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   Abstract—The  new  coronavirus  (COVID-19),  declared  by  the
World  Health  Organization  as  a  pandemic,  has  infected  more
than  1  million  people  and  killed  more  than  50  thousand.  An
infection  caused  by  COVID-19  can  develop  into  pneumonia,
which  can  be  detected  by  a  chest  X-ray  exam  and  should  be
treated  appropriately.  In  this  work,  we  propose  an  automatic
detection  method  for  COVID-19  infection  based  on  chest  X-ray
images.  The datasets  constructed for  this  study are  composed of
194 X-ray images of patients diagnosed with coronavirus and 194
X-ray  images  of  healthy  patients.  Since  few  images  of  patients
with  COVID-19  are  publicly  available,  we  apply  the  concept  of
transfer  learning  for  this  task.  We  use  different  architectures  of
convolutional neural networks (CNNs) trained on ImageNet, and
adapt them to behave as feature extractors for the X-ray images.
Then,  the  CNNs  are  combined  with  consolidated  machine
learning  methods,  such  as  k-Nearest  Neighbor,  Bayes,  Random
Forest,  multilayer  perceptron  (MLP),  and  support  vector
machine (SVM). The results show that, for one of the datasets, the
extractor-classifier  pair  with  the  best  performance  is  the
MobileNet  architecture  with  the  SVM  classifier  using  a  linear
kernel, which achieves an accuracy and an F1-score of 98.5%. For
the  other  dataset,  the  best  pair  is  DenseNet201  with  MLP,
achieving  an  accuracy  and  an F1-score of  95.6%.  Thus,  the
proposed approach demonstrates efficiency in detecting COVID-
19 in X-ray images.
    Index Terms—Convolutional  neural  networks  (CNNs),  COVID-19,
transfer learning, X-ray.
 

I.  Introduction

THE  COVID-19  pandemic  has  become  a  severe  health
problem  being  at  the  center  of  media  cover  since

December,  2019  [1],  [2].  In  about  74% of  the  cases,  the
COVID-19 causes  mild  (18%)  or  moderate  (56%)  symptoms
[3].  However,  the  remainder  of  the  cases  range  from  critical
(20%) to severe (6%) [3]. As of today (2020-04-03), the total
number  of  registered  cases  is  approximately  1  015 667,  with
53  200  deaths  worldwide  and  212  991  cases  where  a  full
recovery was achieved. Moreover, the number of active cases
is 749 476 [4], [5].

The  main  symptoms  presented  by  suspected  infections
include  respiratory  distress,  fever,  and  cough.  The  virus  may
also  cause  pneumonia  in  more  aggressive  infections.  Besides
pneumonia,  the  infection can lead to  severe  acute  respiratory
syndrome,  septic  shock,  multi-organ  failure,  and,  ultimately,
death  [6].  Studies  showed  that  men  (about  60%)  were  more
affected than women (about 40%),  and that there were, up to
this point,  no significant death rates in children younger than
nine years old [2]. Despite being developed, many first world
countries have been facing a collapse of the healthcare system
due  to  escalating  demand  for  intensive  care  units
simultaneously [7], [8].

Virus  tests  take  less  and  less  time  as  new technologies  are
developed  world-wide.  The  diagnostic  of  COVID-19
infections involves a chest scan to verify the lung condition, in
such a way that, if the patient shows pneumonia in the scans,
they are deemed to have a COVID-19 infection. This method
allows  authorities  to  isolate  and  treat  affected  patients  in  a
timely and affirmative fashion [9].

One  of  the  available  methods  to  detect  pneumonia  is  a
computed tomography scan of the chest (CT scan). Automated
image  analysis  based  on  artificial  intelligence  is  being
developed  to  detect,  quantify,  and  monitor  COVID-19
infections,  as well  as to separate healthy lungs from diseased
ones [10]. Ke et al. [11] use the image’s basic characteristics
and  analyze  neural  network  co-working  with  heuristic
algorithms.  The  method  is  divided  into  the  following  steps:
first,  an  initial  analysis  of  the  possibility  of  detecting
respiratory  disease  through  basic  descriptors  with  a  neural
network,  then,  the  use  of  heuristic  algorithms  for  the  rapid
detection  of  affected  lung  tissues,  since  the  possibility  of
detection is considerable. Poap et al. [12] and Shan et al. [13]
developed  segmentation  studies  based  on  a  heuristic  and  a
deep  learning  method,  respectively.  These  studies  seek  to
segment all-region on a lung that presented infection, isolating
the  sick  region  from  the  rest  and  thus  conduct  studies  of
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patterns unique to that region, helping to identify the region in
a  new  sample.  Xu et  al. [14]  aspired  to  develop  an  early
screening  model  that  was  capable  of  differentiating  COVID-
19  pneumonia,  Influenza-A  pneumonia,  and  healthy  lungs
using CT scan images and deep learning techniques.  A study
by Wang et al. [15] developed a deep learning method based
on  the  changes  presented  in  COVID-19  patients’ CT  scans
that  can  acquire  graphical  features  and  provide  clinical
diagnosis  much  faster  than  waiting  for  the  pathogen  test.
Following  the  same  basis,  Chouhan et  al. [16]  use  different
neural  network  models  pre-trained  on  ImageNet  to  extract
exam characteristics.  These  characteristics  are  used  to  obtain
individual  classification  results  for  each  network.  The
combination of each network’s results uses the majority vote,
so  the  diagnosis  corresponds  to  the  class  that  achieved  the
highest number of votes.

X-ray  is  an  imaging  technique  that  is  used  to  investigate
fractures,  bone  displacement,  pneumonia,  and  tumor.  X-rays
have  been  used  for  many  decades  and  provide  an
astonishingly fast way of seeing the lungs and, therefore, can
be a helpful tool in the detection of COVID-19 infections [8],
[17].  They  are  capable  of  generating  images  that  show  lung
damage, such as from pneumonia caused by the SARS-CoV-2
virus [18]. Since X-rays are very fast and cheap, they can help
to  triage  patients  in  places  where  the  healthcare  system  has
collapsed  or  in  places  that  are  far  from  major  centers  with
access  to  more  complex  technologies.  Furthermore,  there  are
portable X-ray devices that can be easily transported to where
it is needed [18]. CT scans make use of the principles of X-ray
in  an  advanced  manner  to  examine  the  soft  structures  of  the
body.  It  is  also  used  to  obtain  clearer  images  of  organs  and
soft tissues [19]. On the other hand, X-rays use less radiation
[20], thus using an X-ray is faster, less harmful, and presents
lower  cost  than  a  CT  scan.  Narin et  al. [8]  proposed  an
automatic  detection  of  COVID-19  using  chest  X-rays  and
CNNs. Apostolopoulos et al. [17] also proposed the automatic
detection of  the disease but  analyzing three classes:  COVID-
19, common pneumonia, and normal conditions.

In  this  paper,  we  propose  an  automatic  system  to  classify
chest  X-ray  images  as  from  COVID-19  patients  or  healthy
patients  using  transfer  learning  with  convolution  neural
networks (CNNs). We performed 144 experiments, which are
a combination of 12 CNNs and six classifiers in two datasets.
The  results  show  that  MobileNet  combined  with  support
vector  machines  (SVM)  (Linear)  achieved  the  highest
accuracy  (98.462%)  in  one  dataset,  and  the  combination
DenseNet201  with  MLP  achieved  95.64% in  the  second
dataset, showing the effectiveness of the proposed approach.

This  paper  is  organized  as  follows:  Section  II  presents  the
transfer  learning  method.  Section  III  describes  the  proposed
methodology  of  the  approach,  detailing  the  dataset,  the  steps
for  the  feature  extraction  and  classification,  and  the  metrics
used  to  evaluate  the  approach.  Section  IV  discusses  the
results.  Lastly,  Section  V  presents  the  conclusion  and  future
works. 

II.  Transfer Learning With Convolutional Neural
Networks

Transfer  learning  is  a  method  that  utilizes  the  knowledge
acquired by a CNN from a specific problem to solve a distinct

but similar task. This transferred knowledge is used in a new
dataset, whose size is usually smaller than the adequate size to
train a CNN from scratch [21].

In deep learning, this method requires an initial training of a
CNN for a given task, using large datasets. The availability of
a sizable dataset is the main factor to ensure the success of the
method  since  the  CNN  can  learn  to  extract  the  most
significant features of a sample. The CNN is deemed suitable
for transfer learning if it is found to be able to extract the most
important image features [22].

Then, in the transfer learning, the CNN is used to analyze a
new  dataset  of  a  different  nature  and  extract  its  features
according to the knowledge acquired in the first training. One
common strategy to exploit  the capabilities of the pre-trained
CNN  is  called  feature  extraction  via  transfer  learning  [23].
This approach means that the CNN will retain its architecture
and  weights  between  its  layers;  therefore,  the  CNN  is  used
only  as  a  feature  extractor.  The  features  are  later  used  in  a
second network/classifier that will process its classification.

The  transfer  learning  approach  is  mostly  used  to  work
around computational costs of training a network from scratch
or to keep the feature extractor trained during the first task. In
medical  applications,  the  most  accepted  practice  of  transfer
learning is to utilize the CNNs that achieved the best results in
the  ImageNet  large  scale  visual  recognition  challenge
(ILSVRC)  [24],  which  assesses  algorithms  for  object
detection  and  classification  in  large  scales.  The  use  of  large
datasets  for  initial  training  of  the  network  enables  high
performance in smaller datasets. This performance is linked to
various extraction parameters that are typically not allowed as
they  cause  overfitting  of  the  network  [25].  That  said,  feature
extraction  performed  with  transfer  learning  allows  a  large
number  of  features  to  be  extracted  by  generalizing  the
problem and avoiding excessive adjustments [26].

The  use  of  transfer  learning  also  allows  the  use  of  the
internet  of  things  (IoT)  systems  to  classify  medical  images.
For example, Dourado Jr et al. [27] proposed an IoT system to
detect  a  stroke  in  CT  images.  Rodrigues et  al. [28]  used  the
system  proposed  by  Dourado  Jr et  al. [27]  to  classify  EEG
signals.

The  transfer  learning  method  is  used  in  the  feature
extraction  step  for  the  COVID-19  detection.  The  process  is
detailed in Section III-B. 

III.  Methodology
In  this  section,  we  present  the  proposed  methodology  for

classifying an X-ray as being of a healthy patient or a patient
affected  by  COVID-19.  First,  we  describe  the  datasets  of
images  used  in  this  study.  Then,  we  explain  the  process  of
feature  extraction,  which  is  based  on  the  transfer  learning
theory.  After  that,  we  present  the  classification  techniques
applied  and  the  steps  of  their  training  process.  Lastly,  we
define  the  metrics  we  use  to  evaluate  the  results  and  to
compare  it  to  other  approaches. Fig. 1 presents  the
infographics of the proposed approach; each step is explained
in the next subsections. 

A.  Datasets
In our study, we use frontal-view chest X-ray images. Only

 240 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 1, JANUARY 2021



posterior-anterior  (PA)  and  anterior-posterior  (AP)  X-ray
views  were  collected.  We  divided  the  samples  into  two
classes:  X-ray  images  of  patients  diagnosed  with  COVID-19
and X-ray images of healthy patients. For better evaluation of
the  proposed  method,  we  built  two  datasets:  Dataset  A  and
Dataset  B.  Both  datasets  have  the  same  images  for  the
COVID-19  class,  but  they  have  different  images  for  the
healthy  class.  In  both  datasets,  the  classes  are  balanced,
consisting of 194 images for each class or 388 images for each
dataset.

In Dataset A, the COVID-19 class is composed of 194 chest
X-ray  images  of  patients  diagnosed  with  COVID-19,  which
were  collected  from  different  sources  [29],  [30].  Both  these
sources  were  accessed  on  2020-03-31.  They  consist  of
compilations  of  X-ray  images  taken  from  different  papers,
databases, and other sources. For this dataset, we collected the
set of chest X-ray images of healthy patients from the “Chest
X-ray  Images  (Pneumonia)” challenge  available  on  Kaggle
[31].  We  randomly  selected  194  samples  from  the  X-ray
images  labeled  as “normal”,  which  correspond  to  healthy
patients. This source was chosen since it has been commonly
used  in  related  works  that  propose  methods  of  detecting
COVID-19 in X-rays [17], [8]. However, all the X-ray images
from  this  source  are  of  pediatric  patients.  Since  the  X-ray

images  of  the  COVID-19  class  are  mostly  of  adult  patients,
we built another dataset with patients of a similar age range.

In Dataset B, as previously mentioned, the COVID-19 class
images are the same as in Dataset A. However, due to the age
difference between healthy patients and patients with COVID-
19 present in Dataset A, we collected chest X-ray images from
a  different  source  for  Dataset  B.  For  this  dataset,  we  took
images from the “NIH Chest X-rays” challenge organized by
the National Institutes of Health and available on Kaggle [32].
We  randomly  selected  194  images  from  the  class  of “no
findings”, which correspond to healthy patients.

All  images  from  the  datasets  are  either  in  the  joint
photographic  experts  group  (JPG/JPEG)  or  in  the  portable
network  graphics  (PNG)  format.  The  image  resolution  is
varied  within  the  dataset,  with  resolutions  as  low  as  249  by
255 pixels  and as high as 3520 by 4280 pixels.  However,  all
images  were  pre-processed  using  the  resizing  technique.  In
Table I, we can see the sizes to which the images were resized
for each specific CNN. The equipment used to take the X-rays
is also diverse and is often not determined; more information
about  it  can  be  found  on  the  image  sources  [29]–[32].  We
present  examples  of  images  from  the  datasets  in Fig. 2.  An
example of a chest X-ray of a patient with coronavirus disease
with PA view is shown in Fig. 2(a) and AP view is shown in

 

TABLE I  
CNNs Architectures, Configurations, and Their Input Image Size and Number of Features Extracted

Architectures Configurations Input image size (pixels) Number of features extracted

VGG [33]
VGG16 224 × 224 512

VGG19 224 × 224 512

Inception [34]

ResNet [35]

InceptionV3 299 × 299 2048

InceptionResNetV2 [36] 299 × 299 1536

ResNet50 224 × 224 2048

NASNet [37]
NASNetLarge 331 × 331 4032

NASNetMobile 224 × 224 1056

Xception [38] Xception 299 × 299 2048

MobileNet [39] MobileNet 224 × 224 1024

DenseNet [40]

DenseNet121 224 × 224 1024

DenseNet169 224 × 224 1664

DenseNet201 224 × 224 1920
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Fig. 1.     Infographics of the proposed approach.
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Fig. 2(b),  an  example  of  a  chest  X-ray  of  a  healthy  patient
from  Dataset  A  is  shown  in Fig. 2(c),  and  an  example  of  a
chest  X-ray  of  a  healthy  patient  from  Dataset  B  is  shown  in
Fig. 2(d).
 

(a) (b)

(c) (d)
 
Fig. 2.     Samples from the dataset used in this study. (a) X-ray with PA view
of  a  patient  with  COVID-19;  (b)  X-ray  with  AP view of  a  patient  with
COVID-19; (c) X-ray of a healthy patient from Dataset A; (d) X-ray of a
healthy patient from Dataset B.
 

In  order  to  have  more  input  data  to  create  a  more
generalized model,  data augmentation was implemented.  The
augmentation of training set  is  a widespread technique in the
literature [41]. The images were randomly selected to undergo
a  transformation.  The  most  commonly  used  transformations
for data augmentation are the affine transformations [42]. The
affine  transformations  applied  in  this  study  were  rotation,
change in width, height, and magnification. 

B.  Feature Extraction Steps
For  extracting  features  from  the  X-ray  images,  we  use  the

transfer  learning  concept  discussed  in  Section  II.  Firstly,  we
select  different  CNN  architectures  that  achieved  excellent
performance  on  the  ImageNet  dataset.  Secondly,  we  choose
different configurations, previously trained on ImageNet, from
the selected CNN architectures. Thirdly, we remove any fully
connected  layers  from  these  configurations,  leaving  only
convolutional  and  pooling  layers.  These  two  types  of  layers
are  responsible  for  extracting  features  from the  image,  while
the  fully  connected  ones  are  responsible  for  classifying  the
features  and,  consequently,  the  image.  Thus,  removing  these
layers  is  necessary  to  turn  a  CNN  into  a  feature  extractor.
After this step, the new output of the adapted CNN is a set of
features extracted from an input image.

For  each  CNN  configuration,  we  create  a  sub-dataset
composed of sets of features extracted from each image of the
original datasets. In order to build a sub-dataset, we first resize
each image according to the input size required by the selected
CNN. Then, each resized image is used as input to the CNN,
and  its  set  of  features  is  extracted  and  stored  in  the
corresponding  sub-dataset.  In Table I,  we  show  all  the  CNN

architectures  and  their  respective  configurations  used.  It  is
worth  noting  that  InceptionResNetV2  [36]  is  a  hybrid
configuration,  originated  from  Inception  [34]  and  ResNet
[35]. In Table I, we also present the input image size required
by  each  configuration  and  the  number  of  features  extracted
from a single image. 

C.  Classification Steps
In  order  to  classify  the  X-ray  images,  we  selected  widely

used  machine  learning  methods  in  the  literature:  Bayes
[43]–[45],  random  forest  (RF)  [46]–[48],  multilayer
perceptron  (MLP)  [49]–[51],  k-nearest  neighbors  (kNN)
[52]–[54],  and  SVM  [55]–[57].  In  the  SVM  classifier,  we
consider  the  linear  and  RBF  kernels.  It  is  noteworthy  that
these  classifiers  are  from  different  types:  kNN  is  instance-
based, RF is based on the decision tree method, MLP is based
on  neural  networks,  SVM  is  based  on  finding  an  optimal
hyperplane, and Bayes is based on probability and statistics.

The  classification  is  performed  in  three  steps:  i)  model
training,  ii)  model  testing,  and  iii)  repetition  of  processes  i)
and ii).

Each sub-dataset is composed of features extracted from the
extractors  presented  in  Section  III-B.  These  sub-datasets  are
divided  into  80% for  training  and  the  remaining  for  testing.
Furthermore, we applied the data augmentation in the training
set of Dataset A. The number of images for train and test for
each dataset is presented in Table II.
 

TABLE II  
Data Split According to Dataset and Class

Dataset
COVID-19

images
Healthy
images Total number

of imagesTrain Test Train Test

A 155 39 155 39 388

B 155 39 155 39 388
A with data

augmentation 658 39 658 39 1394

 
 

1)  Model  Training: In  this  step,  we  use  80% of  the  sub-
dataset to perform the training of the model. We consider the
setup  for  the  hyperparameters  presented  in Table III to  find
the  configuration  of  the  classifiers  on  the  training  set.  The
classifiers that were configured for a random search perform a
20-iterations  search.  The  hyperparameters  for  all  classifiers,
except  for  the  Bayes  classifier,  are  determined  after  10-fold
cross-validation.  Then,  each  classifier  has  optimal
hyperparameters, which are saved on the computer.

2) Model  Testing: In  this  step,  we  perform  a  test  in  the
remaining 20% of  the sub-dataset  using the saved classifiers.
The system determines one class for each sample of the sub-
dataset. In addition, the metrics are calculated in this step.

3) Repetition  of  Processes  1)  and  2): The  sub-datasets  are
randomly divided into other train and test sets. These sets are
ensured to  be different  from the rest  by the seed used.  Then,
we perform ten repetitions of steps 1) and 2). 

D.  Evaluation Metrics
We  analyze  the  results  of  this  paper  utilizing  the  metrics:
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accuracy  (Acc), F1-score,  and  false  positive  rate  (FPR).
Accuracy  describes  how  often  the  model  is  classifying
correctly. F1-score can be described as the harmonic mean of
Sensitivity and Precision;  this  metric  can  provide  a  number
that suggests an overall quality of the approach. FPR indicates
a  rate  of  healthy  patients  being  wrongly  classified.  True
positives  (TP)  indicates  the  number  of  instances  that  the
model  classified  the  images  as  COVID-19  correctly.  False
negative (FN) corresponds to the number of occasions that the
COVID-19  images  were  misclassified  as  from  a  healthy
patient.  False  positives  (FP)  points  out  the  number  of  times
that  the  model  wrongly  classified  a  healthy  patient.  True
negatives (TN)  informs the number of healthy patient  images
that  were  correctly  classified.  The  equations  for Acc,
Sensitivity, Precision, FPR,  and F1-score are  presented  on
(1)–(5), respectively.
 

Acc (%) =
T P+T N

T P+FN +FP+T N
×100 (1)

 

S ensitivity =
T P

T P+FN
(2)

 

Precision =
T P

T P+FP
(3)

 

FPR(%) =
FP

FP+T N
×100 (4)

 

F1-score(%) = 2× S ensitivity×Precision
S ensitivity+Precision

×100. (5)

In  addition  to  the  metrics  already  mentioned,  we  also
analyze  the  training,  extraction,  and  test  times.  The  training
time  represents  the  length  of  the  period  it  takes  from  the
beginning of the classifier training to the moment it is ready to
perform the classification. Extraction time measures how long

the adapted CNN takes to output the attribute vector from the
moment  it  receives  the  X-ray.  Also,  the  test  time  is  the
duration it takes for the classifier to predict the image’s class
after receiving its attribute vector. Thus, training time is vital
during model building. After this step, the extraction and test
times  are  more  relevant.  Their  sum  represents  the
classification time, which is the period between receiving the
X-ray and returning its class. 

IV.  Results

In  this  section,  we  investigate  the  results  achieved  by
combining the  features  extracted  by CNNs,  applying transfer
learning,  and  the  classifiers.  We  executed  72  ×  2  =  144
experiments, which are the combination of twelve CNNs and
six classifiers in both datasets. The system infrastructure used
was  an  Intel  i7,  8  Gb  of  RAM,  with  Linux  Ubuntu  16.04
system without a graphical processing unit (GPU).

p < 0.05
F = 30.73 p = 0.001

CD = 2.18

Table IV shows the metrics and their standard deviations of
the  top 5  results  after  the  10-iterations  of  the  steps  described
in Section III-C in Dataset A; the full table can be found in the
following link: https://bit.ly/2w9DEpT. We applied Friedman
test on the accuracy results of Dataset A to test if  there is no
statistical difference among the results of classifiers. There is
a  significant  effect  at  level  found  for  the  classifiers
( , ).  This  result  is  confirmed  by  the
Nemenyi  post-hoc  test  ( ),  which  is  presented  in
Fig. 3. We can observe that there is no consistent indication of
statistical  differences  between  SVM  (RBF),  SVM  (Linear),
MLP, and RF for the 144 experiments evaluated.

Analyzing Table IV,  we  can  observe  that  all  combinations
in the top five achieved, reaching a minimum Acc of 98.205%
and  minimum F1-score of  98.205%.  However,  the
combination  that  should  be  highlighted  is  MobileNet  with
SVM with the linear kernel, since it reached a maximum Acc

 

TABLE III  
Setup to Search for Hyperparameters of the Classifiers

Classifier Search type Parameter Setup

Bayes - - Gaussian probability density function

RF Random Number of estimators criterion 50 to 3000 in steps of 50 Gini or entropy

MLP Random Neurons in hidden layer algorithm 2 to 1000 Levenberg-Marquardt method

kNN Grid Number of neighbors 3, 5, 7, 9, 11, 13, 15

SVM (Linear kernel) Random C 2–5 to 215

SVM (RBF kernel) Random C 2–5 to 215

γ 2–15 to 23
 

 

TABLE IV  
Metrics Obtained by Classifying Features Extracted From Dataset A by Different CNN Architectures of the Top Five

Results

CNN Extraction time (ms) Classifier Training time (s) Test time (ms) Acc (%) F1-score (%) FPR (%)

MobileNet 21.021 ± 0.513 SVM (Linear) 0.057 ± 0.002 0.443 ± 0.011 98.462 ± 0.959 98.461 ± 0.960 1.026 ± 1.256

MobileNet 21.021 ± 0.513 SVM (RBF) 0.079 ± 0.001 0.474 ± 0.008 98.205 ± 0.628 98.205 ± 0.628 1.538 ± 1.256

DenseNet121 68.649 ± 1.300 SVM (Linear) 0.144 ± 0.008 0.502 ± 0.190 98.205 ± 0.628 98.205 ± 0.628 1.538 ± 1.256

InceptionResnetV2 162.651 ± 1.262 SVM (Linear) 0.163 ± 0.011 0.779 ± 0.121 98.205 ± 0.628 98.205 ± 0.628 1.538 ± 1.256

InceptionResnetV2 162.651 ± 1.262 SVM (RBF) 0.428 ± 0.014 0.806 ± 0.114 98.205 ± 0.628 98.205 ± 0.628 1.538 ± 1.256
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of 98.462%, a maximum F1-score of 98.461%, and an FPR of
1.026%.

In  the  full  table  of  Dataset  A  provided  in  the  link,  we  can
observe that the CNNs architectures that achieved a minimum
of  95% in Acc and F1-score independently  of  the  classifier
were:  VGG16,  DenseNet201,  DenseNet169,  and  MobileNet,
showing the  effectiveness  of  the  proposed  approach.  We can
also  observe  that  RF  achieved  the  slowest  test  times
independently of the CNN architecture, which is related to its
high number of estimators.

In Table IV,  we  can  observe  that  MobileNet  with  SVM
(Linear)  reached  a  test  time  of  0.443  ms  and  an  extraction
time of 21 ms; then, this time is attractive for real-time imple-
mentations,  since  it  would  take,  approximately  21.443  ms  to
define  if  an  image  is  from  class  COVID-19  or  Healthy.
Furthermore, although the system infrastructure does not have
GPU  and  its  configuration  is  not  high-end,  the  proposed
approach  achieved  satisfactory  extraction  and  training  times,
then  clinics  and  hospitals  do  not  need  to  acquire  new
equipment for a system to aid in the medical diagnosis.

Table V presents  the  final  confusion  matrix  of  the
MobileNet with SVM (Linear). It is a sum of the 10 confusion
matrices from the 10-iterations of Section III-C. Therefore, the
confusion  matrix  shows  that  even  after  10-iterations,  the
combination  MobileNet  with  SVM  (Linear)  did  not  have
many FPs and FNs. In addition,  we can observe on Table IV
that  this  combination  reached  an FPR of  1.026 %.  In  a  real-
life  application,  this  means  that  not  many  patients  will  be
misclassified  as  not  infected,  then  reducing the  spread  of  the
disease and allowing them to have the proper treatment. Also,
patients  without  COVID-19 will  rarely  be  submitted  to  more
exams  or  admissions  in  dedicated  locations  to  COVID-19,
then decreasing the probability of their contamination.

Table VI shows the  top five  results  of  Dataset  A with  data
augmentation;  the  full  table  can  be  found  in  the  following
link:  https://bit.ly/2w9DEpT.  We  can  observe  that  with  data
augmentation,  the  highest Acc only  increased  0.5%,  with  the
pair  DenseNet121  with  MLP,  which  achieved  98.974%.
Nonetheless,  the  proposed  approach  with  data  augmentation

reached more combinations with 98% of Acc, showing that the
use of the CNN to extract features is effective. Another point
that can be observed is that the FPR rates are slightly lower in
average  than  those  achieved  with  the  dataset  without  data
augmentation,  showing  that  the  model  was  able  to  better
generalize the problem.

Since  most  of  the  papers  that  are  going  to  be  compared  in
Section  IV-A  do  not  use  the  same  source  of  healthy  X-ray
images  as  Dataset  B, Table VII is  a  summary of  the  top five
results,  ordered by Acc;  the tiebreaker was the F1-score.  The
complete  results  can  be  found  in  the  following  link:
https://bit.ly/2w9DEpT.

Analyzing Table VII,  we  can  observe  that  even  though
images in Dataset B have similar contrasts and many artifacts
in  both  classes,  the  transfer  learning  method  combined  with
consolidated machine learning methods could achieve an Acc
of  95.641% and  an F1-score of  95.633% through  the
DenseNet201 architecture with the MLP classifier.

Table VIII presents  the  confusion  matrix  for  the
combination DenseNet201 with MLP for Dataset B; it  shows
that  the  errors  are  balanced. Table IX displays  the  confusion
matrix  for  the  combination DenseNet201 with  SVM (Linear)
for  Dataset  B;  even  though  the Acc of  this  combination  is
close to that of the combination DenseNet201 with MLP, the
combination DenseNet201 with SVM (Linear) is not desirable
because  more  COVID-19  patients  are  being  classified  as
healthy,  which  could  contribute  to  the  spread  of  the  disease.
This difference can also be noted on FPR, where the FPR for
DenseNet201  with  SVM  (Linear)  is  lower  than  the FPR for

 

TABLE VI  
Metrics Obtained by Classifying Features Extracted From Dataset A With Data Augmentation by Different CNN

Architectures of the Top Five Results

CNN Extraction time (ms) Classifier Training time (s) Test time (ms) Acc (%) F1-score (%) FPR (%)

DenseNet121 276.409 ± 26.022 MLP 146.552 ± 8.533 1.177 ± 0.258 98.974 ± 0.959 98.974 ± 0.960 0.500 ± 1.000

DenseNet121 276.409 ± 26.022 SVM (RBF) 4.518 ± 0.095 1.109 ± 0.137 98.205 ± 1.307 98.205 ± 1.307 1.013 ± 1.241

DenseNet169 378.062 ± 32.688 SVM (RBF) 2.165 ± 0.003 1.958 ± 0.617 98.205 ± 1.026 98.205 ± 1.026 1.013 ± 1.241

DenseNet121 276.409 ± 26.022 SVM (Linear) 1.444 ± 0.008 0.954 ± 0.087 98.205 ± 1.307 98.204 ± 1.309 0.500 ± 1.000

VGG19 201.098 ± 30.416 SVM (Linear) 0.418 ± 0.036 0.497 ± 0.021 98.205 ± 1.538 98.203 ± 1.540 0.513 ± 1.026
 

 

TABLE V  
Final Confusion Matrix of the Test Set for the Classifica-

tion of Chest X-ray Images As Healthy or COVID-19 for
mobilenet With SVM (Linear) for Dataset A

Predicted class

COVID-19 Healthy

True class
COVID-19 382 8

Healthy 4 386
 

 

Bayes
Nearest_Neighbors

Random_ Forest

SVM_RBF
SVM_Linear
MLP

CD

6 5 4 3 2 1

 
Fig. 3.     Result of Nemenyi test for the classifiers on Dataset A.
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DenseNet201  with  MLP.  Some  distinct  characteristics  of  the
exam  define  the  method’s  misclassification.  For  example,
exams with high contrast variations and with angulations that
do  not  centralize  the  critical  region,  are  exams  that  deviate
from  the  basic  standards  of  Chest  X-ray  images  promoting
unsatisfactory results in the classification.
 

TABLE VIII  
Final Confusion Matrix of the Test Set for the Classific-

ation of Chest X-ray Images as Healthy or COVID-19
Positive for DenseNet201 With MLP for Dataset B

Predicted class

COVID-19 Healthy

True class
COVID-19 372 18

Healthy 16 374

 
TABLE IX  

Final Confusion Matrix of the Test Set for the Classific-
ation of Chest X-ray Images as Healthy or COVID-19

Positive for DenseNet201 With SVM (Linear)
for Dataset B

Predicted class

COVID-19 Healthy

True class
COVID-19 358 32

Healthy 14 376
 
 

Fig. 4 presents the features extracted by DenseNet201 from
both  datasets  using  the  t-distributed  stochastic  neighbor
embedding  (t-SNE)  technique  [58].  We  can  observe  that,
although  DenseNet201  is  not  in  the  top  five  of  Dataset  A,  a
hyperplane  can  separate  the  classes,  which  justifies  the  three
combinations  with  SVM  (Linear)  in  the  top  five  of  this
dataset.  As  mentioned  in  Section  III-A,  the  healthy  X-ray
images  from  Dataset  A  are  of  pediatric  patients,  which
explains  the  easily  distinguishable  cluster  formation  of  the
features  from  this  class.  In  contrast,  when  analyzing  Dataset
B,  the  healthy  class  features  are  scattered,  which  indicates  a
wider  variety  of  sources  in  the  original  dataset.  Also,  this
dataset  needs  a  classifier  that  can  classify  non-linear  data,
which justifies MLP as the best classifier for this dataset. 

A.  Comparison to Related Works
As  shown  in Table X,  we  compare  the  proposed  approach

with the studies of Apostolopoulos et al. [17], Narin et al. [8],
and  Ozturk et  al. [59].  Apostolopoulos et  al. [17]  and  Narin
et  al. [8]  used  chest  X-rays  images  and  the  transfer  learning
method, but they used a second network for the classification

process. Furthermore, those papers used the same sources for
the creation of the datasets as the proposed approach.

Apostolopoulos et  al. [17]  used  images  from  the  datasets
“Chest  X-ray  images  (Pneumonia)” [31]  and “COVID-19
image data collection” [29]. From these datasets, they selected
50  images  of  each  class,  reaching  an Acc and F1-score of
98%. However, this dataset is highly selected to be images for
educational  purposes  [60].  In  addition,  they  used  a  high-end
GPU  (Tesla  K80),  which  could  be  impracticable  for  many
clinics,  hospitals,  and  countries.  We  tested  our  approach  in
this  dataset,  and  it  achieved  100% in  many  combinations  of
CNNs and classifiers.

Narin et al. [8] used a dataset with images from “COVID-19
image  data  collection” [29], “Chest  X-ray  images
(Pneumonia)” [31],  and “COVID-19  X  rays” [61],  totaling
224 images for  the COVID-19 condition,  504 for  the normal
condition and 700 for common pneumonia. They achieved an
Acc of  98.75% when  analyzing  2  classes  and  93.48% for  3
classes.  However,  since  their  dataset  is  heavily  unbalanced,
this tends to increase the accuracy.

Ozturk et  al. [59]  used  127  images  from  the  dataset
“COVID-19 image  data  collection” [29]  that  were  diagnosed
with COVID-19. In addition, they used 500 images for normal
condition and 500 for pneumonia from dataset “ChestX-ray8”
[32]; thus they used the same sources as the Dataset B of the
proposed approach. They reached 98.08% in Acc and 95.51%
in F1-score,  when  making  a  binary  classification  using  a
modified  CNN  based  on  you  only  look  once  (YOLO);  this

 

TABLE VII  
Metrics Obtained by Classifying Features Extracted From Dataset B by Different CNN Architectures

of the Top Five Results

CNN Extraction time (ms) Classifier Training time (s) Test time (ms) Acc (%) F1-score (%) FPR (%)

DenseNet201 100.955 ± 1.630 MLP 25.677 ± 1.125 0.282 ± 0.154 95.641 ± 2.640 95.633 ± 2.645 4.103 ± 3.838

DenseNet201 100.955 ± 1.630 SVM (Linear) 0.404 ± 0.001 1.529 ± 0.295 94.103 ± 2.235 94.093 ± 2.242 3.590 ± 1.256

VGG19 131.250 ± 11.621 MLP 15.601 ± 0.097 0.127 ± 0.082 94.103 ± 4.336 94.064 ± 4.408 4.103 ± 2.615

VGG16 100.458 ± 2.024 SVM (RBF) 0.065 ± 0.001 0.559 ± 0.093 93.590 ± 2.433 93.586 ± 2.435 4.103 ± 2.615

DenseNet201 100.955 ± 1.630 SVM (RBF) 0.578 ± 0.037 1.786 ± 0.165 93.590 ± 1.147 93.574 ± 1.159 5.128 ± 3.626
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Fig. 4.     Visualization  of  the  features  extracted  by  DenseNet201  from  both
datasets using t-SNE.
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modified  CNN  is  called  DarkCovidNet.  Although  they
achieved an Acc 3% higher, their classes are also unbalanced,
which can contribute for better metrics. 

V.  Conclusion and Future Works

98.462% 98.461%

95.641%
95.633%

Early  detection  of  patients  with  the  new  coronavirus  is
crucial for choosing the right treatment and for preventing the
quick  spread  of  the  disease.  Our  results  show that  the  use  of
CNNs  to  extract  features,  applying  the  transfer  learning
concept, and then classifying these features with consolidated
machine  learning  methods  is  an  effective  way  to  classify  X-
ray images as in normal conditions or positive for COVID-19.
For  Dataset  A,  the  MobileNet  with  SVM  (Linear)  combina-
tion  had  the  best  performance,  achieving  a  mean Acc of

 and a mean F1-score of . In addition, it was
able  to  classify  a  new  image  in  only  0.443  ±  0.011  ms,
proving to not only be accurate but fast as well. For Dataset B,
the  pair  with  the  best  performance  was  DenseNet201  with
MLP, reaching a mean Acc of  and a mean F1-score
of . Although it had slightly lower Acc and F1-score,
it classified an image in only 0.282 ± 0.154 ms, which is faster
than the best combination in Dataset A.

The  proposed  method  has  not  undergone  a  clinical  study.
Thus,  it  does  not  replace  a  medical  diagnosis  since  a  more
thorough  investigation  could  be  done  with  a  larger  dataset.
Under  those  circumstances,  our  work  contributes  to  the
possibility  of  an  accurate,  automatic,  fast,  and  inexpensive
method  for  assisting  in  the  diagnosis  of  COVID-19  through
chest X-ray images.

For future work, we intend to increase the size of the dataset
by  adding  new X-ray  images  of  patients  with  COVID-19,  as
soon  as  these  images  are  available,  and  by  adding  X-ray
exams  of  other  lung-related  diseases,  thus  reassuring  the
efficiency  of  the  proposed  approach.  Besides,  we  aim to  test
the  proposed  method  using  an  imbalanced  dataset.  We  also
intend  to  integrate  our  method  into  a  free  online  platform of
image classification, such as LINDA [27]. This way, hospitals
and medical clinics around the world would be able to identify
diseases  in  chest  X-ray images  without  the  need for  building
their classification platform. Furthermore, we aim to compare
the  proposed  approach  with  methods  based  on  fine-tuning,
and train a network from scratch.
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