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The Bell-Shaped Unit Hydrograph for Overland Planes
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Abstract: This study presents a conceptual model to obtain the shape of the unit hydrograph in a small rectangular basin with a collecting
channel on one side of the flow plane. In classical hydrology, flows are classified as linear, convergent, and divergent. In the proposed model,
a rainfall of constant intensity is assumed, with the duration equal to the time of concentration of the basin, as in the rational method.
The shape of the plane is simplified in order to obtain an analytical solution. It is observed that in the plane of diffuse flow, the flow begins
as a convergent of repletion, then passes to divergent of repletion, and finishes as a convergent of depletion. The applied theory allows the
development of a classic bell-shaped unit hydrograph, a very common form of the theoretical hydrographs found in the literature. The
proposed methodology was also applied to a practical flood damping problem in an urban watershed. DOI: 10.1061/(ASCE)IR.1943-
4774.0001465. © 2020 American Society of Civil Engineers.
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Introduction

Originally described by Sherman (1932), the concept of a unit
hydrograph consists in a model to represent the streamflow hydro-
graph obtained from a rainfall hyetograph at the outlet of a basin.
Traditionally, the derivation of the unit hydrograph was done based
on observed data, encompassing practically all the premises of the
method. Dooge (1959) presented the general equations of the unit
hydrographs by the assumption that the reservoir action in a catch-
ment can be separated from translation. Chow (1962) evaluated
three methods of determining a unit hydrograph: (1) a direct der-
ivation from observed hydrographs; (2) hydrograph syntheses for a
large number of observed hydrographs; and (3) a construction of
hydrographs based on theory.

The theoretical method of construction of Chow’s hydrograph
(1962) is to divide the watershed into a number of segments and
calculate the contribution of each segment. Chow applied this
method to a hypothetical basin of circular shape. The fictitious ba-
sin had a length L, along the stream, and was exposed to a uniform
unit rain of duration td. The plane had a constant gradient S toward
the basin outlet. The hydrographs obtained are shown in Fig. 1.

There are several other models, conceptual or empirical, that
seek to establish the shape of a unit hydrograph. Classical studies
on unit hydrographs are revised for instance by Maidment (1993)
and Cleveland et al. (2008). More recent studies have developed
other forms and methods for the construction of unit hydrographs.
Bhunya et al. (2005) developed a hybrid model to obtain the unit

hydrograph from the splitting of the Nash (1959) linear reservoir
into two reservoirs with different storage coefficients. Nadarajah
(2007) explored eleven methods of probability distribution to
obtain unit hydrographs and presented nine programs written in
Maple to obtain parameters that describe methods, such as time
to peak, the time base, and peak discharge. Singh (2015) proposed
a simple theory for instantaneous unit hydrographs based on two
parameters, with conceptual and physical justification. This theory
simplifies the computations involved in obtaining the streamflow
from a complex rainfall event. Petroselli and Grimaldi (2018) de-
veloped a method to replace the rational formula in small water-
sheds with the scarcity of hydrological data. The method uses
terrain digital elevation models and applies the instantaneous geo-
morphological unit hydrograph concept. Ghorbani et al. (2017)
developed a nonlinear model to transmute a unit hydrograph into
a probability distribution function with parameters optimization by
two ways: programming in Mathematica and applying a genetic
algorithm. Khaleghi et al. (2018) proposed a model to determine
the shape of instantaneous unit hydrographs, which consists of a
series of linear reservoirs that are connected to each other, and
is referred to as the interconnected linear reservoir model.

The objective of this paper is to analytically develop a unit
hydrograph (UH) based on hydraulics and hydrology fundamentals
for application in small urban basins. This UH can be applied
in urban basins where the hydrograph shape is important for the
sizing of reservoirs and stormwater ponds. In the classic models
of hydrological engineering practice, unit hydrographs (UHs)
are bell-shaped. In this paper, the theoretical construction model
(Chow 1962) is applied to a simplified overland flow regime. Theo-
retical flow types are defined to support the flow conditions that
determine the occurrence of the inflection point of the UH. To
the authors’ knowledge, no previous study has been developed in
this sense.

Methodology

Theoretical Flow Types in Planes with Different
Geometries

Initially, three types of flows in fictitious planes were analyzed:
(1) linear flow, which occurs in a rectangular plane in which the
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derivative of the contributing area with time dAðtÞ=dt is constant;
(2) convergent flow, which occurs in a circular convergent sector
in which the derivative dAðtÞ=dt is positive; and (3) divergent
flow, which occurs in a circular divergent sector in which the
derivative dAðtÞ=dt is negative.

The rational method formula for the fictitious planes can be
written as

Q ¼ C · i · A ð1Þ
where Q = discharge; C = runoff coefficient; i = rainfall intensity;
and A = contributing area of the plane.

Thus, considering the C · i constant, the evolution of the con-
tributing area at the plane outlet is analyzed in the following sec-
tions. Note that for the partial contributing areas in the construction
of the hydrograph, the notation ApðtÞ is used, and the discharge at
the outlet is QpðtÞ ¼ CiApðtÞ, not considering that the area or the
discharge in the rational method is time dependent, but that the area
of effective contribution to the flow at the outlet depends on the
intensity, which is dependent on the time of concentration (tc).
Hence, when t ¼ tc, Eq. (1) is applied.

Linear Flow in a Rectangular Plane

The assumptions to determine the linear flow are those of the ra-
tional method (Maidment 1993). The plane has width B and length
L, as shown schematically in Fig. 2. The rainfall is uniform over the
basin with intensity i and duration tc (time of concentration). The
flow velocity v in the plane is equal to L=tc. The effective contri-
bution is equal to the rainfall intensity i times the runoff coefficient
C. The total area of the plane is Ab ¼ L × B.

The construction of the hydrograph is done in two stages:
(1) ascending phase (repletion), until tc is reached; and (2) descend-
ing phase (depletion), after the rain ceases, from tc to 2tc.
• Stage 1: 0 ≤ t < tc (linear repletion): the contributing area in-

creases linearly with precipitation at t

ApðtÞ ¼ v · t · B ð2Þ
• Stage 2: tc ≤ t < 2tc (linear depletion): the contributing area

decreases linearly with precipitation at t

ApðtÞ ¼ Ab − vðt − tcÞB ð3Þ
Fig. 2 shows the hydrograph resulting from Eqs. (2) and (3).

At this point, the construction of the subsequent hydrographs
needs to be clarified: the inflection points refer to the instant of
change in the flow type. In the ascending stages (repletion), an in-
flection point occurs when the contribution of the triangle above
the diagonal of the flow plane begins. In the primary forms, when
the convergent sector contribution is completed and the divergent
sector starts, in the descending stage (depletion), the inflection
point occurs when the depletion of the lower rectangle is com-
pleted, and the depletion of the upper triangle begins.

Convergent Flow in a Circular Sector

The assumptions to determine the convergent flow are that the cir-
cular sector has radius R and angle ϕ and that the rainfall is uniform
over the basin with intensity i and duration tc. The flow velocity in
the plane is v ¼ R=tc. Fig. 3 shows schematically the convergent
flow in the circular sector.

Similar to the previous case (rectangular plane—linear flow),
the construction of the hydrograph is done in two stages: (1) ascend-
ing phase (repletion), until tc is reached; and (2) descending phase
(depletion), after the rain ceases, from tc to 2tc.
• Stage 1: 0 ≤ t < tc (repletion, convergent flow): the contributing

area increases from downstream to upstream. It begins with the
sector near the vertex until tc, when the entire area of the plane
(Ab) will be contributing. Note that the second derivative
d2ApðtÞ=dt2 is positive. Thus, the variation of the contributing
area over time is given by

ApðtÞ ¼
� ∅
360

�
πR2 ð4Þ

or, defining K ¼ πxðϕ=360Þ
ApðtÞ ¼ KðvtÞ2 ð5Þ

• Stage 2: tc ≤ t < 2tc (depletion, divergent flow): the contribut-
ing area decreases over time. Initially, the area near the outlet
ceases its contribution. The process proceeds to time 2tc until
the entire flow ceases. Note that the second derivative d2ApðtÞ=
dt2 is negative.

Fig. 1. S-curve and unit hydrograph for hypothetical circular basin
adapted from Chow.

Fig. 2. Unit hydrograph for rectangular plane—linear flow for reple-
tion and depletion.
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Hence, the variation of the contributing area over time can be
described by the following equation

ApðtÞ ¼ Ab − K½vðt − tcÞ�2 ð6Þ
Fig. 3 shows the hydrograph resulting from Eqs. (5) and (6).

Divergent Flow in a Circular Sector

The assumptions to determine the divergent flow are the same
already described for the convergent flow. The only different is
the flow direction, which is the opposite of the previous case, as
shown schematically in Fig. 4.

Again, the construction of the hydrograph is done in two stages:
(1) ascending phase (repletion), until tc is reached; and (2) descend-
ing phase (depletion), after the rain ceases, from tc to 2tc.
• Stage 1: 0 ≤ t < tc (repletion, divergent flow): the contributing

area increases from downstream to upstream, but the second
derivative d2ApðtÞ=dt2 is negative.

The variation of the contributing area over time is given by

ApðtÞ ¼ KR2 − KðR − vtÞ2 ð7Þ
• Stage 2: tc ≤ t < 2tc (depletion, convergent flow): the contribut-

ing area decreases over time, but the second derivative d2ApðtÞ=
dt2 is positive.
The variation of the contributing area over time can be described

by the following equation:

ApðtÞ ¼ KR2 − K½R − vðt − tcÞ�2 ð8Þ
Fig. 4 shows the hydrograph resulting from Eqs. (7) and (8).

Theoretical Construction of the Unit Hydrograph for a
Square Basin with a Side Collecting Channel

For the theoretical construction of the bell-shaped UH, a diffuse
square flow plane was conceived with a collecting channel on
one side, as shown schematically in Fig. 5. To provide an analytical

treatment, it is assumed that the velocity in the plane, toward the
channel, is equal to the velocity in the channel relative to the outlet.
With this assumption, the increase in the contributing area in the
outlet occurs along a line parallel to the main diagonal. The theo-
retical construction of UH occurs in four stages, described as
follows:

Stage 1: From t � 0 to tc=2 (Convergent Repletion)
Due to the assumption of equal velocities in the plane and in the
channel, the increase in the contributing area occurs in the conver-
gent flow form (Fig. 3). Thus, the contributing area refers to an

Fig. 3.Unit hydrograph convergent sector—flow type for repletion and
depletion.

Fig. 4. Unit hydrograph divergent sector—flow type for repletion and
depletion.

Fig. 5. Four steps of the function ApðtÞ for the square plane with side
collector.
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isosceles right triangle [Fig. 5(a)] and can be described by the fol-
lowing the formula:

ApðtÞ ¼ 1

2
· v · t · v · t ¼ 1

2
v2t2 ð9Þ

Observe that when t ¼ tc=2, the contributing area is Ab=2.

Stage 2: From t � tc=2 to tc (Divergent Repletion)
In this stage, the increase in the contributing area starts from the
widest part of the diagonal of the trapezoid square and follows
to the vertex of the upper rectangle triangle [Fig. 5(b)]. It represents
the process of the initial phase of the flow in a divergent circular
sector (Fig. 4). Hence, the equation for the contributing area is

ApðtÞ ¼ Ab

2
þ
�
L

ffiffiffi
2

p − vðt − tc
2
Þffiffiffi

2
p

�
v

�
t − tc

2

�� ffiffiffi
2

p
ð10Þ

Stage 3: From tc to 1.5tc (Divergent Depletion)
At this stage, depletion of the most upstream part (below the main
diagonal) begins [Fig. 5(c)]. The flow is similar to the depletion of
the convergent circular sector (Fig. 3). That is, it is a repletion with
divergent flow. At time tc, the entire basin is contributing
½AðtÞ ¼ Ab�. Thus, the following equation describes the contribut-
ing area:

ApðtÞ ¼ Ab − 1

2
v2ðt − tcÞ2 ð11Þ

Stage 4: From 1.5tc to 2tc (Convergent Depletion)
At the final stage, the depletion of the most downstream part (above
the main diagonal) begins [Fig. 5(d)]. In this case, the flow is sim-
ilar to the depletion of the divergent circular sector (Fig. 4). At
t ¼ 1.5tc, the contributing area is Ab=2, and the process continues
until total depletion is reached. Thus, the contributing area follows
the formula

ApðtÞ ¼ Ab

2
−
�
L

ffiffiffi
2

p − vðt − 1.5tcÞffiffiffi
2

p
�
vðt − 1.5tcÞ=

ffiffiffi
2

p
ð12Þ

Discussion

The application of Chow’s method to construct hydrograph forms
was done analytically and provided the formulation of a classic
bell-shaped hydrograph with two inflection points, as depicted
in Table 1 and Fig. 6. The hydrograph was constructed with four
types of flow: (1) convergent flow in repletion; (2) divergent flow
in repletion; (3) divergent flow in depletion; and (4) convergent
flow in depletion. The hypothetical data used in simulation were
as follows: area ðAbÞ ¼ 100,000 unit area; time of concentration
ðtcÞ ¼ 3,600 unit time; length ðLÞ ¼ ffiffiffiffiffiffi

Ab
p ¼ 316.228 unit length;

velocity (v) = 2 · L=tc ¼ 0.176 unit velocity; and time step ðtÞ ¼
100 unit time.

Recent studies have presented many advances in obtaining unit
hydrographs (UH), mainly in the classes of probabilistic models
and geomorphological models, according to Bhunya et al. (2011)
and Singh et al. (2014). Classic models, such as soil conservation
service (SCS), have been widely used, although they present some
inconsistencies. The conceptual models were responsible for defin-
ing the standard form of UH, with a minimum number of param-
eters, by several methodologies, and obtained satisfactory results in
several areas of hydrology. The proposed UH belongs to this class
of conceptual models, with the advantage that the hydrograph was
derived in a totally analytical way, with the classic bell-shaped form
found in most hydrological situations. Despite the simplifications

Table 1. Example of hypothetical unit hydrograph for a square plane flow

t=tc ApðtÞ=Ab

0.028 0.002
0.056 0.006
0.083 0.014
0.111 0.025
0.139 0.039
0.167 0.056
0.194 0.076
0.222 0.099
0.250 0.125
0.278 0.154
0.306 0.187
0.333 0.222
0.361 0.261
0.389 0.302
0.417 0.347
0.444 0.395
0.472 0.446
0.500 0.500
0.528 0.554
0.556 0.605
0.583 0.653
0.611 0.698
0.639 0.739
0.667 0.778
0.694 0.813
0.722 0.846
0.750 0.875
0.778 0.901
0.806 0.924
0.833 0.944
0.861 0.961
0.889 0.975
0.917 0.986
0.944 0.994
0.972 0.998
1.000 1.000
1.028 0.998
1.056 0.994
1.083 0.986
1.111 0.975
1.139 0.961
1.167 0.944
1.194 0.924
1.222 0.901
1.250 0.875
1.278 0.846
1.306 0.813
1.333 0.778
1.361 0.739
1.389 0.698
1.417 0.653
1.444 0.605
1.472 0.554
1.500 0.500
1.528 0.446
1.556 0.395
1.583 0.347
1.611 0.302
1.639 0.261
1.667 0.222
1.694 0.187
1.722 0.154
1.750 0.125
1.778 0.099
1.806 0.076
1.833 0.056
1.861 0.039
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and the simple area considered (rectangular with diagonal output),
the area repletion and depletion phases can be visualized quite
clearly, and the applied method can be expanded and adapted to
new situations.

Application

The proposed method is applied in this study for the prediction of
the inflow and outflow hydrographs for flood damping in the Santo
Anastácio Pond, which is located in an urban basin in Fortaleza,
Brazil. The basin area A ¼ 143,400 m2, and the pond has a maxi-
mum depth h ¼ 4.0 m and a capacity V ¼ 305,000 m3. Consider-
ing the intensity-duration-frequency equation of Silva et al. (2013)
{i ¼ ½2,345.29T0.173=ðtþ 28.31Þ0.904�}, a flood with return period
T ¼ 10 years, and a time of concentration t ¼ 60 min, the method
described in the previous sections was applied to obtain the inflow
hydrograph. The flood damping was calculated by using the
Puls method, considering a volume-height relationship of the form
V ¼ 4,765.625 · h3 and an outflow equation represented by Q ¼
91.9 · ðh − 4Þ3=2. The predicted hydrographs are shown in Fig. 7.
This illustrates how the method proposed in the present paper can
be easily applied to practical problems.

Summary and Conclusions

This research presented a theoretical construction of a bell-
shaped unit hydrograph (UH). Overall, six types of flows were de-
fined in order to compose the UH: (1) linear flow repletion,
(2) linear flow depletion, (3) convergent flow repletion, (4) diver-
gent flow depletion, (5) divergent flow repletion, and (6) convergent
flow depletion.

Chow’s method was used for the construction of the UH. The
water catchment area used to present this conceptual model had the
form of a square flowing to a side collecting channel that drained
the waters to the outlet. To allow an analytical treatment of the

problem, it was assumed that the velocity in the plane toward
the outlet is equal to the velocity of the flow in the side collector.
A bell-shaped hydrograph was constructed with four segments:
convergent repletion flow, divergent repletion flow, divergent
depletion flow, and convergent depletion flow. The inflection points
in the hydrograph are in the ascending stages (repletion), which
refer to the instant at which the convergent flow ends and the di-
vergent flow begins, and in the descending stages (depletion),
which refer to the instant that the divergent flow of depletion ends
and the convergent flow of depletion initiates.

An application of the method presented in this study illustrated
how the bell-shaped unit hydrograph together with the Puls method
can be used to assess flood damping by ponds in urban watersheds.
The proposed methodology can also be extended to more complex
planes such as rectangles, triangles, and circles, but other geomet-
rical conditions must be considered to obtain an analytical solution.
In such cases, numerical methods using finite-differences or finite-
elements, and specialized software such as the Hydrologic Model-
ing System (HEC/HMS), could also be employed.
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