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ABSTRACT 

Two FUNDAMENTAL problems of the linear theory of piezoelectricity are studied from a theoretical point of 
view, namely, the cases of a point force and a point charge acting on a piezoelectric half-plane. Exact 
expressions for all relevant electroelastic variables are obtained through a state space methodology in 
conjunction with the Fourier transform. Numerical results are also provided to illustrate both qualitative 
and quantitative behavior of the induced electromechanical fields. 

1. INTRODUCTION 

IN THIS PAPER we are concerned with the theoretical analysis of a piezoelectric half- 
plane subjected to either a point force or point charge. While the study is primarily 
devoted to crystals of the 6 mm class and poled ferroelectric ceramics, a larger class 
of piezoelectric crystals and man-made piezoelectric materials can be accommodated 
within the present formulation. Moreover, solutions to equivalent problems involving 
non-electrified anisotropic elastic bodies or rigid dielectrics can be obtained as par- 
ticular cases. 

Recall that a piezoelectric material is one that deforms when subjected to an 
electric field and, conversely, it induces electric charge when subjected to pressure. 
Furthermore, the piezoelectric effect can be manifested only ifi materials lacking a 
center of symmetry. Thus, this effect is found in 20 different crystal classes possessing 
various degrees of material and electrical anisotropy, such as quartz, lithium niobate, 
cadmium sulfide, gallium arsenide, Rochelle salt, barium titanate and lead titanate. 
Piezoelectricity can also be induced in isotropic bulk materials like ceramics and 
polymers through the application of a strong DC electric field. As a result of this 
process, known as poling, the material becomes transversely isotropic with the sym- 
metry axis being parallel to the direction of the poling field. 

The range of applications involving piezoelectric crystals and ceramics is quite 
wide. Typical examples are electromechanical transducers, delay lines, medical instru- 
mentation, detonation devices, sonar projectors, microelectronic components and 
“smart structures”. In most of these applications the crystal or ceramic is exposed to 
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severe mechanical and electrical loading conditions which may result into structural 
failure or dielectric breakdown. Proof that these problems are growing in importance 
is given by the appearance in the last few years of articles dealing with the effect of 
defects in piezoelectric and ferroelectric ceramics. Among others, we can mention the 
works of MCMEEKING (1990), PAK (1990), SHINDO et al. (1990), SOSA (1991), Suo et 
al. (1992), Suo (1993) and references provided therein. 

Although in the present article we do not deal with defects, phenomena like mech- 
anical failure and electrical breakdown also arise due to the nature of the applied 
loads. A natural example is that of conducting surfaces with sharp points, where it is 
known that surface charge density and the corresponding electric field are inversely 
proportional to the radius of the conductor’s tip. The case of the point charge in this 
article is a simplified model to such phenomenon but useful as a first approximation 
to predict, for example, the behavior of the elastic fields in the neighborhood of an 
electrode’s tip. Thus this paper and the articles mentioned above share a common 
objective: to gain a better understanding of the behavior of dielectric materials in the 
presence of electroelastic raisers. 

The solution to boundary-value problems involving piezoelectric materials is 
extremely difficult from a mathematical point of view because of material anisotropy 
and electroelastic coupling effects. As has been the case in many other branches of 
continuum mechanics, mathematical difficulties can be circumvented by resorting to 
a numerical approach. While it is clear that realistic configurations involving the 
piezoelectric effect will call for numerical solutions, it is also true that any good 
algorithm should be tested against exact solutions to some important problems. To 
the best of our knowledge these solutions are not available. Hence this paper appears 
to be the first attempt to provide exact results to the two fundamental problems cited 
before. 

Although the present analysis is simplified by being restricted to two dimensions, 
it still preserves a reasonable degree of generality by retaining elastic and electric 
anisotropy as well as full electromechanical coupling. The solution to the problem of 
the half-plane subjected to a generalized point load of mechanical or electrical nature 
is obtained by means of a state space approach. This particular methodology, which 
has its roots in classical dynamics and modern control theory, has not been fully 
exploited in continuum mechanics. Important contributions of the state space 
approach to problems in elasticity and coupled thermoelasticity were given by BAHAR 
(1972, 1975), BAHAR and HETNARSKI (1978) and SOSA and BEHAR (1992). The appli- 
cation of the state space methodology within the framework of electroelasticity is due 
to SOSA (1992), where the emphasis was placed on a general mathematical formulation 
towards the solution of problems in laminated structures. For the sake of completeness 
we repeat briefly the salient steps of this formulation. Our main objective, however. 
is to show how the state space approach together with the use of Fourier transforms 
leads to a compact and efficient description of a certain class of electromechanical 
problems. Typically, problems in plane elasticity are constrained to finding stresses. 
If, additionally. the displacements are sought, one must integrate the constitutive 
relations. This last step is not always a simple one. An interesting feature of the 
present formulation is that it allows us to obtain stresses and displacements at the 
same time. The same is true for the electrical variables: electric displacement and 
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electric potential stand on equal footing. An important corollary of our results is that, 
although tempting for purposes of simplification, neglecting coupling effects may lead 
to erroneous conclusions. To illustrate this point we make a comparison of the 
electroelastic solution for the point force with its counterpart of non-electric aniso- 
tropic elasticity. 

The paper is organized as follows: in Section 2 we introduce the general equations 
governing the linear theory of piezoelectricity, which are later reduced to the particular 
case of plane strain conditions. In Section 3 we provide a brief outline of the state 
space methodology to attack problems of electroelasticity, while in Section 4 we 
present the solutions to the fundamental problems described previously. Finally, in 
Section 5 we show the behavior of certain elastic and electrical variables for a par- 
ticular class of material. 

2. MATHEMATICAL FORMULATION OF PIEZOELECTRICITY 

The description of piezoelectricity is based on the combination of elements of 
elasticity and electrodynamics, where the basic variables are the stress 6, the strain E, 
the electric displacement D, and the electric field E. The present paper is constrained 
to static problems where we also neglect body forces and electric charge density. 
Under these circumstances the field equations are given by 

div 0 = 0, div D = 0 (2.1) 

where the second equation is Gauss’s law of electrostatics. In theoretical studies it is 
usually necessary to introduce, in addition to the aforementioned variables, the elastic 
displacement u and the electric potential 4 through the relations 

E = +(Vu+VuT), E = -V+ (2.2) 

where the second expression implies the assumption of the quasi-electrostatic approxi- 
mation, that is V x E = 0. 

Formulae (2.1) and (2.2) constitute a system of 13 relations for 22 unknowns. The 
additional nine equations are provided by the constitutive relations reflecting elec- 
troelastic interactions. These relations can be derived formally using thermodynamic 
potentials and can be arranged in four different manners, depending on which basic 
variables are chosen as independent in the thermodynamic potential. If these are the 
strain and the electric field, the constitutive equations take the form (PARTON and 
KUDRYAVTSEV, 1988) 

c = CE.c-eTE 

D = ec+CE (2.3) 

where CE is the fourth-order tensor of elastic moduli (measured at constant or zero 
electric field), e is the third-order piezoelectric tensor, tE is the second-order dielectric 
tensor (measured at constant or zero strain), and the superscript T denotes the 
transpose of a tensor. Notice that if the piezoelectric effect is absent or neglected, one 
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can set e = 0 in (2.3) which reduces the first expression to the well-known generalized 
Hooke’s law and the second relation to the constitutive description of rigid dielectrics. 

Substitution of (2.2) into (2.3) and further use of (2.1) yields a system of four 
partial differential equations coupling the three components of u with the potential 
4. Such a system of equations, which must be furnished with mechanical and electrical 
boundary conditions is, in general, very difficuIt to solve in an exact manner. A 
substantial simplifi~tion can be achieved, however, if the mathematical description 
is based on a two-dimensional model. This article is constrained to the half-plane 
--x‘<I<X,Z 3 0 where the z axis coincides with the six fold axis of symmetry in 
the case of a 6 mm crystal class, or with the poling axis in the case of poled ferroelectric 
ceramics. Plane strain conditions are assumed in this plane, that is c, /, = E,., = F,, = 0. 
From the electrical point of view we also assume that E, = 0. Accordingly, (2.1) 
reduces to 

Moreover, the strain-dispIacement and electric 

become 

?a.. ~- - 0 
(32 

(2.4) 

(2.5) 

field-electric potential relations 

where u and IY are the components of the elastic displacement in the x and z directions. 
respectiveIy. Finally, the ~onstitutive relations can be written in matrix form as 

(2.8) 

(2.9) 

where for convenience we have dropped the superscripts in the constants C and t. 
The structure of (2.8) and (2.9) is not exclusive of the crystals and ceramics described 
before. For example, identical structures for the material matrices are obtained (when 
reduced to two dimensions) for some crystals belonging to the orthorhombic, tetra- 
gonal and hexagonal systems. 

Equations (2.4)~-(2.9) can now be combined to yield three coupled partial differ- 
ential equations to be solved for 14, 1~ and #. While simpler in structure compared to 
its three-dimensional counterpart. this system of equations is still difficult to solve in 
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closed form. In the next section we show that the state space approach is a powerful 
tool to provide a simple and systematic solution to a certain class of problems. 

3. STATE SPACE FORMULATION FOR ELECTROELASTICITY 

The basic idea behind the state space formulation is to describe a given physical 
system in terms of the minimum possible number of variables. In the particular case 
under consideration this can be achieved by eliminating cY., and D, from (2.4)- 
(2.9) which results into a new system of partial differential equations without mixed 
derivatives. that is 

(3.1) 

where 

@ = Cj3c33+e31e33, B=C13e33-C33e31, li’=C33c33+ei3, Ic=ef5+C4,c,,. 

The solutions to boundary-value problems of elasticity and electrostatics can be 
approached independently by the methodology described in this section by simply 
setting e3, = ej3 = e,5 = 0 in (3.1). Since the coupling phenomenon is the main issue 
of the paper, we shall not pursue these particular cases any further. 

The next step towards mathematical simplification consists of using the Fourier 
transform to reduce (3.1) to a system of ordinary differential equations. Letting the 
Fourier transform of a function f(x) be defined as 

Z FT{f(x)} = ,p(t) = 
s 

f’(x) eler dx (3.2) 
X 

and, furthermore, assuming that U, &/8x, w, gzzr CT~:, (6, c?cj/dx, and D, tend to zero 
as 1x1 + co, (3.1) becomes 
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d 
< 

d: 

i 

where the coefficients 

(3.3) 

The column matrices appearing in (3.3) suggest that we collect the six independent 
electrolnech~~nical variables into a state vector, namely S(.q r) = {u, IV, CJ;_, o_,,, (ii, D7j ’ 
which after use of the Fourier transform becomes g([. 2) = {ti, nF, ci;,, 8,;. 4, B1 1’. As 
a result, we can now write (3.3) compactly as 

dS 
(3.5) 

where A is the 6 x 6 matrix appearing in (3.3) whose only feature is having zeros in 
its main diagonal. The solution to (3.5) is easily found to be 

s(<. 2) = exp [?A([)$(;‘, 0) (3.6) 

where the exponential matrix exp [:A(<)] is the transfer matrix that maps the “initial“ 
transformed state vector s(t, 0) into the field. As shown by SOSA (1992), an explicit 
expression for the transfer matrix can be found by means of series expansions and 
use of the Cayley-Hamilton theorem. Thus 

expkA] gfBB(L3) = cr,l+a,At-~r,A*+~~~A~+~l~A~+u,Aj (3.7) 

where the coefficients a,, . . . , a5 are expressed in terms of the eigenvalues I,% 
(k = 1. . . ,6) associated with the matrix A. We can show that these coefficients are 
given by (SOSA, 1992) 

(3.5) 

where the A,, are also expressed in terms of the eigenvalues, namely 
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k+2 ;12 

Alk = c L, 
1 1 

,=kt 1 jukdk 
A4k = d,’ &k = cd,> 

4 = @,2+, -J;)(I,:+, -/I:), k = 1,2,3. (3.9) 

From the previous expressions it should be clear that the most important step 
towards the complete characterization of the transfer matrix B is the determination 
of the eigenvalues of the matrix A, which satisfy the characteristic equation 

?L6 i&P + yr4;12 + p’tb = 0 (3. 

where the constants p, q and r are given by 

10) 

p=L. L P 
YC44 

aC44+C(2e,5C33-e3jC44- 
‘33 

P)+~(c”c44+c:‘-c,,c33)-“c33~ I 
1 (C,,G-C3) 

4=yc4; 
____.... 

[ C,‘3 3 ( c E 

44 33 
+ze e 

15 33 
__c!& 

_I 
44 ! 

+~(c,,c33-c:3-c’,3c44~ 
44 

+~(2C44+~~,5)-~(~Ci3+Sei,)+~ Qs-7 

ri J 

e33C44 

33 33 

+$+(~33G4+ej5~33) 
z I 

r=L 

;‘2Cd4 [ 
(Cf,-C,,C,,) ci3+:j -rC13-ff;-~ . 

( ) 33 32 1 (3.11) 

The structure of (3.10) allows us to find its roots in closed form. Moreover, it turns 
out that for every physically admissible transversely isotropic piezoelectric material 
the eigenvalues can always be expressed in the following form [see also PARTON and 
KUDRYAVTSEV (1988) for similar results in a different setting]: 

RI.4 = f44, ’ h2.5 = *(b+ic)/</, & = *(b-ic)lfl (3.12) 

where a, b and c are real numbers depending on the components of C, e and c.. 
Knowledge of the eigenvalues and, therefore, of the coefficients a/, together with 

the various powers of A provides the complete determination of the exponential 
matrix. Hence the solution in the transformed domain becomes 

&5, z) = B(L 4%, 0) (3.13) 

where it must be kept in mind that B depends on the material properties. This means 
that the transfer matrix is calculated once and for all for a particular material while 
different boundary-value problems will require the dete~ination of the initial state 
vector. Finally, (3.13) must be inverted to find the physical variables. Finding the 
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inverse Fourier transform of (3.13) depends strongly on the problem under consider- 
ation. In the next section we show that for the two fundamental problems of this 
article the inversions can be done in closed form. To conclude this section we want to 
point out that some interesting properties of the matrix B were given by SOSA (1992), 
among which the most important is that its determinant is equal to unity. 

4. GENERALIZED PRINT LOAD ON THE PIEZOELECTRIC HALF-PLANE 

The response of the piezoelectric half-plane subjected on its boundary to a com- 
pressive point force P or a positive point charge Q can be studied in a unified manner 
by introducing a generalized point load G, which can be taken independently as of 
either mechanical or electrical nature. As mentioned previously, for a given material 
the initial state vector must be fully determined for each boundary-value problem. 
Within the realm of piezoelectricity, elastic and electric boundary conditions must be 

prescribed at z = 0. For the two problems under consideration it is convenient to 
specify the traction and the normal component of electric displacement (associated 
with surface charge). Hence the boundary conditions in the physical and transformed 
domain when G = P are given by 

a,:(s, 0) = - P6(.u) * ffZI(s’. 0) = -p 

(T,,(x, 0) = 0 =a 6,,([, 0) = 0 

D,(.Y. 0) = 0 ==s- b’;((, 0) = 0 (4.1) 

and when G = Q they become 

C7;r(.Y. 0) = 0 * ti__([, 0) = 0 

rr,,(s. 0) = 0 * B,:(& 0) = 0 

D,(s,O) = QS(s) =P d=(<. 0) = Q. (4.2) 

In (4.1) and (4.2), P and Q are force and charge per unit of length, respectively, 
while 6(.x) is the Dirac-delta function. Since s(<,O) has six components and the 
previous equations provide only three conditions, additional relations must be estab- 
lished to obtain the rest of the components of the state vector on the boundary. For 
the half-plane it is natural to require that the state vector be bounded for large values 
of the depth Z, that is 

S([,Z) -+ 0 as z + m. (4.3) 

Making use of (3.13) together with (4. I), (4.2) and (4.3) yields 

(4.4) 

where k,, k2 and k3 are real numbers depending on the material properties and the 
nature of the applied load. Their magnitudes and units for different materials and 
loads are given in Tables 1 and 2 in the Appendix. It is interesting to note that if 
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G = P and the solid is not of piezoelectric nature but anisotropic, then k, = 0. If, in 
addition, the solid is isotropic, then the constants k, and k, are expressed in terms of 
the modulus of elasticity E and Poisson’s ratio v, namely, k, = - (1 - v)/E and 
k, = 2/E. Once s(4, 0) is known in its entirety, use of (3.13) determines the trans- 
formed state vector anywhere in the medium. The calculations yielding the electro- 
mechanical variables are lengthy but straightforward and can be performed with a 
symbolic manipulator computer program like Mathematics. It is found that 

Fk = QI, ee”“” + [Q2, cos (~151~) +Yk sin (c]l]z)] eehii” (4.5) 

where Ok, C& and ‘I”,, (k = 1, . . ,6) are real constants reflecting the electric and elastic 
characteristics of the material. Their actual expressions are quite lengthy and are 
omitted because they do not introduce any relevant information in the final results. 
Their values and corresponding units (according to the nature of the load) for three 
different materials are also provided in Tables 1 and 2. To obtain the physical 
components of the state vector we must invert (4.5) using the inverse of (3.2). Since 
the mathematical structures of Kz and C$ on one hand, and of 8,: and d, on the other, 
are exactly the same except for their coefficients, only the inverse Fourier transforms 
of four variables need to be found. Thus, multiplying each of the relations in (4.5) by 
ee”‘/2n and integrating between T m yields 

s 

Xa cos (c(z) sin (lx) __ 
e I+ dl 

0 t 

+Y’, 1 (4.6) 

s 11 

cos (5x) e-“i’ d< + Q, cos (c@) cos (lx) eeht’ d5 
0 

s XI 

+Y’, sin (C(Z) cos (tx) e@’ dt 
I 

(4.8) 
0 

s cc 

sin (5x) eeUiL’ dt + CL, cos (c<z) sin ([x) eehSZ dl 
0 
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+y4 sin (C(Z) sin (r.u) eehl’ d5 
Ii 

(4.9) 

The expression for c#I(.Y, z) is identical to the expression for IV(S, 2) with new coefficients 
Q5, Q5 and ‘I”, . Similarly, the expression for D,(x, z) is identical to the expression for 
a7: but with coefficients (DC,, Q2, and Y’,. We note that the integrals appearing in (4.6)- 
(4.9) represent the Laplace transform of trigonometric functions which can be solved 
in a simple manner with the exception of two of them. Indeed, the integrals in the 
first two terms of the expression for $1’ (and q5) are divergent and, therefore, cannot 
be found in standard mathematical tables. It can be shown, however, that these 
integrals do converge in the sense of generalized functions or distributions. From 
ZEMANIAN ( 196.5) we find that 

s x cos (c(z) cos ((s) 
e 

_hi_ 

dir = -f In [.v4 +2(h2 -c2)x2? + (h’ +c’)‘z~]. (4.10) 
0 < 

In passing we note that SCISA and BAHAR (1992) have shown that the same solutions 
to the divergent integrals can be obtained using classical methods of differentiation 
and integration. 

Using the results provided by (4.10) together with the solutions corresponding to 
the rest of the integrals appearing in (4.6)-(4.9) we obtain the final expressions for 
the electromechanical fields. The elastic variables are given by 

(4.11) 

$ + (b’ _ C?)Z2 
(4.12) 

The electrical variables are given by 
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4(x, z) = z 
i 

- F In (x’ +a2z2) - $ In [x4 + 2(b2 - c2)x2z2 + (b2 + c2)*z4] 

y’, 

[ 

2hcz2 
+Ttan’ __ 

x2 + @I2 - C’)Z’ II 
(4.15) 

lzz + QJ-y6c)x *z+(R6h+Y’,C)(b2 fC2)Z3 

. x2 +a2z2 x4 + 2(/? - C2)X2Z2 + (b2 + CZ)2Z4 
(4.16) 

The expressions for the variables CT,~ and D, can be easily obtained using (2.8) and 
(2.9), a result that is omitted. 

From a practical point of view, knowledge of the electric field behavior is usually 
more important than knowledge of the electric displacement. The component E, is 
obtained using (2.7) and (4.15) which gives 

E;(x,z) = G 
i 
@‘s 

a22 

x2 +a2z2 

+ [n,(b*-C*)-2Y5bC]X2Z+R5(b2+C2)*z3 

7r x4 + 2(b2 - C2)X2Z2 + (b2 + c2)224 I . (4.17) 

Equations (4.11)-(4.17) deserve a few comments. First, the electrical counterparts 
of the mechanical variables 6, E and u are D, E and 4, respectively. Thus, it is not 
surprising that, apart from their coefficients, w and 4, on one hand, and o,, and D, 
on the other, have exactly the same mathematical representation. 

Second, while the results show that mathematically the electroelastic variables are 
independent of the nature of the load, physically this is not true. For example, the 
normal stress induced by a point force is different from the stress induced by a point 
charge from both a qualitative and quantitative point of view. This is so because the 
nature of the load G is also implicitly involved in the coefficients Qk, Qk and Y’,. To 
emphasize this point, examples showing the behavior of some of the variables under 
both kinds of loads are given in the next section. 

Third, the expressions for the mechanical variables show some similarities with 
their counterparts of elasticity. For example, the stresses are given in terms of rational 
functions of polynomials, although with a more complicated structure. The same can 
be said of the displacement components which, as in the elastic case (LOVE, 1927), 
become unbounded for large values of the depth coordinate. In this case, this phenom- 
enon is also displayed by the electric potential. 

The mathematical difficulties associated with the solution to piezoelectric boundary- 
value problems makes almost inevitable the following question : can coupling effects 
be neglected? If the answer is affirmative, the solution to the electroelastic problem 
will follow steps very similar to those encountered in the theory of uncoupled ther- 
moelasticity. In the remainder of this section we shall show that the results provided 
by the coupled and uncoupled theories are quite different at least in their mathematical 
structure. In the next section we reinforce the differences by a numerical example. To 
illustrate our point we consider the behavior of the normal stress o,, when a com- 
pressive point force is applied to the piezoelectric half-plane. The result using the 
coupled theory is given by (4.13) with G = P. If coupling effects are to be neglected, 
we must simply set e3, = e33 = e, 5 = 0 in (3.1) leading to a formulation based on a 
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z(m) 
I 

-0.2 

t 

0.2 0.4 

P=l N/m x(m) 

FIG. I. Contours of al, (N III ‘) induced by a point force. 

4 x 4 matrix A. That is, the problem reduces to one of anisotropic elasticity. We omit 
the details of these calculations, but we can show that in this case the stress is given 

by 

(4.18) 

where 6,, ciz and (5, are functions of C only. Equation (4.18) can also be obtained 
from LEKHNITSKII (198 1) after recasting his expressions into Cartesian coordinates. 
In passing we note that if the material is isotropic, ci, = 1, fi2 = 2, 6, = I, whence the 
previous equation reduces to the well-known Flamant solution, namely 

(4.19) 

Comparison of (4.13) with (4.18) reveals two additional terms in the electroelastic 
solution, one in I and the other in ,Y’=. These terms are of the same order of magnitude 
as the term in ? since they involve the same coefficients. The differences, however, go 
beyond the mathematical form as we show in the next section through a numerical 
example. 

5. NUMERICAL RESULTS 

In this section we illustrate the qualitative and quantitative behavior of the elec- 
tromechanical fields when the boundary of the half-plane is subjected to a point load. 
Toward this end we consider a piezoelectric ceramic known as PZT-4 (BERLINCOURT 

et al.. 1964), whose associated material coefficients are listed in Tables 1 and 2 for the 
cases of mechanical and electrical loads, respectively. 

First we consider the case of a compressive line force of 1 N rn-’ applied at the 
origin of coordinates. Contours of the induced normal stress are shown in Fig. 1. On 
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physical grounds the results are rather predictable ; the contours are similar to those 
found in anisotropic elasticity. The similarity, however, is only qualitative. To expose 
their differences we can calculate the magnitudes of the normal stress as evaluated 
using (4.13) and (4.18) along the line x = 0. For the material PZT-4, using Table 1 
we find that the electroelastic theory predicts 

rJ,p;(O,z) = -0.551 i. 

On the other hand, if piezoelectric effects are neglected, (4.18) yields 

&(O,z) = -0.75145 
z 

Thus the ratio of the elastic to piezoelectric solutions is G,“,/c-?~ = 1.26. That is, the 
difference is by no means negligible and clearly suggests that the uncoupled approxi- 
mation may lead to substantial errors. 

The prediction of the behavior of the electric field merely on physical grounds is 
not a trivial matter, which in fact reinforces the importance of the expressions deduced 
in this article. As was mentioned in the introduction, the material not only can fail 
mechanically but also electrically. In the latter case the phenomenon is called dielectric 
breakdown and it takes place in the presence of very high electric fields. Because of 
these fields large numbers of electrons may suddenly be excited to energies within the 
conduction band, resulting in large currents that may deteriorate the material in an 
irreversible manner. Breakdown occurs when the electric field exceeds the material’s 
dielectric strength. For a ceramic this strength is in the range 5 x 104-3 x lo5 V rn- ‘. 
A limitation in the values of the applied or induced electric field must also be imposed 
in the case of poled ferroelectrics. If the poled material is exposed to very strong 
alternating electric fields, or direct fields opposing the direction of poling, depo- 
larization may occur. In other words, the piezoelectric properties become less pro- 
nounced or vanish completely. The field strength necessary to cause serious depoling 
depends on the grade of the material, the duration of application and the temperature, 
but is typically in the range 5 x 105-lo6 V rn- ‘. Thus it is clear why information 
regarding the behavior of E is so important. The distribution of the E, component is 
shown in Fig. 2. It is interesting to note the transition of the field from negative to 
positive values. The material lines for which Ez = 0 can be found from (4.14). Letting 
0 denote the angle that such lines form with the .Y axis we find that for a PZT-4 
8 = 40.2”. This angle strongly depends on the material properties. For BaTiO, and 
CdS, the electric field is zero along lines 0 = 12.7’ and 0 = 27.7“, respectively. Finally, 
from Figs 1 and 2 we can observe that in regions where the stress has a magnitude of 
approximately 1 MPa, the electric field can reach values of lo4 V rn- ’ . 

The next example concerns the case of a concentrated charge. Knowledge of its 
effects has also practical relevance. A piezoelectric material is used to convert mech- 
anical energy into electrical energy and vice versa. In the first case one must record 
or measure the induced voltage, while in the second case one must supply an external 
field. The application or recording of a voltage is done by attaching electrodes to the 
surface of the piezoelectric. Mathematically, this can be modeled by a distribution of 
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z(m) 

P=l ‘N/m x(m) 

FIG. 2. Contours of E, (x 10. ’ V m-‘) induced by a point force. 

charge. The study of the effects of an electrical load, whether it is distributed or 
concentrated, can be important to optimize electrode’s shape and also to impose 
limits on the intensity of the applied voltages to avoid mechanical and electrical 
failure. As shown in Fig. 3 a positive line charge of 1 C m-’ applied at the origin of 
coordinates generates contours of normal stress (T,, that change from compressive to 
tensile, a piienoinellon that would be reversed by changing the sign of the charge. It 
can also be observed that the magnitudes of the normal stress are by no means 
negligible. Furthermore, the material lines for which CT,, = 0 are found from (4.13). 
For the three materials given in Table 2 it is found that 0 = 0 , 0 = 56.4 and 8 = 64.2 . 
respectively. 

In this case it is also interesting to study the behavior of the vertical displacement 

z(m) 

0.7 

Q= 1 C/m x(m) 
FK;. 3. Contours ofn,, ( x ItI7 N II-‘) induced by a point charge 
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z(m) 

0.7 

-0.2 + 0.2 0.4 

Q= 1 C/m x(m) 

FE. 4. Contours of M’ ( x 10m2 m) induced by a point charge. 

in the vicinity of the load, which is shown in Fig. 4. Notice that a positive charge 
gives rise to negative displacements, that is, the material moves towards the boundary. 
Naturally the behavior of the displacement is very much constrained to the neigh- 
borhood of the load, since as shown by (4.12) it is unbounded for large values of z. 
We also note that these curves are very similar to those representing equipotential 
lines. Finally, contours of electric field E_ are shown in Fig. 5. Their resemblance with 
the contours of stress due to a concentrated force is not surprising in view of the 
similarities of (4.13) and (4.17). Moreover, similar curves are found in the electrostatic 
theory of rigid dielectrics. 

To conclude this section we want to point out that the behavior of other variables 
could also be represented using the fundamental results (4.1 l)-(4.17). Of particular 

Q= 1 C/m x(m) 

FIG. 5. Contours of E, (x 10’ V m-‘) induced by a point charge. 
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importance would be finding the principal stresses G, and gz and contours along 
which the combination of these achieve maximum values. We omit these results for 
the sake of brevity. It can be verified, however, that in the case of G = P the principal 
stresses are distributed in a manner similar to that found in the purely elastic case. 
For the case G = Q, g, resembles I?= of Fig. 5, while O> has the shape of the negative 
lobes of oil, given in Fig. 3. 

6. CLOSURE 

In this article we have provided exact expressions for the electroelastic variables 
induced by concentrated loads using a state space approach. The methodology is 
equally useful to solve in an exact or quasi-exact manner problems involving more 
complicated loading conditions. Moreover, we have shown that high values of stress 
and electric field arise in the neighborhood of point forces and point charges. These 
values being sufficiently high to produce mechanical and electrical failure, even under 
the assumption of a defect free material. 

In closing we note that due to the complexities involved in the coupled electroelastic 
problem, it is virtually impossible to know apriori the behavior of the various physical 
variables when subjected to mechanical or electrical loads. Therefore, while our results 
appear to be physically reasonable and while they approach the behavior observed in 
the limiting cases of anisotropic elasticity and rigid dielectrics, only experimental 
verification could provide full validity to the present developments. 
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APPENDIX 

In this Appendix we present the values and units of the various constants appearing in the 
main body of the paper for three different materials : Barium Titanate (BaTiO,), Lead Zirconate 
Titanate (PZT-4), and Cadmium Sulfur (CdS). These constants are in turn separated into 
Tables 1 and 2 according to the nature of the applied load. The experimentally found values 
of the elastic, piezoelectric and dielectric constants for these three materials can be found in 
the article of BERLINCOURT et al. (1964). 

TABLE 1. Material co#cients when G = P 

Variable BaTlO, PZT4 CdS 

h” 
k, x lO_‘:‘[m’ N-‘] 
kz x lo-l2 [m’ N-‘1 
k3 x 10m2 [m’ Cm’) 
@,, x lo-‘* [ml N-‘1 
a, x lo-” [ml N-‘1 
Y, x lo-l2 [m’ N-‘1 
Qz x lo-l2 [m’ N-‘1 
Rz x lo-l2 [ml N-‘1 
Y? x lo-‘* [m’N_‘] 

@‘3 
0, 
y’, 
@4 
% 
y’, 

@‘s x IO-’ [m’ Cm’] 
R, x 10-l [m’ Cm’] 
Yj x 10-l [ml Cm’] 
@)h x 10ml’ [C N-‘1 
R, x IO-” [C N-‘1 
‘Ph x 10-l’ [C N-‘1 

0.9405 1.204 1.854 
1.004 1.069 0.7006 
0.2292 0.2004 0.1348 

- 5.478 - 7.524 - 6.989 
14.15 17.73 34.48 

1.223 2.209 1.726 
- 1.606 -48.75 -20.10 
- 3.872 41.23 13.12 
52.01 70.22 45.52 

- 2.624 -43.23 - 7.284 
16.77 60.96 41.76 
45.69 48.00 66.12 

0.02329 1.897 0.3470 
- 1.0233 - 2.897 - 1.347 
-4.386 - 4.060 -2.218 

0.02190 2.283 0.6435 
-0.02190 - 2.283 -0.6435 
-4.638 -4.921 - 1.733 

1.403 2.565 - 12.75 
0.1801 -0.3560 14.48 
3.234 12.27 - 110.7 
1.973 12.13 -0.1074 

- 1.973 - 12.13 0.1704 
-7.388 -5.913 - 1.030 
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TABLE 2. Material coqfficienrs when G = Q 

Variable BaTiO, PZT-4 CdS 

N 
h 

k, x 10 -,“,m- Cm’] 
k, x IO-’ [m’ Cm’] 
k, x 10’ [N m2 Cm’] 
D,, x IO-’ [m' C’] 
Q,xlO ‘[m’C ‘1 
Y, x IO-” [m* Cm’] 
@,,x lO_’ [m2C’] 
!&xl0 ‘[m’c ‘1 
Yzx 10 ’ [m’C’] 
@‘i x 10’ [N Cm-‘] 
Q, x 10’ [N Cm’] 
‘I”, x 10’ [N C ‘1 
D4 x 10’ [N C ‘1 
Sz, x IO’ [N C ‘1 
Y’,xlO’[NC~‘] 
Q’S x 10’ [N m2 C -‘] 
R, x 10’ [N m’ Cm’] 
Yz x 10’ [N m’ C ‘1 

0.9405 1.204 1.8584 
1.004 1.069 0.7006 
0.2292 0.2004 0. I348 

- 0.7089 - 1.733 -0.2540 
- 1.223 - 2.209 - 1.726 

7.334 X.831 1116 
-0.8304 - 5.262 21.48 

0.1216 3.530 -21.74 
0.07846 - 1.940 54.20 

- 1.357 - 4.667 7.782 
0.1336 2.458 -9.508 
0.01978 - 2.947 95.96 
1.204 20.4X - 37.08 

- 1.204 - 20.48 37.08 
-0.3327 13.78 -317.7 

11.33 24.65 -68.76 
~ 11.33 - 24.65 68.76 
-0.6100 10.60 -217.3 

7.258 2.768 136.3 
0.07641 6.063 979.7 
0.0473 1 0.3468 - 966.7 
1.021 1.309 0.1148 
0.02062 -0.3092 0.8852 

-0.004996 0.5914 - 0.9204 


