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We describe new experiments in which a bubble plume, produced from a point source
of bubbles, rises through an ambient fluid composed of two layers of fluid of different
density. In the lower layer, the speed of the plume exceeds the bubble rise speed and
the motion is well described using classical theory of turbulent buoyant plumes. As
the mixture enters the upper layer, it is either buoyant and rises to the top of the layer,
or is negatively buoyant and forms a fountain. In our experiments, in which a fountain
forms in the upper layer, the bubble rise speed exceeds the characteristic speed of this
fountain, and a separated flow develops. The bubbles rise to the top of the system,
while the lower layer fluid in the fountain rises a finite distance into the upper layer,
entrains some of the upper layer fluid, and then collapses. This mixture of fluids then
feeds a growing layer of density which is intermediate between the upper and lower
layer. The height of rise of the fountain scales with the square of the Froude number
of the fountain and the rate of entrainment of upper layer fluid into the fountain is
directly proportional to the height of the fountain. This is analogous to the scaling
for single-phase fountains with Froude numbers in the same range, 1 < Fr < 7, but
the constants of proportionality are smaller. We illustrate the relevance of the work
for the design of mixing and aeration systems in freshwater reservoirs.
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1. Introduction

Bubble plumes have been used to destratify and mix freshwater reservoirs for
many years (McDougall 1978; Wuest, Brooks & Imboden 1992; McGinnis et al.
2004; Kim et al. 2010). Numerous experiments have been conducted to explore the
dynamics of such bubble plumes in both the cases with relatively small bubbles, for
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which the slip is unimportant, and larger bubbles, for which the effects of slip are
more important and lead to a radially stratified flow and a reduction in the mixing
efficiency of the plume (Milgram 1983; McGinnis et al. 2004). Models of the mixing
of density-stratified reservoirs by such bubble plumes have emerged following the
pioneering work of Baines & Turner (1969). They studied the filling-box flow which
arises from the entrainment of ambient fluid into a single-phase turbulent buoyant
plume rising through a confined environment with initially uniform density. The
plume convects all the entrained fluid to the top of the reservoir, and this produces
a downward flow in the environment to replenish the fluid which has been entrained.
Models of such mixing by single-phase plumes have been developed to account for
both two-layer (Kumagai 1984; Mott & Woods 2009) and continuously stratified
ambient fluid (Cardoso & Woods 1993). In the case of a two-layer stratification,
the plume may either become relatively dense at the interface, where it then forms
a fountain which collapses back to the interface, generating an intermediate mixed
layer, or it may continue rising into the upper layer with a reduced buoyancy. In
the latter case, the mixed layer grows from the top down, whereas in the former
case, the mixed layer grows at the interface. In a continuously stratified system, the
plume tends to rise to a neutral buoyancy height. The filling-box flow then mixes the
fluid below this height, while the stratified fluid above this mixed layer is gradually
entrained as the buoyancy of the mixed layer builds up (Cardoso & Woods 1993).

By analogy, the mixing of a stratified system by a bubble plume has some
similarities with a single-phase plume; a very intense bubble plume may rise to
the top of the layer and mix the system from the top down, whereas a weaker
bubble plume may intrude either at the interface between the layers in a two-layer
system, or at a neutral buoyancy height in a continuously stratified system (Kumagai
1984; Ansong, Kyba & Sutherland 2008; Mott & Woods 2009; Camassa et al. 2016).
Baines & Leitch (1992), Asaeda & Imberger (1993), Socolofsky & Adams (2003)
and Socolofsky & Adams (2005) explored the dynamics of a bubble plume which
intrudes into the ambient fluid at its neutral height in a continuously stratified system.
In this case, as the neutrally buoyant fluid spreads out laterally, the bubbles tend
to rise from the flow, leading to formation of a new plume of bubbles above the
intrusion level. This in turn entrains ambient fluid and, depending on the depth of
the ambient fluid, it may reach a second neutral level higher in the system. Chen
& Cardoso (2000) explored the mixing of a two-layer stratification by a plume of
very small bubbles produced by electrolysis. Their experiments led to a relatively
weak fountaining flow at the interface, with the Froude number of the plume fluid
just above the interface, u/(g′r)1/2, being less than unity, where u is the plume speed,
g′ the reduced gravity relative to the upper layer and r the plume radius. Baines &
Leitch (1992) also studied the mixing produced by a bubble plume in a two-layer
stratification, but again, in their study, the flow supplied by the plume to the interface
had small Froude number.

However, experiments on single-phase fountains (Turner 1966; Baines 1975; Baines,
Corriveau & Reedman 1993; Bloomfield & Kerr 1998; Friedman & Katz 2000; Lin &
Linden 2005; Hunt & Burridge 2015) have identified that the height of rise and the
entrainment of ambient fluid into a fountain increase with the source Froude number
of the fountain. Motivated by these observations, our objective is to explore the
influence of the fountain Froude number on the mixing which occurs when a bubble
plume reaches a density interface and transitions into a fountain in the upper layer.
We first present a series of experiments that illustrate the different cases in which
a bubble plume supplied to a two-layer stratified ambient (1) is buoyant just above
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FIGURE 1. Schematic of the experimental set-up.

the interface and rises to the top of the upper layer, or (2) is negatively buoyant just
above the interface and forms a fountain in the upper layer. We then test a model
to predict conditions under which the bubble plume is either buoyant or relatively
dense at the interface, by running a series of experiments in which we systematically
reduce the density jump between the lower and upper layers. We then focus on
the case in which a fountain forms in the upper layer, and quantify the resulting
fountain height and the mixing of upper layer fluid into this fountain. We compare
this with analogous results for a single-phase saline fountain. Finally, we explore
the implications of our results for the mixing of a two-layer stratified reservoir by a
bubble plume.

2. Experimental method

We carried out a series of experiments in a tank of dimension 40 × 40 × 50 cm
(figure 1). The tank was filled with a layer of saline water (of depth hl and density
ρl), then a layer of fresh water (of density ρu and depth hu) was supplied above this
layer. To minimise any mixing, a sponge was placed on top of the layer of saline
solution, and the fresh water was supplied very slowly to the sponge, from which the
fresh water slowly spread out above the salt water. As seen in the photographs of the
experiment (e.g. figure 2), the initial interface was very sharp, with any intermediate
mixed layer being less than 1–2 mm in thickness. The layer of fresh water was filled
to a depth hu. A source nozzle of diameter 4 mm was placed in the centre of its
base, and a porous diffuser of size 1× 1 cm was placed on this nozzle. Air was then
supplied to the source nozzle with a flow rate Qo in the range 5–20 cc s−1 using a
peristaltic pump (Watson Marlow), leading to the production of a steady source of
small bubbles from the top of the diffuser. As the bubbles rose from the air supply
nozzle, a turbulent plume developed, entraining ambient fluid.

The tank was backlit using a light sheet (LightTape by Electro-LuminX Lighting
Corp.). The lower layer of the fluid was dyed red while the upper layer remained clear.
A series of mixtures of this red saline fluid and the fresh water, with intermediate
salinity and dye concentration, were placed in the tank prior to the main experiment
in order to generate a calibration curve to relate the degree of dilution of the saline
water to the attenuation of light as recorded in a digital image of the tank using a
NIKON D90 camera located on the opposite side of the tank to the light sheet. This
calibration curve was then used to quantify the mixing in the tank produced by the
fountain by analysing the evolution of the light intensity across the tank in a series
of images taken at a frequency of 200 Hz during the main experiment (figure 1).
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Cylinder
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FIGURE 2. Images, from two experiments in which the plume reaches the interface, and
then (a) continues upwards to the top of the tank, where the bubbles separate and the
fluid mixes through the upper layer, or (b) forms a dense fountain above the interface
and collapses back to the interface, forming an intermediate layer.

3. Observations of the plume in the lower layer

In the lower layer of the tank, a bubble plume was observed to develop, entraining
ambient fluid and carrying it upwards (figure 2). As a result, a return flow in the
ambient fluid developed, leading to a gradual descent of the top surface of the
original lower layer fluid. By plotting a time series of a vertical line of pixels in the
ambient fluid away from the plume, a descending front, z= hd(t), can be seen. This
corresponds to the so-called first-front observed in filling-box flows (Baines & Turner
1969). By measuring the initial rate of descent of this front, dhd/dt, in a tank with
cross-sectional area A, the upward volume flux in the plume, Q(t), can be estimated
by the balance

A
dhd

dt
=−Q. (3.1)

We may quantify the buoyancy flux in the plume in terms of the source buoyancy
flux gQb, where g is the acceleration due to gravity and Qb is the source bubble flux.
If the plume behaves as a single-phase plume with buoyancy flux B, we expect that
the volume flux at height z above the source of bubbles is

Q(z)= γB1/3(zo + z)5/3, (3.2)

where zo is the virtual origin and γ is a constant, of value 0.15 ± 0.01, related to
the entrainment coefficient α by the relation γ = (6α/5)(9α/10)1/3 for a classical
single-phase plume (Morton, Taylor & Turner 1956). By combining (3.1) and (3.2),
with z = hd, we can estimate γ for all of the experiments listed in table 1, and we
find that γ = 0.16 ± 0.03. This is consistent with the classical value for a turbulent
buoyant plume, suggesting that the assumption that the plume behaves as a single-
phase plume in the lower layer is a reasonable approximation (figure 3). In estimating
γ , we estimated the virtual origin of the plume in the lower layer by estimating the
location of the equivalent point source for the linearly spreading plume, given that,
from plume theory, the radius of the plume follows a law of the form r= 6α/5(zo+ z).
This suggests that zo≈ 2 cm in our experiments. We note that near the actual source,
the flow involves a relatively large flux of gas, but as the flow mixes with water and
dilutes, the gas volume fraction decreases so that, for points 10–15 cm above the
source, it has fallen to values less than 0.05, and the flow has adjusted to that of a
classical Boussinesq plume. The estimate of the virtual origin implicitly accounts for
this adjustment process near the source, representing the plume flow at the interface
in terms of that produced from an idealised point source with the same buoyancy flux.
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(a)

(b)

FIGURE 3. (a) Series of images indicating how the fountain mixes across the interface.
The colour denotes the horizontally averaged salinity at each point in the tank, and
indicates the gradual formation of intermediate density fluid at the interface. (b) Time
series (horizontal) of a vertical line through the ambient fluid away from the fountain.
The gradual descent of the base of the intermediate layer into the original lower layer can
be used to quantify the flux of lower layer fluid which is entrained into the plume and
carried into the fountain. The gradual ascent of the mixed layer can be used to quantify
the rate of mixing of upper layer fluid into the collapsing fountain.

If the bubble rise speed is smaller than the plume speed in the lower layer, we
expect that the flow may be approximated as a single-phase flow. To this end, we have
measured the size of the bubbles produced from the nozzle used in our experiments
by using high-precision analysis of the images from the experiments, and find values
in the range 0.1–0.2 cm. Bubbles in this size range rising in water are ellipsoidal,
and there are extensive experimental data showing that such bubbles in fact have an
approximately constant rise speed of 0.23 m s−1 (Clift, Grace & Weber 1978). As a
further check, we made independent measurements of the bubble rise speed using our
high-frequency images of the experiments to track the speed of individual bubbles,
and this also confirms the bubble rise speeds were in the range 0.23 ± 0.01 m s−1.
To estimate the horizontally averaged ‘top-hat’ rise speed of the fluid in the plume
(cf. Morton et al. 1956) we use single-phase plume theory, which predicts that

u= kB1/3(zo + z)−1/3, (3.3)

where k = (5/6α)(9α/10)1/3 ≈ 3.84. Substituting in the values from our experiments,
we find that at the initial position of the interface between the lower and upper
layers, z= hl, the plume speed is larger than the rise speed of the bubbles for each
experiment (diamonds, figure 4), and so we expect that the motion in the lower layer
may be approximated as a single-phase plume, and that the scaling law (3.2) applies,
consistent with our measurements (cf. figure 3).

4. Condition for fountain development in the upper layer

Given the model for the motion of the plume in the lower layer, we can estimate
the bulk density of the plume on reaching the initial position of the interface, z= hl,
by using the conservation of buoyancy flux, which is equivalent to the conservation
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Exp. Qo (cm3 s−1) hl (m) ρl (kg m−3) Fr Fr∗ λ Flow regime

T1 5.0 0.2 1001.7 8.5 — 3.0 Plume
T2 5.0 0.2 1005.3 6.0 — 1.5 Plume
T3 5.0 0.2 1008.9 4.9 — 1.0 Fountain
T4 5.0 0.2 1012.5 4.2 12.2 0.8 Fountain
T5 5.0 0.1 1012.5 7.6 — 2.1 Plume
T6 10.0 0.2 1001.7 10.7 — 4.8 Plume
T7 10.0 0.2 1005.3 7.6 — 2.4 Plume
T8 10.0 0.2 1008.9 6.2 — 1.6 Plume
T9 10.0 0.2 1012.5 5.4 — 1.2 Fountain
T10 10.0 0.2 1026.8 3.8 7.0 0.6 Fountain
T11 10.0 0.3 1026.8 2.7 3.4 0.3 Fountain
T12 10.0 0.1 1026.8 6.8 — 1.6 Plume
T13 20.0 0.2 1008.9 7.8 — 2.5 Plume
T14 20.0 0.2 1012.5 6.8 — 1.9 Plume
T15 20.0 0.2 1016.1 6.1 — 1.5 Plume
T16 20.0 0.2 1019.7 5.5 — 1.2 Fountain
T17 20.0 0.2 1034.0 4.3 13.4 0.8 Fountain
T18 20.0 0.3 1008.9 5.6 — 1.3 Plume
T19 20.0 0.3 1034.0 3.1 4.1 0.4 Fountain
T20 6.5 0.2 1012.5 4.7 — 0.9 Fountain
T21 6.5 0.2 1034.0 3.0 3.9 0.4 Fountain
T22 6.5 0.3 1048.3 1.8 1.9 0.1 Fountain
T23 12.5 0.2 1034.0 3.7 6.3 0.6 Fountain
T24 12.5 0.3 1048.3 2.2 2.5 0.2 Fountain
T25 20.0 0.2 1034.0 4.3 13.4 0.8 Fountain
S1 25.0 0.1 1005.3 3.5 5.6 0.6 Fountain
S2 25.0 0.2 1005.3 2.0 2.2 0.2 Fountain
S3 25.0 0.3 1026.8 1.1 1.2 0.1 Fountain
S4 25.0 0.1 1016.1 3.0 4.0 0.4 Fountain
S5 25.0 0.1 1055.5 2.5 3.0 0.3 Fountain
S6 25.0 0.2 1034.0 1.5 1.6 0.1 Fountain

TABLE 1. Range of experimental conditions in the bubble plumes. The label T denotes
two-phase bubble plume experiments, while the label S denotes single-phase experiments.

of gas flux in the lower layer. Given the relationship between the plume buoyancy g′,
volume flux Q and buoyancy flux B, g′Q= B, we expect that at z= hl,

g′l(hl)= B2/3

γ (zo + hl)5/3
, (4.1)

where g′l(hl)= g(ρl(hl)− ρ(hl))/ρl0 is the buoyancy of the plume fluid relative to the
lower layer, at the interface, and ρl0 is a reference density, taken to be that of fresh
water. On passing into the upper layer of the experimental reservoir, the buoyancy
changes by the buoyancy difference between the upper and lower layer, g′ul= g′l(hl)−
g′u(hl)= g(ρl(hl)− ρu(hl))/ρl0 say, and so the buoyancy relative to the upper layer of
the rising bubble–water mixture, which has density ρ(hl) at the interface, is given by
g′u(hl)= g(ρu(hl)− ρ(hl))/ρl0. This may be expressed as

g′u(hl)= g′l(hl)− g′ul = g′ul[λ− 1], (4.2)
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FIGURE 4. Rise speed of the fluid in the plume as a fraction of the rise speed of the
bubbles (diamonds), and also the rise speed of the fluid in the fountain as a fraction of the
rise speed of the bubbles (circles). Both quantities are shown as functions of the ratio of
the buoyancy of the plume relative to the lower layer and the buoyancy of the upper layer
relative to the lower layer, λ. If λ< 1, then on entering the upper layer the bulk density
of the flow is in excess of the density of the upper layer, and the flow then evolves as a
fountain in the upper layer.

where λ = g′l(hl)/g′ul(hl). Equation (4.2) expresses the relation between the buoyancy
of the flow above and below the interface and the buoyancy difference across the
interface of the two liquid layers.

It follows that if λ > 1 then the plume fluid is still buoyant above the interface.
If the continuing plume speed in the upper layer remains larger than the bubble
rise speed, then we expect the plume to rise to the top of the tank (see figure 2a).
However, we note that if the tank is very tall, then as the plume continues to rise
through the upper layer, the plume speed will decrease and eventually the bubbles
can separate from the fluid, leading to collapse of the remaining relatively saline fluid
and formation of a fountain.

In contrast, if λ < 1, we expect the plume to transition into a collapsing fountain
above the interface (cf. Kumagai 1984), with the additional complexity that the
bubbles then separate from this fountain and carry on rising to the top of the tank
(see figure 2b). In figure 5, we present the estimated value of λ for each of the
experiments listed in table 1. If the flow developed into a fountain, we use solid
symbols, whereas in the case that the flow reached the top of the tank, we use open
symbols. The figure shows very good agreement of the predicted transition, λ = 1,
with the observed transition in the behaviour of each of the flows.

Henceforth, our main focus lies in flows for which λ < 1. In this case there is a
transition to fountaining behaviour in the upper layer. Our experimental observations
show that the fluid bubble mixture rises above the interface and that the fluid then
comes to rest some distance above the interface, while the bubbles continue to rise.
To help clarify the motion of the fluid and the bubbles, in figure 6(a) we present a
photograph of the bubble–water mixture. In this figure, it may be seen how the lower
layer fluid rises a certain distance above the interface, where it then comes to rest
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FIGURE 5. Comparison of the value of λ estimated for each of the experiments listed
in table 1, with the observation of whether the experiment leads to a collapsing fountain
(closed symbols) or a flow which reached the surface of the reservoir (open symbols).

(a) (b) (c)

FIGURE 6. Images illustrating: (a) the case in which some of the fluid carried up from
the lower layer is dyed red, showing how it rises a finite distance then collapses back to
the interface; (b) bubbles rising in the plume below the interface and the fountain above
the interface; and (c) a time-lapse image to visualise the spatial distribution of the bubbles
averaged over time, in both the plume, below the interface, and the fountain, above the
interface.

and falls back to the interface, mixing with some of the upper layer fluid en route.
In figure 6(b) we present an image with no dye in the fluid, which illustrates the rise
of the bubbles in both the lower layer, where they gradually spread out as predicted
by the plume model, and in the upper layer, where they rise in a nearly cylindrical
region above the interface with no significant change in radius with height. This zone
in which the bubbles rise is illustrated more clearly in figure 6(c) using a false colour
scheme for emphasis.

5. Height of rise and entrainment in the fountains

We have measured the height of rise of the dense fluid in the fountain and also
the rate of entrainment of upper layer fluid into the fountain, by estimating the rate
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Fr Fr

FIGURE 7. Variation of (a) the height of rise of the fountain and (b) the entrainment
coefficient, as a function of the Froude number. Data are shown for the bubble fountains
using the Froude number Fr, based on the density difference between the saline and fresh
fluid (solid circular symbols, (5.2)), and using the Froude number Fr∗, based on the bulk
density difference between the upper layer fluid and the bulk plume fluid (open circular
symbols, (5.1)). Also shown in the figure are data from a series of purely single-phase
experiments using fresh and saline water, shown with the blue triangular symbols, based
on the Froude number Frs.

of ascent of the mixed layer above the interface, as shown in figure 3. In order to
understand the control of each of these properties, it is useful to calculate the Froude
number of the fountain, the square of which may be regarded as a measure of the ratio
of the kinetic energy of the fluid in the fountain and the potential energy required to
lift the fluid in the fountain a vertical distance comparable to the radius of the fountain.
In defining the Froude number, there are two possible models for the buoyancy of the
fountain fluid. We might consider the bulk buoyancy of the fluid, which includes the
presence of the bubbles. However, on inspection of the image in figure 6 and other
observations of the fountain, it is clear that the bubbles separate from the fountain
liquid, and produce a region in which the bubbles rise through both the fountain liquid
and the surrounding upper layer fluid. Indeed, we can estimate the characteristic speed
of the fountain, based on the buoyancy and momentum flux of the fluid rising from
the interface, by using the scaling for the horizontally averaged ‘top-hat’ fountain
speed at the initial position of the interface (Turner 1966), ul = M3/4/B1/2, where
M = ulQ and B = g′uQ, with Q evaluated at the interface. If we compare this speed
with the rise speed of the bubbles we find that for all our experiments the rise speed
of the bubbles is greater than the speed of the fountain (figure 4), and so we expect
the bubbles to separate from the fountain fluid, as is indeed observed (figure 6). As a
result, it may be more appropriate to define the Froude number in terms of the density
difference between the lower layer and upper layer fluids. In figure 7(a) we illustrate
the height of rise of the fountain in the upper layer, hi, as a function of (i) a Froude
number Fr∗ based on the difference between the plume bulk density at the interface,
z= hl, and the upper layer, Fr∗ shown by open circles and defined as

Fr∗ = ul

(g′u(hl)r(hl))1/2
(5.1)
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and (ii) a Froude number Fr based on the density difference between the upper and
lower layer fluid, shown by closed circles and defined by

Fr= ul

(g′ulr(hl))1/2
, (5.2)

where r(hl) is the radius of the plume at the interface, given by r(hl)= 6α/5(hl+ zo)
and ul is the plume speed at the interface (3.3).

In figure 7(a), we also present the fountain heights above the interface, hi, obtained
from a series of reference single-phase experiments we have carried out using fresh
and saline fluid (shown by blue triangles). These experiments use a Froude number
Frs based on the density difference between the plume fluid at the interface and the
upper layer fluid. It is seen that the height of the single-phase fountains (triangles) and
bubble fountains (solid circles) depend on Froude number according to the relations

hi = (0.63± 0.08)Fr2
s r(hl) and hi = (0.33± 0.05)Fr2r(hl), (5.3a,b)

with the Froude number varying from 1–7. In contrast if we do apply the bulk
buoyancy difference in our definition of the Froude number for the bubble fountains,
Fr∗, we find a relation hi = (0.42 ± 0.15)r(hl)Fr∗ (open circles) with the Froude
number, Fr∗, now lying in the range 2–10. This has much more scatter than the fit
(5.3b) using the Froude number Fr (5.2). In these expressions, r(hl) is the radius of
the fountain at the initial position of the interface between the fresh and saline fluid.

An original aim of the experimental study was to determine the rate of mixing
of the upper layer fluid into the fountain. We have measured this for each of the
experiments by calculating the rate of ascent of the mixed layer above the interface,
located at z= hm (cf. figure 3). We then define an entrainment coefficient Ei according
to the relation

A
dhm

dt
= EiQ(hm), (5.4)

where Q(hm) is the plume volume flux at this upper interface. In figure 7(b), we
illustrate the calculated value of Ei as a function of Fr and also Fr∗ for each of our
bubble fountain experiments, and also for the single-phase salt–freshwater experiments
as a function of Frs. The value of dhm/dt is found during the initial stages of the
experiment (cf. figure 3). It is seen that, for the bubble fountain and the saline
fountain, Ei follows the trend

Ei = (0.05± 0.02)Fr2 and Ei ∼ (0.27± 0.09)Fr2
s . (5.5a,b)

This has the same dependence on Fr as the fountain height (5.2), and this is consistent
with a picture in which the entrainment occurs around the flanks of the fountain, so
that the total entrainment increases with the fountain height. Again, the collapse of the
bubble plume data for Ei using Fr (solid circles) is more compelling than that using
the Froude number Fr∗ (open circles).

Our results for the height of rise of the single-phase fountain are consistent with
data presented by Hunt & Burridge (2015), who found the relation hi= 0.82Fr2

s rn for
the height of rise of a single-phase fountain issuing into a uniform layer from a source,
where rn is the size of the source nozzle. However, the constant of proportionality
0.82 is larger than in our experiments (5.3a). We suggest that this difference is
the result of the different radial distribution of momentum and buoyancy in the
fluid supplied to the fountain from the turbulent plume in the lower layer compared
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to the flow being supplied from a nozzle as in the Burridge & Hunt experiments.
Also, our single-phase fountain entrainment law is directly analogous to the results
of Cardoso & Woods (1993), who found a constant of proportionality 0.25 for a
single-phase plume entraining across an interface into a density-stratified fluid. It is
worth noting, for reference, that data presented by Baines (1975) for the entrainment
into a single-phase fountain followed a scaling Fr3

s , but this was for smaller values of
the Froude number than reported in the present work. In a study of a ventilation flow,
Lin & Linden (2005) found that the entrainment coefficient Ei for a single-phase
fountain had value 0.65± 0.1 for Froude numbers, which we estimate from their data
fell within the range 1–2; this is consistent with our saline fountain data for Froude
numbers in the range 1.25–1.75 (5.5b). For clarity, we note that when using the
entrainment model for a single-phase fountain, we use the density contrast between
the fountain fluid and the layer being entrained to define the Froude number.

6. Discussion

Our experiments have identified how a bubble plume rising through the lower
layer of a two-layer stratified fluid may be transformed into a fountain on reaching
a density interface if the fluid above the interface is less dense than the bulk density
of the fountain fluid. We have also shown that if this happens then the bubbles tend
to continue rising in the upper layer fluid, while the dense fluid in the fountain
only rises a finite height above the interface and then collapses back to the interface,
where it forms a mixed layer of intermediate density. We have demonstrated that
the rate of mixing of the upper layer fluid into the fountain is proportional to the
square of the Froude number of the fountain, and that this represents a fraction in
the range of 0.05–0.4 of the volume flux arriving at the top of the fountain in the
bubble plume for 1<Fr< 7. For comparison we have presented some analogous data
for single-phase fountains produced by a single-phase plume penetrating the interface
of a two-layer density-stratified ambient fluid, and these reference experiments are
consistent with earlier work. We have shown that the two-phase fountains follow the
same scaling laws with Froude number as the single-phase fountains, for both the
height and entrainment rate, but that, owing to the two-phase separation effects, the
coefficients relating the fountain height and the mixing to the Froude number are
different for the single-phase and two-phase fountains (5.3, 5.5). In this context, it is
important to emphasise that we define the Froude number of a single-phase fountain
based on the density difference between the fountain fluid and the upper layer fluid
into which the fountain penetrates. However, with the two-phase bubble fountain, in
which the bubbles separate from the fountain, we define the Froude number based
on the density contrast between the fluid in the fountain (excluding the effect of
the bubbles) and the upper layer fluid; for a two-layer system, with a bubble plume,
this corresponds to the density contrast between the lower and upper layer fluids.
The reduction of the entrainment efficiency in a bubble fountain may arise from
the slip of the bubbles relative to the liquid. This can continually change the local
buoyancy of fluid parcels in the flow, and hence may tend to suppress the turbulence.
In this context, we note that the entrainment in turbulent bubble plumes is known to
be smaller than in the single-phase counterparts, as the slip velocity of the bubbles
becomes more significant (cf. Milgram 1983).

It is interesting to apply the results to the case of mixing in a warm reservoir,
such as the Acarape do Meio Reservoir in Ceara, Brazil. This is approximately
30 m deep, with a mixed layer of depth 5–10 m, which is 3–5 ◦C warmer than the
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underlying water, corresponding to a density contrast of 1.0–1.2 kg m−3 with the
typical temperature being 25 ◦C. We consider supplying the base of the lake with
bubbles of size 0.5 cm, rise speed of order 0.3 m s−1, and with a flux of order
0.004 m3 s−1. If we evaluate the properties of the equivalent single-phase plume at
the interface, we predict that the speed ui ≈ 0.44 m s−1 while the radius r ≈ 2.9 m.
This suggests that the plume speed exceeds that of the bubbles, and so the flow in
the lower layer may be approximated as a one-phase flow to leading order. We also
predict that at the interface the bulk plume fluid is dense relative to the upper layer,
with λ ∼ 0.8 (cf. figure 2), so that a fountain will then develop above the interface.
The characteristic speed of this fountain will be uf ∼ 0.25 m s−1, suggesting that
the bubbles can separate from the flow. We then predict that the fountain Froude
number Fr = 2.2 and, using our experimental results, that the fountain will rise a
height of approximately 3.7 m above the interface. We expect the fountain will be
supplied with a volume flux of approximately 11 m3 s−1 of lower layer fluid, and it
will entrain a flux of approximately 2.2 m3 s−1 of upper layer fluid. This will collect
as a deepening mixed layer at the interface. With an array of such plumes across a
lake, spaced 20–40 m apart, and hence each covering an area of 400–1600 m2, the
plumes could mix the lower and upper layers in a time of the order of 1000–4000 s.
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