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Water resources are considered dynamic systems because their configuration can

change over time and space, and different processes regulate their variables at various spatial

and temporal scales. Understanding these complex and highly nonlinear variables has been a

challenging task and a major focus for water resources engineers and managers, particularly in

arid regions. Arid and semi-arid regions are characterized by high temperatures, low annual

precipitation, frequent droughts, and variations at inter-annual to higher scales. These factors

contribute to the vulnerability of these areas (RAMARAO et al. 2019; SINGH &

CHUDASAMA, 2021). Therefore, accurate predictions are essential for water resources

planning, management, and operation.

Hydrological forecast models use observed time series as input variables. Over the

past half a century, hydrologic time series analysis has become a vital part of hydrologic studies.

Depending upon the hydrologic variable and the period of observation, a hydrologic time series

may be composed of deterministic events, stochastic events, or a combination of the two.

Although, for an extended period of observations, a hydrologic time series is usually a

combination of stochastic components superimposed on deterministic components

(SIVAKUMAR, 2016). Furthermore, the deterministic component can display inherent

nonlinearity and sensitivity to initial conditions. The main focus of this doctoral thesis will be

on examining the deterministic chaos component characterized by its sensitivity to initial

conditions.

Numerous time series analysis methods have found applications in hydrology, such

as stochastic and data-driven techniques. Among these methods, linear stochastic methods are

much more popular and well-established, including Box & Jenkins (1970), Yevjevich (1972),

and Salas (1980). This popularity can be attributed, in part, to earlier developments and the

assumption that hydrologic processes are stochastic in nature. Lack of computational power to

develop the nonlinear mathematical models was an important factor that contributed to the use

of linear approaches. However, fast developments in data measurement and computer

technologies have made other methods equally attractive, such as those based on nonlinear

dynamic and chaos theories, which are exemplified in Tsonis (1992), Sivakumar (2000), and

Kantz & Schreiber (2004).

In the nonlinear science literature, the term chaos refers to the occurrence of

seemingly random and complex behaviors arising from simple, nonlinear deterministic systems

that have a sensitive dependence on initial conditions (LORENZ, 1963). Due to its properties



(i.e., nonlinear inter-dependence, hidden determinism and order, and sensitivity to initial

conditions), chaos theory has been relevant for hydrologic systems and processes, chaos theory

has found a growing number of applications in hydrological time series (SIVAKUMAR, 2000,

2009, 2016).

Another intriguing aspect in water resources is complexity. Numerous authors have

deliberated on the concept of complexity and its significance in comprehending hydrological

systems, although a consensus on its definition remains elusive due to its subjective nature.

Nonetheless, a viable definition of complexity entails a system comprising inter-connected

components that interact in a nonlinear fashion, and nonlinearity is a common feature shared

by both chaotic and complex system (SIVAKUMAR, 2016).

A complex system is characterized by its intricate organization, inherent

uncertainty, nonlinear dynamics, interactions between scales, feedback loops, and emergent

behavior (RICKLES et al., 2007). The many elements that compose the complex system have

different components interacting at multiple scales. At each scale, a different structure can be

form, leading to emergence, which is another important property of complex systems.

Emergence is a concept in the study of complex systems that refers to the property of a system

in which collective behavior arises from the interactions of its individual components, resulting

in properties or patterns that cannot be predicted from the individual components alone. Self-

organization is a necessary condition for emergence to occur in complex systems as it provides

the underlying structure for the interactions of the individual components that result in emergent

behaviors and patterns (SIVAKUMAR, 2016).

The individual components of a complex system spontaneously arrange themselves

into structured and organized forms, creating the conditions for emergence to occur and

resulting in collective behaviors and patterns characteristic of the system as a whole. Complex

systems have multiple scales, and while chaos may exist on one scale, self-organization may

occur on a coarser scale above it (BARANGER, 2000). A chaotic system is characterized by

the generation of complicated, aperiodic, and seemingly random behavior. This behavior arises

from the iteration of a simple rule and is chaotic in a precise mathematical sense. The

complicatedness in chaotic systems is not the same as complexity in the context of complex

systems science. On the other hand, a complex system is defined by the generation of rich,

collective dynamical behavior. This behavior emerges from simple interactions between many

subunits. Complexity in complex systems is not necessarily chaotic, and chaotic systems are

not necessarily complex. However, complex systems can exhibit chaotic behavior under certain

conditions or values of variables or control parameters (RICKLES et al., 2007). In its basic



form, complexity theory includes the concepts of chaos and complex adaptive systems (CAS),

along with path dependence, system history, nonlinearity, emergence, irreducibility,

adaptiveness, operating between order and chaos, and self-organization (TURNER and

BAKER, 2019). Chaos is supported by self-organization, feedback, and deterministic systems,

while CAS are supported through self-organization, emergence, adaptation/evolution,

feedback/history, and non-deterministic systems as described in Figure 1.

In hydrology, complexity can refer to the number of dominant variables and the

nonlinearity of processes that govern watershed dynamics (Sivakumar, 2016). Further,

hydrological complexity is closely connected to concepts such as model parsimony, parameter

identifiability, and criteria for model selection (Ombadi et al., 2021). In this doctoral thesis, we

will focus on the first concept. To quantitatively understand complexity, various tools can be

used, including statistical measures like the coefficient of variation, nonlinear dynamic

measures such as dimension, information-theoretic measures like entropy, and others. For

instance, complexity can be assessed based on the number of variables that predominantly

control the system, requiring a certain amount of information to describe the system accurately.

While complex systems may exhibit patterns, structures, and self-organizing

behavior, their overall behavior can still be highly dynamic, difficult to anticipate, and

characterized by multiple possible outcomes. On the other hand, chaotic systems exhibit

deterministic behavior, meaning that their future states are completely determined by their

initial conditions and the rules governing their dynamics. However, due to the complexity and

nonlinearity of these systems, long-term prediction becomes challenging, as small errors or

uncertainties in measuring or knowing the initial conditions can quickly amplify and lead to



substantial deviations from predicted outcomes (POLLARD et al., 2011). Therefore, predicting

hydrological variables in the long-term presents a challenge due to the inherent characteristics

of hydrological time series.

Generally, the water availability in reservoirs is estimated using inflow forecasts at

various time scales such as daily, weekly, and monthly (SILVA et al., 2017). The commonly

used models are stochastic models which may overlook important characteristics of the time

series, leading to inaccurate forecasts in the face of climate variability. This raises questions

about the possibility of accurately predicting hydrological variables using models that consider

the inherent nonlinearity and complexity of hydrological series. Can the predicted time series

provide a good database for optimizing the operation of a reservoir system in the presence of

climate variability? The scientific justification of this work is given by the importance and

innovative nature of improving hydrological forecasts by incorporating the characteristics of

nonlinearity, complexity, and chaotic behavior.

Situations that are initially simple and easy to understand in detail can end up being

complicated due to the presence of chaos. Further, the focus of this doctoral thesis was to

propose a framework that identifies the presence of chaos in rainfall and streamflow time series

using classical methods from chaos theory and nonlinear methods. Furthermore, it is also

important to quantify the complexity of hydrological time series and how it evolves spatially

and temporally. Thus, method based on information theory are applied to evaluate the

spatiotemporal changes of the relative complexity of time series including series with multiple

temporal scale characteristics. The latest state-of-the-art machine learning methods are applied

to predict the chaotic time series, and a multi-model framework with stochastic methods is

proposed to improve the modeling process.



To develop a methodology for detecting deterministic chaos in rainfall and

streamflow time series, and incorporating nonlinearity through the use of nonlinear, chaos

theory, and information theory methods. Furthermore, based on the previous diagnosis, a

methodology is developed to predict deterministic chaos using machine learning and a multi-

model based on stochastic models.

1.

2.

3.

4.

5.



To address the topics outlined in the introduction and meet the proposed objectives,

this doctoral thesis is structured into four articles and a final section summarizing the key

conclusions and recommendations for future work. The first focuses on detecting deterministic

chaos in observed hydrometeorological variables (i.e., rainfall and streamflow), using different

methodologies based on chaos theory and nonlinear methods. Additionally, this article uses

Recurrence Plots to comprehend the relationship between these hydrometeorological variables

and El Niño events.

The second article aims to explore the underlying spatiotemporal complexity of

hydrological variables. Given the nonlinear and nonstationary behavior of the climate system,

understanding its inherent complexity has both theoretical and practical significance in

revealing the uncertainty and variability of the system. In this article, sample entropy (SampEn),

which provides a measure of complexity obtained by examining the similarity of observed

segments from a time series, and Multiscale entropy (MSE), which provides insights into the

complexity of fluctuations over a range of time scales and extends standard sample entropy

measures, are used. The article also evaluates the intra-annual distribution of rainfall

complexity, and the relationship between rainfall and streamflow complexity.

The results from the first and second articles diagnose the dimensionality,

complexity, and variability of the time series using nonlinear dynamic approaches, providing a

deeper understanding of rainfall and streamflow variability at various spatiotemporal scales.

The third article incorporates the results from the previous articles, such as the time-delay, to

predict chaotic time series using different machine learning methods. These methods can

capture the nonlinearity present and improve streamflow modeling and forecasting

performance.

The final article proposes a multi-model framework to predict short- and long-term

streamflow time series, and a comparative analysis of different hybrid prediction models. The

hybrid model was based on decomposition methods (i.e., wavelet and complete ensemble

empirical mode decomposition with adaptive noise) along with stochastic models (i.e.,

autoregressive model and hidden Markov model). The forecast models were coupled using the

least absolute shrinkage and selection operator (LASSO) regression method. This framework

is adopted as preprocessing approaches can enhance the accuracy of streamflow forecasting,

particularly for long-term forecasting. Additionally, the cross-wavelet transform, and the

wavelet transform coherence are applied to analyze the effect of climatic indices such as El



Niño, PDO, and AMO on the analyzed streamflow.

In this context, the articles represent important steps, illustrated in Figure 2, when

dealing with time series: diagnosing its dynamics, its complexity, and incorporating these

important features of hydrological time series into the modeling framework. Thus, this

methodological structure is not limited to rainfall and streamflow-related studies and can be

applied to different fields of science dealing with nonlinear systems.



1

interest due to the presence of complex, highly variable, random, and interdependent dynamics.

Accurate information on hydrological variables at different timescales is crucial for monitoring

and managing water resources, especially when dealing with extreme events such as droughts

and floods (PHAM et al., 2020; SHU et al. 2021). The complexity of these systems, which this

paper refers to as the number of dominant variables governing the time series dynamics, is often

associated with a random process, leading to the use of stochastic methods. However, seemingly

random processes can also arise from the sensitivity to initial conditions in deterministic

systems.

Edward Lorenz first described chaos theory in the early 1960s, and since then, it

has gained traction in several fields of natural sciences and engineering. Chaotic systems are

characterized as random-looking and complex systems originating from simple deterministic

systems sensitive to slight changes in initial conditions (LABAT et al., 2016; JIANG et al.,

2021). This sensitivity has significant implications for system modeling and prediction.

Variables considered to be random are irreproducible and unpredictable, whereas chaotic

variables can be reproducible in the short term due to their deterministic nature. However, due

to sensitivity to initial conditions, these variables are not predictable in the long-term.

Consequently, chaos and randomness exhibit very different behaviors (SIVAKUMAR, 2016).

The application of chaos theory has demonstrated that chaotic models are often

better suited for certain complex hydrological time series (SIVAKUMAR, 2000). An increasing

number of studies have applied chaos theory to analyze hydrological process dynamics, starting

from the late 1980s (RODRIGUEZ-ITURBE et al., 1989; HU et al., 2013; OUYANG et al.,

2016; HONG et al., 2016; ZHOU et al., 2022). Applications of chaos theory in hydrology began

with identifying chaos, primarily in rainfall data (RODRIGUEZ-ITURBE et al., 1989), and its

development has significantly increased since then. Chaos theory has been used to address

1



different problems in hydrological systems, including characterization (ABARBANEL &

LALL, 1996), noise reduction (ELSHORBAGY et al., 2002), missing data, prediction

(TONGAL & BERNDTSSON, 2014; OUYANG et al., 2016; HONG et al., 2016; TONGAL,

2020; WANG et al., 2021; ZHOU et al., 2022), scaling, catchment classification

(SIVAKUMAR & SINGH, 2012), and disaggregation, among others.

Different methods have been used to analyze and identify chaotic behavior. For

example, Xu et al. (2009) applied the Lyapunov exponent and correlation dimension methods

to recognize the chaotic features in the annual runoff of the Tarim River, finding that it exhibits

complex nonlinear characteristics with chaotic dynamics. Kedra (2013) used several

independent methods and tools to analyze daily discharge from gauging stations in southern

Poland, including the surrogate and the determinism tests. Labat et al. (2016) applied the

correlation dimension method to streamflow data from karstic watersheds in France, detecting

the presence of chaos with attractor dimension values below three. Jiang et al. (2020) applied

the Lyapunov exponent, nonlinear prediction, and correlation dimension methods to analyze

monthly streamflow data from the Daiying hydrological station in northern China, concluding

that the monthly streamflow is chaotic. Shu et al. (2021) identified features of chaos in daily

rainfall data from the UK and conducted an extended complexity analysis using recurrence

quantification analysis.

Furthermore, several studies have employed chaos theory to properly understand

the underlying dynamics that control the behavior of hydrological time series across different

timescales. However, there is a lack of quantitative analysis of chaotic characteristics in semi-

arid regions. This shortfall might be related to the idea that chaos characterization and

prediction methods require long, noise-free time series, while data from these regions often

consist of short series with missing values. Nevertheless, some studies have argued that data

size is not a significant issue for identifying and predicting chaos and that available methods

can provide reliable results even with small time series (SIVAKUMAR 2005; SIEK &

SOLOMATINE, 2010).

Understanding the spatiotemporal dynamics of rainfall and streamflow is critical

for effective water resource management in regions with a highly variable climate, such as

Ceará, Brazil. Traditional linear models often fail to capture the complex, nonlinear

relationships between them, potentially leading to inaccurate predictions and inefficient water

management practices. Nonlinear dynamic analysis and chaos theory can serve as reliable

alternatives for modeling the complex behavior of hydrological data. Thus, this paper aims to



employ these methodologies to identify the underlying spatiotemporal dynamics of monthly,

seasonal, and annual rainfall and streamflow in Ceará, Brazil. Well-established methods, such

as correlation dimension, Lyapunov exponent, and recurrence quantification analysis, are

applied in this study. Through the application of these methodologies, this study seeks to

improve our understanding of the complex interactions and feedback between these variables.

Additionally, comprehending the spatial variability of rainfall dynamics is crucial for the

interpolation/extrapolation of hydrological variables and classification of catchments, which

can inform more effective water management practices in the region.

Ceará, as shown in Figure 3, is located in the Northeast region of Brazil (NEB). The

state's climate is predominantly semi-arid, with the economy heavily dependent on rainfall due

to its agricultural base. The rainfall regime is mainly controlled by the southward movement of

the Intertropical Convergence Zone (ITCZ), with rainfall concentrated from February to May,

which accounts for approximately 70% of the annual rainfall. The mean annual rainfall is

around 810 mm, with higher values in the coastal area and lower values in the central portion,

where the semi-arid landscape is more accentuated (COSTA et al., 2021). Natural fluctuations

in the sea surface temperature also modulate rainfall patterns. Several studies identify the

influence of climate indices such as the Atlantic Multidecadal Oscillation (AMO), El Niño

Southern Oscillation (ENSO) phenomenon, and Pacific Decadal Oscillation (PDO). These

indices have been associated with the rainfall regime in the NEB (ANDREOLI & KAYANO,

2005; KAYANO & ANDREOLI, 2006; GARREAUD et al., 2009; KAYANO et al., 2020).

The shallow soils with a crystalline basement in most of the state result in low base flows, and

the rivers in the region are mainly naturally ephemeral or intermittent due to the lack of

sustained groundwater recharge.



The rainfall and streamflow data used in the spatiotemporal analysis were obtained

from the Brazilian National Water Agency (ANA). The monthly rainfall series ranges from

January 1962 to December 2006. The length of the monthly streamflow series varies, and so do

its start and end dates, depending on geographical location (refer to Table 1). This study

includes data from 31 rain gauges and 30 streamflow gauges located in the state of Ceará, as

illustrated in Figure 3.





The streamflow and rainfall time series each have very distinct statistical

distributions. As seen in Figure 4a for rainfall analysis, the stations in the northern part of the

State show the highest variability in rainfall, while those in the central and northeastern areas

exhibit the narrowest range of values. The stations located in the northern and western regions

have higher coefficients of variation (CV) (Table 1), indicating a large amount of variability in

their datasets. Some stations display a violin plot that is thick at the center, indicating a

relatively narrow range of values.

For streamflow (Figure 4b), the stations in the western area exhibit very high

variability, as observed for rainfall. The stations in the eastern part of the state have the highest



mean annual streamflow, around 25m³/s. Further, the streamflow shows higher CV values

compared to rainfall, with the higher values located in the northern of the state. However, the

characterization of streamflow may be affected by the different time window analyzed due to

the amount of missing data in the streamflow time series.



Several methods have been developed to detect the presence of chaos in time series.

These include the correlation dimension method (GRASSBERGER & PROCACCIA, 1983a),

the Kolmogorov entropy method (BENETTIN et al., 1979), the Lyapunov exponent method

(WOLF et al., 1985), the false nearest neighbor algorithm (KENNEL et al., 1992), the nonlinear

prediction method (FARMER& SIDOROWICH, 1987), and recurrence quantification analysis

(ZBILUT & WEBBER, 1992). To avoid false results, it is typically common practice to use

multiple techniques to distinguish between a stochastic and a chaotic process. Also, most of

(TAKENS, 1981). The

correlation dimension, Lyapunov exponent, and recurrence quantification analysis were applied

to analyze the chaotic dynamics of rainfall and streamflow series. Each method focuses on

distinct aspects of the series to identify chaos. For instance, recurrence plots can capture the

nonlinear structure of the dynamics, while Lyapunov exponents can measure the rate of

separation between close trajectories, indicating sensitivity to initial conditions. Fig. 3

illustrates the framework of the paper.

Nonlinear dynamic system analysis frequently entails the reconstruction of the



phase space, which consists of a representation of the governing variables at a given moment.

The time-delay embedding theorem (TAKENS, 1981) facilitated the reconstruction of a

multidimensional phase space employing a single time series, and that led to several

applications of chaos theory in hydrology (LIANG et al., 2019), particularly because all the

actual governing variables of a hydrological system are often not known a priori (SHU et al.,

2021; YAN et al., 2021; OMBADI et al., 2021). The phase space diagram tracks the evolution

of the system from its initial conditions, and the overlap of the variables trajectories provides

insight into the complexity or variability of the system s behaviors. According to the Takens

theorem (TAKENS, 1981), a one-dimensional time series of length can be expressed in

terms of phase space vectors as described in Equation 1.

(Eq. 01)

where is the time delay, is the embedding dimension, and (TAKENS,

1981). Even though the phase space is a powerful method to gain qualitative information

regarding how the systems evolve, the choice of a proper is significant in representing the

optimal separation between trajectories within the minimum embedding dimension (MA &

HAN, 2006; LI et al., 2010). For example, if the value of the time delay is very small, there will

be no independence among phase-space coordinates, resulting in a lack of information about

delay is too large, the trajectories will

diverge, causing the loss of relevant information (DHANYA & KUMAR, 2010; LABAT et al.,

2016).

In the PSR process, two variables are required: the time delay ( and the

embedding dimension ( . Several guidelines have been proposed to determine the appropriate

time delay, many of which are based on series correlation. Among the well-known approaches

for identifying the time delay are autocorrelation and Mutual Information Functions (MIF).

However, relying solely on the first zero of the autocorrelation function to select may lead to

inaccurate results because it only measures linear dependence between consecutive points

(FRASER & SWINNEY, 1986).

The MIF is a measure that is not affected by the nonlinearity of the series, and it is



commonly used to analyze time series with inherent nonlinearity (STROZZI et al., 2002). The

time delay is often chosen as the local minimum of the MIF (FRASER & SWINNEY, 1986).

This choice allows for the assessment of both the linear dependence and general dependence

between successive points (SIVAKUMAR, 2016). For consecutive values of a time series,

and , the MIF, , can be expressed by Equation 2.

(Eq. 02)

where is the joint probability density, and and are the

probabilities of and , respectively. The local minimum of the MIF was adopted in this

study, as it can reflect that consecutive points are independent enough of each other but not so

independent as to have no connection. Further details can be found in Fraser and Swinney.

The two most common approaches for establishing the minimum necessary

embedding dimension to represent the system s dynamics are the false nearest neighbors (FNN)

and the correlation dimension (CD). The FNN method (KENNEL et al., 1992) assumes that

points on the attractor s trajectory are close to each other in the phase space, i.e., they are

neighbors. If the embedding dimension ( ) is increased and a previously detected nearest

neighbor moves away from the vector , it is considered a false nearest neighbor, as it reaches

the neighborhood of in the higher embedding dimension by projecting itself from a distant

region of the attractor (KHATIBI et al., 2012).

The minimum embedding dimension ( ) is found when almost all the neighbors

are true. In other words, the portion of points for which is very

small, zero, or below a 10% falseness of nearest neighbors (HUANG et al., 2010). is a

heuristic threshold factor. The distance is calculated to the same neighbors that

were identified with embedding , but with the coordinate.

For many real-world time series contaminated by noise, the percentage of FNN

generally does not fall to zero. Also, the percentage of FNN may not remain at this minimum

when the embedding dimension is increased. Instead, it often increases as the embedding

dimension increases due to the effects of noise propagation to higher dimensions. A low



orbits are now separated and do not cross (SIVAKUMAR, 2016).

The correlation dimension (CD) is a measure of the relationship between the

positions of points in the reconstructed phase space, and it is a popular approach for identifying

chaotic behavior (GHORBANI et al., 2018). In the context of identifying the presence of chaos,

dynamics governed by chaotic processes have a finite value of dimensions, while those

governed by stochastic dynamics have an infinite value of dimensions (KHATIBI et al., 2012;

SIVAKUMAR, 2016).

The CD, proposed by Grassberger and Procaccia (1983a), applies the correlation

integral to distinguish between stochastic and chaotic systems. The correlation integral

measures the probability that two randomly selected points will be within a certain radius ( )

of each other. The correlation function, is expressed by Equation 3 (GRASSBERGER &

PROCACCIA, 1983a; THEILER, 1986).

(Eq. 03)

is the number of points on the reconstructed attractor, () is the Heaviside function with

= 0 for and = 1 for . The variable is defined as ,

where is the radius of the sphere centred on . Therefore, the correlation integral

approximates the number of points that are closer than a radius in the data (LABAT et al.,

2016). For chaotic time series, the correlation function scales with as , where

is termed the correlation exponent. In contrast, for stochastic time series, is

true. The correlation exponent can be expressed by Equation 4.

(Eq. 04)

The correlation exponent, which measures the degree of nonlinear interdependence

among points on the attractor, can be approximated by finding the slope of log versus

log plot. If the correlation exponent increases with increasing , it suggests the absence of

chaotic behavior. However, if the correlation exponent reaches a constant value despite the

increase in m, it indicates the presence of chaotic behavior. The dimension at which the curve

saturates can be taken as the optimal (LIANG et al., 2019). The nearest integer to the



calculated correlation exponent is commonly considered the number of degrees of freedom of

the system, thus providing significant insights for the modeling process (GHORBANI et al.,

2018). Although the CD method has been widely used, some remarks have been raised

concerning its application to real-world time series, particularly for noisy data, short series, and

data with the presence of zeros. However, Sivakumar et al. (2002) described that the CD can

still be a reliable indicator of low-dimensional chaos in hydrological time series with limited

data.

The Lyapunov exponent (LE) is a popular method for identifying the presence of

chaos in a time series. This method determines whether the phase trajectory has any diffusion

motion features. The LE measures the average exponential rate of separation of nearby orbits

in the phase space, serving as an indicator of the sensitivity of the attractor to initial conditions.

To be characterized as a chaotic series, the presence of a positive Lyapunov exponent is required

(KHATIBI et al., 2012). Among the existing methods to estimate the LE of a time series, the

approach proposed by Wolf et al. (1985) and later complemented by Rosenstein et al. (1993)

and by Kantz (1994) is extensively applied. This method involves computing the distance

between the reference point ( ) and the nearest neighbor ( ) of different trajectories in the

reconstructed phase space. The distance between them is . However, the

nearest neighbor is not necessarily the closest one in the time domain. The distance after j

discrete time steps is computed in Equation 5.

(Eq. 05)

The evolution of this separation is observed, and the divergence between the

trajectories based on the initial separation, , can be described by the exponential function

, where is the considered period, and is the largest LE. Therefore,

the largest Lyapunov exponent (LLE) can easily be achieved by calculating the slope of the

curve in the exponential plot (ROSENSTEIN et al., 1993; JIANG et al., 2020).

In deterministic systems, the recurrence of a state implies that if any deviation

occurs during the trajectory, that state will be returned in the future (Shu et al. 2021). The



recurrence plot (RP) was first introduced by Eckmann et al. (1987), and it is applied to visualize

the recurring patterns in dynamic systems and their trajectories (MARWAN et al., 2007). This

well-establish nonlinear analysis technique illustrates how likely a recurrent behavior observed

in m-dimensional phase space is to recur. Further, this method is known for detecting the

dynamics of non-stationary or relatively short data (SHU et al., 2021).

are characterized by several vectors, which represent the trajectory of the attractor in a

mathematical space. The RP is established on the recurrence matrix, which can be expressed

by Equation 6.

(Eq. 06)

where is the number of measured points , is a threshold distance, and () is a Heaviside

function. The recurrence of state at time is represented by ones (graphically depicted by a

black dot), while zeros reflect how the states are different at times and (MARWAN et al.,

2002). The corresponding matrix and , with

if the states are similar and if the states are rather different. The matrix also illustrates

whether similar states occur in the underlying system (MARWAN, 2011). Several rules for

recommendation by Marwan et al. (2002) to use 10% of the maximum phase space diameter.

reveal

different patterns and behaviors of the system. Marwan et al. (2002) have described the different

meanings that the patterns in the RP can contain. For example, periodic processes are generally

characterized by diagonal lines or checkboard patterns. Single points can indicate a short

persistence in the state of system dynamics, whereas short diagonal lines mean that the

trajectory in phase space recurs to the same point, but at different times. This suggests the

possible presence of deterministic characteristics. Further explanation of RP can be found in

Marwan et al. (2002).

Recurrence Quantification Analysis (RQA) is a heuristic method of quantifying

RPs based on their patterns and line structures (MARWAN et al., 2002). Although RPs are

widely used, they are a visual tool that can provide only a qualitative view of the dynamic

system characteristics (SHU et al., 2021). To overcome this aspect, RQA proposes a

(ZBILUT et al., 2002).

RQA measures, such as determinism (DET), maximal length of diagonal structures (LMAX),



recurrence rate (RR), and entropy (ENT) can identify and diagnose small-scale diagonal

structures in RP, which indicate the presence of chaos. The RR is described by Equation 7.

(Eq. 07)

RR measures the portion of recurrence points with regard to the total number of

possible recurrences (MOCENNI et al. 2011). Normally, high recurrence indicates lower

system variability. The entropy (ENT) is described by Equation 8.

(Eq. 08)

where is the length of the diagonal line structure, and is the frequency distribution of

the diagonal line lengths. ENT indicates the complexity of the RP regarding the diagonal lines;

for example, small values of ENT reflect low complexity. A diagonal line of length means

that two segments of the trajectory, at different times, are rather close during l time steps. Hence,

these lines are related to the divergence of the trajectory. The maximal length of diagonal

structures (LMAX) is described by Equation 09.

(Eq. 09)

where is the length of the j-th diagonal line in the RP. Marwan et al. (2002) observed that

deterministic dynamics result in longer diagonals and fewer isolated recurrence points, while

dynamics with uncorrelated or weakly correlated, stochastic, or chaotic behavior produce none

or very short diagonals. Therefore, one can use the ratio of recurrence points that form diagonal

structures (of at least length ) to all recurrence points as a measure of determinism of the

system. DET is described by Equation 10.

to all recurrence points as a measure of determinism of the system. DET is described by

Equation 10.

(Eq. 10)

The threshold eliminates diagonal lines which are formed by the tangential

motion of the phase space trajectory. High values of DET are an indication of determinism in

the system, however, they are not sufficient to confirm that the system is deterministic. For



process will be deterministic (i.e., a periodic or chaotic system).

This paper seeks to investigate the existence and inherent nature of chaos in

hydrological processes, such as rainfall and streamflow. It also explores how data aggregation

affects the detection of the deterministic chaos in the system's dynamics, as well as the spatial

distributions of chaotic time series and the relationship between these two hydrological

variables. The identification of deterministic chaos in the data is key for comprehending the

behavior of hydrological variables, and PSR is the first step for applying several methods in

and can characterize the entire dynamics of the process with a single time series (SHU et al.,

2021; YAN et al., 2021).

The phase space for monthly rainfall and streamflow stations, geographically close

to each other, were reconstructed with a time delay equal to one and an embedding dimension

equal to three (see Figure 6), using time series from 1976 to 2006. Fig 4 shows a region of

attraction for these trajectories in the phase space, which provides possible evidence of

attractors. Although there is no clearly defined pattern, the trajectories are not dispersed

throughout the phase space, indicating an intermediate level of complexity between

deterministic and stochastic processes. Therefore, there is a need to characterize rainfall and

streamflow dynamics using chaos theory.



Two parameters are needed for the PSR: the time delay ( ) and the embedding

dimension ( ). These can be determined using methods such as the MIF, the FNN, and the CD.

The time delay is determined as the first minimum of the MIF. Figure 7 shows the results for

time delay identification using the MIF for the rainfall stations on both monthly and seasonal

timescales. The time delay varies among the stations and the timescales, except for station #27,

cross all timescales, including the annual timescale

(Figure 9

ranges from one to four seasons, with higher values mainly concentrated in th

northeastern area.



For streamflow, the time delay ranged from two to four seasons on the seasonal

southeastern parts of the State (Figure 8). On a monthly timescale, the time delay varies from

three to six months. The southeastern and northern areas present the largest time delay for the

monthly time series. Further, the results show that a higher fluctuation of variability is observed

at the seasonal scale for rainfall compared to that on the monthly timescale, mainly due to

rainfall variability throughout the State. While for streamflow, most of the rivers are

intermittent. Thus, the time delay does not vary much throughout the region.

Figure 8 - The spatial distribution of time delay, determined by mutual information, is examined
for streamflow at two different timescales: (a) monthly timescale in months and (b) seasonal
timescale in terms of the number of seasons.



In the annual analysis (Figure 9), the time delay for rainfall ranges from one to three

years, indicating that rainfall exhibits interannual variability. Due to missing values, the annual

analysis of the streamflow series was only applied to series with over 30 years of data. These

series correspond to stations #25, #28, and #29, located in the southeastern region of the State.

On an annual timescale, the time delay was one for all stations. In comparison between the time

delays of rainfall and streamflow at stations in close geographical proximity, it is observed that

the streamflow value is typically higher. The interdependency between rainfall and streamflow,

which varies across all analyzed timescales, is often associated with changes in land cover,

climate, human water usage, or alterations in the characteristics of rainfall events themselves,

which are major drivers of streamflow. However, stations located near the central region of the

State present the same time delay for both variables.



When analyzing the embedding dimension using the FNN method for rainfall

(Figure 10) on a monthly timescale, the number of dimensions ranges from three to seven, with

higher embedding dimensions observed in the northern and eastern regions of the State. When

analyzing only the seasonal timescale, the number of dimensions decreases by at least one for

most stations. Furthermore, 32% of the stations maintained the same dimension value when

changing from seasonal to annual timescales, with most of these stations situated in the central

part of the State where rainfall is scarce. The optimal number of dimensions can be defined as

the number of variables that effectively describe the dynamics of a given variable. As the

timescales become coarser, the complexity of rainfall decreases (i.e., a decrease in the

embedding dimension), and higher complexity is seen in the northern part of the State, where

rainfall is more abundant.

On a monthly timescale, streamflow analysis (Figure 11) showed a range of three

to 15 dimensions, with higher dimensions concentrated in the western region of the State.When

shifting the timescale to a seasonal analysis, there is a decrease in the number of dimensions as

previously observed for rainfall. Only 13% of the stations showed the same number of

dimensions with the change in timescales, likely due to the many factors that influence

streamflow compared to rainfall. Notably, the streamflow series showed higher embedding

dimensions than the rainfall series, which are primarily determined by meteorological factors

such as temperature, air pressure, humidity, and topography. In contrast, streamflow is affected



by a variety of factors, including rainfall, evaporation, infiltration, soil moisture, and land use

changes such as deforestation or urbanization, which alter the water input/output.

The CD with an increasing dimension plot was also applied to determine the

optimal embedding dimension. In many practical applications, the point on the plot where the

correlation dimension saturates is often chosen as the optimal dimension (LABAT et al., 2016;



FUWAPE et al., 2017; LIANG et al., 2019; JIANG et al., 2020). The relationship between

InCm(r)~Inr was was obtained for the monthly timescale, with the value of m ranging from 1

to 30 for all stations (see Figure 12a for an example). Figure 12b exhibits the correlation

function for station #15 (rainfall) with an increasing embedding dimension. The plot suggests

the presence of a chaotic process as the correlation function saturates around =11. Figure 12c

and d illustrate the same relations for streamflow station #13, which is geographically close to

the analyzed rainfall station. The correlation function reaches saturation around =8 for

streamflow. Table 2 shows the chosen embedding dimension for the 31 rainfall and 30

streamflow stations at all the analyzed timescales based on their saturation point. 78% of the

stations at monthly, 68% at the seasonal, and 26% of the annual rainfall stations presented a

saturation point. 83% and 76% of the monthly and seasonal streamflow stations, respectively,

showed a saturation point. Most stations showed a decrease in the embedding dimension with

increasing timescale. However, rainfall station #3 maintained the same embedding dimension

for seasonal and monthly timescales. Some stations showed an increase in m with the increase

of the timescale (e.g., stations #6, #14, #21, and #28). Although it is generally believed that

temporal aggregation results in some form of smoothing and hence, less complex (and more

predictable) behavior, previous results, as discussed in Sivakumar (2016), also found an

increase in the dimensionality (or complexity) of the flow dynamics with the scale of

aggregation.

The nearest integer to the calculated correlation exponent is often adopted as the

number of degrees of freedom of the system. In general, a correlation dimension of 1 indicates

a periodic system, whereas a quasi-periodic system is characterized by a correlation dimension

of 2 (REITERER et al., 1998). However, a non-integer correlation dimension value suggests

the presence of chaos in the system. For monthly rainfall, the correlation exponent values range

from 3.47 to 5.67, confirming the presence of deterministic chaos in time series with non-

integer values. The results indicate that the dynamics of monthly rainfall require between four

to six equations to describe them, which is consistent with the findings of Sivakumar et al.

(2014), with values ranging from 4.82 to 8.87. For streamflow, the correlation exponent values

range from 0.52 to 3.64, indicating that the dynamics require one to four equations. These

results are consistent with those found in other studies for streamflow, such as 0.46

(JAYAWARDENA & LAI, 1994), 2.4 (KHATIBI et al., 2012), and 0.9 2.3 (BABOVIC &

KEIJZER, 2000).



(a) (b)

(c) (d)

Table 2 Selected dimension for which the correlation exponent versus embedding dimension
plot saturates for all the analyzed stations and timescales.

Rainfall station
number

Monthly Seasonal Annual
Streamflow
station
number

Monthly Seasonal

1 19 - - 1 - -
2 12 - 10 2 - 5
3 15 15 - 3 14 -
4 - - - 4 8 4
5 13 12 8 5 12 6
6 12 14 - 6 12 4
7 23 18 - 7 - -
8 21 - 11 8 - 6



9 19 - - 9 2 2
10 20 17 - 10 9 5
11 - - - 11 2 3
12 - - - 12 2 2
13 - - - 13 8 5
14 13 16 - 14 9 -
15 11 5 - 15 9 6
16 25 16 - 16 9 6
17 22 18 - 17 4 5
18 22 17 - 18 12 5
19 - 18 - 19 13 6
20 21 17 - 20 10 -
21 15 18 - 21 10 6
22 19 - - 22 11 6
23 25 16 - 23 9 -
24 19 9 - 24 11 -
25 - 16 12 25 12 4
26 25 16 - 26 10 6
27 25 11 - 27 5 4
28 7 10 - 28 - 6
29 - 18 13 29 8 4
30 20 6 13 30 12 3
31 25 - 11

Analyzing the spatial distribution of the embedding dimension chosen by the CD

method for rainfall stations (Figure 13), it was observed that the southern and western regions

of the State had higher embedding dimensions for the monthly analysis, in contrast to the coastal

region of the State, which experiences higher rainfall rates. The seasonal analysis showed

similar behavior but with smaller embedding dimensions. Furthermore, only two stations

(Stations #5 and #30) showed a saturation point across all analyzed timescales. The monthly

and seasonal timescales (Figure 13) show that the embedding dimension appears to form three

clusters in the State: one in the coastal area, one in the central part, and one in the south.

In the streamflow analysis, higher values of m were found in the southern and

northwestern regions of the State (Figure 14). As seen in the rainfall analysis, there was a

reduction in the embedding dimension when moving from the monthly to seasonal timescales,

as well as with the FNN method, suggesting that larger timescales require fewer dimensions.

The clusters formed by the streamflow time series slightly differ from those observed in rainfall,

with the cluster in the coastal part of the State being divided into a northwestern and a central

part. Although Vignesh et al. (2015) stated that the FNN dimension could serve as a measure

of similarity for identifying stations with similar levels of variability in time series dynamics,



no consistent pattern was observed in this study with this method. This inconsistency may be

associated with the size of the analyzed area. When comparing the CD and FNN methods to

estimate the optimum embedding dimension, it was found that the CD method yielded higher

values for rainfall, while the FNN method produced lower values. The CD method also showed

a different pattern compared to the FNN method, with higher values of the embedding

dimension found in the northern part of the State. Both methods demonstrated similar results

for streamflow, with higher embedding dimensions observed in the western region of the State.

Figure 13 Spatial distribution of the chosen dimension of rainfall for which the correlation
exponent versus embedding dimension plot saturates for (a) monthly, (b) seasonal and (c)
annual timescale.

Figure 14 Spatial distribution of the chosen dimension of streamflow for which the correlation
exponent versus embedding dimension plot saturates for (a) monthly and (b) seasonal
timescales.



The Lyapunov exponent plots are exponential graphs that show the divergence of

the data over time. If the separation between two points grows exponentially, the plot will

appear as a straight line. However, sometimes two points move away from each other more

closely together. Thus, the plot will present a straight line with oscillations. Figure 15 illustrates

a rainfall (#10) and a streamflow (#6) station at monthly and seasonal timescales.

Figure 15 -

seasonal timescales; and streamflow station (#6) (b) at monthly and (d) seasonal timescales.

The largest Lyapunov exponent (LLE) was calculated only for stations that

presented a saturation point in the CD analysis. For monthly rainfall, positive values of LLE

ranged from 0.02 to 0.24, indicating a signature of chaos (Figure 16). At the seasonal timescale,

the LLE values were similar, ranging from 0.13 to 0.32, while at the annual timescale, they

increased, ranging from 0.06 to 0.5. The LLE for the monthly timescale is a bit smaller than the



values found by Echi et al. (2013), who found a value of 0.0632 for the daily rainfall time series

in Nigeria. Fuwape et al. (2017) found LLE values ranging from -10 to 2 for daily rainfall over

Nigeria. Falayi et al. (2022) analyzed monthly rainfall data of West African stations and

observed positive LLE ranging from 0.13 to 0.36. The higher LLE values for rainfall were

concentrated in the northern part of the State (Figure 16), where the embedding dimensions

were smaller according to the CD method.

The LLE values for streamflow showed negative values for some stations (e.g.,

Station #5, #14, and #17 for the monthly timescale, and Station #5 at the seasonal timescale),

indicating periodic orbit (Figure 17). Also, the values of LLE show a wider range from -0.32 to

3.4 and -0.04 to 11 for monthly and seasonal streamflow, respectively. The higher LLE values

for streamflow were in the northwestern part of the State. Zhou et al. (2018) found an LLE of

4.142 for a monthly streamflow time series in the Jinsha R

(2019) found values that range from 0.018 to 0.39 for daily streamflow at the Brazos River in

Texas (USA). Larger values of LLE indicate stronger chaos and greater sensitivity to initial

conditions in a dynamical system. Notably, the monthly rainfall analysis shows similar LLE

values across the whole State, while streamflow showed higher LLE compared to rainfall.

Alfaro et al. (2018) stated that the inverse of the LLE can be used to predict the

boundaries of a chaotic time series. Based on this, an estimate of the forecast horizon for rainfall

stations is in the range of 4 to 76 months into the future, while for streamflow, it ranges from 1

to 10 months. Ogunjo et al. (2022) found predictability of 40 58 days into the future for daily

streamflow. Our results indicate that rainfall stations that show the presence of deterministic

chaos are more predictable for longer periods compared to the streamflow in the same region.



The presence of chaos in rainfall and streamflow dynamics is illustrated in the RP

(Figure 18 and Figure 19). One advantage of using a recurrence plot (RP) is that it transforms

a phase space of dimension m into a binary 2-dimensional space, with a threshold that represents

the level of recurrence, making it easier to visualize any existing patterns. The figures illustrate



that the recurrence points do not form a periodic pattern and are not homogeneously distributed.

The RPs of the stations across the State present different behaviors. For example, in Figure 18c,

blocks with white stripes between them can be observed. Figure 18a, which illustrates the time

series, shows a higher peak of rainfall in the period of the white stripes, indicating that the RP

can be an accurate method to detect a transition in the dynamic structure. Also, for all the

analyzed stations, the recurrence points are primarily concentrated in the low rainfall and

streamflow periods, as noted by Shu et al. (2021), which is indicative of lower system variability

and a persistent dynamic structure during dry spells.

In some of the other stations analyzed in this study, the same white ribbons as in

Station #2 can be seen for the same period, such as in Stations #1 and #3 around 1971 and 1983.

The cyclic pattern observed in Station #8 is also present in Stations #9, #10, #18, and #24. Other

stations (i.e., Stations #7, #14, #23, #26, and #31) display a homogeneous RP with numerous

single points and some short diagonal lines (compared to the length of the largest observed

interval), which indicates a developed chaotic state.

(a) (b)



(c) (d)

(e) (f)

(g) (h)



(i) (j)

(k) (l)

The RPs for streamflow time series mostly consist of several rectangular blocks

separated by horizontal and vertical white ribbons. It is noticeable that the distribution of these

rectangular blocks and the density of recurrence points within them change. For example,

Station #4 has only one such block from 2011, while Station #19 has a structure similar to that

in the same period. Other stations, such as Stations #5 and #14, show the presence of only one

block from 1968 and Station #16 from 1974. Some stations present multiple blocks from

different periods. In the streamflow series, it is possible to observe a common change in

dynamics between the analyzed stations. For example, Stations #6, #12, #18, #29, and #30 show

a shift between 2000/2001. Stations #19, #29, and #30 show a shift in 2005, and Stations #23,

#25, and #27 show a shift around 1981/1982.



(a) (b)

(c) (d)

(e) (f)



(g) (h)

(i) (j)

(k) (l)

Climate, as discussed, is a main driver of the hydrological cycle, and indices such



as the PDO and El Niño are known to influence rainfall patterns in the region (KAYANO et al.

2020). Numerous studies have explored the presence of chaos and nonlinearity in El Niño

dynamics (NEELIN et al., 1998; STONE et al., 1998; MAJUMDER & KANJILAL, 2019;

OGUNJO & FUWAPE, 2020). These studies establish nonlinear structures and even

indications of chaoticity. Given the identification of a chaotic signal in El Niño events, the RP

was applied to the monthly time series to investigate the potential influence of this index on

rainfall and streamflow patterns. The RP of El Niño (Figure 20) displays white stripes around

1972, 1981, and 1997. These are consistent with the breakpoints observed in the rainfall time

series around 1971 and 1983 and in the streamflow around 1982. Rolim et al. (2021) explored

the influence of the Oceanic Niño Index (ONI) in the same region using information theory

metrics. They found that during El Niño years (e.g., 1963, 1965, 1982, 1987, 1991, 1992, 1997,

2002), rainfall is scarce, resulting in higher variability. As observed in the RPs, these years

showed changes in rainfall and streamflow patterns. These alterations in the time series provide

further evidence of the influence of climate indices in the region under study. The authors also

analyzed the PDO, a well-known index that affects rainfall and streamflow in the region. They

found that the PDO exhibits more recurrence points compared to the El Niño 3.4 index.

However, both indices demonstrate similar transition periods (APPENDIX A).

(a)



(b)

In addition to visualizing rainfall and streamflow behavior using RPs, RQA is also

applied to describe the dynamics by quantifying the patterns in

and heterogeneous patterns in the RP suggest chaotic behavior, justifying its quantification.

Four parameters in the RQA (RR, DET, LMAX, ENT) were computed for the monthly rainfall

and streamflow time series that showed a saturation point in the CD method.

The first recurrence variable, RR, quantifies the percentage of recurrent points

within a specified radius, with values ranging from 0 to 1. For rainfall, the RR values range

from 0.003 to 0.06 (Table 3), showing that the recurrence matrix is sparse for rainfall, with

fewer recurrent points. This result is consistent with the findings of Santana et al. (2020a), who

also found low RR values for monthly rainfall in Pernambuco, a state also located in the NEB.

For streamflow, the values range from 0.01 to 0.77, with lower values located in the

southeastern and coastal parts of the State. The other areas show high recurrence, suggesting

that the system is revisiting many states over time.

The second recurrence variable, DET, measures the proportion of recurrent points

that form diagonal line structures reflecting the occurrence of regular patterns (predictability)

in a time series. Periodic signals result in very long diagonal lines, chaotic signals result in short

diagonal lines, and stochastic signals result in no diagonal lines at all. For the rainfall, the values



of DET range from 0.23 to 0.76, indicating that some stations have recurrent points in

deterministic structures. The stations with the highest DET (#23 and #31) are located in the

southeastern region of the State, while low DET values can be found in the north of the State.

Lower values suggest a more complex and less predictable system. Furthermore, 46% of the

rainfall stations had above-average DET and below-average RR, indicating a high degree of

complexity. For streamflow, the DET value range from 0.3 to 1 (Table 4). Santana et al. (2020b)

found high DET values (0.98 and 0.79 values before and after the dam construction) for a

streamflow time series in the NEB. For the streamflow, only 16% of the stations had above-

average DET and below-average RR, with these stations located in the northwestern and

southeastern areas of the State.

The third recurrence variable, linemax (LMAX), is inversely proportional to the

LLE (ECKMANN et al., 1987). The shorter the LMAX, the more chaotic (less stable) the signal

is. Stations #5, #6, #15, #27, and #28 presented high values of LMAX, while the LMAX values

for stations #17, #21, and #31 equaled 0. For streamflow, only Stations #3, #5, #14, #15, #16,

#20, #22, #24, and #25 presented low values of LMAX, indicating a more chaotic behavior.

These stations are located mainly in the southeastern and coastal parts of the State. The fourth

recurrence variable is ENT, a measure of signal complexity. For the rainfall, the ENT ranges

from 0 to 0.64. Most of the State has low ENT values for rainfall, with high values concentrated

in the western part of the State, indicating higher complexity in this region. The coastal area of

the State showed low values of ENT, as also seen by Rolim et al. (2021). For the streamflow,

the ENT varies from 0 to 3.37. Stations #3, #15, #22, #24, and #26, located in the coastal and

southeastern regions of the State, have low ENT values.

Table 3 - Summary of RQA measures at different rainfall stations

Rainfall Station REC DET LMAX ENT TT
1 0,00 0,48 2,00 0,16 2,14
2 0,01 0,24 3,00 0,09 2,04
3 0,01 0,24 2,00 0,05 2,03
5 0,01 0,28 9,00 0,15 2,03
6 0,02 0,23 15,00 0,12 2,03
7 0,01 0,39 2,00 0,11 2,00
8 0,01 0,25 2,00 0,09 2,00
9 0,01 0,32 2,00 0,15 2,05
10 0,01 0,29 2,00 0,12 2,00
14 0,01 0,39 2,00 0,16 2,09
15 0,03 0,34 19,00 0,18 2,24
16 0,01 0,40 2,00 0,35 2,00



17 0,01 0,38 0,00 0,00 2,00
18 0,01 0,26 3,00 0,28 2,00
20 0,00 0,46 2,00 0,64 2,00
21 0,01 0,24 2,00 0,07 2,30
22 0,01 0,36 2,00 0,27 2,00
23 0,00 0,61 0,00 0,00 2,00
24 0,01 0,30 2,00 0,08 2,00
26 0,00 0,45 2,00 0,30 2,00
27 0,06 0,27 69,00 0,17 2,32
28 0,05 0,29 25,00 0,45 2,17
30 0,01 0,31 2,00 0,07 2,03
31 0,00 0,76 0,00 0,00 0,00

Table 4 - Summary of RQA measures at different streamflow stations

Streamflow Station REC DET LMAX ENT TT

3 0,03 1,00 0,00 0,00 0,00
4 0,05 0,88 25,00 1,25 7,67
5 0,02 0,53 2,00 0,41 2,25
6 0,27 0,94 48,00 3,37 32,51
9 0,71 0,94 69,00 2,64 17,27
10 0,27 0,53 22,00 0,38 3,24
11 0,77 0,99 101,00 2,21 17,28
12 0,50 0,92 62,00 1,95 9,13
13 0,18 0,53 28,00 0,84 3,44
14 0,03 0,50 3,00 0,31 2,36
15 0,02 1,00 0,00 0,00 0,00
16 0,08 0,49 4,00 0,38 2,45
17 0,67 0,93 155,00 1,61 16,93
18 0,21 0,45 27,00 0,23 3,01
19 0,06 0,73 18,00 0,52 3,74
20 0,02 0,53 2,00 0,64 2,27
21 0,10 0,65 5,00 0,76 3,03
22 0,06 0,39 3,00 0,14 2,13
23 0,17 0,57 39,00 1,00 5,26
24 0,01 0,46 0,00 0,00 2,07
25 0,05 0,30 4,00 0,55 2,69
26 0,03 0,49 7,00 0,14 2,16
27 0,19 0,74 18,00 1,01 3,95
29 0,19 0,64 57,00 0,48 4,18
30 0,17 0,64 24,00 0,81 4,50



Reliable modeling and forecasting of rainfall and streamflow are important for

water resource applications. However, the complex dynamics inherited in hydrological data

present a challenge for analysis. This study used nonlinear and chaos theory methods to explore

temporal and spatial variability of rainfall and streamflow dynamics throughout a Brazilian

state. Phase space reconstruction, correlation dimension, Lyapunov exponent, recurrence plot,

and recurrence quantification analysis were applied to detect the presence of deterministic chaos

in the data and provide an understanding of hydrological variable modeling.

With regard to time delay estimation, we found that the rainy season plays a crucial

role in the reconstruction of the attractor for rainfall. On the other hand, streamflow exhibits a

longer time delay. This extended time delay can be attributed to the iterations that this variable

maintains with other processes in the hydrological cycle and land use. Moreover, we found the

spatial variability of rainfall to be higher than that of streamflow, likely due to differences in

soil types and characteristics of intermittent rivers.

We also investigated the impact of timescale on the reconstruction of the phase

space for rainfall and streamflow. With an increase in timescale, the required dimension for

reconstruction decreased for most stations, using both the FNN and the CDmethods. Moreover,

region. This suggests that these systems require more variables to describe their behavior, thus

implying increased complexity.

The saturation of the correlation exponent versus the embedding dimension is

indicative of chaotic behavior. More than 70% of rainfall and 80% of streamflow stations

presented a saturation for the monthly timescale. However, as the timescales increased, the

detection of chaotic series decreased. Another metric to detect the presence of deterministic

chaos is the LLE, which also has implications for predictability. The rainfall data showed

positive LLE values, indicating the presence of deterministic chaos, while only a few

streamflow stations had negative values. Higher values of LLE were found in the northern area

for rainfall and in the northwestern region for streamflow. In addition, the streamflow data

presented higher LLE values, suggesting a stronger presence of chaos. This finding has

important implications for forecasting, as predictability is inversely related to the LLE. Thus,

rainfall stations exhibiting deterministic chaos are more predictable over longer periods



compared to streamflow stations. It is worth mentioning that this low predictability of

streamflow in the region can be related to the length of the time series, which is a limitation in

this paper, and that only three time series could be analyzed due to missing values in the series.

Both variables presented a shift in their dynamics, as identified by the RPs, which

displayed common shift periods. Further, climate dynamics impacted the rainfall and

streamflow time series, with the Niño index presenting shifts similar to those in the rainfall and

streamflow. Our results also highlighted the spatial heterogeneity of hydrological processes,

with stations in the northwestern part of the State showing high values of ENT, indicating

greater complexity in that region. Additionally, streamflow exhibited higher ENT values than

rainfall, indicating higher complexity, as observed in the coefficient of variation in the statistical

analysis.

The presence of chaos in rainfall and streamflow time series can be identified, even

with changes in the timescale. However, the complexity of these series changes both spatially

and temporally. Most methods indicated that the northwestern part of the State is more complex

for both rainfall and streamflow. Furthermore, this study revealed that, due to the chaotic nature

of the streamflow time series, long-term predictions may not be effective for water resources

management in the region. This finding has significant implications for the development of an

integrated water management plan for the region. While it may seem plausible to predict

streamflow for water resource management within the study area, such attempts are likely to be

highly flawed. However, rainfall results show that it might be possible to predict the chaotic

time series for up to six years. The results presented here have potential relevance to several

applications, as they provide insight into how the dynamics of the hydrological variables evolve

and space in the State. This study found that climate dynamics have a significant influence on

rainfall and streamflow time series. Therefore, future studies should consider a more in-depth

analysis of how specific climatic indices influence these hydrological variables.
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