; PATRA; SINGH, 2017).

To facilitate a comparison with OTFS modulation, we have chosen to consider the Urban

Macrocell (UMa), commonly referred to as a macrocell channel, which represents a

high-mobility scenario and is based on a practical channel model standardized by 3GPP.

This model is characterized by its PDP, as outlined in Table 1. The parameters utilized

in simulations of the OFDM system within a macrocell channel are detailed in Table 2:
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Table 2 – Simulation Parameters for OFDM

Parameter Value
Carrier frequency (fc ) 4 GHz
Subcarrier spacing (∆f ) 15 kHz
Number of subcarriers (M ) 16 and 600
Number of OFDM symbols (N ) 8 and 12
CP length (L) 4 and 255
Channel model Urban macrocell
Modulation scheme 4-QAM and 16-QAM
UE speed 330 and 500 km/h
Channel estimation ideal

Source: the author.

Figures 5, 6, 7 and 8 provide insights into the BER performance within the

SNR range [5dB, 25dB] for the classical OFDM system. Additionally, the figures show-

case the OFDM scheme employing a similar vector analysis methodology presented

for OTFS modulation in Appendix A. These figures also incorporate the performance of

OFDM on an AWGN channel. In this modified OFDM system, we obtain the channel

input-output relation for application in ZF and MMSE linear filters for data detection. The

detailed calculations for this 2D analysis for OFDM are provided in Appendix A.

The results for OFDM were conducted using two modulation schemes, 4-

QAM and 16-QAM, assuming knowledge of the channel. These evaluations were

performed for two configurations: one with 16 active subcarriers and the other with

600 active subcarriers. As anticipated, the results align with the expected trends

(PRASAD; NEE, 2000). Specifically, with an increase in the constellation order, the 4-

QAM modulation scheme outperforms the 16-QAM scheme under the same parameter

settings.

The BER values were determined from the outcomes of two detectors: ZF

((2.18)), illustrated as the continuous blue curve, and MMSE ((2.19)), depicted as the

dashed red curve. These detectors were employed in a 2D processing framework,

as detailed in Appendix A, where the channel matrix H => Hofdm
eff has dimensions

MN ×MN . For comparative purposes, the theoretical BER was also calculated for the

case of an AWGN channel, represented by the magenta curve. In this scenario, white

noise is simply added to the transmitted signal, and demodulation using QAM is applied

after discarding the CP during reception.

In the simulation, employing 4-QAM modulation (Fig. 5) and 16-QAM modula-

tion (Fig. 6), assuming a subcarrier spacing of ∆f = 15KHz, we transmit N = 8 OFDM
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symbols each with M = 16 active subcarriers and a CP of length equal to 4. It is evident

that the BER exceeds 10−4 for classic OFDM and 10−5 with MMSE and ZF estimators at

an SNR of 15dB. Beyond an SNR of 15dB, the results exhibit negligible errors within

the considered range. In the case of the 16-QAM scenario, MMSE and ZF estimators

reach an approximate BER of 10−4 at 20dB, while conventional OFDM exhibits a BER of

10−2, which does not reduce 10−3 even when SNR increases to 25dB. This worsening of

results is well-documented in the literature and stems from the increased difficulty of

decision-making as the QAM constellation size grows, consequently leading to more

errors.

Figure 5 – BER Performance in OFDM system on macrocell channel
(4-QAM;M = 16;N = 8;CP = 4)
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Source: the author.

It’s essential to emphasize that when considering 16 subcarriers, the results

for OFDM yield a sampling rate of 4.17µs = 1/(16.∆f). At this rate, the generated

multipath channel synthesizes only two taps. However, when the number of subcarriers

is increased to 600, resulting in a sampling rate of 0.11µs = 1/(600.∆f), the channel

is modeled with 6 taps, following the UMa in TDL model. Consequently, as depicted

in Figures 7 and 8, the performance significantly deteriorates compared to the 2-tap

scenario.
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Figure 6 – BER Performance in OFDM system on macrocell channel
(16-QAM;M = 16;N = 8;CP = 4)
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Source: the author.

In this particular scenario involving 1000 frames, we transmit N = 12 OFDM

symbols per frame, each containing M = 600 active subcarriers along with a Cyclic

Prefix (CP) of length equal to 255. The results indicate that, across all three detection

techniques, the BER does not drop below the order of 10−3, even at an SNR of 25dB.

Particularly noteworthy is the degradation in performance with the increase in constella-

tion size, especially evident in the case of 16-QAM under high-mobility channels. With

an SNR of 25dB, the BER surpasses 10−2, a notably low rate for a system aiming to

deliver high data rates.
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Figure 7 – BER Performance in OFDM system on macrocell channel
(4-QAM;M = 600;N = 12;CP = 255)
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Source: the author.

Figure 8 – BER Performance in OFDM system on macrocell channel
(16-QAM;M = 600;N = 12;CP = 255)
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Source: the author.

The augmentation in complexity, stemming from an increased number of

subcarriers, the incorporation of the CP into a multipath channel, and the expansion

of the number of symbols, reveals that OFDM systems struggle to perform optimally in
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high-mobility scenarios. This challenge arises because the channel cannot fluctuate

significantly during the transmission of a single symbol. While various techniques and

adaptations have been proposed to enhance modulation and performance (GUPTA;

MEHRA, 2008), the results underscore the limitations of the OFDM system in high-

mobility environments.

In light of these constraints, the OTFS modulation emerges as a promising al-

ternative to address the challenges posed by rapidly varying channels. The subsequent

section will delve into the details of this modulation technique.
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3 OTFS MODULATION FUNDAMENTALS

Traditional OFDM modulation primarily operates in the frequency-time do-

main, where each OFDM Resource Elements (RE) corresponds to one subcarrier within

a particular OFDM symbol. In contrast, OTFS modulation operates within the Delay-

Doppler domain, a concept interrelated with frequency and time via the Symplectic

Finite Fourier Transform (SFFT), a two-dimensional Discrete Fourier Transform (DFT)

(HADANI et al., 2017; HADANI; MONK, 2018). The OTFS modulation framework can

be conceptualized as a time-frequency multicarrier modulation, augmented by a prepro-

cessing transformation that shifts from the delay-Doppler domain to the time-frequency

domain of information symbols through the Inverse Symplectic Finite Fourier transform

(ISFFT). Consequently, OTFS can be integrated as a preprocessing step on top of an

underlying OFDM signal (86BIS, 2002).

3.1 Delay-Doppler Domain

Within the OTFS framework, the quadrature amplitude modulation (QAM)

symbols are associated with grid points within the Delay-Doppler domain. The Inverse

Symplectic Finite Fourier Transform (ISFFT) facilitates the weighting of each QAM

symbol to a two-dimensional (2D) basis function defined in the Time-Frequency do-

main. The dimensions of the delay-Doppler resource grid are directly linked to the

characteristics of the frequency-time plane, including properties such as bandwidth

(B), Transmission Time Interval (TTI), pulse time duration (T ), subcarrier spacing (∆f ),

number of subcarriers (M ), and symbol block length (N ).

Consequently, the delay-Doppler grid comprises M points (representing the

number of subcarriers) along the delay axis, with a spacing of ∆τ = 1
M∆f

, and N

points (representing the number of symbols) along the Doppler axis, with a spacing of

∆ν = 1
NT

. The reciprocal time-frequency grid consists of M points along the frequency

axis, with a spacing of ∆f = B
M

, and N points along the time axis, with a spacing

of T = TTI
N

(RAVITEJA, 2018). This results in a time-frequency grid composed of

N multicarrier symbols, each housing M subcarriers. The transmission bandwidth B

inversely relates to the delay resolution ∆τ , while the TTI inversely relates to the

Doppler resolution ∆ν. Both grids are visualized in Figure 9.
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Figure 9 – OTFS Transform: Delay-Doppler grid vs Time-Frequency
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Source: adapted by author from (RAVITEJA, 2018).

In essence, based on these definitions, the time-frequency plane becomes

discretized, achieved by sampling the time and frequency axes at intervals of T (in

seconds) and ∆f (in Hz):

Λ = {(m∆f, nT ), m = 0, ...,M − 1; n = 0, ..., N − 1} , (3.1)

Consequently, the delay-Doppler plane undergoes discretization as follows:

Γ =

{(
l

M∆f
,

k

NT

)
, l = 0, ...,M − 1; k = 0, ..., N − 1

}
. (3.2)

3.2 ISFFT

This scheme primarily revolves around the 2D ISFFT, which maps the in-

formation symbols X[l, k] to a grid Γ (3.2) in the delay-Doppler domain, resulting in a

sequence of complex numbers XFT [m,n] within a grid Λ (3.1) in the time-frequency

domain. This transformation takes the form:

XFT [m,n] =
1√
MN

M−1∑
l=0

N−1∑
k=0

X[l, k] ej2π(
nk
N

−ml
M ). (3.3)

Following this pre- and post-processing procedure, one can implement con-

ventional OFDM modulation and demodulation. Figure 10 illustrates the SISO-OTFS

system diagram, comprising a single transmitter antenna and one receiver antenna.

The OFDM modulator is employed to process time-frequency symbols

XFT [m,n] , converting them into a time-domain signal s(t) suitable for transmission over
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Figure 10 – SISO-OTFS system diagram
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Source: adapted by author from (RAVITEJA, 2018).

the channel. Therefore, the output signal of the OTFS transmitter is represented as:

s(t) =
M−1∑
m=0

N−1∑
n=0

XFT [m,n] ej2πm∆f(t−nT ) gtx(t− nT ), (3.4)

where gtx(t) denotes the pulse shaping used in the transmitter. In the following we will

consider rectangular pulses of amplitude equal to 1 and duration T .

In equation (3.4) it is evident that each OTFS QAM symbol extends across

the entire time-frequency grid, allowing for the exploitation of all available channel

diversity.

The transmitted signal s(t) propagates through a time-varying channel char-

acterized by a complex baseband channel impulse response h(τ, ν) and noise w(t).

After going through the channel, the received signal r(t) is defined as:

r(t) =

∫
τ

∫
ν

h(τ, ν)s(t− τ) ej2πν(t−τ)dτdν + w(t). (3.5)

Channel modeling can be characterized by deriving the Delay-Doppler Profile

(DDP) of the channel (RAMACHANDRAN; CHOCKALINGAM, 2018), which encapsu-

lates the delay and Doppler paths associated with each multipath reflector. Given the

sparsity of the channel representation, it is practical to express the response h(τ, ν) as

per Eq. (2.9). Consequently, the delay and Doppler taps for the ith path are described

by:

τi =
li + l̃i
M∆f

, νi =
ki + k̃i
NT

, (3.6)

where li denotes the integer delay, l̃i denotes the fractional delay, ki represents the

integer Doppler, and k̃i signifies the fractional Doppler shift. NT and M∆f correspond to



63

the total duration and bandwidth of the transmitted signal frame, respectively. Fractional

delay and fractional Doppler shift-induced interference can be effectively suppressed

when M and N are suitably large to approximate ideal OTFS resolution. Under these

circumstances, it is reasonable to consider l̃i = k̃i = 0 (DING et al., 2019).

The received signal r(t) is sampled at a rate fs = M∆f , resulting in the

formation of a signal r[n]. From Eq. (3.5) and Eq. (2.9), it is clear that the entries are

expressed as:

r[n] =
P∑
i=1

hi e
j2π

(ki+k̃i)(n−li)

MN (s[n− li]MN) + w[n]. (3.7)

where [.]B means the module B operation.

Subsequently, at the receiver, the time-domain received signal can be

mapped into the time-frequency domain by an OFDM demodulator, and then into

the delay-Doppler domain using the SFFT.

3.3 OTFS versions in SISO system

In the context of Single-Input and Single-Output (SISO) systems, OTFS has

been explored with two distinct versions, as described in (ZHOU et al., 2022), addressing

the challenge of Inter-Symbol Interference (ISI). These versions are referred to as the

"standalone" or "underlay" version and the "overlay" version.

In the standalone or underlay version, illustrated at the bottom of Figure

11, a simplified approach in respect to overlay version is taken. In standalone case,

we consider that the OFDM system without CP based OTFS system with a single

transmitting antenna and single receiving antenna, i.e., a Single-Input and Single-Output

(SISO) model, as described in (HASHIMOTO et al., 2021).

All N OFDM symbols, each containing M subsymbols, are concatenated to

form the OTFS frame. Subsequently, a Cyclic Prefix (CP) is added at the beginning

of each OTFS frame. This simplification is possible because half of the pre- and post-

processing operations, such as ISFFT and SFFT, can be effectively cancelled out by

FFT and IFFT operations (ZHOU et al., 2022). The schematic representations of both

versions are depicted in Figure 11.

The standalone version, discussed in (RAVITEJA et al., 2018), significantly

enhances the spectral efficiency of the overall system, especially when N is large or the
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Figure 11 – Time-domain frame of OTFS: the top one is the overlay, and the bottom
one is the standalone version

Source: adapted by author from (ZHOU et al., 2022).

CP overhead is substantial, requiring at least 25% CP. In this design, a CP of length L

is appended to s(t) before transmission.

The overlay version, seen at the top of Figure 11, implements OTFS as an

overlay on top of an OFDM system. While this approach provides more flexibility, it

introduces added complexity to the system, as each OTFS symbol requires the addition

of a CP. Both standalone and overlay versions will be analyzed in vector form in the

following subsections: 3.3.1 and 3.3.2, respectively.

3.3.1 Vector analysis for standalone OTFS

Building on the mathematical foundation described in Section 3.2, the authors

in (RAVITEJA et al., 2018) leverage vector properties and identities to analyze the

standalone OTFS system in the discrete domain. Using notation conventions, with

lowercase letters representing vectors (a), uppercase letters for matrices (A), and AH

indicating the Hermitian transpose, and considering that T = Tu =⇒ T∆f = 1 =⇒

Tu = 1/∆f , the transmitted signal can be expressed as:

S = GtxF
H
M(FMXFH

N)

= GtxXFH
N , (3.8)

where S ∈ CM×N represents the transmitted symbols in the time-frequency domain,

and X ∈ CM×N denotes the two-dimensional information symbols transmitted in the

delay-Doppler domain. Additionally, F n =
{

1√
n
e2πjkl/n

}n−1

k,l=0
and FH

n = F−1
n are the
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n-point Discrete Fourier Transform (DFT) and the Inverse Discrete Fourier Transform

(IDFT) matrices, respectively. Gtx is the diagonal matrix of size M ×M that contains

transmission pulse samples with a duration [0, T ], repeated N times in a frame. Conse-

quently, the column-wise vectorization of the S matrix in Eq. (3.8) yields the MN × 1

vector s, the transmit vector:

s = vec(S) = (FH
N ⊗Gtx)x, (3.9)

where x = vec(X) and ⊗ denotes the Kronecker product.

As a result, the received signal vector r, of size MN × 1 , can be expressed

using samples from Eq. (3.7):

r = Hs+w, (3.10)

where w represents the noise vector and H is an MN ×MN matrix defined as:

H =
P∑
i=1

hiΠ
li∆ki,li , (3.11)

with ΠMN×MN the permutation matrix (forward cyclic shift),

Π =


0 . . . 0 1

1
. . . 0 0

... . . . . . . ...

0 . . . 1 0

 , (3.12)

and ∆ the MN ×MN diagonal matrix:

∆ki,li = diag[z−l1 , z−l1+1, ..., zMN−li−1], (3.13)

where z = e
j2π(ki+k̃i)

MN . The matrices Π and ∆ model the delays and the Doppler shifts in

eq. (3.5), respectively.

At the receiver, the received signal samples r are transformed into time-

frequency domain symbols, R = vec−1(r), and further into delay-Doppler domain

symbols, as follows:

Y = FH
M(FMGrxR)FN . (3.14)

To achieve this, an M -point FFT followed by an SFFT is applied. Grx ∈

CM×M is a diagonal matrix containing the receiver pulse. In vector form, the received
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signal in the delay-Doppler domain can be expressed as:

y = (FN ⊗Grx)r. (3.15)

Substituting the transmitted signal vector r into Eq. (3.10), we obtain:

y = (FN ⊗Grx)(Hs+w)

= (FN ⊗Grx)H(FH
N ⊗Gtx)x+ (FN ⊗Grx)w

= Heffx+ w̃, (3.16)

where w̃ = (FN ⊗ Grx)w represents the AWGN noise vector with zero mean and

variance σ2
0 and Heff is a sparse matrix representing the effective channel matrix, as:

Heff = (FN ⊗Grx)H(FH
N ⊗Gtx) (3.17)

Due to the sparsity of Heff , low-complexity detector algorithms can be

implemented to estimate symbols effectively (RAVITEJA et al., 2018). These algorithms,

primarily based on message passing, are well-suited for this purpose. In our case, it

used a representation of the matrix Heff by a factor graph. Section 4 provides further

details on the various message passing algorithms employed in this thesis.

3.3.2 Vector analysis for overlay OTFS

When incorporating cyclic prefixes (CP) after each OFDM symbol, we have

T = Tu + TL. Knowing that T = 1/∆f + TL, which leads to T∆f = 1+∆fTL = 1+L/M ,

the signal output of the OTFS transmitter can be expressed as:

s(t) =
M−1∑
m=0

N−1∑
n=0

XFT [m,n] ej2πm∆f(t−TL−nT ) gtx(t− nT ) (3.18)

In this case, as depicted in Fig. 11, we consider the OFDM system with CP-

based OTFS, featuring a single transmit antenna and a single receive antenna—essentially

a SISO model (HASHIMOTO et al., 2021). To achieve this, we append a CP of size L to

each OFDM symbol by incorporating the matrix L into the equation of the transmitted

signal (3.8), which is rewritten as Scp:
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Scp = LGtxXFH
N , (3.19)

where the (M+L)×M matrix L =

 0L×M−L IL

IM

 denotes the operator for appending

the CP. By employing the identity vec(AK×LBL×M) = (IM ⊗ A)b = (B ⊗ IM)a, for

parallel-to-serial conversion, the transmitted signal vector can be expressed as:

scp = vec(LGtxXFH
N)

= (IN ⊗LGtx)vec(XFH
N)

= Lcpx. (3.20)

where Lcp = (IN ⊗LGtx)(F
H
N ⊗ IM).

At the receiver, the received vector r undergoes transformation into the

time-frequency domain, resulting in an (M + L)×N matrix R = vec−1(r).

Subsequently, we apply the CP removal operation to obtain the received

matrix:

[r0, r1, . . . , rN−1] = LRR (3.21)

where the M × (M + L) matrix LR =
[
0M×L IM

]
is used to eliminate all the CP.

The nth received OFDM symbol rn ∈ CM after CP removal can be expressed

as:

rn = Hnsn +wn (3.22)

where Hn represents nth circulant channel matrix of size the M ×M .

Matrix Hn can be expressed as

Hn =
P∑
i=1

hi∆n,ki,liΠ
li (3.23)

with Π the M ×M permutation matrix (forward cyclic shift),
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Π =


0 . . . 0 1

1
. . . 0 0

... . . . . . . ...

0 . . . 1 0

 (3.24)

and ∆n,ki,li is the M ×M diagonal matrix defined as follows:

∆n,ki,li = diag
[
z(M+L)n+L−li , z(M+L)n+L−li+1, ..., z(M+L)(n+1)−li−1

]
(3.25)

where z = e
j2π(ki+k̃i)

(M+L)N .

The matrices Π and ∆ model the delays and the Doppler shifts, respectively.

At each symbol n, the receiver performs an M -point DFT to obtain the

frequency domain vector yFT
n

yFT
n = FMGrxrn

= FMGrx(Hnsn +wn) (3.26)

Let us stack the vectors yFT
n in the matrix Y FT as follows :

Y FT ≜ [yFT
0 ,yFT

2 , . . . ,yFT
N−1] (3.27)

This results in:

Y = FH
MY FTFN

= Grx[H0s0,H1s1, . . . ,HN−1sN−1]FN +Grx[w0,w1, . . . ,wN−1]FN (3.28)

With the following relation

S = GtxXFH
N (3.29)

or equivalently:

sn = GtxXf ∗
n ∀n ∈ {0, ...N − 1} (3.30)

where fn is the nth column of FN .

Replacing equation (3.30) into equation (3.28), we obtain:
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Y =
N−1∑
n=0

(GrxHnGtxXf ∗
nf

T
n +Grxwnf

T
n ) (3.31)

Similarly to the standalone case, we can express the vectorized version of Y

from equation (3.28) as follows:

y = vec(Y )

= (FN ⊗Grx)(Hs+w)

= (FN ⊗Grx)H(FH
N ⊗Gtx)x+ (FN ⊗Grx)w

= Heffx+ w̃ (3.32)

where we have defined the MN × MN matrix H = blkdiag(H0,H1, . . . ,HN−1). s

represents the vector obtained from the vectorization of S, s = vec(S) and w =

[wT
0 ,w

T
1 , . . . ,w

T
N−1]

T .

The matrix Heff ≜ (FN ⊗Grx)H(FH
N ⊗Gtx) denotes the effective channel

matrix and w̃ = (FN ⊗Grx)w.

Disregarding the noise term wnf
T
n and assuming a rectangular pulse (Gtx =

IM ), we can derive each element Y [l, k] of the M ×N matrix Y using equations (3.23)

and (3.31).

First, with these constraints in mind, we develop equation (3.31) as follows:

Y =
N−1∑
n=0

HnXf ∗
nf

T
n

=
N−1∑
n=0

ΞnΛn (3.33)

where

Ξn[l, k
′] ≜

M−1∑
l′=0

Hn[l, l
′]X[l′, k′] (3.34)

and

Λn[k
′, k] ≜ ej2π

nk′
N e−j2π nk

N

= e−j2π
n(k−k′)

N (3.35)

As a result, each element of the matrix Y can be determined as:
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Y [l, k] =
N−1∑
n=0

N−1∑
k′=0

Ξn[l, k
′]Λn[k

′, k]

=
N−1∑
n=0

N−1∑
k′=0

M−1∑
l′=0

Hn[l, l
′]X[l′, k′]e−j2π

n(k−k′)
N

=
N−1∑
k′=0

M−1∑
l′=0

X[l′, k′]
N−1∑
n=0

Hn[l, l
′]e−j2π

n(k−k′)
N

=
N−1∑
k′=0

M−1∑
l′=0

X[l′, k′]H l′,k′ [l, k] (3.36)

where

H l′,k′ [l, k] ≜
N−1∑
n=0

Hn[l, l
′]e−j2π

n(k−k′)
N

=
N−1∑
n=0

P∑
i=1

hiδ((l − l′)M − li)e
j2π(ki+k̃i)

(M+L)n+L−li+l

(M+L)N e−j2π
n(k−k′)

N

=
P∑
i=1

hiδ((l − l′)M − li)
N−1∑
n=0

ej2π(ki+k̃i)
n
N e−j2π

n(k−k′)
N︸ ︷︷ ︸

DIRIC(ki+k̃i−(k−k′),N)

ej2π(ki+k̃i)
L−li+l

(M+L)N

=
P∑
i=1

hiδ((l − l′)M − li)DIRIC(ki + k̃i − (k − k′), N)ej2π(ki+k̃i)
L−li+l

(M+L)N (3.37)

where DIRIC(a,N) represents the variant of the Dirichlet Kernel function (the sum is

only over non-negative integers) and is defined as follows:

DIRIC(a,N) ≜
N−1∑
n=0

ej2πa
n
N

= ejπa
N−1
N

sin(πa)

sin(πa/N)
(3.38)

3.4 Simulations: OTFS under high mobility channel

A recent thesis by Gaudio (GAUDIO, 2022) presents a comprehensive com-

parison between OTFS and OFDM. In this context, we evaluate OTFS modulation in

the overlay version and compare it with OFDM modulation in the same high-mobility

macrocell channel, assuming that the channel is known to the receiver.

Table 3 outlines the simulation parameters for OTFS to facilitate a comparison

with the OFDM system described in the preceding section.
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Table 3 – Simulation Parameters for OTFS vs OFDM

Parameter Value
Carrier frequency (fc ) 4 GHz
Subcarrier spacing (∆f ) 15 kHz
Number of subcarriers (M ) 600
Number of symbols for OTFS (N ) 12
CP length (L) 255
Channel model Urban macrocell
Modulation scheme 4-QAM and 16-QAM
UE speed 330 km/h
Channel estimation ideal

Source: the author.

As established in the previous section’s results for the OFDM system under

the Macrocell channel, configuring 600 active subcarriers already provides an ade-

quate sampling rate to generate the channel with all six taps from the adopted model.

Therefore, for the purpose of comparing OFDM modulation with OTFS modulation, we

exclusively consider this configuration. The results presented in Figures 12 and 13 are

derived from simulations involving the transmission of 1000 frames, each containing 12

QAM symbols per subcarrier, and the insertion of a CP with a length of 255 for each

frame. Both 4-QAM and 16-QAM modulation schemes are utilized.

Figure 12 illustrates the performance results using a 4-QAM modulation

scheme. Data detection techniques are assessed, including ZF, MMSE, and AMP-FO.

The choice of the AMP-FO detector was motivated by its favorable complexity-BER

trade-off, as elaborated in the subsequent section. Using Eq. (2.19) and (2.18), we

compute the estimated symbols in ZF and MMSE employing Heff as follows:

x̂MMSE =

(
σ2
0

σ2
d

IM +HH
effHeff

)−1

HH
effy (3.39)

x̂ZF =
(
HH

effHeff

)−1
HH

effy

= H−1
effy

(3.40)
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According to the results shown in Figure 12, OTFS consistently outperforms

OFDM modulation across all evaluated detection techniques. The AMP-FO detector

stands out, achieving an SNR of 15 dB for a BER of 10−6, whereas the MMSE detector

requires an SNR of approximately 19 dB for similar performance. The ZF detector

exhibits the poorest performance.

Figure 12 – BER Performance in OFDM and OTFS system on macrocell channel
(4-QAM;M = 600;N = 12;CP = 255)
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In the case of 16-QAM modulation, as demonstrated in Figure 13, OTFS

once again outperforms OFDM. Due to the higher efficiency of the modulation scheme,

the BER performance is naturally worse compared to the 4-QAM case. Nevertheless,

in all evaluated detection techniques, OTFS yields superior results to those of OFDM.

Once more, the AMP-FO detector surpasses the MMSE and ZF detectors.

This section underscores that OTFS effectively mitigates channel diversity

through pre- and post-processing stages in the delay-Doppler domain. While this

complexity is increased, it is justified in systems designed for channels with high mobility,
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Figure 13 – BER Performance in OFDM and OTFS system on macrocell channel
(16-QAM;M = 600;N = 12;CP = 255)
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a crucial requirement for applications in mobile communication systems, such as B5G.

Given the escalating complexity of OTFS modulation and the channel’s

sparsity, much research is dedicated to identifying low-complexity detectors to address

this issue. The following chapter conducts an evaluative study of message-passing-

based algorithms to determine the optimal complexity-BER trade-off.
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4 LOW-COMPLEXITY ALGORITHMS FOR DATA DETECTION

This chapter focuses on assessing low-complexity techniques tailored to

address the high sparsity of the channel’s impulse response. Specifically, we delve

into message-passing algorithms designed for data detection in a time-varying channel,

often referred to as an integer channel. In this scenario, the delay and Doppler scattering

values of the channel align well with the Γ grid, enabling the use of OTFS modulation

without the need for a guard interval, thereby reducing computational costs. The system

model for OTFS, as discussed previously, is given by:

y = Heff x+ ŵ (4.1)

where y ∈ CMN×1, Heff ∈ CMN×MN , x ∈ CMN×1 and ŵ ∈ CMN×1

Many estimation and inference challenges in the field of digital communica-

tions are effectively represented using graphical models such as Bayesian networks or

factor graphs (KSCHISCHANG et al., 2001). A factor graph, a type of bipartite graph,

delineates the joint distribution of random variables xi belonging to a given domain. It

consists of two sets of vertices or nodes and a set of branches or edges. These two

sets of nodes encompass:

• Variable nodes xi, symbolized as circles in Figure 14

• Function nodes fj, represented by squares in Figure 14

An illustrative factor graph is provided in Figure 14.

Figure 14 – Factor graph to MPA
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Factor Nodes fj

µxi→fj (xi) µfj→xi
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m(j)

Source: the author.

In this graph, m(j) denotes the set of variable neighbors linked to the factor

node fj, while n(i) signifies the set of factor nodes associated with the variable node xi.

Given the sparsity of the matrix Heff of size MN ×MN , the Eq. equation



75

(3.16) can be graphically represented using a factor graph comprising MN = O variable

nodes and O factor nodes.

The number of branches df(j) = |m(j)| converging on a specific function

node is denoted as the degree of the factor node fj. Correspondingly, the number of

branches dx(i) = |n(i)| converging on a particular variable node is referred to as the

degree of the variable node xi. . In our context, since the number of nonzero elements

in the rows and columns of Heff equals the number of propagation paths P , the factor

graph exhibits regularity, and we have df (j) = dx(i) = P ∀i, j.

In this context, this chapter’s primary contribution lies in introducing a low-

complexity algorithm for OTFS data detection based on AMP with first-order (AMP-FO)

and assessing its performance in terms of BER and computational complexity compared

to other low-complexity algorithms proposed by various authors. The objective is to

identify which algorithm offers the most favorable complexity-BER trade-off for OTFS

modulation. Additionally, as a secondary contribution, we evaluate the performance

in both the SISO and MIMO scenarios. In the subsequent subsections, we provide

detailed explanations of the following algorithms based on MPA: the original MPA, AMP

with Factor Graph using Gaussian Approximation of Interference (FG-GAI) (SOM et

al., 2011), AMP using Gaussian Approximation (AMP-GA), AMP using expectation

propagation (AMP-EP), and the introduced AMP-FO algorithm (WU et al., 2014).

4.1 MPA

The fundamental goal of the Message Passing Algorithm (MPA) is to estimate

the marginal probabilities µxi
for all variables xi.

In MPA, during each iteration, the algorithm computes messages or beliefs

that travel from the variable nodes to the factor nodes and then back from the factor

nodes to the variable nodes. Typically, these messages are propagated in parallel,

moving from one factor node to the next. This order of message passing, when

interpreted in the context of a factor graph and the Sum-Product Algorithm (SPA), leads

to the message update schedule.

The notations used to describe MPA-based algorithms include: µfj→xi
repre-

senting messages from factor node fj towards variable node xi, and µxi→fj representing

messages from variable nodes xi towards factor nodes fj.
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These messages or beliefs are functions of variable nodes xi, either in one

direction or the other. The message from xi to fj represents the probability that xi has a

specific value, given the observed value of this variable and the values received from

the other factor nodes connected to xi, except for fj. For a QAM constellation (with Z

possible values), the messages typically have Z distinct values, each corresponding to

a possible value of xi.

To initiate this algorithm, we first compute the probability mass functions for

each factor node, based on corresponding variable nodes for each value of αs, in the

context of a system model y = Heffx+w:

fj(yj|x) ∝ exp

(
−|yj −

∑
l∈m(j) hj,l xl|2

σ2
0

)
, (4.2)

where x ∈ AP , hj,l represents the element of the jth row and lth column

of matrix Heff (channel transfer matrix), σ2
0 denotes the noise variance, and yj is the

correlated received signal term.

The computation of all messages from factor node fj to the corresponding

variable nodes xi begins by assuming that all symbols in the alphabet A have equal

probabilities. Then, each message is computed following the sum-product rule (KSCHIS-

CHANG et al., 2001), where the previous product of all messages sent from variable

node xi is combined for each associated factor node fj:

µt
fj→xi

(xi = αs) =
∑
∼ x

fj(yj|x)
∏

l∈m(j)\i

µt−1
xl→fj

(xl)

 . (4.3)

Subsequently, the messages from variable nodes to factor nodes are updated

by computing the product of the messages from factor nodes to variable nodes, as

follows:

µt
xi→fj

(xi = αs) =
∏

b∈n(i)\j

µt
fb→xi

(xi). (4.4)

During the message exchange, a normalization process is applied, followed

by the introduction of a damping factor (∆). In this process, the values of the transmitted

messages from variable nodes to factor nodes are normalized (µxi→fj
) by adding the
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corresponding xi for each QAM symbol. The damping factor is calculated at each

iteration (t) by considering the total of normalized messages with an applied weight, as

shown in Eq. (4.5).

The application of the damping factor is a technique used to minimize the Bit

Error Rate (BER) when determining the optimal number of iterations for the decoding

algorithm, based on the density of the Heff matrix.

µt
xi→fj

(xi = αs) = (1−∆).µt−1
xi→fj

(xi) + ∆.µt
xi→fj

(xi). (4.5)

At iteration t, the marginal distribution µt
xi
(xi = αs) can be estimated using

the set of incoming messages µt
fb→xi

(xi)

µt
xi
(xi = αs) =

∏
b∈n(i) µ

t
fb→xi

(xi = αs)∑
xi∈A

∏
b∈n(i) µ

t
fb→xi

(xi)
. (4.6)

Next, the Log Likelihood Ratio (LLR) calculation is employed to perform a

test based on the ratio of probabilities, allowing inference regarding the detection of the

received bit sequence. The LLR calculation Λb→l (b, l → fj, xi) is based on the principles

outlined in (110150664.0, 2011) and is tailored for QAM symbols. The complete MPA is

provided in pseudo-code in Algorithm 1.
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Algorithm 1: MPA algorithm

Initialization;

Set µfj→xi
(xi = αs) = 0,∀xi ∈ A;

Compute fj(yj|xi) using (4.2), ∀i ∈ m(j), ∀xi ∈ A;

// T iterations

) for t = 1 to T do

for j = 1 to O do

// Computation of messages from Factor Node (FN) to Variable

Node (VN)

Compute µt
fj→xi

(xi) using (4.3), ∀i ∈ m(j), ∀xi ∈ A;

end

for i = 1 to O do

// Computation of messages from VN to FN

Compute µt
xi→fj

(xi) using (4.4), ∀j ∈ n(i), ∀xi ∈ A;

end

for i = 1 to O do

// Normalisation of messages from VN to FN

µxi→fj(xi) =
µxi→fj

(xi)∑
αs∈Z µxi→fj

(xi=αs)
, ∀j ∈ n(i), ∀xi ∈ A;

Damping calculation by using equation (4.5);

end

end

Decision calculation;

4.2 Gaussian Approximation of Interference (FG-GAI)

In FG-GAI (SOM et al., 2011), the traditional messages µt
fj→xi

(xi) are re-

placed with Gaussian approximations of the interference. The received signal yj is

expressed as:

yj = hj,ixi +
∑

l∈m(j)\i

hj,lxl + wj︸ ︷︷ ︸
wfj→xi

, (4.7)

The interference term wfj→xi
is then modeled as a Gaussian variable, char-
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acterized by a mean zfj→xi
and a variance νfj→xi

.

As in the MPA, the iteration starts with the calculation of messages from the

factor node fj to the variable nodes xi. The means zfj→xi
and variances νfj→xi

are

calculated as follows:

ztfj→xi
= E{wfj→xi

}

=
∑

l∈m(j)\i

hj,lE{xl}

=
∑

l∈m(j)\i

hj,l

Z∑
s=1

µ t−1
xl→fj

(xl = αs)αs, (4.8)

νt
fj→xi

=
∑

l∈m(j)\i

|hj,l|2σ2(xl) + σ2
0, (4.9)

where αs ∈ A, hj,l represents the element of the jth row and lth column of matrix

Heff , E{x} denotes the expectation of x and σ2(xl) represents equal the variance of xl,

defined as:

σ2(xl) =
Z∑

s=1

µ t−1
xl→fj

(xl)|αs|2 −

∣∣∣∣∣
Z∑

s=1

µ t−1
xl→fj

(xl)αs

∣∣∣∣∣
2

. (4.10)

Subsequently, the variable node xi updates its probability function, which is

conditioned on the corresponding value of the y vector (yb) for each xi elonging to a

valid symbol in the constellation (alphabet A). It then sends this information to fj, which

responds with the mean and variance of the other xi values.

Next, the messages from the variable nodes to the factor nodes are updated.

The probabilities for each possible symbol µ t
xi→fj

(xi = αs) are calculated based on the

means and variances corresponding to the factor nodes linked to xi, as follows:

µ t
xi→fj

(xi = αs) ∝
∏

b∈n(i)\j

exp

(
−|yb − ztfb→xi

− hb,iαs|2

νtfb→xi

)
. (4.11)

The marginal distribution µ t
xi
(xi) can be calculated by considering all the

incoming messages:

µ t
xi
(xi) ∝

∏
b∈n(i)

exp

(
−|yb − ztfb→xi

− hb,iαs|2

νt
fb→xi

)
. (4.12)
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Algorithm 2: FG-GAI algorithm

Initialization;

Set
{
µxi→fj(xi) = 1/Z, zfj→xi

= 0, νfj→xi
= 0
}

;

// T iterations

for t = 1 to T do

for j = 1 to O do

// Computation of messages from FN to VN

Compute ztfj→xi
using (4.8), ∀i ∈ m(j);

Compute νt
fj→xi

using (4.9), ∀i ∈ m(j);

end

for i = 1 to O do

// Computation of messages from VN to FN

Compute µ t
xi→fj

(xi) using (4.11), ∀j ∈ n(i);

Damping calculation by (4.5);

end

for i = 1 to O do

// Normalization of messages from VN to FN

µxi→fj(xi) =
µxi→fj

(xi)∑
αs∈Z µxi→fj

(xi=αs)
, ∀j ∈ n(i);

end

end

Computation of LLR;

Decision calculation;

4.3 Approximate Message Passing using Gaussian Approximation (AMP-GA)

Another simplification of MPA utilizing Gaussian Approximation is presented

by (WU et al., 2014), known as Approximate Message Passing Using Gaussian Approxi-

mation (AMP-GA). In AMP-GA, the messages containing means and variances of the

variable nodes are updated from the messages of factor nodes through the calculation

of a complex Gaussian function.

Let us denote µt
xi→fj

(xi) as the message sent from the variable node xi to

the factor node fj in the tth iteration, and let us denote µt
fj→xi

(xi) as the message from
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the factor node fj to the variable node xi. Then, the message update rules are given by

Eq. (4.3) and Eq. (4.4).

Given that symbols belong to a discrete set of QAM symbols (αs ∈ A),

calculating the messages typically involves significant complexity in marginalizing a

random vector x\xi. To address this complexity, as proposed in (WU et al., 2014), AMP-

GA applies the Kullback-Leibler divergence criterion to calculate parameters x̂t
xi→fj

(mean of the projection distribution) and τ̂ txi→fj
(variance of the projection distribution).

The updated messages from the factor nodes to variable nodes are then given by:

x̂t
xi→fj

=
∑
αs∈A

αsµ
t
xi→fj

(xi = αs). (4.13)

τ̂ txi→fj
=
∑
αs∈A

|αs|2µt
xi→fj

(xi = αs)− |x̂t
xi→fj

|2. (4.14)

Treating xi as a continuous random variable and approximating the message

as a complex Gaussian function, µt
fj→xi

(xi) can be determined through integration in

Eq. equation (4.3), as follows:

µt
fj→xi

(xi) =
∑
x\xi

fj(yj |x)
∏

l∈m(j)\i

NC

(
xl; x̂

t
xl→fj

, τ̂ txl→fj

)
≈ NC

(
hj,ixi; z

t
fj→xi

, νtfj→xi

)
,

(4.15)

where NC(x; x̂; τ̂) ≜ (πτ̂)−1 exp(−|x− x̂|2/τ̂) denotes a complex Gaussian function. The

parameters ztfj→xi
(mean messages from factor nodes to variable nodes) and νt

fj→xi

(variance messages from factor nodes to variable nodes) are defined as:

ztfj→xi
= yj −

∑
l∈m(j)\i

hj,lx̂
t
xl→fj

.
(4.16)

νt
fj→xi

= σ2
n +

∑
l∈m(j)\i

|hj,l|2τ̂ txl→fj
. (4.17)

Now, by substituting µt
fj→xi

(xi) = NC

(
hj,ixi; z

t
fj→xi

, νt
fj→xi

)
into Eq. (4.4), the

messages µt
xi→fj

(xi) can be normalized as follows:
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µt
xi→fj

(xi) =
NC

(
xi; ζ

t−1
xi→fj

, γt−1
xi→fj

)
∑

xi∈ANC

(
xi; ζ

t−1
xi→fj

, γt−1
xi→fj

) , (4.18)

where γt−1
xi→fj

(variance messages from variables nodes to factor nodes) and ζt−1
xi→fj

(means messages from variables nodes to factor node) are given by:

γt
xi→fj

=

 ∑
b∈n(i)\j

|hb,i|2

νt
fb→xi

−1

. (4.19)

ζtxi→fj
= γt

xi→fj

∑
b∈n(i)\j

h∗
b,iz

t
fb→xi

νt
fb→xi

. (4.20)

The marginal distribution µ t
xi
(xi) can be determined as follows:

µt
xi
(xi = αs) ∝ exp

(
−
|αs − ζtxi

|2

γt
xi

)
, (4.21)

where γt
xi

and ζtxi
represent the estimated mean and variance of xi:

γt
xi
=

∑
b∈n(i)

|hb,i|2

νt
fb→xi

−1

. (4.22)

ζtxi
= γt

xi

∑
b∈n(i)

h∗
b,iz

t
fb→xi

νt
fb→xi

. (4.23)
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Algorithm 3: AMP-GA algorithm

Initialization;

Set
{
ζ0xi→fj

(xi) = 0, γ0
xi→fj

= 1000
}

;

Set
{
x̂0
xi→fj

= 0, τ̂ 0xi→fj
= 0, z0fj→xi

= 0, ν0
fj→xi

= 0
}

;

// T iterations

for t = 1 to T do

for i = 1 to O do

// Computation of messages from VN to FN

Compute µt
xi→fj

(xi) using (4.18), ∀j ∈ n(i);

Compute x̂t
xi→fj

using (4.13), ∀j ∈ n(i);

Compute τ̂ txi→fj
using (4.14), ∀j ∈ n(i);

end

for j = 1 to O do

// Computation of messages from FN to VN

Compute ztfj→xi
using (4.16), ∀i ∈ m(j);

Compute νt
fj→xi

using (4.17), ∀i ∈ m(j);

end

for i = 1 to O do

// Computation of messages from VN to FN

Compute γt
xi→fj

using (4.19), ∀j ∈ n(i);

Compute ζtxi→fj
using (4.20), ∀j ∈ n(i);

Damping calculation by (4.5);

end

end

Computation of LLR;

Decision calculation;

4.4 AMP simplified by Expectation Propagation (AMP-EP)

AMP-EP, proposed by (WU et al., 2014), offers an alternative to reduce the

computational complexity found in AMP-GA when calculating messages from variable

nodes to factor nodes, µt
xi→fj

(xi), as shown in Eq. (4.18). Instead of these messages,



84

AMP-EP introduces the concept of "symbol belief" (βt(xi)), approximated as a Gaussian

probability density function (PDF) as follows:

βt(xi) ≜

∏
b∈n(i) µ

t−1
fb→xi

(xi)∑
xi∈A

∏
b∈n(i) µ

t−1
fb→xi

(xi)

≈
∏

b∈n(i) NC
(
hb,ixi; z

t−1
fb→xi

, νt−1
fb→xi

)∑
xi∈A

∏
b∈n(i) NC

(
hb,ixi; z

t−1
fb→xi

, νt−1
fb→xi

) .
(4.24)

Thus, in this approach, the message µt
xi→fj

(xi) is replaced by the symbol

belief that is based on a Gaussian Probability Density Function (PDF). Essentially, we

have an approximate message µt
xi→fj

(xi) calculated from an approximate symbol belief

βt(xi). Once the symbol beliefs for each variable node are calculated, the algorithm

proceeds to compute parameters x̂t
xi

(means messages) and τ̂ txi
(variance messages),

followed by the exchange of messages from variable nodes to factor nodes (x̂t
xi→fj

and

τ̂ txi→fj
). The calculation of these parameters involves updating their values using the

calculated belief symbols as follows:

x̂t
xi
=
∑
αs∈A

αsβ
t(αs). (4.25)

τ̂ txi
=
∑
αs∈A

|αs|2βt(αs)− |x̂t
xi
|2. (4.26)

Finally, x̂t
xi→fj

and τ̂ txi→fj
, the mean and variance messages from the variable

nodes to the factor nodes are obtained as follows:

τ̂ txi→fj
=

(
1

τ̂ txi

− |hj,i|2

νt−1
fj→xi

)−1

. (4.27)

x̂t
xi→fj

= τ̂ txi→fj

(
x̂t
xi

τ̂ txi

−
h∗
j,iz

t−1
fj→xi

νt−1
fj→xi

)
. (4.28)

The messages from the factor nodes to the variable nodes are updated with

the values of τ̂ txi→fj
and x̂t

xi→fj
previously computed. As a result, the messages of

variance (νt
fj→xi

) and means (ztfj→xi
) will be used as input parameters for the calculation



85

of the Gaussian PDF and thus will update the symbols belief βt(xi) that will be the basis

of calculation of the next iteration. The messages ztfj→xi
and νt

fj→xi
are computed by Eq.

(4.16) and Eq. (4.17).

Then, the marginal distribution µt
xi
(xi) can be derived directly from the symbol

belief βt(xi) and the LLR can be obtained as in the MPA.

Algorithm 4: AMP-EP algorithm

Initialization;

Set
{
z0fj→xi

= 0, ν0
fj→xi

= 1000
}

;

Set
{
x̂0
xi
= 0, τ̂ 0xi

= 0, x̂0
xi→fj

= 0, τ̂ 0xi→fj
= 0
}

;

// T iterations

for t = 1 to T do

for i = 1 to O do

Compute βt(xi) using (4.24), ∀j ∈ n(i);

end

for j = 1 to O do

// Computation of messages from FN to VN

Compute x̂t
xi

using (4.25), ∀i ∈ m(j);

Compute τ̂ txi
using (4.26), ∀i ∈ m(j);

Compute x̂t
xi→fj

using (4.27), ∀i ∈ m(j);

Compute τ̂ txi→fj
using (4.28), ∀i ∈ m(j);

end

for i = 1 to O do

// Computation of messages from VN to FN

Compute ztfj→xi
using (4.16), ∀j ∈ n(i);

Compute νt
fj→xi

using (4.17), ∀j ∈ n(i);

Damping calculation by (4.5);

end

end

Computation of LLR;

Decision calculation;
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4.5 AMP simplified by First-Order (AMP-FO)

AMP-FO represents a further simplification of AMP-EP, the last alternative

of MPA for the reduction of complexity proposed by (WU et al., 2014) is the AMP-FO.

In this algorithm, messages are rewritten following recursive updates, with negligible

terms omitted in the large system limit.

To adapt to OTFS decoding, the standard messages in Eq. (4.18) are

rewritten as follows:

µt
xi
(xi) =

NC
(
xi; ζ

t−1
xi

, γt−1
xi

)∑
xi∈A NC

(
xi; ζt−1

xi
, γt−1

xi

) , (4.29)

where γt−1
xi

(variance messages from variables nodes) and ζt−1
xi

(means messages from

variables nodes) are the messages exchanged from variables nodes to factor nodes are

given by:

γt
xi
=

∑
b∈n(i)

|hb,i|2

νt
fb

−1

. (4.30)

ζtxi
= x̂t

xi
+ γt

xi

∑
b∈n(i)

h∗
b,i z

t
fb

νt
fb

. (4.31)

with ztfb and νt
fb

the means and variance messages from factor nodes to variable nodes,

respectively. To initiate the message exchange from factor nodes to variable nodes, Eq.

(4.29) is updated for all variable nodes. Then, the mean and variance of the projection

distribution for each symbol in the QAM alphabet are calculated as:

x̂t
xi
=
∑
αs∈A

αsµ
t
xi
(xi = αs). (4.32)

τ̂ txi
=
∑
αs∈A

|αs|2µt
xi
(xi = αs)− |x̂t

xi
|2. (4.33)
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Next, the means and variances of the messages exchanged from factor

nodes to variable nodes are calculated as follows:

ztfj = yj −
∑

l∈m(j)

hj,l x̂
t
xl
+ zt−1

fj

∑
l′∈m(j) τ̂

t
xl′
|hj,l′ |2

νt−1
fj

. (4.34)

νt
fj
= σ2

n +
∑

l∈m(j)

|hj,l|2 τ̂ txl
. (4.35)
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Algorithm 5: AMP-FO algorithm

Initialization;

Set
{
z0fj→xi

= 0, ν0
fj→xi

= 1000
}

;

Set
{
ζ0xi

= 0, γ0
xi
= 1000

}
;

// T iterations

for t = 1 to T do

for i = 1 to O do

// Computation of messages of FN

Compute µt
xi
(xi) using (4.29);

Compute x̂t
xi

using (4.32);

Compute τ̂ txi
using (4.33);

end

for j = 1 to O do

// Computation of messages of VN

Compute ztfj using (4.34);

Compute νt
fj

using (4.35);

end

for i = 1 to O do

// Computation of messages of FN

Compute γt
xi

using (4.30);

Compute ζtxi
using (4.31);

Damping calculation by (4.5);

end

end

Computation of LLR;

Decision calculation;

4.6 Complexity Analysis

In this section, we analyze the complexity of the considered algorithms by

counting the required number of Floating-point Operations (FLOP). FLOP counts are

obtained by adding the arithmetic operations associated with the most deeply nested
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statements in an algorithm (GOLUB; LOAN, 1996). We have previously presented the

simplifications introduced by each algorithm, starting from MPA, followed by FG-GAI,

AMP-GA, AMP-EP, and AMP-FO (from the most complex to the least complex algorithm).

We evaluate the complexity of the algorithms based on the size of the used Z-QAM

modulation, the number of paths P and the number of VNs and FNs O.

All the message passing algorithms have a preprocessing step to compute

the square norms |hj,l|2, which requires 3PO FLOPs.

The complexity of MPA and FG-GAI primarily arises from the message

exchange between VNs and FNs. However, MPA also includes an additional pre-

processing step for calculating fj(yj|xi), which requires (14P − 15)ZO FLOPs. The

processing of the µt
fj→xi

messages requires (Z(P−1) − 1)(P − 1)ZPO FLOPs, while

the calculation µt
xi→fj

requires (P − 2)ZPO FLOPs for each iteration. The FG-GAI

needs [6Z2 − 4Z + (2Z + 2)P − 7]PO FLOPs to calculate ztfj→xi
and νt

fj→xi
, as well as

[(15P − 1)Z − 1]PO FLOPs to compute µt
xi
(xi).

The algorithms AMP-GA, AMP-EP, and AMP-FO each consist of three steps

following the preprocessing step. In the VN messages step, AMP-GA requires 15ZPO

FLOPs to compute {µt
xi→fj

, x̂t
xi→fj

, τ̂ txi→fj
}, AMP-EP requires (16P + Z − 1)O FLOPs to

compute β(xi)
t and AMP-FO needs (15Z + 2)O FLOPs to compute {µxi

(xi)
t, x̂t

xi
, τ̂ txi

}.

In the FNs step, calculating {ztfj→xi
, νt

fj→xi
} in AMP-GA needs (10P − 10)PO FLOPs,

computing {x̂t
xi
, τ̂ txi

, x̂t
xi→fj

, τ̂ txi→fj
} AMP-EP needs (16P +Z − 1)O FLOPs and AMP-FO

(12P + 4)O FLOPs to calculate {ztfj , ν
t
fj
}. Finally, in the update of messages from

VNs, AMP-GA needs (12P − 12)PO FLOPs to compute {γt
xi→fj

, ζtxi→fj
}, AMP-EP needs

(10P−10)PO FLOPs to evaluate {ztfj→xi
, νt

fj→xi
}, and AMP-FO needs (12P+2)O FLOPs

to calculate {γt
xi
, ζtxi

}.

Table 4 displays the number of total FLOPs per iteration for each algorithm.

Table 4 – Complexity by Total Number of FLOPs per Iteration

Algorithm FLOPs
MPA [(ZP−1)(P − 1) + P + 12]ZPO − 15ZO

FG-GAI [6Z2 + (15P − 5)Z + (2Z + 2)P − 5]PO
AMP-GA (15Z + 22P − 19)PO
AMP-EP (7Z + 16P )O + (10P + 11)PO
AMP-FO (15Z + 24P + 8)O + 3PO

Source: the author.



90

Based on the expressions in Table 4, Figure 15 illustrates the complexity

in terms of FLOPs as a function of the constellation size Z for each algorithm. This

evaluation assumes P = 4 paths, 64 subcarriers with 64 symbols (O = 4096). The same

set of parameters will be used to evaluate the bit error rate performance in this study.

Figure 15 – Complexity evaluation of the studied algorithms
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As expected, Figure 15 shows that the MPA algorithm is the most complex,

with its complexity considerably increasing as Z grows. In contrast, AMP-FO is the

least complex, with its complexity increasing more slowly with increasing constellation

size. FG-GAI, which replaces µfj→xi
with means and variances, significantly reduces

complexity, achieving a complexity reduction factor of 75 at Z = 16 compared to MPA.

The AMP algorithms further reduce complexity by replacing messages with means and

variances. AMP-GA offers a complexity reduction factor of 10 compared to FG-GAI, and

finally, AMP-FO achieves the lowest complexity, with its complexity being approximately

30% of that of the EP algorithm. AMP-FO does this by computing only mean and

variance information at the VN and FN nodes.
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4.7 Extension to MIMO systems

Multiple-Input Multiple-Output (MIMO) systems are employed by using mul-

tiple transmit and receive antennas, which can significantly increase capacity and

enhance performance in digital communication systems. MIMO systems have the capa-

bility to boost data rates through multiplexing and enhance performance and reliability

through diversity techniques (GOLDSMITH, 2005). More recently, massive MIMO has

emerged as a critical technology to meet the demands of users in terms of performance

and Quality of Service (QoS) for next-generation communication systems (ALBREEM

et al., 2019).

Given that the OFDM technique permits parallel transmission over multiple

subchannels, the combination of OFDM and MIMO technologies results in what is

known as a MIMO-OFDM system (TAROKH et al., 2007). Depending on the system

configuration, this combination can lead to improvements in signal detection and channel

estimation for wireless communications (LI et al., 2002).

Research has shown that the integration of MIMO techniques with OTFS

modulation, referred to as MIMO-OTFS, can significantly increase spectral efficiency and

robustness in fast-varying MIMO channels (HADANI; MONK, 2018). A study of signal

detection and channel estimation in MIMO systems combined with OTFS (MIMO-OTFS)

was presented in (RAMACHANDRAN; CHOCKALINGAM, 2018), where the authors

applied the Gaussian Approximation of Interference proposed in (SOM et al., 2011) to

the factor graph derived from the MIMO-OTFS system model.

In this context, we extend the SISO-OTFS modulation scheme, as described

in Section 3, to MIMO-OTFS, building upon the work of (RAMACHANDRAN; CHOCK-

ALINGAM, 2018), as shown in Fig. 16.

The input-output relation of a SISO-OTFS system, as given in Eq. (3.16).

, can be extended to MIMO scenarios using spatial multiplexing techniques. Let us

denote the vectorized received signal at the jth antenna as yj and xi as the vectorized

signal at the ith as the vectorized signal at the ith transmit antenna. Consider a MIMO

system composed of nt transmit antennas Eq. (3.16), we derive the following set of
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Figure 16 – MIMO-OTFS system diagram
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Source: adapted by author from (RAMACHANDRAN; CHOCKALINGAM, 2018).

input-output equations:

y1 = H11x1 +H12x2 + ...+H1ntxnt + w̃1,

y2 = H21x1 +H22x2 + ...+H2ntxnt + w̃2,

...

ynr
= Hnr1x1 +Hnr2x2 + ...+Hnrntxnt + w̃nr ,

(4.36)

where HMN×MN
ji represents the effective channel vector between the ith transmit an-

tenna and the jth receive antenna.

We can express equation (4.36) in a compact form as:

ymimo = Hmimoxmimo + w̃mimo, (4.37)

where HntnrMN×ntnrMN
mimo represents the MIMO effective channel matrix

Hmimo =


H11 H12 . . . H1nt

H21 H22
. . . H2nt

... . . . . . . ...

Hnr1 Hnr2 . . . Hnrnt ,

 , (4.38)

and xmimo = [xT
1 ,x

T
2 ...,x

T
nt
]T denotes the vectorized symbols transmitted vector, ymimo =

[yT
1 ,y

T
2 ...,y

T
nr
]T represents the vectorized received signal vector and w̃mimo = [w̃T

1 , w̃
T
2 ..., w̃

T
nr
]T

is the noise vector of MIMO-OTFS systems.

Assuming nt = nr = na (the number of transmit and receive antennas is

equal), and considering that the matrix H is also sparse, we can represent equation

(4.37) using a factor graph with MNna variables nodes and MNna factor nodes, similar

to the SISO case. The number of non-zero elements in each line and column of Hmimo

is equal to the number of paths P times na.
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Extending the study to MIMO-OTFS systems implies a substantial increase

in the complexity of the algorithms described in this chapter. This increase is mainly

attributed to MPA, which considers each edge between variable nodes and factor nodes,

with the complexity growing with the number of paths. Additionally, in a multipath

scenario, each antenna in the MIMO system configuration will experience fading from

each path.

In the next section, we will analyze the complexity of the considered al-

gorithms for MIMO-OTFS systems by counting the required number of floating-point

operations (FLOPs).

Once again, a preprocessing step is required for all message passing algo-

rithms to compute the square norms |hj,l|2, which demands 3POA2 FLOPs. Table 4

displays the number of total FLOPs per iteration for each algorithm as a function of the

constellation size (Z-QAM modulation), the number of paths P , the number of variable

nodes (VNs) and factor nodes (FNs) (O).

Table 5 – Complexity by total number of FLOPs per
iteration to MIMO-OTFS

Algorithm FLOPs
MPA [(ZPA−1)(PA− 1) + PA+ 12]ZPOA2 − 15ZOA

FG-GAI [6Z2 + (15PA− 5)Z + (2Z + 2)PA− 5]POA2

AMP-GA (15Z + 22PA− 19)POA
AMP-EP (7Z + 16PA)OA+ (10PA+ 11)POA2

AMP-FO (15Z + 24PA+ 8)OA+ 3POA

Source: the author.

Based on Table 5, Figure 17 illustrates the complexity in terms of FLOPs as

a function of the constellation size Z for each algorithm.
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Figure 17 – Complexity Evaluation to MIMO-OTFS
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In Figure 17, we have maintained the same configuration as described in

subsection 4.6, which involved a single antenna (SISO-OTFS). However, in this context,

we extend our analysis to include two antennas A = 2. We will employ the identical

set of parameters to assess the bit error rate performance in our study of MIMO-OTFS

systems. It is evident that there has been an exponential increase in the complexity of

the MPA algorithm due to the need to consider each path P for each antenna in the

MIMO-OTFS system.

4.8 Results and discussion

In this section, we will evaluate the bit error rate (BER) performance of the

OTFS system, considering the various low-complexity algorithms presented in this

chapter (MPA, FG-GAI, AMP-GA, AMP-EP, and AMP-FO) over a delay-Doppler channel

model in a multipath scenario for both SISO-OTFS and MIMO-OTFS cases.

4.8.1 OTFS in SISO system

The simulation parameters are detailed in Table 6.
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Table 6 – Simulation Parameters for
SISO-OTFS

Parameter Value
Carrier frequency (fc ) 4 GHz
Subcarrier spacing (∆f ) 15 kHz
Number of subcarriers (M ) 64
Number of OTFS symbols (N ) 64
Number of paths (P ) 4
Modulation scheme 4-QAM
UE speed 60, 120, 180 km/h
Channel estimation ideal
Doppler shift 234 Hz
Delay shift 1 µ s

Source: the author.

The channel model used is the DDP multipath model (RAMACHANDRAN;

CHOCKALINGAM, 2018). Based on the parameters given in Table 6, we considered

two different integer case (k̃i = 0) scenarios, both with four paths, where each reflector

had delay shift multiple of 1 µs and Doppler shifts multiple of 234 Hz. The delay and

Doppler shifts for each path in the two considered scenarios are provided in the Table 7

and Table 8, respectively. In Scenario 1, all reflectors have different Doppler shifts but

are in the same direction, while in Scenario 2, the reflectors are in different directions

(two positive and two negative Doppler shifts).

Table 7 – DDP for multipath channel model -
Scenario 1

Path index (i) 1 2 3 4
Delay (τi) 0 µ s 1 µ s 2 µ s 3 µ s
Delay tap (li) 0 1 2 3
Doppler (νi) 0 Hz 234 Hz 468 Hz 702 Hz
Doppler tap (ki) 0 1 2 3

Source: the author.

Table 8 – DDP for multipath channel model -
Scenario 2

Path index (i) 1 2 3 4
Delay (τi) 0 µ s 1 µ s 2 µ s 3 µ s
Delay tap (li) 0 1 2 3
Doppler (νi) -234 Hz 468 Hz 234 Hz -234 Hz
Doppler tap (ki) -1 2 1 -1

Source: the author.
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First, we conducted a study of the BER performance as a function of the

number of iterations for each algorithm to determine the most appropriate value for the

system. Figure 18 presents the results for Scenario 2 with SNR = 12 dB

Figure 18 – Analysis of number of iterations for Scenario 2
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Based on Figure 18, we can infer that, for the considered DDP model, the

required number of iterations for each algorithm is as follows: FG-GAI requires 10

iterations, AMP-GA requires 15 iterations, AMP-EP requires 20 iterations, and AMP-FO

requires 15 iterations. MPA converges faster and, therefore, only requires 5 iterations.

After determining the appropriate number of iterations, we studied the impact of the

damping factor for scenario 2, as Eq. (4.5), on the BER performance in the range of

0.45 to 0.75, as shown in Figure 19.

The influence of the damping factor is minimal, with each algorithm exhibiting

different optimal values. FG-GAI performs best at a damping factor of 0.55, AMP-GA

at 0.5, AMP-EP at 0.65, and AMP-FO at 0.6. MPA remains unaffected by variations in

the damping factor, and the same number of iterations and damping factors have been

used for scenario 1. A summary of the damping factors and the number of iterations for

each algorithm is presented in 9.
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Figure 19 – Analysis of damping factor for Scenario 2
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Table 9 – Damping Factor and Iteration values

Algorithm Iterations Damping factor
MPA 5 0.6

FG-GAI 10 0.55
AMP-GA 15 0.5
AMP-EP 20 0.65
AMP-FO 15 0.6

Source: the author.

Using these parameters, we simulated the BER performance of the OTFS

system for each low-complexity algorithm detector across a range of SNRs from -13 to

17 dB, for both Scenario 1 and Scenario 2. Figure 20 and Figure 21 depict the BER

performance as a function of SNR for Scenario 1 and Scenario 2, respectively.

These simulations used the channel model defined by Eq. (2.9), and all

graphs are based on the same Heff matrix.

In both Figures 20 and 21, all algorithms perform similarly at low SNRs.

However, differences become apparent above 12 dB. In Scenario 1, the MPA algorithm,

despite being the most complex, achieves the best BER performance. At BER= 10−3,

the performance losses of AMP-EP and AMP-FO are 1.25 dB and 2.25 dB, respectively,

compared to MPA. In Scenario 2, AMP-EP achieves the same performance as MPA,
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Figure 20 – BER Performance of OTFS with Scenario 1
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Figure 21 – BER Performance of OTFS with Scenario 2

-10 -5 0 5 10 15

SNR in dB

10
-4

10
-3

10
-2

10
-1

B
E

R

MPA

FG-GAI

AMP-GA

AMP-EP

AMP-FO

Source: the author.



99

while AMP-FO’s performance is 0.8 dB worse at BER= 10−3. In both scenarios, AMP-GA

has the worst performance, followed by FG-GAI and AMP-FO.

In both scenarios, the BER performance of the AMP-FO algorithm closely

resembles that of AMP-EP, while AMP-FO is significantly less complex. These results

suggest that, in both scenarios, AMP-FO strikes a favorable balance between complexity

and BER performance.

It is worth noting that in this thesis, another approach was explored for this

scenario, based on a new data organization model in the received signal to enhance

data detection in a continuous variable environment in the context of the quantification

of uncertainties (CURSI; SAMPAIO, 2015). Appendix B presents the method and

preliminary result obtained from this approach, which showed promising results, as it

reduces the complexity-BER trade-off since matrix inversion is not required.

4.8.2 OTFS in MIMO system

The BER performance of the MIMO-OTFS system was evaluated over a

delay-Doppler channel model in a multipath scenario, considering the low-complexity

algorithms AMP-GA, AMP-EP, and AMP-FO. Their performance was compared to

that of the linear Minimum Mean Square Error (MMSE) algorithm. MMSE provides a

direct evaluation of the transmitted symbols using Eq. (2.19), where H = Hmimo and

y = ymimo.

The simulation parameters are detailed in Table 10.

Table 10 – Simulation Parameters for MIMO-OTFS

Parameter Value
Carrier frequency (fc ) 4 GHz
Subcarrier spacing (∆f ) 15 kHz
Number of subcarriers (M ) 64
Number of OTFS symbols (N ) 64
Number of paths (P ) 4
Number of antennas (na) 2
Modulation scheme 4-QAM
UE speed 60, 120 km/h
Channel estimation ideal
Doppler shift 234 Hz
Delay shift 1 µ s

Source: the author.

The channel model used is the same delay-Doppler Profile multipath model
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(RAMACHANDRAN; CHOCKALINGAM, 2018), and the delay and Doppler shifts for

each path were taken from Table 10 for the more complex Scenario 2. We simulated the

BER performance of the MIMO-OTFS system for each low-complexity algorithm detector

across a range of SNRs from -5 to 10 dB. Figure 21 presents the BER performance as

a function of SNR.

Figure 22 – BER Performance of MIMO-OTFS
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All factor graphs are based on Hmimo matrix, which represents the MIMO

effective channel matrix. As shown in Figure 22, all low-complexity MPA algorithms

(AMP-GA, AMP-EP, and AMP-FO) exhibit similar performances, while the linear algo-

rithm MMSE provides lower performance. A 5 dB difference at BER = 10−2 is observed

between MMSE and AMP algorithms. The BER performance of the AMP-FO algo-

rithm closely resembles that of AMP-GA and AMP-EP, but AMP-FO is significantly less

complex.

As expected, the MIMO-OTFS scheme outperforms the SISO-OTFS, with

a 5 dB gain observed at BER = 10−1. Due to spatial diversity, the detector algorithms

exhibited similar performance behavior, with some divergence at 10 dB. The most
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complex AMP-GA interactive algorithm achieved the best BER performance, while

the linear algorithm MMSE provided the worst BER performance. Furthermore, the

complexity of the AMP-FO algorithm is significantly lower than that of the other interactive

algorithms AMP-GA and AMP-EP. Therefore, AMP-FO presents the best performance-

complexity tradeoff, similar to the SISO-OTFS case.
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5 CHANNEL ESTIMATION

The wireless communication channel is susceptible to signal degradation

caused by multipath effects. These effects result from electromagnetic wave reflections

at various points along the transmission path between the digital transmitter and receiver.

This multiplicity of propagation paths, referred to as multipath, can introduce interference

when multiple signals reach the receiver simultaneously, degrading the quality of the

received signal. One of the consequences of this interference is ISI, where digital

modulation symbols overlap, leading to errors in symbol detection. In the context of

wireless communication, accurate estimation and compensation of channel effects play

a crucial role in the receiver’s performance. The increasing demand for communication

systems with higher data transmission capacities, robustness, and lower computational

complexity has driven extensive research into algorithms for channel estimation and

symbol detection. The OFDM transmission technique has gained prominence due to its

resistance to ISI and ability to transmit high data rates. OFDM achieves this by dividing

the total available bandwidth into smaller subchannels and using orthogonal subcarriers

for data transmission. However, even in OFDM systems, channel estimation remains

essential due to the impact of multipath wireless channels.

Additionally, OFDM is less robust when operating in rapidly time-varying

multipath scenarios. In response to this challenge, researchers have recently proposed

the use of OTFS (Orthogonal Time Frequency Space) modulation, particularly in sce-

narios with high Doppler shifts. OTFS differs from OFDM in that it multiplexes symbols

in a delay-Doppler domain rather than the time-frequency domain used by OFDM,

which is prevalent in current systems such as 4G and 5G networks. Studies indicate

several advantages of OTFS over OFDM, including increased data rates and reduced

Peak-to-Average Power Ratio (PAPR). Another significant advantage is the sparsity of

the channel produced by OTFS, allowing the use of low-complexity algorithms for data

detection. Nevertheless, in both OFDM and OTFS, accurate channel estimation remains

crucial to minimize errors in data detection. This thesis addresses the challenge of

channel estimation in the context of OTFS modulation applied to macrocell channels.

In this chapter, we will begin by reviewing the fundamentals of time-domain

channel estimation using OTFS modulation in a macrocell channel. To obtain the CIR,

we need to interpolate the estimated samples received at the receiver. While a previous
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work (DAS et al., 2020) used the cubic spline method for interpolation, described in

Section 5.2.1, this thesis proposes an alternative interpolation method based on solving

the Poisson equation through Finite Element Method (FEM), presented in Section 5.2.2.

This method offers several advantages, including the calculation of source values for

the equation within each sample subinterval through an ODE of 2nd order and taking

into account the signal’s nature. Finally, in Section 5.3, we will present the results of a

comparison between the different methods.

5.1 Time Frequency Domain Channel Estimation

In this section, we will summarize the steps involved in estimating the macro-

cell channel, as described in (DAS et al., 2020). This process generates estimated

samples of the reference CIR to obtain the complete CIR through interpolation. Esti-

mating the CIR of a macrocell channel is particularly challenging due to the presence

of fractional Doppler effects. The samples of Doppler frequencies associated with the

Tap Delay Line (TDL) values of the channel may not align exactly with the grid points

Γ, as defined in (3.2). To address this, we utilize the more complex overlay version of

OTFS, which avoids Intersymbol Interference (ISI). Our studies indicate that this results

in values distributed across N points in the impulse response for each sampled tap

delay of the received signal.

Considering that l̃i denotes the fractional delay and k̃i denotes the fractional

Doppler shift. For the macrocell scenario, where we set M = 600 e N = 12 (representing

600 multicarriers spaced 15 kHz apart, with a fixed number of 12 OFDM symbols per

frame). , the interference caused by fractional delay is considered insignificant due to

satisfactory delay resolution (1/M∆f ). However, the fractional Doppler shift remains

relevant, considering the low resolution 1/NT compared to the Doppler value associated

with the speed of reflectors (e.g., 576 km/h). In this case, we consider T , taking into

account the duration of the Cyclic Prefix (CP), as T = Tu + TL, where T = 1/∆f + TL,

resulting in T∆f = 1 +∆fTL = 1 + L/M .

Our goal is to estimate the impulse response of the macrocell channel in the

time domain rather than the delay-Doppler domain. According to (DAS et al., 2020),

channel estimation in the time domain exploits the sparsity in this domain and reduces

the complexity of channel impulse response estimation in the presence of fractional



104

Doppler. From this motivation, a method for estimating the time domain equivalent

channel matrix that uses energy thresholding and spline interpolation was presented

in (DAS et al., 2020), with Linear Minimum Mean Square Error (LMMSE) used for

detection.

Rather than employing the embedded pilot scheme proposed in (RAVITEJA

et al., 2019), , which involves a single high-SNR pilot surrounded by a guard band within

the delay-Doppler grid, we adopt a different approach. We utilize a single high-SNR pilot

while distributing the guard band across all k points, where k ∈ {0, 1, ..., N − 1}. This

modification addresses the interference caused by fractional Doppler effects affecting

all symbols within the Doppler domain. In this context:

X[l, k] =


√
PPLT if l = lp k = kp;

0 if lp− lτ < l < lp+ lτ

QAM-4 symbol else

(5.1)

where
√
PPLT represents a pilot energy, lp signifies the pilot’s delay position, kp denotes

the pilot’s Doppler position, and lτ represents the maximum delay considered.

To illustrate this pilot distribution, Figure 23 provides a 2D representation of

symbol placement within the delay-Doppler domain:

Figure 23 – Example of symbol placement in the delay-Doppler domain with the
embedded pilot at (lp, kp) and the guard interval.

Source: the author.
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Subsequently, starting with the data in the delay-Doppler domain at the

transmitter, we execute the Orthogonal Time Frequency Space (OTFS) transform. This

transformation entails the Inverse Short-Time Fourier Transform (ISFFT) to convert data

from the delay-Doppler domain (X[l, k]) into the time-frequency domain XFT [m,n]. The

process involves the following steps: Firstly, we apply an Inverse Fast Fourier Transform

(IFFT) in the Doppler domain to obtain X ′[l, n], delay-time domain.

X ′[l, n] =
1√
N

N−1∑
k=0

X[l, k]ej2π
nk
N . (5.2)

Then, we apply an FFT in the delay domain to obtain XFT [m,n],

XFT [m,n] =
1√
M

M−1∑
l=0

X ′[l, n]e−j2πml
M

=
1√
MN

N−1∑
k=0

M−1∑
l=0

X[l, k]ej2π(
nk
N

−ml
M ).

(5.3)

Subsequently, we employ an OFDM modulator, executed via an IFFT in the

frequency domain, to yield the signal in the time domain, as shown in Eq. (5.8).

X ′′[l, n] =
1√
M

M−1∑
m=0

XFT [m,n]ej2π
ml
M . (5.4)

Hence, this IFFT compensates for the FFT applied in the delay domain to

X ′[l, n], as a consequence of signal processing, as described in Eq. (5.5)

X ′′[l, n] = X ′[l, n] =
1√
N

N−1∑
k=0

X[l, k]ej2π
nk
N . (5.5)

Consider a scenario where we transmit a frame containing only one non-zero

element, the pilot element PPLT . In this case:

X[l, k] =


√
PPLT if l = lp k = kp;

0 else
(5.6)

Then we have:

X ′′[l, n] =
1√
N

√
PPLT

N−1∑
k=0

δ(l − lp)δ(k − kp)e
j2π nk

N

X ′′[l, n] =

 1√
N

√
PPLT ej2π

nkp
N if l = lp;

0 else

(5.7)



106

This implies that the pilot symbol will experience scattering across the N

points within the time domain. This scattering behavior forms the foundation for collecting

pilot samples from the impulse response of the channel, ultimately leading to the

estimation of channel coefficients.

Given that we are utilizing CP-OTFS modulation to mitigate ISI, a CP of

length L is added to the beginning of each block of N symbols for each M subcarrier

from the output of the OFDM modulator. The total duration T must account for the

symbol duration Tu and the CP duration TL, calculated as T = Tu + TL. Following this

procedure, the time-domain output signal s(t) after the OFDM modulator is expressed

as:

s(t) =
M−1∑
m=0

N−1∑
n=0

XFT [m,n] ej2πm∆f(t−nTu) gtx(t− nTu) (5.8)

This signal, referred to as scp(t), is the signal transmitted in the time domain.

scp(t) =
1√
M

M−1∑
m=0

N−1∑
n=0

XFT [m,n] ej2πm∆f(t−nT ) gtx(t− nT ). (5.9)

To convert scp(t) into the delay-time domain, we incorporate a CP with a

length L = ⌈TcpB⌉, where B = M∆f , resulting in X
′′
cp[l

′, n], with l′ ∈ {0, 1, ...,M +L− 1}:

X
′′

cp[l
′, n] =

1√
N

N−1∑
k=0

x[l′, k] ej2π
nk
N . (5.10)

Suppose we assume the transmission of a single non-zero element, the 2D

impulse pilot located at position x(lp, kp) with a value of
√
PPLT :

XFT [m,n] =
1√
MN

√
PPLT e

j2π
(

nkp
N

−mlp
M

)
. (5.11)

In this scenario:

scp(t) =
1√
M

M−1∑
m=0

N−1∑
n=0

1√
MN

√
PPLT e

j2π
(

nkp
N

−mlp
M

)
ej2πm∆f(t−nT )gtx(t− nT ). (5.12)

In essence, the initial spread impulse pilot results from the time delay propor-

tional to lp added to the time of Tcp, after which we only have the pilot impulse recurring

every T . Consequently, scattering occurs throughout every considered symbol time,

reflecting a dispersion across the entire time domain but confined to the pilot’s delay
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location. This dispersion manifests as a scattering in the delay domain, contingent on lp.

To visualize this behavior more clearly, consider scp(t) in the delay-time domain, X ′′
cp[l

′, n],

where the pilot positions across all N points are given by: l′ = lp + L+ (M + L)n, as

shown in Eq. (5.13):

X
′′

cp[lp + L+ (M + L)n, n] =
1√
N

N−1∑
k=0

√
PPLT ej2π

nk
N . (5.13)

Figure 24 exemplifies the behavior of the 2D pilot transmitted by scp(t) con-

sidering samples in the delay-time domain.

Figure 24 – Transmitted signal X ′′
cp[l

′, n] with pilot samples in the delay-time domain

Source: the author.

For a baseband time-varying channel, it is imperative to consider the max-

imum delay (τmax) and Doppler (νmax) spread to express the channel delay length

lτ = ⌈τmaxM∆f⌉ and channel Doppler length kν = ⌈νmaxNT ⌉, respectively. The CP

length ( L = ⌈TLB⌉) must exceed or equal the maximum delay to enable the detection

of channel taps by observing the shifts experienced by the pilot symbol due to macrocell

channel interference from the received signal rcp(t). Consequently, factoring in the

transmitted signal scp(t), channel impulse response h(τ, ν), and gtx (a rectangular pulse),

the processing of the time-domain received signal on the baseband is described by:
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rcp(t) =

∫ τmax

τ=0

∫ νmax

ν=−νmax

h(τ, ν)scp(t− τ) ej2πν(t−τ)dτdν + w(t), (5.14)

In the case of the macrocell channel, where the gain paths of each tap vary

smoothly over time, this variation directly influences the Doppler domain, as outlined in

Eq. (2.9) for a time-varying channel such as the macrocell channel. Utilizing Eq. (2.10),

the signal received in (5.14) can be reformulated as:

rcp(t) =

∫ τmax

τ=0

h(τ, t)scp(t− τ)dτ + w(t), (5.15)

In the context of discrete paths and assuming negligible noise due to a high

SNR, we can simplify Eq. (5.15) as follows:

rcp(t) =
P∑
i=1

hi(τi, t) scp(t− τi) e
j2πνi(t−τi), (5.16)

Thus, as discussed in (DAS et al., 2020), , by sampling the received signal

(5.16) at a rate of fs = (M + L)/T , we obtain rcp[a
′],

rcp[a
′] =

P∑
i=1

hi[li, a
′] xcp[a

′ − li] e
j2π

ki(a
′−li)

(M+L)N , (5.17)

where a′ ∈ {0, 1, ..., (M + L)N − 1}. These samples collected from rcp[a
′] correspond to

observations of the pilot’s delay position (lp), which was transmitted with a high SNR

(e.g., 30dB). To achieve this, a threshold method is employed. This method retains

only those samples exceeding a positive detection threshold, ranging from the pilot’s

delay position to the maximum delay (lτ ≤ L − 1) considered for all N points in the

time domain. A detailed description of the threshold method, based on (RAVITEJA

et al., 2019), is available in Appendix C, providing a matrix analysis of the received

signal in the delay-Doppler domain for enhanced clarity. In this thesis, we adopt the

same threshold value Υ as the original authors, i.e., Υ = 3σ2
d, where σ2

d represents the

variance of the transmitted signal.

As evident from Eq.(5.7), the transmitted 2D impulse pilot scatters across N

time points. Consequently, after passing through the channel, each tap will spread the
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pilot across n time points. However, the spread in the delay domain is limited to lp + lτ

from the lp position. Thus, for each delay position li relative to lp, where the received

sample exceeds the threshold, we normalize this sample by the gain path associated

with the respective scattered samples of the transmitted pilot signal. This process yields

the coefficients of the channel spread at n points. Subsequently, we calculate li = l − lp

to determine the first delay position of each path. The sample at each of these positions

is then normalized by the respective position of the pilot transmitted in X
′′
cp[l

′, n]. By

performing these steps, we obtain the taps of the estimated channel. A cubic spline

interpolation within the range [0 (M + L)N − 1] is applied to these samples, denoted

as ĥli = rcp[a
′]/x′′

cp[a
′]. Consequently, considering all samples a′ above the threshold

(rcp[a′] > Υ) as pilot samples, we obtain the vector of variations in estimated path gains

in the time domain of the estimated channel. This can be expressed as:

ĥli =spline({ĥ(li + lp + L+ a′, a′ |a′ ∈ [0 (M + L)N − 1]},

[L+ lp + li : M + L : (M + L)N ], [0 : (M + L)N − 1]).
(5.18)

where "spline" refers to the Matlab function "interp1" for cubic spline interpolation. It

takes three input vectors: the first indicates the sample points, the second contains

the values of the sample coefficients, and the third defines the desired interpolation

interval. Using these estimated values, we obtain the Channel Impulse Response

(CIR) of the estimated channel, denoted as Ĥ following Eq. (3.11). In this case, we

consider hi∆li = diag[ĥli ] as the diagonal matrix of coefficients for each path, resulting

in Ĥ ∈ C(M+L)N×(M+L)N , representing the estimated channel matrix in the time domain.

After eliminating the CP samples, we can apply the same procedure as

described in (3.17) to obtain Ĥeff . This enables the processing of data detection based

on the estimated effective channel. For data detection, we also remove the CP samples

from r[a′] to obtain r[n′], where n′ = 0, ..., N − 1). Subsequently, the time-frequency data

is obtained as:

Y FT [m′, n′] =
1√
M

M−1∑
m=0

r[n′]e−j2πm′m
M , (5.19)

Following this, the delay-Doppler signal is acquired by applying the OTFS

inverse transform (SFFT) as presented in equation Eq. (5.19).
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Y [l′, k′] =
1√
MN

M−1∑
m′=0

N−1∑
n′=0

Y FT [m′, n′]e−j2π(n
′k′
N

−m′l′
M

), (5.20)

5.2 Channel estimation by interpolation

As previously mentioned, channel estimation involves applying the threshold

method to the pilot scatter position samples and estimating these samples based on

high SNR pilot samples used during transmission. This results in N samples for each

tap, which collectively constitute the CIR. Consequently, the problem at hand can be

addressed through interpolation techniques applied to each pair of estimated samples

derived from the received signal.

In our channel estimation approach, we have employed a supervised method.

However, it is important to note that the CIR of the macrocell channel involves complex

values. Consequently, we need to interpolate both the real and imaginary parts of each

data point over time, bridging the gaps between the collected samples.

The interpolation technique initially chosen by the authors in (DAS et al.,

2020) is the cubic spline method. We will provide a concise summary of this method

in Section 5.2.1. . Additionally, we will introduce another interpolation method for CIR

estimation, one that utilizes a numerical solution of the Poisson equation. In Section

5.2.2.2, we will elaborate on our approach, which employs the FEM for this purpose.

Given that the estimated samples are in the form of complex symbols, we perform the

interpolation of the real part {Re} independently from the imaginary part {Im}. This

separation allows us to concatenate these two parts to obtain the complete complex

value: {Re}+j{Im}, as suggested in (BROWN; CHURCHILL, 2009). For those readers

unfamiliar with these methods of estimating complex variables, we recommend referring

to(BARTELS et al., 1998), (JOHNSON, 1988) and (PINA, 2010), where the authors

delve into the intricacies of working with complex variables. The Sections 5.2.1 and

5.2.2 support the estimation of complex variables through the spline and FEM methods,

respectively.
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5.2.1 Estimation by cubic spline method

Instead of attempting to model a set of observations with a single polynomial,

this method selects distinct points within the range of observations, often referred to as

"knots," and defines a separate polynomial for each segment. This approach is particu-

larly valuable when dealing with complex curves, as it enables the modeling of intricate

shapes by employing simpler polynomial functions. In essence, the principle behind

spline interpolation is that, if a function possesses a certain degree of smoothness,

typically indicated by having at least a continuous derivative, the piecewise interpo-

lating polynomial can effectively approximate the observed function. This holds true

even when the individual polynomial segments themselves are not inherently smooth

(BARTELS et al., 1998).

In this context, given a set of N points J = (xj, yj)
n
j=1 such that xj+1 > xj and

abscissa values arranged in ascending order, a cubic spline P3 can interpolate these

points. A cubic spline is a piecewise function consisting of third-degree polynomials

within each subinterval [xk−1, xk] . This spline ensures continuous first and second-order

derivatives within the interval [x0, xn]. Specifically, each subinterval features piecewise

cubic polynomials:

pk(x) = ak(x− xk)
3 + bk(x− xk)

2 + ck(x− xk) + dk (5.21)

A cubic spline is determined by 4n parameters: a1, b1, c1, d1, a2, b2, c2, d2, ..., an,

bn, cn, dn. To maintain continuity of P3, P
′
3 and P ′′

3 , we must ensure: pk(xk) = pk+1(xk),

p
′

k(xk) = p
′

k+1(xk), and p
′′

k(xk) = p
′′

k+1(xk), for all k = 0, 1, ..., n− 1.

In an interpolation problem, we also have P3(xk) = yk, meaning p0(x0) = y0

and pk(xk) = yk,∀k = 1, ..., n. With this, we obtain: 3(n− 1)+ (n+1) = 4n− 2 equations

to determine 4n variables. Consequently, two additional open conditions need to be

imposed, typically resulting in a choice of natural cubic splines to minimize curvature.

Often, the conditions P ′′
3 (x0) = 0 and P ′′

3 (xn) = 0 are employed. By manipulating these

equations, we find that the parameters a1, b1, c1, d1, a2, ..., dn of a natural cubic spline

are determined by solving a classic system of linear equations to find k values of the

third-degree polynomial for each of the n− 1 subintervals.

Thus, it is an interpolation model with good flexibility, enabling the represen-
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tation of atypical data behaviors that would be unattainable with a singular function or

model. The number and placement of nodes play a pivotal role in ensuring the accuracy

of the adjustment (SCHUMAKER, 2007). On the flip side, it presents a drawback in

the form of potential overfitting. This drawback can detrimentally impact the model’s

predictive capacity, as an excessive number of nodes can lead to a deterioration in

model fit and pose challenges in determining the optimal number and location of these

nodes. In essence, it serves as a fundamental interpolation method, regardless of the

underlying behavior of the signal.

5.2.2 Estimation by the Finite Element Method (FEM)

It is essential to note that both cubic spline and FEM interpolation methods

deal with the estimation of complex CIR values. As per (BROWN; CHURCHILL, 2009),

we independently estimate the real {Re} and imaginary {Im} parts before combining

them into a complex variable {Re}+ j{Im}. For a deeper understanding of complex

variable estimation, please refer to Appendix D.

Considering that the Cauchy-Riemann conditions, outlined in Appendix D,

are not met for the channel impulse response of the macrocell channel, we propose a

unique behavior for the CIR through the Poisson equation. Our method involves solving

the Poisson equation within each of the N − 1 sampled and estimated subintervals of

the channel for each tap. We achieve this by applying the FEM method for interpolation.

FEM is chosen due to its stability and accuracy, which are supported by mathematical

theories, making it a robust tool for various fields of science and engineering (JOHNSON,

1988).

5.2.2.1 Finite elements method

FEM is a numerical technique applicable to a broad spectrum of problems

encompassing diverse physical phenomena subject to various interactions with their

surroundings. Its stability and accuracy are well-established and supported by rigorous

mathematical theories, enhancing its applicability in science and engineering. FEM is

primarily used to solve boundary-value problems based on a differential equation and a

set of boundary conditions. (SOLíN, 2005).

The fundamental concept of FEM involves partitioning the domain into smaller
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subdomains, referred to as finite elements. The unknown quantity’s distribution within

an element is interpolated based on values at its nodes. Typically, two widely used

topologies in FEM are nodal, where scalar unknowns are calculated at element nodes,

and edge formulation, where vectorial unknowns are calculated along element edges.

The interpolation functions (shape functions) are selected to be a complete set of

polynomials. The accuracy of the FEM depends on factors such as the order of these

polynomials, among others. Two common approaches include linear and quadratic

interpolations; in this context, we use linear interpolation for simplicity. The numerical

solution corresponds to the values of the unknown quantity at the nodes of the dis-

cretized domain. These values are then determined by solving a classical system of

equations, typically represented as Ax = b. The construction of this equation system

involves converting the governing differential equations and boundary conditions into an

integro-differential formulation. This is achieved by minimizing a functional (KOSHIBA,

1993), which is expressed as an integral function with functions as arguments.

This functional can be constructed based on either the variational or weighted-

residual method, with the Galerkin method being the chosen approach for this study.

In this formulation, the method is applied to a single element, with appropriate weight

and interpolation functions employed to derive the corresponding element equations.

In the specific context of our one-dimensional problem, which is the primary focus, the

equations for each linear element (comprising only 2 nodes) necessitate the determina-

tion of both a matrix and a vector for every element (elementary), denoted as Ae and

be, respectively. In the case of a linear element, the interpolation function employed to

calculate Ae is expressed as follows:

Ae =
1

le

 1 −1

−1 1

 (5.22)

be =
ρle
2

1
1

 (5.23)

where le signifies the length of the element, which corresponds to the distance between

nodes (in our case, le is equal one unit), and the elementary vector be is computed by

considering the element’s length, which is distributed across the two nodes, adjusted
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by a value indicative of the slope of the line. In our specific scenario, this value is

determined by the source ρ of the Poisson equation, a topic to be elaborated upon in

subsection 5.2.2.2. Specifically, it follows the form of (ρle)/2 for each adjacent node.

The set of all these individual elements results in the formation of a matrix denoted as A

and a global vector designated as b. These elements collectively facilitate the derivation

of the interpolation solution. This global matrix encompasses the complete spectrum of

boundary condition values within the domain under consideration.

The preference for adopting the Galerkin method in this study is rooted

in its inherent simplicity when compared to the variational method. Additionally, it

commences its approach by starting from the governing differential equation. The

initial step in this methodology involves the formulation of a residual derived from the

partial differential equation governing the problem at hand. This residual is inherently

linked to the boundary values relevant to the problem under analysis. The residual

is obtained by transferring all terms of the Partial Differential Equation (PDE) on one

side. Subsequently, the residual is subjected to multiplication by a weight function and

integrated over the domain of an individual element.

The key steps in applying FEM using Galerkin for solving problems with

known boundary conditions in synthetic form are as follows (POLYCARPOU, 2006):

1. Discretize the domain into finite elements;

2. Select appropriate interpolation functions;

3. Formulate the integro-differential equation;

4. Derive the linear equations for each element;

5. Assemble the global matrix system of equations for all elements and solve

it using linear algebra techniques. This method is versatile and can be applied

to problems of any order, including one-dimensional and two-dimensional cases.

The higher the dimensionality of the problem, the more computationally complex it

becomes.

In our problem, we need to interpolate Q = (M + L)N values of a function

from N estimated samples of the channel impulse response for each multipath. As

these values are complex, both the real ({Re}) and imaginary ({Im}) components

must be interpolated independently. The use of FEM simplifies this process, especially

because it is a one-dimensional problem. We use a nodal formulation with linear basis
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functions in a Cartesian coordinate system. Additionally, observing the smooth and

continuous variation over time of each multipath in the channel’s impulse response

allows us to find a source value in each of the N − 1 subintervals. This value is essential

for solving the Poisson equation, which forms the basis of our interpolation technique

using one-dimensional FEM.

5.2.2.2 Poisson equation and FEM

In this section, we address the numerical challenges posed by rapid varia-

tions in the macrocell channel. In such cases, the traditional Laplace equation-based

formulation does not effectively capture these variations, as it relies on elements opti-

mized for smooth transitions. To overcome this limitation, we introduce a perturbation

into this equation by incorporating a source term. This perturbation corresponds to the

Poisson equation, which alleviates the need to meet the Cauchy-Riemann conditions,

as discussed in Section 5.2.

The Poisson equation is a PDE used to determine physical quantities in

various fields, including electromagnetism and engineering. It is named after the French

mathematician and physicist Siméon Denis Poisson.

In a general context, the Poisson equation, in conjunction with the specified

boundary conditions and constraints, facilitates the determination of values within

defined regions.

Before delving into the topic, it is beneficial to provide some context. Figure

25 offers a more detailed insight into our approach. In this figure, the lower section

serves as a close-up of the upper view, focusing on a subinterval between φn and φn+1.

The upper view, on the other hand, represents N − 1 subintervals corresponding to time

instances derived from estimated samples of the response impulse of the channel. The

φ index aligns with time instances within each frame, which are estimated for only a

few moments, depending on the chosen symbol number. Our objective is to determine

an additional M + L− 1 values for each subinterval, as depicted in the lower section.

This lower part represents one of the N − 1 subintervals derived from the N samples of

a single tap of the estimated macrocell channel impulse response. These estimates

originate from the threshold method applied to the received signal. In the application of

FEM in one dimension, the topology consists of (M + L− 2) interconnected elements,
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denoted as e interconnected with each other. In our one-dimensional scenario, each

element corresponds to the values of the respective abscissas within each (M + L− 1)

subinterval, as shown in the lower part of Figure 25. The set of these interconnected

elements within each subinterval forms a linear FEM mesh, encompassing all the nodes

in the considered subinterval. Within this mesh, we aim to estimate values as a function

of φ. Consequently, in each subinterval, we have have (M+L) values or nodes available

for interpolation using the FEM method. These interpolations originate from a source

value (referred to as Poisson’s source), calculated using the values of the abscissas

x1 = (M +L)n+1 and x2 = x1+(M +L) (corresponding to the abscissa positions of φn

and φn+1, respectively, for n = 1, 2, ..., N ) in conjunction with the respective functions φn

and φn+1 at each point on the endpoints of each subinterval. Additionally, we take into

account the value of φ′
n, as we will elucidate, by commencing the method from points

where the derivative is zero.

Figure 25 – Discretization by subinterval

Source: the author.

Now, with respect to boundary conditions, we consider the domain Ω = (0, Q).

The one-dimensional Poisson equation can be expressed as follows:

∇2φ =
d2φ

dx2
= ρ (5.24)

where ∂Ω = {(x)|x = 1, 2} and ρ ⊂ R is a function called the source term. The Laplacian

operator, denoted as ∇2, is equivalent to ∇2 = ∇ · ∇, where ∇ represents the gradient

(a measure of a function’s variation in each of its variables).

The formulation in Eq. (5.24) is known as the strong formulation in finite

element theory, or the original ordinary differential equation (ODE) formulation. However,

as FEM can be employed to solve arbitrary ODEs, it is beneficial to first reformulate the

ODE into an equivalent form, referred to as the weak formulation. Consequently, the
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Poisson problem possesses both a strong and a weak formulation.

The weak formulation essentially represents a rephrased version of the

strong form (the original ODE). The final finite element approach is determined based

on this weak form (SINGH, 2009). To derive the weak form of ODE Eq. (5.24), we

multiply it by an arbitrary function (weight-function), denoted as a(x), and integrate it

over Ω, yielding:

∫
Ω

a∇2φ =

∫
Ω

aρ (5.25)

By defining a function space Awhere all functions are bounded and quadrati-

cally integrable, we can derive the global matrix A for each element. The choice of a(x)

can be adjusted to enhance results, and we can define operations on these functions

within the rules of integration. First, we determine a subspace of A where we can find the

solution φ. Considering this solution as D = {a ∈ A(Ω) : a|∂Ω = 0} and letting φ, a ∈ Ω,

we carry out the integration in Eq (5.25) according to rule: ∇(a∇φ) = ∇a · ∇φ+ a∇2φ,

as follows:

∫
Ω

a∇2φ =

∫
Ω

∇ · (a∇φ)−
∫
Ω

∇a · ∇φ (5.26)

Applying Gauss’s theorem to ∇ · (a∇φ), we obtain:

∫
Ω

∇ · (a∇φ) =

∫
∂Ω

a∇φ · n̂ dx = 0 (5.27)

∫
Ω

a∇2φ = −
∫
Ω

∇a · ∇φ (5.28)

Subsequently, we obtain:

−
∫
Ω

∇a · ∇φ dx =

∫
Ω

aρ dx (5.29)

where dx refers to an infinitesimal line segment. Thus, Eq (5.26) reduces to Eq. (5.29),

which represents the final weak formulation and is equivalent to the strong formulation.

We can reverse the steps and return to the original equation. The primary advantage of
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the weak formulation is its transformation of the second derivative over φ into two first

derivatives over weight a and φ itself.

The weak formulation (5.29) can be discretized using the global matrix (con-

catenation of all Ae elementary matrices (5.22)) as A and the global vector (concate-

nation of all be elementary vectors (5.23)) as b for all domain Ω. The interpolated

solution comprises the points in the vector φ, which contains the values of the estimated

ordinates, as shown below:

Aφ = b (5.30)

To clarify the difference between the strong and weak formulations, our

motivation for applying the Poisson equation arises from this approach. Considering

that the data within the sample space exhibit these dynamics, Eq. (5.29) represents the

sampled data of the macrocell channel through the received signal (φ(x)), and ρ serves

as the source to be determined for each subinterval of sampling.

Based on this principle, we need to determine ρ, which can be solved through

an ordinary differential equation ( d2

dx2 ), adhering to the conditions below:

φ =
ρx2

2
+ bx+ c (5.31)

φ
′
= ρx+ b (5.32)

φ
′′
= ρ (5.33)

According to Eq. (5.31), Eq. (5.32), and Figure 25, we can establish the

following equations within each subinterval:

ρx2
1 + 2bx1 + 2c = 2φn

ρx2
2 + 2bx2 + 2c = 2φn+1

ρx1 + b = φ
′

n

(5.34)

Subsequently, we obtain a straightforward system of linear equations to

determine ρ:
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x2
1 2x1 2

x2
2 2x2 2

x1 1 0



ρ

b

c

 =


2φn

2φn+1

φ
′
n

 (5.35)

A solution to this problem can be obtained for each subinterval, provided

that we know the three conditions specified in Eq. (5.34). In this context, the values of

the first two expressions in Eq. (5.35) are predefined, and the third can be assigned at

either of the two points. For simplification and approximation of the analytical solution,

after identifying the points where the derivative is zero (φ′
= 0) among the N samples,

we opt to commence with the local maximum or minimum points closest to the domain’s

extreme points Ω = [1, Q].

Once the source value ρ or the subinterval under examination is determined,

we employ the FEM solver, which models Poisson’s equation, to compute all (M + L)

values within that subinterval. For the subsequent subinterval, we use the values of

ρ and b previously obtained as solutions to Eq. (5.34) to calculate the new condition

for φ′
n, consequently obtaining the three conditions for that subinterval. This process

is iteratively repeated for each subinterval, with the discovery of the source ρ for each

initiating the solution of Poisson’s equation through FEM, leading to an interpolation

closer to the analytical solution.

Algorithm 6 outlines the steps for interpolating the real part using the FEM-

Poisson method. A similar procedure is executed for the imaginary part of the Channel

Impulse Response (CIR).
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Algorithm 6: FEM-Poisson algorithm
Input;

// sample abscissa points vector of length N

x;

// real part of estimated value of the channel vector in the respective abscissa points

of length N

φ̂Re;

// total amount of points to interpolate

Q;

Output;

// ordinate vector with the Q values of the interpolation points

φ;

Initialization;

1. From x and φ̂Re extract all the points where the derivative is zero and find the xi abscissa point closest

to the extremes points (x1 or xQ);

2. Set the length of the element: le = xQ − xQ−1 = 1;

Start the forward interpolation;

for j = i to N − 1 do

3. Initialize Aj as an empty matrix, bj as an empty vector and φj as an empty vector;

4. Find ρj , bj and cj this subinterval by computing Eq. (5.35);

// From ρj, apply the FEM to solve Poisson’s equation and interpolate the M + L− 1

points (nodes)

for n = i to (M + L− 1) do

Identify the elements of subinterval: xn and xn+1;

Compute the elementary matrix Aen (5.22) and the elementary vector ben (5.23);

Update the global matrix Aj = [Aj ; Aen] and the global vector bj = [bj ; ben] ;

end

5. Find φj by computing Eq. (5.30);

6. Update φ = [φ ; φj ] ;

end

Start the backward interpolation;

for j = i to 1 do

7. Initialize Aj as an empty matrix, bj as an empty vector and φj as an empty vector;

8. Find ρj , bj and cj this subinterval by computing Eq. (5.35);

// From ρj, apply the FEM to solve Poisson’s equation and interpolate the M + L− 1

points (nodes)

for n = (M + L− 1) to i do

Identify the elements of subinterval: xn and xn+1;

Compute the elementary matrix Aen (5.22) and the elementary vector ben (5.23);

Update the global matrix Aj = [Aen ; Aj ] and the global vector bj = [ben ; bj ] ;

end

9. Find φj by computing Eq. (5.30);

10. Update φ = [φj ; φ] ;

end
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In the formulation of the mathematical model, the transition from ∇2φ = 0

to ∇2φ = ρ, considering both the real {Re} and imaginary {Im} parts, is essential.

This transition allows for the incorporation of a singularity, reflecting the conjecture that

rapid variations occur in the mobile environment while maintaining continuity up to the

second derivative of the CIR. Moreover, it introduces a disconnection between hRe and

hIm. In essence, various interpolation methods could be applied without considering

the inherent nature of the φ(x) function. However, the substantiation of the hypothesis

regarding the smooth and continuous variation of the function within subintervals, with

dynamics that can be effectively described by a Poisson equation, simplifies the problem

to the resolution of an Ordinary Differential Equation (ODE) as in (5.24). This ODE

can be efficiently tackled using one-dimensional Finite Element Method (FEM). This

approach stands in contrast to a purely data-driven interpolation, which can become

considerably more complex due to the open treatment of data in each subinterval and

the disregard for the inherent nature of the problem. In Section 5.3, we present the

results of our study.

5.3 Results and Discussion

Utilizing the parameters detailed in Table 11, we implement OTFS modulation

within a SISO system operating under a macrocell channel, employing 4-QAM and

16-QAM constellations. To detect data, we employ approximating message passing

(AMP-FO), MMSE, and ZF, utilizing the received signal y and the estimated effective

channel Ĥeff . We then compare the outcomes under two scenarios: the first assumes

a known channel (ideal case), while the second relies on the channel estimation through

the spline method and the FEM.



122

Table 11 – Simulation Parameters for Macrocell Estimation

Parameter Value
Carrier frequency (fc ) 4 GHz
Subcarrier spacing (∆f ) 15 kHz
Number of subcarriers (M ) 600
Number of symbols (N ) 12
CP length (L) 255
Channel model Urban macrocell
Maximum delay (lτ ) 50
Modulation scheme 4-QAM and 16-QAM
UE speed 330 km/h
Channel estimation FEM and Spline
Pilot position (xp[lp, kp)) xp[300, 6]
Guard interval ([l, k]) [(lp + lτ )-(lp − lτ ),∀k]

Source: the author.

Before delving into the BER vs SNR results to assess the system’s perfor-

mance using the spline and FEM methods, we find it insightful to demonstrate the quality

of CIR approximation achieved by these methods. We particularly focus on the most

complex case involving 16-QAM modulation, examining both the real and imaginary

parts of the CIR. This is evident in 26 and 27, respectively.

Figure 26 – Real part interpolation using 16-QAM
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As observed in Figures 26 and 27, the CIR estimation obtained through the

spline and FEM methods closely aligns with the known (ideal) channel. Nonetheless,

both methods exhibit slightly larger errors at the extreme points, as they attempt to
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Figure 27 – Imaginary part interpolation using 16-QAM
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estimate without full knowledge of the function behavior at those specific locations.

Nevertheless, the values remain comparable to the ideal case.

This context helps us better appreciate the quality of approximation achieved

by these methods in relation to the system’s performance. Figure Figure 28 illustrates

the performance comparison among MMSE (dashed line), ZF (continuous line), and

AMP-FO (dotted line) for both known channel conditions (blue line) and channels

estimated using the spline (red line) and FEM (black line). The system configuration

assumes M = 600 subcarriers, N = 12 symbol numbers, CP lenght L = 255 and a

maximum delay lτ = 150. This analysis is based on 1000 frames for each SNR value,

ranging from 5 to 25 dB.

In Fig. 28, it is evident that the BER curves achieved using FEM or spline

estimation closely match the curve obtained using the known channel. An exception is

the curve using the ZF detection method, which is a straightforward method that does

not adapt to the SNR used. The highlighted area indicates that spline interpolation

outperforms FEM, albeit the difference in results is on the order of 10−3. This justifies

the use of the one-dimensional FEM-Poisson method since it is practical and less

complex, involving first-degree equations compared to the cubic degree used in spline

interpolation.
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Figure 28 – BER Performance considering M = 600, N = 12, L = 255 4-QAM
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Regarding data detection methods, AMP-FO performs better than MMSE

and ZF, with a BER difference of approximately 10−2 between 20 and 25 dB SNR. This

result supports the use of AMP-FO in OTFS modulation, as it accounts for channel

sparsity and employs an iterative method to refine node means and variances, all while

being less complex, as demonstrated in Chapter 4.

To assess the approximation quality of the estimated channels obtained via

FEM and spline interpolation compared to the original channel, we employ the NMSE

measure, as shown in Eq. (5.36) below, with the results presented in Figures 29 and 31,

for 4-QAM and 16-QAM, respectively.

NMSE =
||Heff − Ĥeff ||2

||Heff ||2
(5.36)

where Ĥ
MN×MN

eff is estimated effective matrix.

Figure 29 confirms that spline interpolation provides a superior estimation

compared to FEM, achieving an NMSE of 10−5 from 10 dB onwards. In contrast, FEM-

Poisson maintains an NMSE of 10−4, still considered a good channel estimation, albeit

with a 10−1 difference at the same SNR level. However, spline interpolation reaches an
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Figure 29 – NMSE measure to channel estimation for system M = 600, N = 12,
L = 255, 4-QAM
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order greater than 10−6 from 15 dB, whereas the FEM method saturates at 10−4.

A similar analysis for a 16-QAM constellation is presented in Figure 30,

demonstrating that the BER performance is lower than that of 4-QAM due to the

increased complexity. For example, at 25dB SNR, AMP-FO achieves a BER of 10−4,

while it reaches about 10−3 for 16-QAM.

Comparing to Figure 29, Figure 31 depicts the NMSE results for channel

estimation using spline and FEM with the 16-QAM constellation. Here, FEM reaches

an NMSE saturation of about 10−4 from 20dB, while spline interpolation maintains an

approximation order of 10−7 at 20dB. Notably, the NMSE measure is less influenced

by constellation size, with differences primarily attributed to the CIR estimation of

components using the threshold-based method.

Considering the favorable NMSE results and the similarity between the

BER performance of the proposed FEM-Poisson method, spline interpolation, and the

known channel, it is apparent that these methods offer performance close to the ideal

case. However, with the inclusion of guard intervals and pilots within the QAM symbol

arrangement on the delay-Doppler grid, the number of effective symbols is impacted,

leading to increased BER. Performance calculations consider only the data bits, which

represent the useful data in this context.



126

Figure 30 – BER Performance considering M = 600, N = 12, L = 255, 16-QAM
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Figure 31 – NMSE measure to channel estimation for system M = 600, N = 12,
L = 255, 16-QAM
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6 CONCLUSIONS

6.1 Final considerations

Throughout this thesis, we have extensively investigated, evaluated, and

compared four low-complexity MPA-based detectors designed for OTFS systems oper-

ating over time-frequency selective channels with high Doppler effects, focusing on BER

performance and complexity analysis. As anticipated, the MPA and AMP-EP algorithms

exhibit the best BER performance. However, the AMP-FO algorithm offers significantly

lower complexity, amounting to only about 30% of the AMP-EP algorithm’s complexity.

In fact, the AMP-FO algorithm is the least complex among the studied algorithms, yet it

results in a BER performance degradation of less than 1 dB and 2.25 dB at BER = 10−3

when compared to the AMP-EP and MPA algorithms, respectively. Consequently, the

AMP-FO algorithm gives the best performance-complexity trade-off in both SISO-OTFS

and MIMO-OTFS systems.

Regarding channel estimation, the proposed one-dimensional FEM-Poisson

method has demonstrated strong NMSE approximations, achieving a difference of

approximately 10−4 in the coefficients of the original channel. While spline interpolation

yields better estimation results, the choice of the FEM-Poisson method is justified by

its reduced complexity. It transitions from a computational complexity of cubic order

to a one-dimensional approach, exclusively involving ODE solutions. Considering the

level of approximation provided by these methods, the BER results align closely with

the MMSE and AMP-FO detectors, with the latter exhibiting superior performance.

6.2 Future opportunities

6.2.1 Channel estimation using Compressive Sensing

As previously mentioned, practical high-speed channel estimation presents

challenges associated with fractional Doppler effects. In this context, channel estimation

techniques based on compressive sensing (CS) have gained prominence (SHEN et

al., 2019; ZHANG et al., 2018). For instance, authors in (GAUDIO et al., 2022) have

employed the Least Absolute Shrinkage and Selection Operator (LASSO), which is

equivalent to l1-norm regularization via least squares minimization. They used a sensing
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matrix that exploits channel sparsity and employed a soft-thresholding iterative algorithm.

Another approach involves channel estimation in the presence of fractional

Doppler effects in the delay-Doppler domain through a deterministic pilot design, as

proposed in (SHI et al., 2021). This method relies on a deterministic pilot matrix

structure to reduce pilot overhead, with a modified sensing matrix-based channel

estimation (MSMCE) algorithm used to obtain channel estimation based on Channel

State Information (CSI) acquisition.

6.2.2 Selection vector estimation techniques

Initially, it was believed that organizing the symbol vector x as Az would

result in significantly improved performance when using a simple adaptive estimator

such as LMS for data detection compared to MMSE. However, such assumption did

not hold. The primary advantage of LMS lies in its ability to provide estimations without

requiring matrix inversion. Yet, the effective channel matrix in OTFS modulation is rather

large, typically MN ×MN . The reduction in complexity, however, impacts estimation

quality. Therefore, the next steps include investigating a better tradeoff between the

step factor’s value and the number of iterations for LMS. Additionally, exploring other

LMS variations, such as the Normalized LMS (NLMS) (KANEKO; YUKAWA, 2020)

and the Proportionate Normalized LMS (PNLMS) (DUTTWEILER, 2000), as well as

examining other least squares-based solutions, such as Alternating Least Square (ALS)

(ZACHARIAH et al., 2012) and Recursive Least Square (RLS) (BHOTTO; ANTONIOU,

2013).

Achieving an improvement in data detection using a known channel will pave

the way for effective estimation of the effective channel matrix, with it being rearranged as

a channel vector to ensure compatibility with the implemented algorithm. Subsequently,

exploring blind channel estimation and data estimation techniques will be a natural

progression.

6.2.3 Applications filtering in OTFS

Filtering has been a key technique for reducing side lobes in waveforms.

In OFDM, several filtering methods have been applied to enhance spectral efficiency

without significantly affecting performance, such as the ones described in (FARHANG-
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BOROUJENY, 2011) and (FAULKNER, 2000). Post-OFDM waveforms, such as Filter

Bank-based Multi-Carriers (FBMC) (BELLANGER et al., 2010), Universal-Filtered OFDM

(UF-OFDM) or Universal-Filtered Multicarrier (UFMC) (WILD et al., 2013), sub-band

filtering of the zero prefix (ZP)-OFDM (VAKILIAN et al., 2014) and filtered OFDM

(f-OFDM) (ABDOLI et al., 2015) have been proposed to reduce out-of-band energy.

Given that OTFS can be seen as a modified OFDM system with preprocess-

ing and postprocessing steps, it is worth exploring how different types of filtered OFDM

could impact OTFS.
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APPENDIX A – VETORIAL ANALYSIS FOR OFDM

In subsection 3.3.1 for OTFS standalone, following the same steps, with the

exception of the OTFS transforms (ISFFT/SFFT) processing, we obtain an analysis for

a modified OFDM modulation to derive the Heff expression for OFDM. The process

unfolds as follows:

Starting at the transmitter, and excluding the OTFS transform step, we have

the following:

Sofdm = FH
MGtxX = GtxXFH

N , (A.1)

In the case of applying a rectangular pulse, we can treat Gtx as an identity

matrix of size M (IM ). Therefore, Sofdm = FH
MX. By utilizing the corollary vec(AB) =

(I ⊗ A)b o, a property of the Kronecker product, we can derive the vector sofdm, as

follows:

sofdm = vec(FH
MX) = (I ⊗ FH

M)x, (A.2)

Afterward, the sofdm signal traverses the channel and experiences the addi-

tion of AWGN noise:

rofdm = Hsofdm +w

= H(I ⊗ FH
M)x+w, (A.3)

By applying OFDM demodulation to the rofdm signal, considering Gtx =

Grx = I and the matrix Rofdm = invec(rofdm), we obtain :

Y ofdm = FMGrxRofdm

= FMRofdm, (A.4)

Applying the corollary in A.4 to vec(Y ofdm), we have:

yofdm = (I ⊗ FM)rofdm (A.5)

= (I ⊗ FM)[H(I ⊗ FH
M)x+w]

= (I ⊗ FM)H(I ⊗ FH
M)x+ (I ⊗ FM)w

= Hofdm
eff x+ ŵ, (A.6)

where Hofdm
eff represents the effective channel matrix for OFDM, and ŵ = (I ⊗FM )w.
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APPENDIX B – DATA DETECTION USING THE UNCERTAINTY QUANTIFICATION

APPROACH IN OTFS

In the Single-Input Single-Output (SISO) case with OTFS modulation, we

have classically processed the general received signal Eq. (3.16) during the first year

for data detection and performance evaluation, utilizing the classic processing model

y = Hx + w. In the Uncertainty Quantification (UQ) approach for data detection in

OTFS, we employ the concept of a selection matrix and a source vector to process

the vector symbols y, as outlined in (NOGUEIRA et al., 2020). The source vector a

encompasses every possible symbol combination for a specific constellation, such as

Quadrature Amplitude Modulation (QAM). In the context of 4-QAM modulation, the

source vector a4×1 is defined as follows:

a = [(−1 + j) (−1− j) (1 + j) (1− j)]T . (B.1)

Subsequently, based on the vector symbols xMN×1, we construct the selec-

tion matrix ZMN×4, inserting the number 1 in the position corresponding to the respective

QAM symbol in each row, with the other values in each row set to zero. As a result, it

possesses certain properties: the elements of each row sum up to 1, and the elements

are limited to ∈ {0, 1}. With this, we rewrite x as follows:

x = Za, (B.2)

One plausible solution for data detection is to treat this problem as a least

squares problem. In this scenario, instead of finding the selection matrix Z, we obtain

the selection vector z in terms of the vectorized version of Z, as follows:

x = Az, (B.3)

where A contains every possible symbol combination for a specific constellation QAM,

distributed in diagonal blocks.
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By expanding Eq. (3.16) into its real ({Re}) and imaginary ({Im}) parts, as

outlined in (CURSI; SAMPAIO, 2015), we arrive at:yre

yim

 =

Hre −H im

H im Hre

Are −Aim

Aim Are

 z̃re

z̃im

+

wre

wim

 (B.4)

In this context, instead of detecting all symbol vectors x as per conventional

methods, we determine the most likely z̃re, as z̃im is a vector of zeros, by solving a

quadrically constrained least squares problem, akin to a Least Mean Squares (LMS)

adaptive filter.

Rewriting Eq. (3.16) and considering the expansion in (B.4) for the 4-QAM

constellation, we have:
y = Hx+ w̃

= HAz + w̃

= Bz + w̃,

(B.5)

where z8MN×1 represents a selection vector for 4-QAM and where B = HA of size

2MN × 8MN .

Utilizing the LMS algorithm to estimate z under the assumption that the

channel is known, the received signal y = Bz + w̃ serves as the basis for computing

the cost function J :

J =
1

2
||e||2 = 1

2
||y − ŷ||2

=
1

2
||y −Bẑ||2.

(B.6)

where ẑ8MN×1 is estimated selection vector.

Taking into account the estimated vector ŷ = Bẑ, the estimated selection

vector is updated as follows:

ẑt+1 = ẑt − µ∇J t

= ẑt − µ
∂J t

∂ẑt

= ẑt − µ
∂J t

∂et

∂et

∂ŷt

∂ŷt

∂ẑt

= ẑt − µet(−1)Bt

= ẑt + µ(BT )tet.

(B.7)
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where t denotes the iteration number, (.)T represents the transport matrix and ∇J is the

gradient of the cost function. In our simulation, we set the step factor µ = 0.005 and the

iteration number t = 500.

Subsequently, considering that the imaginary part of the selection vector z

consists of zeros, we impose this restriction on the reception stage to reduce estimation

complexity. Now that all values are treated as real, we apply the second restriction,

ensuring that the sum of each row in the selection matrix Z is 1. In the real part of the

selection vector z, we set the maximum value to 1, and the other values are set to zero.

For comparison purposes, we also compute an estimated vector ẑ based on

the estimation from Eq. (B.5) without noise, i.e., applying the zero forcing technique,

yielding:

y = Bẑ

BHy = BHBẑ

ẑ = (BHB)−1BHy.

(B.8)

However, since the matrix (BHB) is singular, rendering it non-invertible, to

compensate for the neglected noise effects in Eq. B.5, we adopt a strategy akin to

the Minimum Mean Square Error (MMSE) estimator to compute ẑ. This is expressed

as: ẑ = (σ
2
v

σ2
d
I +BHB)−1BHy. One notable advantage of the LMS algorithm is that it

obviates the need for matrix inversion, thereby reducing complexity.

In conclusion, we compare the performance obtained through these methods

with the results from traditional Wiener processing using the MMSE estimator. The

results are presented in Figure 32.

The LMSz curve represents the performance obtained using the estimated

selection vector z (y = HAz +w) from the LMS algorithm. Notably, we achieve slightly

better results compared to the MMSE estimator up to an SNR of 15 dB. Above 15

dB, the LMS performance starts to deteriorate, and at an SNR of 20 dB, the MMSE

performance reaches an order of 10−4 while the LMS performance stands at 10−3.
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Figure 32 – BER Performance with estimation vector z
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Source: the author.

The obtained results motivate further exploration of solutions based on least

square methods to enhance the estimation of the selection vector and reduce complexity

in data detection.
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APPENDIX C – THRESHOLD METHOD

The threshold method, based on (RAVITEJA et al., 2019), provides a straight-

forward approach to determine the taps of the time-varying channel. Consider the

MN × 1 vector y, which represents the signal received in the delay-Doppler domain of

the OTFS system, following the removal of the cyclic prefix (CP) and the application of

the OFDM and SFFT demodulator.

To execute the threshold method, a single pilot must be transmitted with

higher energy compared to the other data symbols and with a guard length sufficient to

facilitate its identification within this length. In our approach, we consider scanning the

pilot symbols from the respective delay position at which the pilot was transmitted up to

the guard length, which is associated with the maximum delay lτ considered and spans

the entire time domain. This entails considering all positions of k. Thus, we consider

k ∈ {0, 1, . . . , N − 1} and l ∈ {lp, lp + 1, . . . , lτ}.

Upon converting the vector y into a matrix, we obtain Y with dimensions

M×N , where the M rows pertain to the delay positions l and the N columns correspond

to positions k. By considering y[l, k] as the coefficient of the matrix Y , we define a

channel tap if, for the pilot delay position lp, |y[l, k]| ≥ Υ. We then adopt the entire row

to estimate the N samples of the channel coefficients, as follows:

ĥ[l − lp,∀k] = y[l, k]/xp. (C.1)

where xp = x[lp, kp] represents the coefficient value of the pilot position of transmitted

symbols on delay-Doppler grid, and l − lp = li signifies the channel tap of the estimated

channel, as defined in Eq. (3.11).

The threshold value Υ is influenced by variations in detection and, therefore,

relies on the choice of a pilot with ample energy for easy identification by the method. In

this thesis, we consider a pilot with 20 dB more energy than the evaluated SNR and the

same threshold as adopted in (RAVITEJA et al., 2019): Υ = 3σ2
d

As the OTFS channel takes the form of a square matrix with dimensions

(M+L)N , we obtain the from the k =⇒ N samples of each estimated delay point. Sub-

sequently, we proceed with an interpolation process to estimate the M + L intermediate

values among the N sampled points from the channel.
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APPENDIX D – ESTIMATION OF COMPLEX FUNCTIONS

The methods employed are grounded in Cauchy’s Theorem (BARTELS et

al., 1998), , which applies to analytic or holomorphic functions of the form: f(z) =

fR(x, y) + jfI(x, y), where:

a) z = x+ jy, x, y ∈ R and j is the imaginary part: j2 = −1;

b) fR(x, y) and fI(x, y) are real functions;

c)
∮
c
f(z)dz = 0, where c by definition is the boundary in the domain of the

Cartesian plane R;

d) The Cauchy-Riemann conditions hold true in R;

e) As a result of item d), it is possible to show that: ∇2fR(x, y) = 0 and

∇2fI(x, y) = 0.

Given these conditions (a-e), it is confirmed that f(z), fR(x, y), and fI(x, y)

exhibit smooth behavior (without poles) within the region R, indicating the absence of

singularities or poles within this domain. Drawing an association between the estimated

channel function h(z) and f(z), such that hR(x, y) = fR(x, y) and hI(x, y) = fI(x, y), it is

possible to conjecture that h(z) is a continuous and smooth function concerning x and y.

Therefore, the function ĥ(z) = ĥR(x, y) + jĥI(x, y) is the estimated version of h(z) and

can be obtained through an interpolation method.

Various numerical methods are available to obtain ĥ(z), including discretiza-

tion of (c), utilizing the known values of h(z) on the boundary c of R, z ∈ R. In practice,

the points z′ over c where h(z′) is known can be leveraged to derive ĥ(z), z ∈ R. It is

worth noting that functions of systems g(z) with singularities or poles within the observed

z = z0 domains can be estimated using numerical methods rooted in the Cauchy integral

formula, where g(z) = f(z)
z−z0

, f(z) analytic:

f) f(z0) = 1
2πj

∮
c

f(z)
z−z0

dz, z0 ∈ R, and their derivatives in z0 ∈ R (PINA, 2010):

g) f (n)(zo) =
1

2πj

∮
c

f(z)
(z−z0)n+1dz , and using the Taylor series over f(z):

h) f(z) =
∑∞

n=0 an(z − z0)
n, an = 1

n!
fn(z0).

Analytical solutions can be approximated by addressing the Laplace equation,

assuming constant or non-existent independent variables. In this context, considering

item (e), we express d2fR
dx2 = 0 and the same conditions apply to y. Alternative solutions

for fR and fI encompass linear functions whose slopes depend on specified (known)

points or initial boundary conditions.
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Importantly, known values of the functions highlight significant variations

within certain areas of the observation domain, suggesting the presence of singularities

in these regions. These singularities can be represented in a mathematical model,

introducing localized or persistent perturbations in the Laplace equation within the

regions R, ∈ R, denoted as :

i) Punctual or impulsive perturbations: d2gR(x)
dx2 = aδ(x − x0) and d2gI(x)

dx2 =

bδ(x− x0), a and b are constants ∈ R and δ(x) is an impulsive function, x0 represents a

point with solution in linear functions.

ii) Persistent perturbations: d2gR(x)
dx2 = a and d2gI(x)

dx2 = b, a and b are constants

∈ R whose solutions are obtained from quadratic functions, gR(x) and gI(x).

The observation domain can comprise several subdomains associated, inter-

connected through known points. The precision of interpolating functions is enhanced if

values of derivatives are known at these points or if these values are equal, ensuring

smoother transitions between adjacent subdomains. The accuracy of estimation also

hinges on the geometric dimensions of these subdomains, determined by the number

of known points.

The perturbed solutions of the Laplace equation, of impulsive or persistent

types, lead to linear or parabolic functions within each observation subdomain. Other

localized perturbations give rise to different types of functions, which can be generalized

and represented by: gR(x) =
∑

n∈Z gR(nxs)iR(
x−nxs

xs
), x ∈ R, the same for imaginary part:

gI(x) =
∑

n∈Z gI(nxs)iI(
x−nxs

xs
), here iR(x) or iI(x) are interpolating functions belonging

to a Hilbert space, for the case of uniformly distributed points, with spacing xs ∈ R,

and iR(x) or iI(x) equals: 1 for x = 0 and 0 for x = nxs, with n ̸= 0 and ∈ Z. A similar

expression is derived for non-uniform spacing.

The finite element method, for example, is aligned with this approach. It

considers factors such as the regularity of interpolating functions, the fulfillment of

boundary conditions (or nodes), and the careful selection of the trade-off between

subdomain dimensions, interpolating functions, and the convergence of approximation

errors.
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