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[1] A semiparametric approach for forecasting streamflow at multiple gaging locations on
a river network conditional on climate precursors is developed. The strategy considers
statistical forecasts of annual or seasonal streamflow totals at each of the sites and their
disaggregation to monthly or higher resolution flows using a k nearest neighbor
resampling approach that maintains space-time consistency across the sites and
subperiods. An application of the approach to forecasting inflows at six reservoirs in the
state of Ceara in northeastern Brazil is presented. The climate precursors used are the
NINO3 index for the El Niño-Southern Oscillation and an equatorial Atlantic sea surface
temperature index. Forecasts of January through December streamflow are made at
three lead times: in January of the same year and in October and July of the preceding
year. The skill of the ensemble forecasts generated is evaluated on subsets of the historical
data not used for model building. Correlations with the equatorial Atlantic index and with
NINO3 translate into useful streamflow forecasts for the next 18 months of reservoir
operation and water management. INDEX TERMS: 1833 Hydrology: Hydroclimatology; 1860

Hydrology: Runoff and streamflow; 3220 Mathematical Geophysics: Nonlinear dynamics; KEYWORDS:

ENSO, forecast, streamflow, nonparametric, nonlinear, climate
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1. Introduction

[2] Arid regions, such as northeast Brazil are particularly
vulnerable to climate fluctuations and to their impact on
water supply. Consequently, there is interest in the devel-
opment of long range streamflow forecasts that could be
used for reservoir operation and water allocation for com-
peting demands. Both dynamical and statistical methods are
being used to develop such forecasts. One pathway for the
development of such forecasts is the use of general circu-
lation models (GCMs) of the ocean and the atmosphere,
followed by ‘‘downscaling’’ using Regional Climate Meth-
ods or statistical approaches, followed by lumped or dis-
tributed rainfall-runoff models. This is a useful research
direction. At this time, issues related to uncertainty propa-
gation along the pathway, process parameterization, final
forecast skill and utility in the context of resource manage-
ment at relevant space and timescales of interest are still
being evaluated. An alternative is the direct development of
statistical forecasts for water supply and demand using a
suitably selected set of climate precursors. A new method
for generating probabilistic statistical forecasts of river
flows is developed and applied here.
[3] Our goal was to develop a procedure that is consistent

with the information needs and analysis methods of a water

agency responsible for operating a network of reservoirs on a
river system. This translates into estimates of spatially and
temporally consistent monthly inflows to a set of reservoirs
over a storage cycle (e.g., 3 months to 2 years). Many system
operators make water and storage allocation decisions for
the upcoming storage cycle by simulating the system using
inflow sequences resampled from the historical record (e.g.,
using the index-sequential record method [Kendall and
Dracup, 1991]) and projected demands. We provide a
capability for conditionally resampling the historical record
considering the state of key climate precursors. Selected
multivariate regression strategies are first explored to
describe the relationship between annual (or seasonal)
streamflow at the sites of interest and a set of potential
climate predictors. Key issues here are the potential nonlin-
earity of the relationships, and the nonnormality of regression
residuals. This analysis is used to prescribe a transformation
of the predictor state-space. A nonparametric approximation
to the conditional probability density of the matrix of
monthly streamflows at all sites, for the future period of
interest, is then employed, and Monte Carlo simulations
of the future inflows are generated using the k-nearest
neighbor method [Lall and Sharma, 1996]. Disaggregations
to daily timescales, using related methods demonstrated by
Kumar et al. [2000] can also be considered.
[4] In an analysis of global forecast skills of the leading

ocean-atmosphere general circulation models for seasonal
precipitation, Rajagopalan et al. [2002] find that northeast
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Brazil (Nordeste) is one of a few regions in the world where
there is consistent and statistically significant skill during
the primary rainy season (January–May). Drought is a
perpetual concern in the state of Ceara in NE Brazil and
reservoir systems are often stressed even though they are
typically designed for a 2–3 year storage cycle. Given the
potential for successful long range forecasts, and the high
utility of such information, Ceara provides an important
case study for the methods developed here. The forecasting
methodology developed is discussed through an application
to 6 reservoirs in Ceara. In forthcoming papers, we explore
forecast uncertainty using Bayesian methods and show how
the forecasts are used for water allocation and reservoir
operation.

2. Background

[5] Information on drought in Ceara, attributes of water
supply and demand, and the historical variation in reservoir
inflows is provided first. There has been considerable
interest in hydroclimatic forecasting recently [e.g., Liu et
al., 1998; Cordery and McCall, 2000; Piechota et al.,
2001]. Here only past efforts at statistical forecasts of
streamflow or precipitation in the region are reviewed in
the context of the identification of a suitable set of climatic
predictors for Ceara.
[6] The water system of interest is the Jaguaribe-Metro-

politano Hidrossytem (JMH) in Ceara, shown in Figure 1.

This is the most important water system in the state. Six
major reservoirs (see Table 1: the first three are in Jaguaribe
Basin and the rest in the Metropolitan Basin) supply the
primary irrigated areas and the largest metropolitan area
(Fortaleza). The first four reservoirs are in the semiarid
region of the state. Precipitation in the Pacoti-Riachao and
Cocó River basins is influenced by orography. Rainfall
records for each river basin are available since about
1911. Streamflow records at the different inflow sites
vary in their start date from 1912 to 1970. Consequently,
calibrated rainfall-runoff models have been used to recon-
struct the inflow at each reservoir. The quality of the inflow
data is expected to be the best for the Oros reservoir, and
weakest for Pacoti-Riachão. Note the frequency of drought
implied by the pattern of demand-supply deficit in Figure 2.
The annual inflow was near zero in several of the years.
[7] The annual inflow at all sites is highly variable and

skewed (Table 1). Ninetyfive percent of the annual reservoir
inflow typically occurs during January through June. The
seasonal variation of the Oros inflow is shown in Figure 3.
The Ceara Water Resources Plan [Secretaria de Recursos
Hı́dricos do Estado do Ceará (SRH ), 1991] and Water
Basin Plan [Companhia de Gestão dos Recursos Hı́dricos
(COGERH ), 1999a, 1999b] provide demand projections for
JMH. The Jaguaribe Basin water demand is 80% Irrigation
and 20% urban. The Metropolitan Basin water demand is
predominantly for Urban and Industrial use. Consequently,
the demands in the Metropolitan basin are relatively uni-
formly distributed during the year, while those in the
Jaguaribe basin are concentrated in the irrigation season
(August through November).
[8] Some recent efforts relating precipitation and stream-

flow in NE Brazil to climate pre-cursors and describing the
attendant climatic mechanisms are discussed by Uvo et al.
[1998, 2000], Uvo and Graham [1998], and Marengo et al.
[1998]. The rainfall in the region is highly variable in space,
within the rainy season and over years [Kousky, 1979]. The
seasonality of regional rainfall, and hence of streamflow
is governed largely by the north/south migration of the
inter-tropical convergence zone (ITCZ). Uvo et al. [1998]

Figure 1. Location of Reservoir Inflow Locations in
Ceara, Brazil. 1, Oros; 2, Banabuiu; 3, Pedras Branca;
4, Pacajus; 5, Pacoti Riachao; 6, Gaviao. The major
irrigation demand areas are indicated by squares, and the
municipal and industrial demand areas served are indicated
by circles. Only features of the Juagaribe and Metropolitan
basins are filled in. Other basin boundaries are marked.

Figure 2. The 1912–1990 time series of total inflow and
demand for the Metropolitan River Basin. Note the zero
annual inflows in several years, and the possibility of deficit
nearly 25% of the time.
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synthesize a description of the connection between rainfall
and the ITCZ based on past research. They indicate that the
principal rainy season is initiated between February and
March, as the ITCZ over the tropical Atlantic Ocean reaches
it southernmost position. The northward migration of the
ITCZ signals the end of the rainy season. However, the
timing of this return is highly variable, and significantly
affects the seasonal rainfall total. The January–February
rainfall is affected by cold fronts or their remnants [Kousky,
1979]. Connections between the eastern Pacific and tropical
Atlantic ITCZ behavior have been studied by Nobre and
Shukla [1996], Saravanan and Chang [2000], and Chiang
et al. [2000] with two contrasting hypotheses. Nobre and
Shukla explain the connection between a mature ENSO in
the boreal winter and the northern part of the tropical
Atlantic SST in the winter and the following spring in terms
of a northern midlatitude ‘‘atmospheric bridge’’’. Saravanan
and Chang point to the role of an anomalous Walker
Circulation as the connection. Chiang et al offer observa-
tional support for this mechanism and analyze its interde-
cadal variations (these relate directly to the changing
frequency of El Nino and La Nina events over 21 year
moving windows).
[9] The rainfall variability has been related to variations

in sea surface temperatures [Markham and McLain, 1977;
Moura and Shukla, 1981; Hastenrath, 1984, 1990; Ward et
al., 1988]. Ward and Folland [1991] found that it is best to
use the EOFs of only the tropical Atlantic sea surface
temperatures as predictors of the Nordeste rainfall. The
Pacific Anomalies associated with ENSO play a weaker
role. Ward et al. [1993] indicate that the Atlantic EOF
spatial patterns are often not robust with respect to the
period of analysis and speculate on various reasons for the
changes. They demonstrate statistically significant skill in
their forecasts of aggregate seasonal Nordeste rainfall with 0
to 2 months lead time using multiple linear regression and
linear discriminant analysis. The work of Uvo et al. [1998]
considers a more detailed multivariate space (105 stations)
and time (monthly and seasonal) analysis of the Nordeste
precipitation and its relationship to SSTs. Their results
indicate that warm SST anomalies in the Southern equato-
rial Atlantic are associated with an earlier migration of the
ITCZ, leading to enhanced rainfall in parts of the Nordeste
including Ceara. In agreement with previous studies they
find that the position of the ITCZ in April and May and
hence the end of the Nordeste rainy season is determined to
a great extent by a North-South gradient in the equatorial

Atlantic SST. The correlation with an ENSO-Pacific index
during this period is also significant. Based on the results of
their multivariate analysis, Uvo et al constructed SST
indices for the Central Pacific, the equatorial North Atlantic
and the equatorial South Atlantic, and for the difference
between the North Atlantic and the South Atlantic. The
ENSO/Pacific index during the rainy season is highly
correlated with the North Atlantic index, but not with the
South Atlantic index. They note that the equatorial Atlantic
‘‘dipole’’ index is a better predictor of Nordeste precipita-
tion 1 to 3 months in advance, and confirm prior work that
recognizes the utility of such an index. They find that the
months of April and May were the most important contrib-
utors to the interannual variations of Nordeste precipitation,
and that their Atlantic dipole index is highly correlated with
these fluctuations. The ENSO index plays a smaller but
statistically significant role, and is associated with precipi-
tation in January/February, and in April–May.
[10] A context for these observations is provided by the

analysis of Chiang et al. [2000] who also looked at
the dependence of a Ceara rainfall index on ENSO and
the cross-equatorial tropical Atlantic SST gradient. They
note that as NINO3 increases, the mean and the range of the
Ceara rainfall tend to decrease. Their interpretation is that
when little convection occurs over the eastern equatorial
Pacific (La Nina), the tropical Atlantic ITCZ is influenced

Figure 3. Seasonality of Oros inflow, illustrated through
monthly flow quantiles.

Table 1. Basic Data and Statistics of Annual Reservoir Inflow Based on 1913–1990 Recorda

Reservoir

Oros Banabuiu Pedras Branca Pacajus Pacoti Riachao Gaviao

River Jaguaribe Banabuiú Sitiá Choró Pacoti-Riachão Cocó
Basin Area (km2) 24563 14931 1787 4060 1108 95
Storage (hm3) 1956 1800 434 148 420 54
First quartile 6.9 4.5 0.7 2.9 2.8 0.4
Median 18.5 15.1 2.1 17.3 7.1 0.8
Third quartile 37.2 34.3 5.9 32.7 12.0 1.5
Mean 30.0 26.6 5.2 24.6 8.5 1.2
Standard deviation 37.8 31.8 8.0 29.5 7.8 1.1
CV 1.3 1.2 1.5 1.2 0.9 0.9
Skew 2.5 1.9 3.0 2.1 1.2 1.5

aInflow is in units of m3/s.
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by other factors, primarily the Atlantic cross-equatorial SST
gradient. As convection increases over the eastern equato-
rial Pacific, anomalous subsidence over the tropical Atlantic
reduces the northeast Brazil rainfall and its variation. The
nonlinearity in the relation between Pacific SSTs and
convection and its influence on the tropical Atlantic SST
and Ceara Rainfall is identified as a factor in the apparent
change in correlation between NINO3 and its teleconnec-
tions to the Atlantic over time.
[11] One and two seasons ahead streamflow forecasts in

the adjoining region of Amazonia were considered by Uvo
et al. [2000] using neural network regression and prior

season SSTs in the equatorial Pacific and tropical Atlantic
for the 1946–1992 period. They report correlations between
observed and forecasted river flows at nine sites that range
from 0.35 to 0.76. These were improved over a canonical
linear regression model used by Uvo and Graham [1998].
The Amazonia region has a rather different climate than the
Nordeste, and hence it is not clear if such results can be
extrapolated to Ceara. Further, the efficacy of the neural
network approach to generate probabilistic scenarios at
multiple sites that maintain proper subperiod structure
across sites, and can be easily communicated to the reser-
voir operators, is unclear.
[12] On the basis of the results from prior investigations,

the two time series selected as predictors are the NINO3
time series defined as the average sea surface temperature
anomaly in the region bounded by the eastern equatorial
Pacific 150�W to 90�W and 5�S to 5�N, and a cross-
equatorial Atlantic SST gradient (EAD) series defined as
the difference in the monthly average of the SST anomaly in
the region bounded by North Atlantic (5�–20�N, 60�–
30�W) and the monthly average of the region bounded
by South Atlantic (0�–20�S, 30�W–10�E). The monthly
time series for the indices were derived from the gridded

Table 2. Correlation of Annual Inflows Across All Sites

Oros Banabuiu
Pedras
Branca Pacajus

Pacoti
Riachao Gaviao

Oros 1.00 0.76 0.78 0.78 0.65 0.64
Banabuiu 0.76 1.00 0.83 0.73 0.63 0.56
Pedras Branca 0.78 0.83 1.00 0.83 0.73 0.67
Pacajus 0.78 0.73 0.83 1.00 0.84 0.82
Pacoti Riachao 0.65 0.63 0.73 0.84 1.00 0.94
Gaviao 0.64 0.56 0.67 0.82 0.94 1.00

Figure 4. April–May–June and July–August–September SST correlations with Oros annual flow for
the next year. The NINO3 index is defined over 5�S to 5�N, 150�W to 90�W; the North Atlantic index is
defined over 5� to 20�N and 60� to 30�W, and the South Atlantic index is defined over 0� to 20�S and
30�W to 10�E. The EAD index is the difference between the North and the South Atlantic indices.
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SSTA data sets developed by Kaplan et al. [1998], available
at http://ingrid.ldeo.columbia.edu/SOURCES/.KAPLAN/
.EXTENDED/.

3. Diagnostic Analyses

[13] Basic statistical analyses of the temporal variations
and inter-relationships of selected streamflow and climate
index time series are presented in this section. We derived
seasonally averaged time series for each index, and annually
averaged series for each streamflow site. This is in antici-
pation of the design of a forecasting system that would
use the average April–May–June (AMJ), July–August–
September (JAS), October–November–December (OND)
index to forecast the January–December (ANN) streamflow
in the next year, in early July, October and January
respectively. Since, the streamflow in July–December is
near zero, one could potentially provide up to 18 months
(for the ANN forecast from the preceding July) of opera-
tional guidance with this design.
[14] The annual streamflow at the six sites had a similar,

positively skewed probability distribution. A Principal
Components Analysis (using correlation) of the annual

streamflow data reveals that the first Principal Component
(which represents a weighted average of the flows across
sites) accounts for 79% of the variance across the sites. The
associated eigenvector has nearly equal, positive weights
across all sites, reflecting the mutual correlation (Table 2).
Thus the dominant mode of inter-annual evolution of the
climate state is seen similarly at all sites. The quality of the
reconstructed streamflow data, and hence the signal-to-
noise ratio, varies across sites. Consequently, it is useful
to analyze the most reliable data (Oros) or with the series for
the leading Principal Component. Correlations of the annual
Oros inflow with SSTs for two preceding seasons are
illustrated in Figure 4. Note the change in the relative
importance of the Atlantic and the Pacific predictors as
the forecast lead time changes.
[15] Smoothed scatterplots of the Oros flow versus two

predictor series are shown in Figure 5. The line in each plot
is a cross-validated smoothing spline [Wahba, 1990]. The
relationships appear to be nonlinear, and heteroskedastic.
The corresponding correlations between the Oros inflow
and the indices at different lags are provided in Table 3. The
Oros correlations are statistically significant at the 5% level,
and drop slowly as we increase the forecast lead time. The
serial correlation of Oros flow with inflow the previous year
is not significant. The EAD index and the NINO3 index do
not seem to be correlated.
[16] A wavelet analysis [Torrance and Compo, 1998] of

the Oros inflow exhibits episodic, multiyear events that
are organized on interannual (3–6 year) and interdecadal
(12 year) timescales. The NINO3 wavelet spectrum for each
season corresponds to the interannual frequency structure
and its intermittence, while the EAD spectrum corresponds
to the interdecadal mode and its expression. Thus an
interdecadal regime in which the EAD persists from year
to year in a strongly positive mode may mitigate the impact
of an El Nino event (which usually leads to drought).
Similarly, a negative EAD regime coupled with an inter-
annually persistent El Nino event may be the harbinger of a
significant drought in the upcoming year.

4. Forecast Development

[17] The procedure used for developing the forecasts for
the six Ceara sites using prior EAD and NINO3 time series
is described here. The results from the forecasts are then
analyzed. The description of the general algorithm follows.
[18] The main ideas are (1) streamflow at the Ceara sites

is highly spatially correlated and is apparently influenced by
climate in a similar manner, leading to the possibility of a

Figure 5. Relations between annual Oros inflow and
preceding July–August–September SST indices. Similar
relations hold for the other seasons. The line in each plot is a
cross-validated smoothing spline fit to the data.

Table 3. Correlations Between Oros Annual Inflow and Preceding

Season Climate Indicesa

EAD
OND

Nino3
OND

EAD
JAS

Nino3
JAS

EAD
AMJ

Nino3
AMJ

EAD OND 1
Nino3 OND 0.08 11
EAD JAS 0.76 0 11
Nino3 JAS 0.05 0.90 �0.02 11
EAD AMJ 0.54 0.01 0.83 0.02 11
Nino3 AMJ �0.10 0.64 �0.19 0.74 �0.20 11
OROS 0.51 �0.21 0.47 �0.20 0.33 �0.23

aEntries in bold indicate values for which the null hypothesis of zero
correlation can be rejected at the 95% significance level.
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common, underlying model for all sites; (2) the climate
indices are autocorrelated, and are approximately normally
distributed, while the annual streamflows are neither, sug-
gesting that an appropriate forecasting framework may be to
consider conditioning annual/monthly streamflow on a
sequence of past climate index values; (3) use of traditional,
parametric statistical methods for building a common
regression model at the annual scale and then disaggregating
to monthly values may be difficult given the highly skewed
distributions of annual and monthly flow, the large number
of zero flows, and the nonlinear relationship between flow
and the climate indices, and between monthly and annual/
seasonal flow; and (4) nonparametric methods for regression
and density estimation may also have limited success in
direct application, given the high dynamic range of the flow
data, the dimension of the multivariate state-space, and the
limited amount of available data.
[19] Consequently, we develop a semiparametric approach

by decomposing the estimation problem into three parts:
(1) the transformation of at site annual streamflows, such
that individual regressions on climate indices lead to
residuals that are near normally distributed with approxi-
mately constant variance; (2) a vector regression model
(e.g., pooled regression, principal component regression, or
canonical regression) with dimension reduction to develop
a common projection of the transformed annual stream-
flows on to the set of climate indices used as predictors at a
given forecast lead time; and (3) use this common projec-
tion as the conditioning set for nonparametrically resam-
pling ensembles of historical years (and hence a set of
monthly/annual flows at all sites), given current values of
the climate indices.
[20] The semiparametric ensemble forecasting approach

is described in the context of the longest forecast (July) lead
time for the 1914–2000 data for the climate indices and the
inflows at the six reservoirs. The predictors considered for
the July forecast of the annual flows (January–December)
for the coming year were the April–May–June (AMJ)
values of the NINO3 and the EAD indices. Recall from
Table 3 that the indices are essentially uncorrelated. We
reserved contiguous blocks of 5 to 10 years at a time for
model validation and the balance for model fitting.
[21] Step 1: Power transformations of the annual flow

(January to December) at each of the six sites were
considered. The cube root transform provided an approxi-
mately symmetric probability distribution for the annual
flows as, at each site, and for the residuals from a linear
regression on the two climate indices that had approximate-
ly constant variance, but whose distribution had tails fatter

than for the Normal distribution. Linear terms in both
indices were selected consistently by a stepwise regression
procedure at all sites.
[22] Step 2: For the vector regression problem (six trans-

formed annual flow series conditional on two climate
indices) for annual flow forecasting, we considered the
following candidate models for the transformed and stan-
dardized series (qs = (as

1/3–mean(as
1/3))/stdev(as

1/3), where
as is the annual flow at site s): A. Separate regressions for
each series qs on the AMJ values of NINO3 and EAD; B. A
pooled regression across all series; C. Principal Component
Regression; D. Canonical Regression.
[23] Approach A is actually inadmissible, since it neither

uses the common information at the sites, nor reproduces
the spatial structure in the subsequent forecasts. Of the
remaining three, pooled regression (i.e., a common regres-
sion equation across all sites) is the most parsimonious if it
can be justified. The predictand column of length n1*s for
pooled regression is the collection of n1 transformed and
standardized flows qs at each site s, and the predictor matrix
is formed by repeating the block of n1 years of EAD and
NINO3 values, s times. The pooled regression (q = XB+e)
was not found to be different from the six regressions (see
Table 4) for individual sites at the 95% significance level
using the Chow test [Chow, 1960]. Consequently, only the
pooled regression results, rather than those for all four
approaches are discussed here.
[24] Step 3: To generate an ensemble forecast for annual

flows, we need estimates of the conditional probability
distributions f(at+f, sjxt) of a vector of s annual streamflow
values, at+f, s. This could be estimated assuming a model
(e.g., normal) for the probability distribution of the residuals
from the pooled regression, and then transforming back to
the original space of the streamflow data. This led to a
marginal density function for the as that invariably had
significant density for negative flows, and to density func-
tions that did not look like the original data if these density
functions were truncated at zero. It was also difficult to
preserve the spatial correlation structure in real space across
sites after back transformation. For monthly streamflow
values at each site, one would also need to estimate the
conditional probability distributions f(mt+fj at+f, xt), f(mt+fj
at+f) or f(mt+fj xt), as appropriate for the data. Disaggrega-
tion of the annual streamflows to monthly flows [e.g., Bras
and Rodriguez-Iturbe, 1993, sect. 3.5] while preserving
spatial and temporal summability could be considered.
Given the issues with generating the ensemble forecast,
and the interest in resampling historical data to match the
operational practice, we took a nonparametric approach

Table 4. Linear Regression Coefficients for Prior Season NINO3 and EAD for Transformed and Standardized Reservoir

Inflows

Reservoir

January October July

Coefficient EAD Coefficient Nino3 Coefficient EAD Coefficient Nino3 Coefficient EAD Coefficient Nino3

Pacajus 1.14 �0.43 0.76 �0.33 0.39 �0.35
Pacoti-Riachão 1.28 �0.38 0.82 �0.26 0.48 �0.25
Gavião 1.46 �0.39 0.98 �0.30 0.59 �0.31
Pedras Branca 1.18 �0.32 0.87 �0.21 0.45 �0.23
Banabuiu 1.03 �0.19 0.92 �0.13 0.61 �0.16
Oros 1.32 �0.37 1.22 �0.37 0.62 �0.40
Pooled 1.23 �0.35 0.93 �0.27 0.52 �0.28
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from this point. The k-nearest neighbor density estimation
approach to time series described by Lall and Sharma
[1996] and Karlsson and Yakowitz [1987] is adapted to
the current setting.
[25] Given a current p*1 vector of predictors x*, we seek

to conditionally resample a vector at+f of annual flows and
the corresponding vectormt+f of monthly flows to implicitly

reflect the conditional probability distribution f(Mjx). The
basic strategy is to select the k-nearest neighbors of x* in
the historical data set X, estimate appropriate weights
or probabilities to assign to each of these neighbors, and
then resample the corresponding vector(s) M, given the
estimated probabilities. For example, suppose the only
predictor was NINO3, and we wish to issue a forecast for

Figure 6. The effect of distance metric on neighbors selected for resampling. The underlying model
here is y = 50x1 + x2 + e, and x1 = x2 = 0 is the point about which we seek to resample. The
larger the circle, the closer the neighbor using (a) di = (x*–xi)

T(x*–xi) and (b) a weighted distance di =
{(x*–xi)g}

T{(x*–xi)g}, where the weights g = [50, 1]. Figure 6b is equivalent to choosing Euclidean
distances with a rescaling that reflects the relative linear importance of each predictor. Note the change in
the neighbors identified, favoring the more important predictor. In the examples here the linear model is
applied to the parameterically transformed streamflow data, implicitly reflecting a more complex
weighting of the coordinates in real space.
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the next year in January using the data for NINO3 for AMJ.
Let’s say that the latest AMJ value of NINO3 is 2.5. Then
one would locate k (e.g., 30) neighbors as the k historical
years with the closest values of NINO3. Then, probabilities
are assigned to each of these k years based on their
‘‘closeness’’ to a NINO3 value of 2.5. An entire year’s
(starting with the following January) sequence of monthly
flows (M) at all sites, are then resampled using these
probabilities to select years. This amounts to selectively
drawing historical years as a scenario for reservoir operation,
rather than drawing them at random (or unconditionally).
The key parameters of the algorithm are the number of
neighbors, k, to use, the selection of a metric to define
‘‘closeness’’ in predictor space, particularly in the multivar-
iate context, and the probability weight function. In the
context defined here this procedure can be stated as follows.
[26] 1. Compute distances di between the current predic-

tor vector x* and the historical state vectors, xi, as:

di ¼ x*� xið Þgf gT x*� xið Þgf g ð1Þ

where x* is a 1*p vector, xi is a 1*p vector of predictors for
the ith year used in model fitting, and g is a p*1 vector. For
the pooled regression with 2 predictors, ; = [b1 b2], where
bi is the ith regression coefficient of the pooled regression of
the standardized and transformed flows q on the climate
indices EAD and NINO3 respectively.
[27] The distances record the similarity of the current

predictor condition to each of the past conditions. If one
directly uses the Euclidean distance between the current
predictor vector and the historical vectors, the relative
importance of the components of the predictor vector in
determining the future state of the predictand is not
used. The parametric variable selection, transformation
and regression procedure used in the earlier steps is used
here to develop ‘‘weights’’ for each component of the
predictor matrix that would yield a good parametric regres-

sion of the predictand on to the predictors. Consequently, a
weighted Euclidean distance is used to define similarity for
selecting the k-nearest neighbors, and to ‘‘transfer’’ the
knowledge from the parametric, multivariate regression of
the annual flows on to the potential predictors. The differ-
ence between conditioning on the original and the rescaled
predictor space is illustrated in Figure 6.
[28] 2. Using the distance vector d computed in the

previous step, identify the ordered set of nearest neighbor
indices J. The jth element of this set records the year t
associated with the jth closest xi to x*. If the data is highly
quantized, it is possible that a number of observations may
be the same distance from the conditioning point. The
resampling kernel defined in step 3 is based on the order
of elements in J. Where a number of observations are the
same distance away, the original ordering of the data can
impact the ordering in J. To avoid such artifacts, we copy
the time indices t into a temporary array that is randomly
permuted prior to distance calculations and creation of the
list J.
[29] 3. Now, select the number of neighbors to use (k)

and the resampling kernel or weight function K( j). Choices
for the kernel include

LallandSharma K jð Þ ¼ 1=jPk
i¼1

1=i

Uniform K jð Þ ¼ 1=k

Power K jð Þ ¼ h dj þ d
� ��a

Different combinations of k and K( j) can give similar
results, recognizing the trade-off between bandwidth choice
and kernel properties discussed by Hardle [1991].
[30] 4. The forecast flow matrix is then resampled using

the kernel K( j). If the jth element is drawn from the kernel,
the corresponding year is identified from J, and the forecast
is the set of annual and monthly flows at all s sites for that
year. This process is repeated to generate the desired
number of ensemble forecasts of at+f and mt+f.

4.1. Results

[31] We explored values of k ranging from 10 to 30, and
the first two kernels indicated above. The differences across
kernels are minor, and the median forecast is very similar

Figure 7. Probabilistic forecasts of 1993–2000 January–
December annual inflow into Oros from the preceding July.
The 1914–1991 data were used for model fitting. The
vertical bars depict the observed values. The shaded areas
provide the 10th, 25th, 50th, 75th and 90th percentiles of
the k nearest neighbor ensemble forecasts. The dashed lines
provide the marginal distribution percentiles. The correla-
tion between the median forecast and the observed values is
0.91.

Figure 8. Cumulative distribution function (cdf) of
monthly ensemble forecasts for 1993 from July 1992.
The observed monthly flows are shown with diamonds,
and the cdfs of the monthly k nearest neighbor ensemble
and climatology are shown as solid and dashed lines,
respectively.
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with 20 or 30 neighbors. Results for the July forecasts for
Oros inflows, using 30 nearest neighbors, and the uniform
kernel are presented in Figures 7 and 8 for the recent part of
the data reserved for model validation. Quantiles for annual
and the monthly flow for each year at Oros are computed
from the k-nearest neighbors and are used to compare the
forecast with the observations for the years 1993–2000 (not
used in model fitting). The ‘‘climatology’’ quantiles or the
quantiles of the marginal distribution of the corresponding
flows are also computed. From Figure 7 we see that the
forecast median is usually closer to the observation than
climatology, and the forecast quantile spread is generally
smaller than that for climatology. The correlation of the
median forecast with the observations is 0.91 over these
8 years.
[32] The 1993 and 1998 drought years are especially well

marked, while the forecast for the 1994 and 2000 years is

more diffuse. The difference between the situation in 1993
and 1994 is explored in Figure 9. For AMJ 1992, the values
of the EAD and NINO3 are �0.2 and 1.32 respectively,
indicating moderate El Nino conditions in the Pacific, and
that the North Atlantic area close to Ceara is colder than the
South Atlantic area close to Africa. Neighbors of these
conditions in the historical years using the weighted
Euclidean metric indicated earlier are shown in Figure 9
(top). The size of the symbol used to plot the Oros inflow
indicates the similarity of the July conditions to those in
1992. The nearest neighbors indicate dry conditions, leading
to the relatively tight 1993 ensemble forecast for dry
conditions.
[33] In July 1993, the EAD and NINO3 values were 0.31

and 1.13 respectively, indicating that the moderate El Nino
conditions persisted over the year, but the EAD has changed
its sign. From the regression equation and from Figure 9

Figure 9. Neighbors selected for k nearest neighbor ensembles following pooled regression of
transformed and standardized annual inflows on EAD and NINO3 for (a) July 1992 forecast for 1993 and
(b) for July 1993 forecast for 1994. The location of the observed values for July 1992 and 1993 is marked
in each figure. The size of the ball indicates the similarity of conditions. Note the more diffuse situation in
July 1993. These differences translate into the more diffuse conditional probability distribution for 1994
seen in Figure 7.
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(bottom), we can see that a positive EAD for a fixed NINO3
condition suggests wetter conditions. The change in the
structure of the nearest neighbors of the July climate con-
ditions translates into a change in the possibilities for 1994.
For example, 1924, which was a very wet year, now shows
up as a near neighbor. Thus, while 1994 was nearly as dry as
1993, the forecast reflects the possibility that it could have
been much wetter. Indeed, 1994 was an anomalous year in
that while Oros was dry, inflows to the other reservoirs were
at or above the median. Oros is at the southern extremity of
the region, and the associated river basin was just beyond the
influence of the major storms in 1994.
[34] The k-nearest neighbor conditioned ensembles for

monthly flow at all sites represent the full year of monthly
flow for each ensemble member. A reservoir operator would
use each such ensemble directly as a supply scenario.
Potential changes in seasonality of inflows, and the spatial
structure of inflows would thus be directly accounted for.
The 1993 forecast for Oros inflows relative to the subse-
quently observed monthly inflow sequence is presented in
Figure 8. Note that 1993 inflows into Oros were nonzero
only for March through May. Recall from Figure 3 that the
median inflow is usually the highest for the months of
March and April and for above median inflow conditions,

May is on the recession limb of the hydrograph. The 1993
hydrograph peak in May is consequently anomalous and
representative of dry conditions in which there is a failure of
the rainfall systems that bring moisture in the early part of
the wet season. For each of the months, we compute the
empirical probability that the inflow would be less than or
equal to that observed from the historical data, and from the
forecast ensemble. For 1993, the observed annual flow
corresponds to about the 20th percentile for climatology
and the 30th percentile for the forecast (Figure 9, top). The
historical data for January, February and for June through
December contains a lot of zeros. Hence the higher cumu-
lative probability for a zero inflow in the forecast for these
months, relative to climatology, indicates confidence in
drier then average conditions.
[35] The spatial expression of the forecasts across the six

reservoir inflow sites is presented in Figure 10. The 1993
Oros forecasts are drier than climatology for all sites, and
the observations are consistently dry across sites, ranging
from below the 25% to 50% of the forecast, and at or below
the 25% of climatology. The inter-quartile range
(75%�25%) of the forecast is consistently smaller than that
of climatology for the 1993 forecast. Thus a decision to
operate as if in a drought across the region would be
indicated by the forecast and would then be borne out by
the subsequent experience.
[36] The situation in 1994 is different. As we noted

earlier, Oros was drier than normal, but with a larger spread
for the inflow than in 1993. The spatial forecast scenarios,
suggest that the forecast may not be too different from a
climatology forecast, with perhaps a slight chance for being
wetter in the north and drier in the south. The reservoirs are
ordered approximately from south to north in the Figure 10.
The interquartile range of the forecast is generally compa-
rable to or larger than the interquartile range of climatology.

Figure 10. Annual flow forecasts at all sites for (a) 1993
and (b) 1994. All sites were extremely dry in 1993, and 75%
of the forecast is consistently at or below the median for
climatology. There is considerable variability across sites in
1994, and spatially the forecast is not too different from a
climatology forecast, even though it seems to provide
slightly better coverage.

Figure 11. The ratio of the probability density of the leave
one out forecast evaluated at the observation that was left
out, to the probability density of the marginal distribution of
flows (‘‘climatology’’) for the 1914 to 1996 period. The
probability densities were estimated using a kernel density
estimator (kde) with a biweight kernel. The kde was applied
to the raw data and to data simulated from the forecast
density for each year. The normalized likelihood ratio for
the entire period is 2.89.
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The observations for 1994 are generally consistent with this
interpretation of the forecast. Given the broader range and
the spatial spread, a water system operator would likely
have hedged any bets on the forecast. Recall that long term
inflows at all sites are positively correlated with each other,
and an year in which there is spatial opposition in the
departure from the median is consequently unusual.
[37] An assessment of the algorithm applied in a leave

one out cross-validation mode, relative to a climatology
forecast (i.e., using the marginal distribution of flows) is
provided in Figure 11. Kernel density estimates using the
biweight kernel were used to estimate the marginal prob-
ability distribution of annual flow at Oros, and of the cross-
validated ensemble forecast for each year. In the latter case,
a sample was simulated from the ensemble and the kernel
density estimate developed from the sample to simulate the
manner in which the information may be used. The
normalized likelihood ratio (LR) of the two methods is
defined below. It represents the average ratio of the
likelihood of the forecast being superior to climatology in
a given year. Figure 11 illustrates the variation in this ratio
from year to year. Note that the ratio for 1994 is lower than

that for 1993, as we may expect in light of the preceding
discussion.

LR ¼

Qn
i¼1

fFðxiÞ

Qn
i¼1

fCðxiÞ

0
BB@

1
CCA

1=n

ð2Þ

where fFðxiÞ ¼

Pn
j¼1

KðuijÞ

nh
; fCðxiÞ ¼

Pns
j¼1

KðvijÞ

nsh
; KðwÞ ¼ 15

16
ð1� w2Þ2;

uij ¼ xi�fj
h

; vij ¼ xi�xj
h

, fj is the jth forecast ensemble
member, and n and ns are the sample sizes for the historical
record, and for the forecast ensemble, respectively.

4.2. General Forecasting Procedure

[38] A procedure for semiparametric forecasting of annu-
al and monthly streamflow at multiple sites that generalizes
the presentation for the July forecast using two predictors is
presented in Figure 12. The predictor matrix can include
polynomial terms in the primary predictors. A Principal
Component Analysis is indicated in the second step if the

Figure 12. Flowchart for a general version of the semiparametric, multivariate forecasting algorithm for
annual and monthly flow ensemble generation given a set of climate predictors.
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predictors are mutually correlated. The individual and
pooled regressions are then applied to the leading orthog-
onal vectors or PCs of the eigenvalue decomposition of the
predictor matrix. In case the pooled regression does not
adequately represent the regressions at the individual sites, a
canonical regression of the multisite transformed and stan-
dardized annual flows on the predictor matrix is indicated.
We retain a subset of potential predictors and record the
projections of the original data matrix that were used in the
final multivariate, parametric regression model. The current
predictor vector is then mapped to this reduced space
projection and distances are found to historical reduced
space predictor vectors, with scaling by the inverse of the
corresponding regression coefficients as presented earlier.
[39] This general strategy was tested with the Ceara data

sets for forecasts from the three lead times indicated earlier.
Comparative results are available from the authors. The
pooled regression approach was typically adequate, leading
to the simpler formulation presented earlier.

5. Summary and Discussion

[40] Climatic factors associated with variations in water
supply in Ceara, Brazil were reviewed, and some diagnostic
analyses were pursued to assess the nature of teleconnec-
tions between the Atlantic and the Pacific and streamflow in
the region. A multivariate, semiparametric algorithm for
resampling historical annual and monthly streamflows con-
ditional on climatic predictors was introduced, and results
for the applications of a subset of the algorithm were
presented. The feasibility of up to 18 month ahead forecasts
of streamflow at a collection of six sites was demonstrated.
Examples of forecast performance in different situations
were reviewed using default parameters as to the number of
nearest neighbors, without an attempt to tune them to each
forecast situation. We chose to present results from the most
parsimonious form of the model described to focus on the
communication of the basic ideas, rather than the complex-
ity of choice offered by the approach Results for the
verification period presented here (1993–2000) are repre-
sentative of other blocks of similar length that were reserved
for testing. The correlation of the median forecast with the
observed annual flows is consistently high (0.9) for the

period reported here. The disaggregated monthly and res-
ervoir forecasts are also informative. Like other nonpara-
metric methods, the k-nearest neighbor approach leads to
some biases in the estimation of complex underlying
relationships from finite data sets. These biases are evident
in the asymmetry of coverage of the highly skewed flow
data, particularly in the extremely dry years. Details of
methods and other applications are available from the
authors.
[41] The semiparametric method used here allows one to

tailor forecasts to different user groups. One can present the
cumulative distribution function plots as in Figures 7 and 8,
illustrate the relationship with predictors and neighbors as in
Figure 9, provide traces of monthly streamflow at each site
as done in the ESP (ensemble streamflow prediction)
process, or present a diagram (Figure 13) showing the
neighbor years and their relative weights. We’ve found each
of these methods effective individually and in combination.
[42] Improvements of the method presented here to

consider combinations of forecasts from different methods,
and parameter uncertainty are underway. Reservoir optimi-
zation models have been linked to the forecast methodology
and the use of the two tools for operational decision making
has been demonstrated to the Ceara Water agencies. Refine-
ments to make the tools directly relevant to a stakeholder
driven decision process are underway.

[43] Acknowledgments. We gratefully acknowledge discussions with
Antonio Divino Moura, Yochanan Kushnir, Steve Zebiak, Andrew Gelman
and others who educated us on various aspects of the hydrology and climate
of Ceara and the attributes of statistical approaches to the problem.

References
Bras, R., and I. Rodriguez-Iturbe, Random Functions and Hydrology,
559 pp., Dover, Mineola, N.Y., 1993.

Chiang, J. C. H., Y. Kushnir, and S. E. Zebiak, Interdecadal changes in
eastern Pacific ITCZ variability and its influence on the Atlantic ITCZ,
Geophys. Res. Lett., 27(22), 3687–3690, 2000.

Chow, G., Tests of equality between sets of coefficients in two linear
regressions, Econometrica, 28, 591–605, 1960.

Companhia de Gestão dos Recursos Hı́dricos (COGERH), Plano de
Gerenciamento da Bacia do Jaguaribe, Fortaleza, Ceará, Brazil, 1999a.
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