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[1] Probabilistic, seasonal to interannual streamflow forecasts are becoming increasingly
available as the ability to model climate teleconnections is improving. However, water
managers and practitioners have been slow to adopt such products, citing concerns with
forecast skill. Essentially, a management risk is perceived in ‘‘gambling’’ with operations
using a probabilistic forecast, while a system failure upon following existing operating
policies is ‘‘protected’’ by the official rules or guidebook. In the presence of a prescribed
system of prior allocation of releases under different storage or water availability
conditions, the manager has little incentive to change. Innovation in allocation and
operation is hence key to improved risk management using such forecasts. A participatory
water allocation process that can effectively use probabilistic forecasts as part of an
adaptive management strategy is introduced here. Users can express their demand for
water through statements that cover the quantity needed at a particular reliability, the
temporal distribution of the ‘‘allocation,’’ the associated willingness to pay, and
compensation in the event of contract nonperformance. The water manager then assesses
feasible allocations using the probabilistic forecast that try to meet these criteria across
all users. An iterative process between users and water manager could be used to formalize
a set of short-term contracts that represent the resulting prioritized water allocation
strategy over the operating period for which the forecast was issued. These contracts can
be used to allocate water each year/season beyond long-term contracts that may have
precedence. Thus, integrated supply and demand management can be achieved. In this
paper, a single period multiuser optimization model that can support such an allocation
process is presented. The application of this conceptual model is explored using data
for the Jaguaribe Metropolitan Hydro System in Ceara, Brazil. The performance relative to
the current allocation process is assessed in the context of whether such a model could
support the proposed short-term contract based participatory process. A synthetic
forecasting example is also used to explore the relative roles of forecast skill and reservoir
storage in this framework.
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1. Introduction

[2] Considerable improvement in the skill of seasonal
climate forecasts over the last decade has been achieved
using the slowly evolving boundary conditions such as
SSTs in the tropical oceans [Goddard et al., 2003]. Efforts
linking these climate forecasts to antecedent land surface
conditions have resulted in water supply forecasts [Wood et

al., 2002]. Despite these and related advances in downscal-
ing [Wood et al., 2005; Sankarasubramanian et al., 2008]
climate forecasts to operational streamflow forecasts, water
managers find their use in the current policy/allocation
framework to be a challenge [Pagano et al., 2001, 2002].
[3] These challenges relate both to the form of the

information and the associated uncertainty. For instance,
forecast producers typically express the forecasts in the form
of an ensemble or as tercile probabilities indicating the
uncertainty in the relevant hydroclimatological attributes.
On the other hand, forecast consumers, water managers and
reservoir operators, have difficulty interpreting such products
for their direct use [Pagano et al., 2002]. Traditionally,
reservoir operation rule curves were developed specifically
to address situations where shortages/spills could occur
considering the uncertainty of flows over the entire period
of record. It is unclear to the operator whether there is much
to be gained in modifying the rule curve given an inflow
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forecast of uncertain skill, when the contingency may
already be addressed by the rule curve which is developed
considering long-term operation. Thus, a ‘‘proactive’’
change in the operating policy given a probabilistic
forecast could expose the manager to additional risk
relative to following the existing rule curve, while it
may not promise the manager a commensurate reward
[Pagano et al., 2001].
[4] There is a recognition that innovation in the water

system operation and policy setting may be needed to
facilitate the use of probabilistic forecasts. Here, we argue
that one way to make probabilistic inflow forecasts useful in
reservoir operation and water allocation is to identify the
amount of water that can be provided with a specified
reliability to a certain user group, rather than focusing on
the communication of the raw inflow forecast. This quantity
will vary from year to year, and season to season, recog-
nizing the desired end of period reservoir storage for future
operations, the initial reservoir storage, and the probabilistic
inflow forecast over the operating period. Given heteroge-
neous users, the desired reliability and the value assigned to
a certain quantity of water over the upcoming season will
vary by user class. Thus, multiple short-term contracts at
different levels of reliability (or probability of failure) over
the contract period could in principle be arrived at through a
negotiation by the users. Since the reliability of each
contract has been estimated as part of the allocation process,
the contract is potentially insurable. Thus, we propose to
directly address the supply risk as described by a probabi-
listic inflow forecast through allocation, and manage the
residual risk of failure through insurance like mechanism.
An assumption is that the probabilistic forecast uncertainty
can be well calibrated thus allowing a simulation based
assessment of the potential amount of water that can be
allocated using multiple contracts with different levels of
reliability. Existing long-term contracts or water rights and
their potential short-term trading could also be considered in
the same framework.
[5] The key elements of the proposed scheme are: (a) a

contract structure developed and implemented prior to the
season that incorporates the reliability for a user specified
release, (b) a strategy for restrictions and penalties if
conditions in the actual operation period are adverse, and
contract failure is imminent; (c) a probabilistic constraint on
end of the season target storages to ensure water for
allocation during the next season and (d) the maximization
of a composite user specified benefit function from the bulk
sectoral allocation based on stakeholders-specified contract
terms. An example using streamflow forecasts developed
using climate information for an arid basin in the state of
Ceara, North East Brazil, which has been shown to have
significant skill in predicting seasonal to interannual vari-
ability in climate is provided [Moura and Shukla, 1981;
Souza Filho and Lall, 2003]. Synthetic experiments to
examine aspects related to forecast skill and reservoir
storage to annual water demand ratio are then explored to
develop insights as to situations in which the proposed
strategy may be most effective.
[6] A brief overview of the literature related to climate

and water management is presented in Section 2. Section 3
details the components of the water allocation framework
proposed in this study. Following that, we provide details on

the skill of the climate information based probabilistic
streamflow forecasts along with the experimental design
employed in the study to evaluate these forecasts against
climatology. Section 5 shows the utility of framework in
improving water allocation from the Oros reservoir in
Ceara. Section 6 evaluates the framework under synthetic
forecasts having different skills and with different system
configurations. Finally, we conclude with the summary and
conclusions arising from the study.

2. Ensemble Streamflow Forecasts and Their
Utility in Water Management

[7] Recent investigations focusing on the teleconnection
between Sea Surface Temperature (SST) conditions and
land surface fluxes show that interannual and interdecadal
variability in exogenous climatic indices modulate rainfall
[Trenberth and Guillemot, 1996; Cayan et al., 1999] and
streamflow patterns at both global and hemispheric scales
[Dettinger and Diaz, 2000] as well as at regional scales
[e.g.,Guetter andGeorgakakos, 1996;Piechota and Dracup,
1996]. Seasonal streamflow forecasts based on exogenous
climate indices can be obtained using both dynamical and
statistical modeling approaches. The dynamical modeling
involves coupling of a hydrological model with a Regional
Climate Model (RCM) that preserves the boundary condi-
tions specified by the General Circulation Model (GCM)
outputs considering the topography of the region [e.g., Leung
et al., 1999; Nijssen et al., 2001]. The alternative of devel-
oping a statistical model has been successfully pursued by
many investigators focusing on the estimation of conditional
distributions/expectations of streamflow based on current
conditions of snowpack, streamflow volume and SST anom-
alies to issue seasonal and long-lead (3–12 months) stream-
flow forecasts [Maurer and Lettenmaier, 2004;Piechota et al.,
2001; Sicard et al., 2002; Souza Filho and Lall, 2003;
Devineni et al., 2008]. Studies have also employed Model
Output Statistics for statistically downscaling GCM climate
forecasts to develop real-time streamflow forecasts [Landman
and Goddard, 2002; Sankarasubramanian et al., 2008].
[8] Recent studies have also focused on demonstrating the

utility of climate forecasts for improving water management
[Yao and Georgakakos, 2001; Hamlet et al., 2002; Maurer
and Lettenmaier, 2004; Voisin et al., 2006;Georgakakos and
Graham, 2008; Golembesky et al., 2009]. Using retrospec-
tive streamflow forecasts for the Columbia River, Hamlet et
al. [2002] show that the long-lead streamflow forecasts can
be effectively utilized in operating reservoirs to obtain
increased annual average hydropower. Georgakakos et al.
[1998] showed that using coupled hydraulic-hydrologic
prediction models along with robust forecast control meth-
odologies can increase resilience of the reservoir systems to
climate variability and change. Golembesky et al. [2009]
utilize probabilistic multimodel streamflow forecasts to
invoke water withdrawal restrictions for improving the oper-
ation of Falls Lake reservoir, Neuse basin during below-
normal inflow years. To summarize, application of climate
information for water management has been shown to result
in improved benefits over the long term in comparison to
the benefits that would be obtainable under no-forecasts
(climatology) based operation.
[9] Studies have shown that promoting water allocation

using water contracts in water-stressed regions and allowing
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water trading during droughts can increase the water use
efficiency resulting in increased net benefits [Characklis et
al., 1999; Pulido-Velazquez et al., 2004]. Most of the
proposed contracts and allocation mechanisms focus on
time scales longer than 5–10 years and do not have the
flexibility to deal with short-term (3 months to 12 months)
probabilistic inflow forecasts. The following section dis-
cusses the water allocation model and the associated risk
management framework that we propose to address this
situation.

3. Dynamic Water Allocation Framework
for Multiple Uses

[10] A new strategy for adaptively allocating water
resources using short-term probabilistic streamflow fore-
casts is presented here. A participatory process is envisaged
for state/basin scale decision making on water allocation
using existing water infrastructure. Incentives, equity, eco-
nomic efficiency, contract reliability, a self-insurance mech-
anism, and uncertainty in short-term forecasts are
considered in the water allocation framework. The proposed
framework encompasses (a) a structure for water contracts,
and (b) a water allocation model that can be used for
decisions on which contracts to be issued for multiple uses,
conditional on reservoir levels and streamflow forecasts.
The water allocation model presented here is a single site,
multi purpose reservoir optimization model that maximizes
a user specified utility function given a policy structure for
desired yield reliabilities, sectoral water allocation con-
straints and preferences. The net benefit from all releases
of specified reliability of supply is maximized by meeting
policy and physical constraints contingent upon the given
ensemble streamflow forecasts.
[11] The model is similar to previous formulations of a

yield model for reservoir sizing and operation [Lall and
Miller, 1988; Lall, 1995; Sinha et al., 1999; Stedinger et al.,
1984]. In the traditional yield model, firm and secondary
yields from the reservoir corresponding to a high and a low
reliability are considered through simulation or a stochastic
analysis of the long-term performance of the reservoir given
uncertain inflows. The objective is often to maximize net
benefits from the firm and secondary yield for each of the
designated uses of the water to be released as per a specified
monthly demand pattern. We extend this paradigm by
considering that if forecasts are available, then one may
be able to identify conditions under which the secondary
yield (e.g., with a long-term reliability of 50%) may be
available in the upcoming season with a much higher
reliability (e.g., 90%) without compromising the long-term
performance of the system. If this is possible, then higher
value uses could be met during the upcoming season, thus
increasing the benefits from system operation. Short-term
contracts that guarantee this secondary yield at the desired
reliability could then be issued or traded as the mechanism
for implementing the allocation.
[12] As indicated earlier, the model is intended to be used

by the reservoir system operator as part of an iterative
process with user groups. In a given iteration, each user
group will declare certain preferences consistent with the
structure of the model. An optimal solution for the alloca-
tion or contract specification is then derived using the
probabilistic forecast and the model described in this

section. The user groups respond to the model derived
proposal from the operator with revised offers as to their
proposed terms regarding price, quantity and reliability.
This leads to the next iteration of the model. The iterative
transactions could occur as part of reservoir or river basin
committee meetings that already exist in the setting in Brazil
which we use for our example.

3.1. Water Contracts Structure

[13] Consider that initial discussion among the water
users has led to a total of ‘n’ users (these could be irrigation
districts or a municipal wholesaler, rather than thousands of
individual consumers). Then, a water supply contract for ith
use can be described by: (a) contract duration, T; (e.g.,
seasonal (T = 3) or annual (T = 12)) (b) total volume of
water, Ri, to be delivered over period; (c) within period
demand fraction, bti; (d) amount, 8i, to be paid for the water
if all contract terms are met; (e) target reliability, (1�pfi),
where pfi is the probability of failure of the ith contract;
(f ) Restriction volume, wi

*, that the supplier can impose as
part of the contract if the inflows are lesser than the forecast
during the period of contract operation; (g) Restriction
fraction, ail, signifying the reduced supply under restriction
level ‘l’ (where l l = 1, . . ., nr with nr is the total number of
restriction levels agreed by the water users and the agency)
(h) Compensation amount, gil, for the contract holder if
restriction level ‘l’ is imposed; (i) Compensation schedule,
ni, for the contract holder in the event of contract failure
(i.e., if the total possible restriction is inadequate to meet
the shortfall in the forecasted streamflow).
[14] It is important to note that these contract terms

consider both the quantity of the water to be supplied with
certain reliability, as well as contingencies for what happens
during the actual operation period, in case the contracted
amount of water cannot be supplied. These contingencies
prescribe how much failure of the contracted water can be
allowed under different emergency conditions (or restriction
levels) that the operator would need to announce under a
predefined scheme, and the associated compensation due to
the user. In effect an insurance policy is being prescribed
through these contingencies. The precise terms would need
to be negotiated, and a formal numerical analysis can be
used to assist the establishment of a fair system of com-
pensation under failure that is related directly to the spec-
ified reliability (or probability of failure) and the associated
levels of failure. For the operator, a procedure for how
different contracts are honored (e.g., prioritized reduction or
proportional reduction for all users) would also be needed.
[15] It might be useful to develop generic contracts for

each category of use (e.g., municipal or agricultural use)
adhering to the guidelines set by the local water Committee/
agency in the region. These contracts could then also
become the instruments on which water trading can take
place with clear knowledge of the terms including the
reliability of supply and the restriction/compensation pat-
tern. Water that is needed for basic services like domestic
water supply and ecosystem services could also be allocated
separately by assigning high priorities or longer term con-
tracts that take precedence over the forecast based short-
term contracts.
[16] Often drought management rules in many areas

consider the declaration of a drought watch, warning or
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emergency denoting the possibility of progressive severity
of potential failure of supply. Specific restrictions on use
and curtailment of supply are then placed on water use.
Here, we consider a similar strategy, where the operator may
declare different restriction levels, not just related to
drought, but to inflow conditions being relatively drier than
assumed in deriving the amount of water that could be

allocated with the prescribed degree of reliability using the
forecasts. If a restriction is imposed, then a contract ‘i’ would
receive a reduced supply of water, by an amount,ail Ri, under
restriction level ‘l’. Each contract could potentially have a
different restriction fraction under a particular restriction
level. Figure 1 provides a schematic of the water allocation
framework by combining this water contract structure with

Figure 1. Water Allocation Framework embedded in a simulation-optimization model with water
contracts and probabilistic constraints on reservoir storage.
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the simulation-optimization model, which is described in
detail in the next section.

3.2. Water Allocation Model for Bulk Sector Contracts
Using Ensemble Forecasts

[17] The model (Figure 1) developed here seeks to
maximize the utility associated with water allocation for
the upcoming period of allocation from the reservoir, given
the contract structure described above and an ensemble
forecast of monthly flows over the season. Here the term
utility is used rather broadly. It could refer to a measure that
relates to the expected net revenue from operations account-
ing for the water price defined for each contract, and the
penalties that could be paid with some probability if the
terms or not met. Alternately, utility could be defined by any
other measure that relates to social/community or organiza-
tional goals. The idea is that given certain values assigned to
different levels of reliability for different uses, we need
criteria to decide how much water we can allocate to those
uses given the forecasts and the desired reliability levels.
[18] The feasible releases, Ri, with reliability (1�pfi) for

the ith contract are determined considering the following
factors.
[19] 1. A T month lead ensemble reservoir inflow fore-

cast, qt
k, where t = 1, 2, . . ., T denotes the period of

operation (usually t is in months), k = 1, 2, . . ., N is the
index representing one of ‘N’ forecast ensemble members.
[20] 2. The current reservoir storage, S0*, at the begin-

ning of the allocation period.
[21] 3. An end of season target storage, ST*, with failure

probability ps. The end of the year (period) target storage
ST* could be prescribed by policy to meet a target demand,
or obtained based on the long-term water rights.
3.2.1. Objective Function
[22] The goal is to maximize the utility (taken in

our application to be the net expected revenue from the
allocation)

O ¼ E
Xn
i¼1

fi Rið Þ �
Xn
i¼1

Xnl
j¼1

gilWil þ
Xn
i¼1

nid Wi �W*
i

� �" #( )

ð1Þ

where 8i(Ri) denotes the benefit/tariff associated with

releasing Ri and d(x) =
1 if x > 0

0 Otherwise

�
: The operator E{}

denotes the expectation and the term in the squared
brackets within the expectation operator denotes the
associated compensation (gil) for the restriction volume
(Wil) and penalty (ni) under contract failure (if Wi > Wi*).
3.2.2. Constraints
[23] The constraints in the proposed water allocation

model can be grouped into two categories: (a) contract
level constraints (b) reservoir level constraints. Contract
level constraints prescribe the minimum and maximum
release and the target reliability for each use that enforces
the probability of supplying the contracted volume, Ri,
without imposing the user specified restriction, wi*. Reser-
voir level constraints specify the end of the season target
storage as well as the minimum and maximum storage
constraints.

[24] In the operation of most water supply systems, water
for human and animal consumption is assigned high priority
(accordingly target reliability is high) with a specified lower
bound. Similarly, water necessary to maintain prescribed
water quality characteristics for the sustenance of aquatic
life could be expressed, as the sum of releases from all
contracts along the river reach should be above the mini-
mum prescribed amount. These policy or physical consid-
erations may enforce the release for each contract to be
constrained between an upper and lower bound, which
could be expressed as

Ri;min � Ri � Ri;max ð2Þ

[25] The target reliability (1�pfi) of supply of the con-
tracted quantity, Ri is enforced by specifying that the
likelihood of actual restrictions, wi, for each contract being
greater than maximum allowed restriction volume, wi*,
should be lesser than the contract failure probability, pfi.
The maximum allowed restriction volume, wi* and the
contract reliability (1�pfi) act together to provide a safety
mechanism for both the user as well as the supply agency.

Prob wi � wi*
� �

� pfi ð3Þ

The end of the season target storage constraint binds all
contracts allocation. The end of the season storage, ST*,
prescribes the minimum quantity of water to be maintained
in the reservoir at the end of the contract period considering
various issues including the minimum quantity needed for
basic human need in the ensuing year/season as well as
water that needs to be stored to meet long-term water
contracts. To ensure this, a probability constraint on the end
of the season storage could be introduced as in (4).

Prob ST � S
T*

� �
� ps ð4Þ

It is important to note that ST and wi are not decision
variables. These state variables expressed as functions of the
release, Ri, are evaluated during each iteration of the
optimization model using the reservoir simulation described
below. Probability constraints (3) and (4) are evaluated by
counting the number of times the respective inequalities are
satisfied.
3.2.3. Reservoir Simulation
[26] Most reservoir optimization models consider all state

variables as explicit decision variables, thereby increasing
the dimensionality of the problem and computation time.
This could be avoided by embedding a simulation module
inside the optimization scheme [Lall and Miller, 1988; Lall,
1995]. Essentially, the simulation module obtains the
reservoir storages using basic continuity equations for the
current value of the decision variable, Ri, in the optimiza-
tion scheme. For a recent discussion of the merits of
the combined simulation-optimization approach, see
Koutsoyiannis and Economou [2003].
[27] For each trace ‘k’ (k = 1, 2, . . ., N) in the ensemble,

we compute the reservoir storages given the initial reservoir
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storage, S0 = S0* and the release, Ri. Using the continuity
equation, the monthly storage equations could be expressed
using equations (5) and (6).

St ¼ St�1 þ qt � Et �
Xn
i¼1

Rti � SPt þ SDt ; t ¼ 1; 2; . . . ;T ð5Þ

SDt ¼ Smin � Stð Þ St < Smin; SPt ¼ Smax � Stð Þj jSt > Smax ð6Þ

Equation (6) evaluates the shortfall (SDt) and spill (SPt) if
the end of the month storage (St) violates the minimum (i.e.,
dead storage) and maximum possible storage respectively.
Monthly storage equations are constrained so that the
storage is between the dead storage, Smin, and maximum
possible storage, Smax. Monthly releases, Rti, are computed
using monthly demand fractions in equation (8).

St ¼ min St; Smaxð Þ; St ¼ max St; Sminð Þ ð7Þ

Rti ¼ btiRi ð8Þ

Evaporation, Et, at each month is computed implicitly as a
function of average storage during the month using the area-
storage relationship of the reservoir.

Et ¼ y td1 St þ St�1ð Þ=2ð Þd2 ð9Þ

where y t is the monthly evaporation rate, d1 and d2 are
coefficients describing the area-storage relationship.
[28] To evaluate the reliability constraint in (3), it is

important to distribute the deficit SDt to each user ‘i’ using
the agreed restriction levels and the corresponding restric-
tion fraction. Computing the total deficit, D, in trace ‘k’

D ¼
XT
t¼1

SDt ð10Þ

If D = 0, then St > Smin over all months implying wi = 0. On
the other hand, if D > 0, compute CDil, the total restriction
received by user ‘i’ in the restriction level ‘l’ to account
shortfall/deficit ‘D’ in trace ‘k’ using (11).

CDil ¼ min lil D� ADl�1ð Þ=ll; lilð Þ;ADl�1 ¼
Xj�1
l¼1

Xn
i¼1

CDil;

AD0 ¼ 0 ð11Þ

where ADl�1 is the total deficit accounted up to restriction
level ‘l�1’, lil = ailRi is the maximum amount of
restriction that can be placed on user ‘i’ under restriction

level ‘l’ and ll =
Pn
i¼1

lil is the maximum amount of restriction

that can be accounted under restriction level ‘l’ considering
all the contracts. Both lil, ll can be calculated upfront based
on the current value of Ri and they do not change for each

trace. Based on this information, wi for each use can be
expressed as

wi ¼
Xnr
l¼1

CDil ð12Þ

Looking across all the traces in the ensemble, compute the
following probabilities.
[29] 1. Prob (wi > wi*) as the number of traces in which

(wi > wi*)/total number of traces, N.
[30] 2. Prob(ST � ST*) as the number of traces in which

ST � ST*/total number of traces, N.
[31] We consider N = 1000 traces that contains monthly

streamflow forecasts and the above probabilities are com-
puted across the ensemble to evaluate constraints in equa-
tions (3) and (4). The optimization solver, Fortran Feasible
Sequential Quadratic Programming (FFSQP) developed at
the University of Maryland [Zhou et al., 1997], maximizes
the net value, O, from the reservoir by satisfying the
constraints in Section 3.2.2 and using the reservoir simula-
tion details listed in (5)–(12).

4. Brazil Application: Streamflow Forecast
Development and Experiment Design

[32] The utility of the proposed allocation model as part
of the contract based allocation system is evaluated by
considering an application for the multipurpose Oros
reservoir, which is the biggest reservoir in the Jaguaribe-
Metropolitan Hydro (JMH) System, Ceara, North East
Brazil. The performance of the system in making firm
commitments of allocation through contracts at the desired
level of reliability and reduced system losses (spill and
evaporation) utilizing 12 month ahead streamflow forecasts
is compared with same metrics under a) a climatological
forecast (i.e., each year of the historical record is drawn
with equal probability to form an ensemble), and b) a zero
inflow forecast, which is currently used by the local water
agency as a ‘‘conservative’’ forecast basis for water alloca-
tion. Inflows into the Oros reservoir occur typically during
January–June with literally zero flow during July–December.
Subsequently, the irrigation needs for agriculture are mainly
during August–November, whereas release for human and
industrial demands is constant all through the year. For
additional details, see Souza Filho and Lall [2003]. Figure 2
shows the location of the Oros reservoir in the JMH system
in the state of Ceara, North East Brazil. A water allocation
year (e.g., 1949 water allocation year implies July 1949 to
June 1950) in Ceara typically spans from July to June of the
calendar year with the allocation for different uses decided
through water committee meeting July. The next section
briefly describes the development of 12 month lead retro-
spective streamflow forecasts developed for the Oros reser-
voir using the semiparametric K-nearest neighbor (K-NN)
algorithm of Souza Filho and Lall [2003].

4.1. Retrospective Streamflow Forecast Generation

[33] Using the semiparametric K-nearest neighbor resam-
pling algorithm of Souza Filho and Lall [2003], 1000 traces
of retrospective monthly streamflow forecasts are developed
using the following two predictors: April–June average of
East Atlantic Dipole (EAD) and NINO3.4. Souza Filho and
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Lall [2003] show the correlations between the annual flows
at Oros reservoir and these two predictors are statistically
significant. NINO3.4, the most commonly used index to
represent ENSO condition in the tropical Pacific, is defined
as the average SST anomaly in the region bounded by the
eastern equatorial Pacific 170 degrees W to 120 degrees W
and 5 degrees S to 5 degrees N. The other climatic index,
East Atlantic SST Gradient (EAG), is defined as the
difference in the monthly average of the SST anomaly in
the region bounded by North Atlantic (5–20N, 60–30W)
and the monthly average of the region bounded by South
Atlantic (0–20S, 30W–10E). The monthly time series for
these indices were derived from the gridded SST anomaly
data sets developed by Kaplan et al. [1998] available at
http://ingrid.ldeo.columbia.edu/SOURCES/.KAPLAN/
.EXTENDED/. For additional details, see Souza Filho and
Lall [2003].
[34] Figure 3a shows the conditional distribution of

12 month ahead retrospective forecasts for water allocation
years 1970–1995 obtained in a leave-one-out cross valida-
tion mode using the K-NN resampling algorithm. The cor-
relation between the observed flows and the average of the
ensemble is 0.73. Figure 3b shows the adaptive forecasts
for the water allocation years 1990–1999 which is devel-
oped by fitting the model using the data available for the
period July 1949 to June 1990. The correlation between
the observed annual flows and the ensemble average of the
forecasted annual flows obtained is 0.7 for the period July
1990 to June 2000. Both Figure 3 and the forecast verifica-
tion shown by Souza Filho and Lall [2003] show that the
annual flows in Oros could be predicted quite well using
the two predictors (NINO3.4 and EAG). We employ the

adaptive streamflow forecasts shown in Figure 3b to show
the utility of the water allocation framework discussed in
Section 3.

4.2. Climatological Forecasts of Streamflow
(Null Forecast)

[35] The lag-one correlation between the annual flows of
the Oros reservoir is near zero. Hence, to develop climato-
logical ensembles of streamflow, we simply bootstrap the
observed annual flows to form 1000 ensembles every year.
The monthly streamflow sequence corresponding to the
bootstrapped annual flow would form the respective monthly
flows in that trace.

4.3. Zero Inflow Policy

[36] Since about 10% of the historical years have no flow
in the wet season, the state water allocation agency for the
JMH System assumes zero inflow for the next twelve
months (July–June) for the short-term allocation of water
for different uses. In other words, water is allocated purely
based on the currently available storage with the goal of
keeping a certain amount of water in storage at the end of
the period to cover the anticipated demands for the next
18 months. This is claimed to be a conservative approach that
ensures the reliability of supply being equal to nearly 100%
over the allocation period since it only allocates the stock in
the reservoir at the beginning of the dry season. However, this
approach may lead to periodic spills and excess evaporation
from the reservoir due to under-allocation.

4.4. Experimental Design

[37] The utility of climate information based streamflow
forecasts is assessed for multipurpose water allocation from

Figure 2. Location of Ceara, Brazil, and the Reservoir Inflow Locations. Here 1, Oros; 2, Banabuiu;
3, Pedras Branca; 4, Pacajus; 5, Pacoti Riachao; 6, Gaviao. The major irrigation demand areas are
indicated by squares, and the municipal and industrial demand areas served are indicated by filled circles.
Only features of the Jaguaribe and Metropolitan basins are filled in. Other basin boundaries are marked.

W11409 SANKARASUBRAMANIAN ET AL.: WATER CONTRACTS FOR PROBABILISTIC FORECASTS

7 of 18

W11409

 19447973, 2009, 11, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2009W

R
007821 by C

A
PE

S, W
iley O

nline L
ibrary on [15/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



the Oros reservoir by maximizing the net benefits function
in (1) for the period July 1990 to June 2000 (T = 12 months).
The water allocation experiment is run for 90% reliability
(1�pfi) for each use. We make an ad hoc assumption that
the target year-end storage probability, ps is equal to the
contract failure probability, pfi. We assumed two restriction
(nr = 2) levels with the restriction fraction for each user
being ail = 0.5 and 0.9 for l = 1 and 2 and the restriction
volume wi

* = 0; 8i (i = 1, 2 and 3). The tariffs for municipal,

industrial and agricultural uses are R$ 87, 33 and 8 respec-
tively for 1000 m3 of supply (Source: COGERH, the JMH
water allocation agency). Thus, the benefit function
(fi(Ri)) in equation (1) becomes a linear function of the
tariff to the supplied release. The compensation (gil) under
both restriction levels and the penalty (ni) under contract
failure are assumed to be 30% and 60% of the tariff
respectively of each use.

Figure 3. Performance of the K-nearest neighbor resampling algorithm in predicting the observed flows
at the Oros reservoir. (a) Conditional distribution of leave-one-out cross-validated annual flows for
1970–1995. (b) Adaptive forecasts for the period 1990–1999 obtained using the flow values and
predictors available for the period 1949–1989.

Table 1. Monthly Evaporation Rate and the Within-Year Demand Fraction for the Oros Reservoir Used for Simulationa

Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun

y t 0.151 0.174 0.175 0.189 0.172 0.170 0.129 0.091 0.072 0.069 0.081 0.118
bti (i = 3) (Irrigation) 0.0 0.2 0.4 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

aMonthly evaporation rate, yt, is in meters. Within-year demand fraction, bti. The total annual evaporation is 1.590 m with the area-storage coefficients
assumed to be d1 = 0.338 and d2 = 0.842. The maximum storage capacity (Smax) of the Oros reservoir is 1940 hm3. Within-year demand fraction for
municipal and industrial use (bti = 1/12; i = 1 and 2) is assumed to be uniform throughout the year.
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[38] Table 1 gives the monthly evaporation rate for the
Oros reservoir, North East Brazil along with the within-year
demand fraction (bti) for all the uses. The average annual
evaporation for the Oros reservoir is 1.590 m (Table 1) and
the coefficients of the area-storage relationship d1 and d2 are
0.338 and 0.842 respectively. Since Ceara is a semiarid
region experiencing multiyear droughts, the currently adop-
ted strategy is to fix the end of the year storage so that the
resulting storage can supply 18 months of municipal de-
mand (including evaporation losses) even if zero inflow
occurs during the period of allocation (i.e., 12 months). By
assuming such a high target end of year storage, the system
is protected from failure to supply municipal demand for
almost 30 months even if no flow occurs. However, this
severely limits the flexibility in annual allocation through
contracts for each scenario. For the annual municipal
demand given in Table 2, the end of year target storage to
supply 18 months of municipal demand under zero inflow
assumption including evaporation losses is 260 hm3 (1 hm3 =
1 million m3). The maximum storage (Smax) and the dead
storage (Smin) of the Oros reservoir are 1940 hm

3 and 20 hm3

respectively.
[39] Based on the schematic diagram in Figure 4, the

multipurpose water allocation experiment is run using the
adaptive forecasts developed for the period July 1990 to
June 2000. The actual recorded volume in Oros reservoir on
July 1, 1990 was 1914.17 hm3. Using this initial storage
(S0) for year 1990, the reliability for each use and end of the
year target storage constraints, we obtain annual reservoir
yields (Rij – j denotes the year) for each use using the
adaptive forecasts developed for the period July 1990 to
June 1991. The performance of the reservoir under the
forecast-suggested allocation policy was simulated by com-
bining the forecasts-suggested releases with the observed
monthly flows (Qt,j) during that year. Under this simulation
with observed flows, we also note the shortfall, spill and
evaporation and actual releases that would have occurred if
one employed the forecasts. The resulting end of year
storage based on this simulation was assumed to be
initial storage for the next year (July 1991 to June 1992).
This procedure was repeated for all the 10 years (July 1990
to June 2000) for both zero inflow forecasts and for
climatology.
[40] Let us denote the storages in the reservoir at each

month by releasing the target monthly yield (btiRij) using
the observed inflows (Qt,j) as St,j, where Rij is the release
suggested by the one of the candidate forecasts (discussed
in Sections 4.1–4.3) obtained for use ‘i’ in year ‘j’.

Then, the annual spill (SPj) and shortfall (SFj) volumes
(T = 12 months) can be expressed as

SPj ¼
XT
t¼1

St;j � Smax

� �
St;j > Smax

�� ð13Þ

SFij ¼
XT
t¼1

btiRij � R0tij

� �
btiRij � R0tij

� ���� > 0 ð14Þ

where R0tij is the actual release that was made in the month
‘t’ in year ‘j’ for use ‘i’ using the observed monthly flows.
The actual release R0tij would be lesser than the target yield
(btiRij) if the observed flows were drier than the forecasted
flows. The end of the year storage (ST,j) obtained from

Table 2. Utility of Reservoir Inflow Forecasts Toward Improving Bulk Sector Water Allocation and in

Reducing System Losses With 90% Reliability for Each Usea

K-NN Forecast Zero Inflow

Annual DemandMean Standard Deviation Mean Standard Deviation

Yield (Human) 130.0 0.0 130.0 0.0 130.0
Yield (Industry) 81.0 28.5 81.0 28.5 90.0
Yield (Agriculture) 130.5 45.9 120.2 53.3 145.0
Deficit/Shortfall (SF) 0.0 0.0 0.0 0.0 -
Evaporation 239.6 98.6 245.6 92.8 -
Spill (SP) 46.2 146.2 50.5 159.7 -

aThe end of year target storage was assumed to be 260 hm3 to supply 18 months of municipal demand even if zero inflow
occurs during that period. All values are in hm3.

Figure 4. Schematic diagram of the experimental design
adopted to validate the utility of climate information based
retrospective forecasts.

W11409 SANKARASUBRAMANIAN ET AL.: WATER CONTRACTS FOR PROBABILISTIC FORECASTS
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reservoir simulation using (5)–(12) would be assumed to be
the beginning of the year storage for the year ‘j + 1’. This
entire procedure is repeated from July 1990 to June 2000 to
obtain maximum reservoir yields (Rij) and the correspond-
ing annual spills (SPj), annual shortfalls (SFij) and monthly
evaporation (Etj) are noted. To summarize, this experiment
actually walks through the entire water allocation procedure
from July 1990 to June 2000 and records the releases, spills,
shortfalls, storages and evaporation that would have
happened if these 12 month lead retrospective forecasts of
streamflow were utilized for determining the annual yields
from the reservoir. Using the same experimental design in
Figure 4, we also obtain the releases, spills, shortfalls,
storages and evaporation that would have occurred if one
adopted the zero inflow policy and the climatological
forecasts of streamflows for water allocation from the Oros
reservoir.

4.5. Performance Measures

[41] Hashimoto et al. [1982] define three criteria namely
resilience, reliability and vulnerability for evaluating the
reservoir performance over the long term. We evaluate the
vulnerability of the reservoir based on its ability to reduce
evaporation (Ej), shortfalls (SFj) and spills (SPj) obtained
for each year using the three streamflow forecast ensembles
(KNN, Climatology/Null, and Zero Inflow Policy) over 10
(M = 10) years of allocation.

m̂SF ¼
1

M

XM
j¼1

SFj; SFj ¼
Xn
i¼1

SFij ð15Þ

ŝSF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M � 1ð Þ
XM
j¼1

SFj � m̂SF

� �2vuut ð16Þ

m̂SP ¼
1

M

XM
j¼1

SPj ð17Þ

ŝSP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M � 1ð Þ
XM
j¼1

SPj � m̂SP

� �2vuut ð18Þ

The mean and standard deviation of annual evaporation
(m̂E, ŝE) from the reservoir is also calculated using the
simulated storages (St,j) obtained from the evaporation
equation in (9).

5. Assessment of the Utility of Climate
Information Based Streamflow Forecasts

[42] In this section, we assess the utility of retrospective
reservoir inflow forecasts (developed in Section 4.1) toward
potential improvement in annual water allocation for mul-
tipurpose use in the JMH basin, Ceara for the period July
1990 to June 2000. First, we briefly demonstrate the utility
of the proposed risk management framework using a simple
illustration.

5.1. Dynamic Water Allocation Framework:
An Illustration

[43] Annual reservoir yields obtained using the water
allocation framework in Section 3 varies according to the
shift in the conditional distribution of flows. To illustrate
this, we show the reliability yield curve (Figure 5a) for a
high flow year (1988) and low flow year (1992) obtained
using the leave-one-out cross-validated forecasts (Figure 3a)
as well as the yields obtained using climatological ensem-
ble. The reliability yield curves shown in Figure 5a are
obtained by assuming the storage in the reservoir in the
beginning of July 1988 and July 1992 to be 50 hm3. From
Figure 3, it can be seen that the flow in 1988 is among the
largest flows that often occurs if La Nina conditions persist
in the tropical Pacific. On the other hand, flow in 1992
corresponds to a low flow year that typically occurs during
El Nino events. Reservoir yields obtained using the climate
information based streamflow forecasts reflect this with the
yield being higher in 1988 and lower in 1992, whereas
reservoir yields obtained from climatological ensemble do
not vary from year to year. Figure 5b shows the median of
the simulated storages (out of 1000 ensemble of simulated
storages) for supplying the specified yield at 90% reliability
for years 1988 and 1992. To supply the higher annual target
in 1988, the median of the simulated storages for 1988 is
higher than the median of the simulated storages for 1992.
The simulated storages obtained based on climatological
yields do not change, since the information in the ensemble
remain the same every year. This shows that both the annual
yields and the simulated storages vary according to the
change in inflow potential indicated by the streamflow
forecasts.

5.2. Utility of Long-Lead Forecasts in Improving Bulk
Sector Water Allocation

[44] The results presented under this section focus on
quantifying the utility of 12 month ahead streamflow fore-
casts in improving bulk sector water allocation using the
experimental design in Section 4 for the period July 1990 to
June 2000. Table 2 gives the annual average yields for
human, industrial and municipal use using the K-NN fore-
casts and the zero inflow assumption along with the
maximum annual demand for each use. Table 2 also
summarizes the annual average shortfall, spill and evapo-
ration in meeting the target yield obtained using both the
approaches. As we can see from Table 2, there is no
difference in annual allocation for municipal and industrial
use using either of the two approaches, since their tariffs are
higher than irrigation. But, average annual yield for agri-
culture could be considerably increased using the K-NN
forecasts, which is mainly obtained by reduction in spill and
evaporation. Table 2 also quantifies the variability in annual
yields, evaporation and spill from the reservoir.
[45] Figure 6a shows the difference between yields

obtained using K-NN forecasts and yields obtained using
zero inflow assumption for all the three uses along with the
observed annual flows in that particular year. Since the
municipal use has the highest tariff, the entire annual
demand for municipal use was allocated in each year during
the period July 1990 to June 2000 under both K-NN
forecast and zero inflows. For industrial use, except in
1994, the net annual demand was allocated in all the years
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by both K-NN forecast and zero inflow. However, in 1994,
the difference in yield between K-NN forecast and zero
inflow (in Figure 6a) is zero for both industrial and
agriculture uses, since the net allocation was zero by both
schemes due to low initial storage conditions. For agricul-
ture, the difference in yield between forecasts and zero
inflow is positive only in 1993 indicating the increased
yield (145 hm3) under K-NN forecasts in comparison to the
yield (42 hm3) suggested by the zero inflow.
[46] To understand why K-NN forecasts suggest addi-

tional allocation for agriculture in 1993, we plot the simu-
lated reliability of supply and the corresponding simulated
initial storage available for allocation in Figure 6b. During
the period 1990–1992, the observed flow was below
normal which forced the storage in the reservoir to contin-
uously deplete. Thus, in 1993, the available initial storage
(657 hm3) cannot guarantee allocation of the entire demand
for agriculture use under the zero inflow assumption, which

results in a reduced allocation of only 42 hm3 for agricul-
ture. However, the forecasts having the ability to predict the
change in flow potential suggests allocation of entire
agriculture demand in 1993. But, in 1994, with the simu-
lated initial storage being at the lowest in 10 years, the
simulated reliability of supply using K-NN forecasts for
municipal use is reduced to 90%. Thus, the utility of climate
forecasts is more pronounced during critical drought periods
when the initial storage is lesser than the total demand for
all the uses.
[47] Figure 7 shows the system losses in terms of evap-

oration and spill for water allocation years 1990–1999.
Figure 7a shows that the evaporation using K-NN forecasts
is lower than the zero inflow assumption, since K-NN fore-
casts suggest additional releases in year 1993 which results
in reduced storage for evaporation. Figure 7b shows the
reduction in spill (around 40 hm3) that was achieved in
1996 using K-NN forecasts over the zero inflow assump-

Figure 5. Bulk Sector Water allocation for years 1988 and 1992 for the Oros reservoir using the
12 month lead semiparametric K-NN forecast and using the climatological ensembles: (a) Reliability
Yield Curve and (b) median of the simulated storages for supplying 90% reliability.
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tion. The tropical Pacific was going through a La Nina
phase in year 1996–1997 that usually leads to above normal
inflows into the Oros reservoir. Once the reservoir builds up
sufficiently with high initial storage conditions, there is no
difference in reservoir yields using climate information
based reservoir inflow forecasts and zero inflow assump-
tion. From this view point, if ENSO cycle enters into La
Nina conditions first followed by El Nino conditions, then
water management during drought periods (during El Nino
conditions) becomes relatively easy since sufficient storage
is built up during La Nina conditions. Reversal of this
scenario (with El Nino first followed by La Nina conditions)
would be difficult from short-term water management point
of view. The worst situation would be if two consecutive
ENSO cycles were diametrically opposite (i.e., La Nina to
El Nino to neutral to El Nino to La Nina).
[48] Results from this exercise show that the utility of

climate forecasts for multipurpose water allocation from the

Oros reservoir is more pronounced during above-normal
and below-normal inflow years. Since Oros is a multiyear
storage reservoir that ensures sufficient initial storage con-
ditions in July, the reservoir yields obtained using both K-
NN forecasts and zero inflow assumption do not differ
during normal conditions. The currently pursued strategy
of zero inflow assumption only leads to increased losses
from the system. Important information from Table 2 is that
the improvements obtained using these forecasts are very
small for the Oros system, since the storage to annual inflow
volume ratio for Oros ratio is 4.23. Studies have shown that
as the storage to annual inflow volume ratio increases the
utility of forecasts decreases [Maurer and Lettenmaier,
2004]. However, a more appropriate metric to evaluate the
utility of forecasts is the storage to annual demand ratio,
since it incorporates the demand the system need to supply
over the period of allocation. In the next section, we
perform detailed analyses in understanding the utility of

Figure 6. Performance of adaptive K-NN forecasts in improving multipurpose water allocation.
(a) Difference in Forecasted Yield and Zero Inflow Yield for three uses. (b) Simulated reliability of
supply using the K-NN forecast ensembles for each use.
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streamflow forecasts having different skill in improving
water allocation under various system configurations.

6. Utility of Streamflow Forecasts Under Various
System Configurations

[49] The analysis in the previous section showed that the
utility of streamflow forecasts is limited if the reservoir
storage is considerably larger in comparison to its annual
demand. Given that the state of Ceara is undergoing rapid
industrialization and development, the demand is expected
to increase substantially in the near future [Broad et al.,
2007]. One could anticipate that under those conditions, the
increased demand will constrain the storage in the reservoir
thereby increasing the utility of streamflow forecasts. In
this section, we systematically show that the utility of

streamflow forecasts increases if the storage to demand
ratio decreases.

6.1. Reservoir Inflow Forecasts of Known Predictive
Skill

[50] To develop synthetic streamflow forecasts exhibiting
different skill with observed flows, we generate ensemble of
synthetic streamflows for the Oros reservoir using a para-
metric periodic gamma autoregressive model [Fernandez and
Salas, 1986]. We basically add noise to the observed histor-
ical flow sequence such that the synthetic streamflow pre-
serves the monthly mean, variance and month-to-month
correlation structure recorded at the Oros reservoir. Since
the observed streamflows exhibit significant skewness
[Souza Filho and Lall, 2003], we generate errors from a
periodic gamma autoregressive model. By choosing a par-
ticular forecast skill, rQtQt

0 we generate synthetic forecasts

Figure 7. System Losses from Oros reservoir utilizing K-NN forecasts and based on Zero Inflow
assumption: (a) evaporation and (b) spill. The end of the year target storage was assumed to be 260 hm3

which would ensure municipal supply for an additional 18 months. The reliability of supply for each use
is 90%.

W11409 SANKARASUBRAMANIAN ET AL.: WATER CONTRACTS FOR PROBABILISTIC FORECASTS

13 of 18

W11409

 19447973, 2009, 11, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2009W

R
007821 by C

A
PE

S, W
iley O

nline L
ibrary on [15/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



based on (19) with the errors being generated from a periodic
gamma autoregressive model.

Q0t; j ¼ rQtQ
0
t
Qt; j þ et ð19Þ

where Q0t,j and Qt,j are the generated and observed flows
in month ‘t’ in year ‘j’ respectively and et follows a
periodic gamma autoregressive model having mQt

(1�rQtQt
0),

standard deviation ŝt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2Q 0

t
;Qt

q
and skewness ĝt with the

autoregressive structure preserving the observed lag-one
monthly correlation(f̂t) given in Table 3. The skewness ĝt
employed for simulation is estimated using the bias
correction factors suggested by Bobee and Robitaille
[1977]. Fernandez and Salas [1986] give the feasible
parameter space for the periodic gamma autoregressive
model as r̂t � ĝt/ĝt�1 � 1/r̂t. Because of this constraint,
periodic gamma autoregressive model cannot be employed
for generating inflows into the Oros reservoir from July to
December. Since the flows during those months were near
to zero in the past 47 years (1949–1995), we assume that
the generated flows during those months as zero. The
advantage of using the periodic gamma autoregressive
model is that it directly preserves the observed monthly
skewness and correlation structure without any transforma-
tion to normality. It is important to note that the lag-one
monthly correlation (r̂t) does not change by perturbing the
monthly noise variance. Varying rQt

0Qt
in (19) changes set

2

and covariance between the generated flow, Q0t, j, and the
observed flow, thereby producing ensembles of streamflows
with different skill with observed flows.
[51] Using the above procedure, synthetic inflow ensem-

bles are generated for the period 1949 July to 2000 June.
Table 3 compares the monthly statistics of generated flows,
mean, standard deviation, lag-one correlation for three
predictive skills rQtQt

0 = 0.98 (�1.0), 0.75 and 0.5 along
with the observed flow statistics. The monthly statistics of
generated flows are obtained by averaging across the
1000 traces. As one can see from Table 3, the mean monthly
flows and the lag-one monthly correlation are preserved for
the three predictive skills considered. Similarly, Table 3 also
shows the average of monthly standard deviation across the
traces, which increases according to the predictive skill
chosen.

6.2. Improvements in Bulk Water Allocation:
An Assessment From System Perspective

[52] In this section, we investigate the level of forecasting
skill required to make substantial improvements in bulk
sector water allocation utilizing probabilistic streamflow
forecasts under different reservoir system configurations
and demand scenarios. To assess this, we consider different
storage to annual demand ratios (in Table 4) for the Oros
system by reducing the current storage capacity and by
increasing the annual demand to be supplied by the Oros
system. For these storage to demand ratios, the water
allocation model presented in Section 3 was run using
synthetic streamflow ensembles developed in Section 6.1
(rQtQt

0 = 1,0, 0.75 and 0.5) and with the climatological
ensemble. We consider bulk sector water allocation for all
the three major uses, municipal, industrial and agricultural
from the Oros reservoir. The reservoir yields corresponding
to 90% reliability were obtained for each year for each use
for the assumed (Table 4) storage to demand ratios. The net
annual yield for all the three uses over the period 1949–
2000 was calculated for various storage to demand ratio
under both synthetic and climatological ensembles. Using
the net annual yield, the percentage improvement in water
allocation using synthetic ensembles having skill, rQtQt

0, in
comparison the climatological ensemble was calculated
based on equation (20) for each set of storage/demand ratio.

% Improvement ¼ 1�

PM
j¼1

P3
i¼1

Rij

�����rQtQ
0
t

PM
j¼1

P3
i¼1

Rij

�����rQtQ
0
t
¼ 0

0
BBBB@

1
CCCCA*100 ð20Þ

Figure 8 shows the % improvement in water allocation for
different reservoir system configurations using synthetic
inflow forecasts exhibiting different skills. From Figure 8,
we can see clearly that as forecasting skill increases, %
improvement in water allocation relative to the climatolo-
gical approach increases. However, the % improvement is
much higher for systems having low storage to demand
ratio. This is mainly because systems having large storage to
demand ratio have the ability to supply the annual demand

Table 3. Comparison of Monthly Statistics of Simulated Flows Using (19) Defined in Section 6.1a

Statistic January February March April May June

Observed m̂Q 4.37 28.43 103.08 184.74 56.57 9.81
rQt

Q0t � 1.0 m̂Q
0 4.37 28.43 103.09 184.73 56.57 9.81

rQt
Q0t = 0.75 m̂Q

0 4.36 28.43 103.09 184.73 56.57 9.81

rQt
Q0t = 0.5 m̂Q

0 4.37 28.43 103.08 184.73 56.57 9.81

Observed ŝQ 7.97 54.63 151.66 279.02 100.86 21.07
rQt

Q0t � 1.0 ŝQ
0 7.25 51.65 148.63 271.25 97.67 19.48

rQt
Q0t = 0.75 ŝQ

0 7.17 49.45 146.46 270.38 96.45 19.01

rQt
Q0t = 0.5 ŝQ

0 7.01 48.47 145.84 268.10 94.12 18.57

Observed f̂ 0.68 0.29 0.46 0.57 0.85 0.67
rQt

Q0t � 1.0 f̂ 0.67 0.29 0.46 0.57 0.85 0.65

rQt
Q0t = 0.75 f̂ 0.69 0.30 0.50 0.59 0.87 0.71

rQt
Q0t = 0.5 f̂ 0.71 0.32 0.53 0.61 0.91 0.74

aAll the statistics are given in m3/s. Monthly statistics m̂Q, ŝQ, and f̂ denote the observed monthly mean,
standard deviation, and lag-one monthly correlation, respectively. The statistics for the period July–December is
not presented since the average inflow into the Oros reservoir is almost zero.
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(including evaporation losses) purely based on the initial
storage, So, in many years thereby nullifying the utility of
probabilistic streamflow forecasts. On the other hand,
streamflow forecasts are much more useful in systems
having low storage to demand ratio, since the initial
storages at the beginning of the year always constrain the
system allocation. We explain this in detail using Figure 9.
[53] Under the current system configuration (Figure 9a;

storage to demand Ratio = 5.32), the difference in
annual yield (expressed as Rj(rQtQt

0) – Rj(rQtQt
0 = 0)

where Rj =
P3
i¼1

Rijwith ‘i’ denoting each uses and ‘j’ denoting

the year) between streamflow forecasts having a particular
skill and the climatological approach is zero in many years,
since the entire annual yield was met purely based on the
initial storage available at the end of June. On the other hand,
for systems having low storage to demand ratio (Figure 9b),
the difference in annual yield varies according to the nature of
flows. During above normal inflow years, the difference in
annual yield is positive indicating yield obtained using the
forecast is much higher than the climatological approach and
vice versa during below normal inflow years. The difference
in annual yield shown in Figure 9b increases as the forecast
skill increases, which is also reflected in Figure 8. Our recent
study for a system with small storage to demand ratio for
Angat reservoir system in the Philippines showed that sub-
stantial improvement in hydropower production could be
achieved by utilizing the monthly updated climate forecasts
available throughout the season [Sankarasubramanian et al.,
2009].
[54] It is important to note that % improvement given in

Figure 8 quantifies only the improvements in annual yield,
not the increased utility/net benefits using probabilistic
streamflow forecasts. Increased net benefits depend on the
purpose for which the release is put into use. For instance, if
the increased yield is utilized for power generation for
which the shadow price of water is relatively high in
comparison to other uses, then increased revenue could be
expected from application of climate forecasts. Maurer and
Lettenmaier [2004] show that just 1% improvement in
releases from the upper Missouri system hydropower gen-
eration using the climate information based streamflow
forecasts could result in increased net benefits as high as
$11million. Thus, climate information based streamflow
forecasts have higher utility in systems with multiple uses

constraining the allocation process as well as in systems
having very low storage to demand ratio.

7. Summary and Conclusions

[55] The goal of the work presented here was to introduce
an adaptive and participatory water allocation framework
that can be used in conjunction with probabilistic stream-
flow forecasts. A key design goal of the allocation process
was to remove or reduce the impact of the uncertainty
associated with probabilistic forecasts (even if they have a
skill no better than that of climatology) by developing
estimates of the ‘‘best’’ way to allocate water over the
coming operation cycle based on short-term forecasts using
demand and value parameter, including the value attached
by each user to the water quantity to be supplied, and the
associated reliability of the supply over the operating
period. The formulation of contracts with an insurance
proviso in the event of failure of the contract could in
concept promote effective adaptive management by permit-
ting reallocation through the specification of different eco-
nomic values assigned to water and to reliability depending
on the water in stock in the reservoir and the forecast for the
upcoming season or year. In practice, one could have long-
term and short-term contracts for the reservoir water, thus
separating critical nonreallocable use and uses that can be
reallocated during drought/surplus periods. The paradigm
thus invoked is one which leads to a more active manage-
ment than the traditional approach that focuses on long-term
water allocation with drought stresses managed by the
reduction of supply to lower priority uses, but limited or
no reallocation across use areas (i.e., changing priorities for
use are not recognized as they could be in our proposal). In
this paper, to keep the formulations simpler and communi-
cate the key points we assumed that all the water in the
reservoir could be allocated through short-term contracts,
and focused on the development and testing of a simulation-
optimization model that the water manager could use to
derive feasible and optimal contracts given forecasts and
other parameters, as part of a participatory and adaptive
allocation process. The details of the participatory allocation

Figure 8. Utility of Streamflow forecasts in improving
water allocation under different reservoir system configura-
tions. Net annual yield corresponding to 90% reliability is
obtained for each use using the within year demand
fractions given in Table 1.

Table 4. Storage to Demand Ratios Considered for Analyzing the

Utility of Streamflow Forecasts in Improving Bulk Sector Water

Allocation Using Synthetic Streamflow Forecasts Having Different

Skillsa

Storage (hm3) Demand (hm3) Storage/Demand Ratio

1940 365 5.32
1455 365 3.99
970 365 2.66
1940 730 2.66
1455 730 1.99
970 730 1.33
1940 1095 1.77
1455 1095 1.33
970 1095 0.89

aCurrent capacity of Oros reservoir is 1940 hm3, and the annual demand
to be supplied by Oros for the JMH system is 365 hm3.
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framework, its comparative analysis relative to other allo-
cation systems, its operational application and reactions of
users and water managers to the proposal from experimental
applications in Northeast Brazil will be presented in a
separate paper. Here, the basic ideas were discussed and
the focus was on the potential utility of the simulation-
optimization model and the probabilistic forecasts.
[56] The single site, multipurpose reservoir optimization

model considers a water contract structure with specified
reliability, restriction volume, and compensation in the
event of failure. The allocation is achieved by maximizing
a utility function (net revenue in the examples used consid-
ering the contract revenue and the expected value of
compensation in the event of failure) given specified yield
reliabilities, sectoral water allocation constraints, mass bal-
ances given a streamflow forecast ensemble. The use of this
model with data from Northeast Brazil, and with a synthetic
data set was pursued to assess potential conditions under

which probabilistic forecasts could be useful under this
framework.
[57] The potential utility of climate forecasts in improv-

ing bulk water allocation was assessed toward multipurpose
water allocation from Oros reservoir over the period July
1990 to June 2000 using the 12 month ahead streamflow
forecasts developed based on the work by Souza Filho and
Lall [2003]. The performance of the reservoir is assessed in
its ability to allocate the demand for all the uses under the
forecasts and under the currently pursued zero inflow
assumption. The analysis shows that the initial storage
available in July of every year was adequate to supply
water for all the uses even under a zero inflow assumption
since Oros is designed with storage equal to approximately
2.5 years of mean annual flow. So, in this setting, the
forecast based allocation is effective in increasing the firm
allocation for agriculture during critical droughts. This is
significant since a preseason declaration of the availability
of a reliable yield or contract for agriculture has high value

Figure 9. Difference in annual yield using the synthetic streamflow forecasts having a particular
skill and using climatology for two different system configurations. (a) Current system configuration
(Storage = 1940 hm3; Annual Demand = 365 hm3). (b) Modified System Configuration (Storage =
970 hm3; Annual Demand = 1095 hm3).
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given that it will directly influence the crop area that can be
reliably brought under irrigation that year. Thus, such an
allocation could be considerably beneficial relative to the
current situation where farmers will have no prior knowl-
edge that water may be available as a consequence of
uncontrolled spills from the reservoir in that year.
[58] To assess the utility of streamflow forecasts in-

creased demand scenarios as well as with improved fore-
casting skills in the future (as discussed by Souza Filho and
Lall [2003] and Broad et al. [2007]), we assessed potential
improvements that could be obtainable toward multipurpose
water allocation utilizing synthetic inflow forecasts having
three different skills. Totally, nine different storage to
demand scenarios is considered and the improvement in
water allocation under each system configuration is sum-
marized in terms of percentage improvement in net annual
yield in comparison to the climatological approach using the
streamflow forecasts exhibiting a particular skill. The anal-
yses show that reservoir systems with smaller storage to
demand ratio could benefit substantially even with stream-
flow forecasts having modest skill. The percentage im-
provement using the streamflow forecasts is much smaller
even utilizing perfect forecasts for systems that have large
storage to demand ratios, such as the Oros reservoir. Thus,
our findings suggest that the climate information based
streamflow forecasts have higher utility in systems with
multiple uses constraining the allocation process as well as
in systems having very low storage to demand ratio.
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the International Research Institute for Climate and Society, Columbia
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