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Abstract
Water resource variables are highly complex and vary both spatially and temporally. Understanding the variability and how

it evolves has been an important scientific question in Ceará, Brazil. However, describing and determining the uncertainty

and the variability in precipitation is still a challenge. Assessing the uncertainty around precipitation is key to develop

robust and proactive planning. This study’s main aim is to evaluate the underlying spatiotemporal variability of precipi-

tation in the State of Ceará at different timescales by using standardized variability indices computed from different

entropy measures. This methodology was applied to analyze 31 meteorological stations with daily time series from 1962

through 2006 while expanding the analysis to the remaining region using an interpolation method. The seasonal timescale

analysis revealed that the dry season contributes more to the annual variability, and the change in intra-annual precipitation

dynamics could vary with timescales. There were significant upward trends in entropy. Thus, for some stations, there was

an increase in the uncertainty of rainfall. Also, there was an increase in variability amount and intensity throughout the

decades at the monthly and seasonal timescales. Assessment of precipitation uncertainty within different timescales can

benefit a broad community of scientists who are interested in arid-region and natural hazards.
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1 Introduction

Arid and semi-arid regions are characterized by hydro-

logical constraints such as rising temperatures, low annual

mean precipitation, frequent droughts, and inter-annual to

higher-scales variations, making these areas vulnerable to

climate variability (Ramarao et al. 2019; Singh and Chu-

dasama 2021). Changes in the hydrological cycle caused by

climate variability and change have severe impacts on the

amount and distribution of hydrological variables, leading

to water availability and water quality changes (Jemai et al.

2017; Zheng et al. 2017).

The State of Ceará is located in the Northeastern region

of Brazil (NEB), the most densely populated semi-arid

region of the planet. The NEB has been reported as one of

the world’s most vulnerable areas to climate change in the

coming century (IPCC 2014). Future climate projections in

NEB show significant temperature increases, and rainfall

reductions caused by climate change and human activities

(Wu et al., 2016; Marengo et al. 2017; De Jong et al. 2018).

Hydrological variability analysis in drought-prone envi-

ronments plays a critical role in water resources planning

and management (Cirilo et al. 2017). Thus, in response to

the increased risk of extreme events, climate risk assess-

ment has an essential role in climate adaptation. However,

the task of understanding the spatiotemporal complexity of

hydrological variables remains a great challenge (Mishra

and Singh 2010; Tongal and Sivakumar 2019; Guntu et al.

2020).

Precipitation is an important meteorological parameter

for comprehending hydrological extremes. Complex

changes in climate and hydrological systems can be indi-

cated through rainfall patterns and trends, making it an

essential assessment for efficient and sustainable water

resources management. The uncertainty linked to precipi-

tation variation poses a major obstacle to regional water

resources and socio-economic development (Jemai et al.
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2017; Zhang et al. 2019). Spatiotemporal analysis of pre-

cipitation is key to water resources risk assessment. As

precipitation is characterized by volatility, variability, and

geographical differentiation, its analysis can be challeng-

ing. Also, data availability might be an issue in some

regions (Eris et al. 2020). Therefore, the topic of spa-

tiotemporal variation of precipitation has received

increased attention, particularly in arid and semi-arid

regions. This type of analysis has been performed consid-

ering different spatial scales such as a country or a group of

countries (Qin et al. 2018), a state or province (Meshram

et al. 2017; Tongal and Sivakumar 2019; Jhong et al. 2019;

Yang et al. 2019a; Villalta et al. 2020), a region (Cunha

et al. 2018; Fu et al. 2021), or a river basin (Zhou et al.

2013; Li et al. 2016; Liu et al. 2016; Ahmad et al. 2018;

Yang et al. 2019b).

The study of complexity in precipitation is the basis for

regional risk assessment and water resources management.

Several literature methods measure the variability of a time

series, including variance, regression analysis, nonpara-

metric tests, diversity indices, and information-theory-

based measures (Zhang et al. 2019). However, regression

methods, for example, only measure the regularity of pre-

cipitation and may not quantify the degree of this disor-

derly change. Thus, these methods cannot effectively

characterize the inherent complex changes of precipitation.

The information-theory-based measure, entropy (Shan-

non 1948), has gained significant attention in water

resources studies in recent years (Zhang et al. 2019). A

change in entropy values is related to the information

transmitted or gained, allowing inferences about a variable.

Thus, the entropy-based approach is likely to characterize

the variability and uncertainty inherent in water resource

dynamics. The disorderly changes in precipitation can

impact regional flooding and droughts, water resources,

and socioeconomic activities. Studies regarding precipita-

tion variation become critical in semi-arid regions because

of different types of water demands during distinct months

and seasons. Furthermore, investigating the seasonal dis-

tribution of precipitation is particularly important for the

rational allocation of water resources.

Approaches based on entropy theory generally employ

spatiotemporal concepts to measure information, disorder,

or uncertainty without strict assumptions about statistical

properties or probability distributions of the data, thus

being applied to any data and any system (Su and You

2014; Tongal and Sivakumar 2019). In the hydrology

context, entropy-based methods have been used in assess-

ing the variability of rainfall (Mishra et al. 2009; Zhang

et al. 2016; Guo et al. 2017), streamflow and runoff

(Maurer et al. 2004; Roushangar and Alizadeh 2018),

rainfall network design (Su and You 2014), regionalization

and clustering of catchments (Agarwal et al. 2016; Tongal

and Sivakumar 2019), and water resources availability (Da

Silva et al. 2016). Most of these methods have used non-

normalized indices to estimate rainfall variability. Hence,

the outcomes cannot be used for comparison at different

timescales and different data lengths.

The purpose of this study is to assess the underlying

spatiotemporal disorder or variability by using standard

variability indices (SVI). The indices assess changes in

rainfall uncertainties and complexities at different time-

scales. Generally, studies in the region are more focused on

assessing trends in single or multiple climate variables

through different timescales (Santos et al. 2009; Costa and

Silva, 2017; Ferreira et al. 2018), and less attention has

been given to evaluating the complexity characteristics of

the climate system. Due to the climate system’s nonlinear

and nonstationary behavior, an exploration of its inherent

complexity has theoretical and practical relevance for

revealing the uncertainty and variability of the system.

Also, variability information has the potential to be used in

developing strategic adaptation and mitigation measures

aimed at improving the resilience of water systems. The

analyses were applied to the State of Ceará, located in

NEB. Ceará was chosen because of its history of severe and

sometimes multi-annual droughts. These multi-annual

events impose challenges and weaknesses in the water

resource system and reveal the importance of studies on the

uncertainties in hydrological variables to improve the

planning of water resources.

The specific objectives of the present study are: (1) to

assess the spatiotemporal rainfall variability at different

timescales (e.g., daily, monthly, and annual), (2) to inves-

tigate the intra-annual and the decadal distribution of

rainfall variability and compare the different periods, (3) to

investigate the relation of variability between rainfall and

streamflow, and (4) to explore the trends and significance

of intra-annual variability. Shannon’s entropy (Shannon

1948) was applied to analyze the variability patterns of

rainfall. Then, the entropy is standardized using Guntu

et al. (2020) methodology. Long-term trends were assessed

at daily, monthly, and seasonal scales using the Mann–

Kendall test and the Sen’s slope estimation method (Ken-

dall 1948; Mann 1945; Sen 1968). The kriging method was

employed to spatially delineate the variability of entropy

(Krige 1966). This application will be useful to improve

the understanding of rainfall characteristics and formulate

interferences on climate variability in a semi-arid region.

2 Study area and hydrological data

The State of Ceará is located in the semi-arid region of

NEB. The Brazilian semi-arid region is the world’s most

densely populated dryland region. The economy is mainly
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based on agricultural production, which is intrinsically

dependent on the region’s rainfall. Several large-scale

mechanisms influence NEB precipitation. Global and

regional climate change scenarios indicate that the region

will be affected by rainfall deficit and increased aridity in

the next century (Marengo et al. 2017).

The rainfall regime in Ceará State is characterized by

high spatiotemporal variability, with over 60% of the total

rainfall (about 650 mm per year on average) occurring

from February to May (Alves et al. 2009). The rainfall

pattern is directly linked to the Intertropical Convergence

Zone (ITCZ) movement, which reaches its Southernmost

position during March and April. Also, rainfall patterns are

modulated by the natural fluctuations of the sea surface

temperature (SST). Climate indices such as the El Niño

Southern Oscillation (ENSO) phenomenon, the Pacific

Decadal Oscillation (PDO), and the Atlantic Multidecadal

Oscillation (AMO) have been reported to directly impact

the NEB rainfall regime (Andreoli and Kayano 2005;

Garreaud et al. 2009; Kayano et al. 2020).

The analysis of the spatiotemporal variability of the

rainfall regime considered data from the Brazilian National

Water Agency (ANA). Time series are comprised of daily

data from January 1962 to December 2006. This study

considered 31 meteorological stations around the State of

Ceará, illustrated in Fig. 1. The basic statistical properties

about the annual total precipitation amount and monthly

total precipitation amount for the stations are listed

in Table 1. To present the distribution characteristics of the

rainfall data at an annual scale, violin plots were plotted.

There is also information about the median, the quartiles

(25 and 75%), and outliers (see Fig. 2). These representa-

tions allow us to distinguish the internal variability that

rainfall presents in each of the stations. The stations located

in the Northern region of the State had the greatest vari-

ability. The most extreme case was reached by Station 4

with a range between 465 and 2311 mm, followed by

Stations 9 and 16. Stations located more to the Central and

Northeastern portion of the State shown a violin plot that is

thick at its centre because of its small range of values.

Further, most of the density plots showed a unimodal

shape, however, Station 24 presented a bimodal shape.

Streamflow data from 1963 to 2006 was also acquired from

ANA to calculate the relation of rainfall and streamflow

variability. In order to investigate the connection between

intra-annual variability and large-scale indices, the Oceanic

Niño Index (ONI) was used. The ONI is applied by US

National Oceanic and Atmospheric Administration

(NOAA) to monitor the ENSO phenomenon. The index

consists of a 3-month running mean of the average sea

surface temperatures in the east-central tropical Pacific

between 120�-170�W, which is the Niño 3.4 region. The

ONI data was acquired from the database through the cli-

mate prediction center website (https:// https://www.cpc.

ncep.noaa.gov/products/precip/CWlink/MJO/enso. shtml,

data retrieved in June of 2021).

3 Methods

In this study, the concept of entropy and SVI, as discussed

by Guntu et al. (2020), are applied to analyze the spa-

tiotemporal variability/uncertainty of rainfall time series in

multiple timescales (e.g., monthly, seasonal and annual).

Three entropy-based measures (marginal entropy (ME),

apportionment entropy (AE), and intensity entropy (IE))

are employed in the analysis. Further, the variability of

rainfall is also compared within different decades. The

Fig. 1 Location of the

meteorological stations

analyzed in this study
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Mann–Kendall and Sen’s slope tests are applied to assess

significant trends in the SVI. The rainfall and streamflow

variability for a station is also calculated and compared in

different timescales. In addition, maps are constructed with

the kriging method to delineate the SVI’s spatial patterns.

The methods are summarized in Fig. 3, and a brief

description of these methods is presented in the following

sections.

3.1 Shannon entropy

Entropy is a measure of dispersion, uncertainty, disorder,

and diversification (Mishra et al., 2009). Shannon’s entropy

(1948) in a discrete form can be expressed as:

H Xð Þ ¼ �
XK

k¼1

pðxkÞ log pðxkÞð Þ ð1Þ

Where H Xð Þ is a measure of the information associated

with the underlying process, k denotes a discrete interval,

and pðxkÞ is the probability density function of the variable

x. The unit of H can be bits when the log function is taken

to be log2, and can also be expressed in ‘nats’ in which the

log function is taken as ln. The log2 function was used for

the entropy measures computations in this study.

If all states are equiprobable or there is more evenness in

the probabilities of random values, then H reaches its

maximum value and it expresses the uncertainty about the

system’s state. However, if H equals to zero, then the

probability of a certain state is 1, and complete information

about a random variable is available. Thus, the entropy

value can vary from zero to log2K, where zero represents

maximum certainty and log2K maximum uncertainty. With

entropy reaching its maximum value, there is no indication

Table 1 Statistical properties of

annual/monthly precipitation

time series (1962–2006) of the

31 analyzed stations

Station Number Station ID Min Max Mean Standard Deviation

1 338,005 595.6/0 2778.5/582.6 1329.9 / 110.82 515.73/131.46

2 338,008 434.1/0 2200.3/635.9 1075.89 / 89.66 421.67/118.43

3 338,009 675.5/0 2418.6/842.6 1334.17 / 111.18 465.19/138.46

4 338,016 465.2/0 2311.7/523.7 1252.4/ 104.37 434.74/121.94

5 339,034 419/0 2061.8/637.9 1177.06 / 98.09 395.73/125.85

6 340,008 399.8/0 2186.7/642.5 1105.53 / 92.13 407.56/128.44

7 340,014 260/0 1723/619 942.75 / 78.56 349.05/113.66

8 340,023 476.6/0 2120.8/642 1038.28 / 86.52 375.19/114.91

9 340,030 469.5/0 2409.3/753.4 1257.18 / 104.76 418.27/132.14

10 340,031 664.7/0 2864.5/724.8 1516.85/ 126.4 513.42/153.09

11 437,000 220/0 2654.1/650.5 983.26 / 81.94 501.8/118.96

12 437,010 173.4/0 1929.1/502.4 769.85 / 64.15 311.9/91.64

13 438,032 284.2/0 1573/391 786.17/ 65.51 278.97/85.05

14 439,008 479.1/0 2149.9/457.2 1191.1/ 99.26 399.21/105.78

15 439,018 416.3/0 3238.2/788.3 1456.66 / 121.39 647.5/139.65

16 440,005 154/0 1116.8/492.1 575.1 / 47.92 228.64/72.78

17 440,009 27.1/0 1987.7/639.7 710.68 / 59.22 327.38/95.36

18 440,014 280.5/0 2004.2/568.6 967.15 / 80.6 381.55/113.66

19 440,017 351/0 1703.4/550 868.26 / 72.36 339.54/107.34

20 538,003 116.7/0 1823.9/490.8 772.66 / 64.39 289.75/91.19

21 538,010 268/0 1852.5/567.8 777.97 / 64.83 321.03/89.01

22 539,023 237.2/0 1375.8/461.6 783.86 / 65.32 247.16/85.55

23 638,008 390.8/0 1702.6/474.9 794.04 / 66.17 240.07/86.66

24 638,010 517.8/0 1951/653 926.33 / 77.19 283.84/103.85

25 638,011 294.6/0 2065.7/537.5 1016.64 / 84.72 359.87/108.88

26 639,021 366/0 1713/517 798.02 / 66.5 251.56/87.55

27 640,015 266/0 2237.1/950.1 697.94 / 58.16 333.61/92.25

28 739,007 594/0 1885.6/550 1006.15 / 83.85 267.79/107.87

29 440,018 144/0 1262.8/469.8 650.49 / 54.21 276.97/79.59

30 437,006 118/0 1887.7/629.2 824.78 / 68.73 416.58/108.4

31 739,005 304.4/0 1612.1/589.1 920.56 / 76.71 278.81/100.32
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Fig. 2 Violin plots comparing the median, the spread, and the

probability density function of rainfall data from the 31 analyzed

stations. The median is shown by the horizontal line on the boxplot

inside the violin plot and the maximum and minimum values are

represented by points in the top and bottom of the plots, respectively

Fig. 3 The overall process of the spatiotemporal characterization of the Ceará State using entropy theory
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to assume that one state is more probable than another state

(Da Silva et al. 2016).

3.2 Standardized variability index (SVI)

The SVI proposed by Guntu et al. (2020) measures the

variability of an individual series regarding the maximum

possible variability. SVI can be defined as:

SVI ¼ Hmax � H

Hmax
ð2Þ

Where Hmax is the maximum possible entropy and H is the

entropy obtained for a given time series. Hmax is equal to

log2K, and it depends on the length of the time series and

the timescale. SVI can range from zero to one, where zero

represents no variability and one represents high variabil-

ity, i.e., maximum certainty to maximum uncertainty.

Consequently, SVI can be used to compare the rainfall

variability at distinct locations and different timescales on a

fixed scale (Guntu et al. 2020).

3.3 Marginal entropy (ME)

ME is a measure of uncertainty or ignorance about the

system’s state. This index can be defined as the average

information content of a random process (Da Silva et al.

2016; Cheng et al. 2017). For example, when the ME is

calculated considering the historical monthly time series of

a station, it results in the randomness associated with the

entire length of the time series. ME can be used for annual,

monthly, seasonal, and rainy days to assess the randomness

in the time series (Mishra et al. 2009). ME is applied to the

rainfall data from the analyzed stations at three different

timescales, i.e., annual, seasonal, and monthly.

3.4 Apportionment entropy (AE)

The AE, as defined by Maruyama et al. (2005), measures

the temporal variability of rainfall amount in terms of

daily/monthly/seasonal timescales within a given year. The

AE is estimated for each year at all meteorological stations

according to:

AE ¼ �
XK

k¼1

rk

R

� �
log2

rk

R

� �
ð3Þ

where R is the total amount of rainfall for a given year, rk is

the rainfall amount during the considered timescale for the

corresponding year, and K is the number of class intervals.

For example, at the monthly timescale, AE becomes

maximum (H ¼ log2 12) when the annual precipitation

amount is equally likely apportioned to each of the

12 months, having a probability of 1/12. The minimum

value occurs when the apportionment is made to only one

out of the 12 months, having a probability of 1. Thus, AE

takes on a value within a finite range of 0 and log212 at a

monthly timescale.

3.5 Intensity entropy (IE)

IE measures the rainy days’ variability of a month or a

season within a year to the total number of rainy days in

that year. The IE is estimated for each year at all meteo-

rological stations using:

IE ¼ �
XK

k¼1

mk

M

� �
log2

mk

M

� �
ð4Þ

where mk is the number of rainy days within a month or a

season,M is the total number of rainy days in that year, and

K is the number of class intervals. For instance, K = 12 for

monthly timescale. In this study, IE is used to measure the

intra-annual variability in terms of intra-annual rainy day’s

distribution.

3.6 Trend Analysis using Mann–Kendall
and Sen’s slope methods

The Mann–Kendall (Kendall 1948; Mann 1945) is a non-

parametric test widely used in environmental and hydro-

logical time series. In this study, the test is applied to detect

trends in the SVI calculated from precipitation data. The

null hypothesis employed in the test assumes that the data

came from a population with independent and identically

distributed realizations. The test’s null hypothesis was

accepted if the p-value was less than the significance level

of 0.05, detecting either increasing or decreasing mono-

tonic trends. Sen’s slope estimator was used to quantify the

magnitude of the trend according to Sen’s method (Sen

1968).

4 Kriging method

Spatial interpolation techniques have been applied to assess

the magnitude and variability of parameters. The geosta-

tistical (or stochastic) methods, such as ordinary kriging,

provide prediction surfaces with error estimates of mea-

sured data based on their statistical properties (Eldrandaly

and Abu-Zaid 2011). The kriging method uses a semi-

variogram and a covariance function to predict unmeasured

locations by creating continuous surfaces.

In the kriging procedure, the empirical semi-variogram

is calculated by computing locations within a distance

interval for pairs of observations. The empirical semi-

variogram indicates how the dissimilarity between points
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evolves with distance. In order to obtain spatial predictions,

a continuous function or curve should be fitted to the

empirical semi-variogram. The theoretical semi-variogram

model provides the information regarding the spatial vari-

ability that is required for the kriging method. Several

theoretical semi-variogram functions are available, such as

spherical, circular, exponential, and Gaussian models.

Spatial inference of a quantity at an unobserved location is

calculated from a linear combination of the observed val-

ues and weights. The weights are generated from the var-

iogram model fit that represents the spatial correlation

structure of data to ensure that the estimator is unbiased

with minimum variance.

In this study, different theoretical semi-variograms,

mentioned above, are examined. The model that has the

smallest residual sum of squares errors with the empirical

semi-variogram is selected. Then, cross-validation tests for

the kriging predictions of all entropy measures are per-

formed to give a more accurate estimate of the model’s

prediction performance. A sample of the entropy measure

is removed individually and estimated from the remaining

measures. The mean standard error (MSE) and mean

square standard error (MSSE) are used to evaluate the

model prediction performance. The calculated values of

MSE and MSSE for the annual SVIME and mean annual

rainfall are close to zero and one (see Appendix 1), with

values within the accepted tolerance error of �3 2=nð Þ0:5,
as Liang et al. (2019) recommended.

5 Results and discussion

5.1 Variability of annual, seasonal, and monthly
rainfall

In this study, ME, AE, and IE are expressed in SVI terms

and are denoted as SVIME, SVIAE, and SVIIE, respectively.

In order to investigate the variability of annual, seasonal,

and monthly rainfall time series, the ME and SVIME are

calculated based on the amount of rainfall for each con-

sidered station. Figure 4 shows the computed SVIME for

annual, seasonal (rainy and dry), and monthly rainfall time

series over different meteorological stations. When com-

paring seasonal results, the SVIME from the dry season

(July to December) had the highest value, which indicates a

greater variability associated with the analyzed stations in

that season. The SVIME for Station 16 showed higher mean

values in the annual, rainy season, and monthly analysis,

followed by Station 17. Both stations are located in the

State’s Western region.

Figure 5a shows the spatial distribution of the mean

SVIME for annual rainfall time series (1962–2006) over the

different stations. The SVIME represents the variability

obtained from the maximum possible variability associated

with each station. Overall, the SVIME at the annual time-

scale showed lower values in the Southern and Northern

regions, while the Eastern region presented higher values

of variability. In comparison, the mean annual rainfall

(Fig. 5b) followed a smooth contour with a decreasing

pattern from North to South. Meteorological stations with

high variability are observed in the low rainfall regions and

vice-versa. Results show that the nature of mean annual

rainfall can vary from the SVIME associated with it on a

spatial scale. In general, meteorological stations in the

Eastern region had the highest variability, which coincides

with low rainfall. Although stations with low variability are

identified in the Southeastern region and on the Northwest

Coast, only the Northwestern area coincided with high

rainfall.

5.1.1 .

Similarly, SVIME is also spatially distributed for rainfall at

the seasonal (rainy and dry) and monthly timescales. Fig-

ure 6 presents the spatial distribution of SVIME at a sea-

sonal scale, and Fig. 7 shows the spatial distribution at a

monthly timescale. The cross-validation tests for the

monthly kriging approach for June, July, and October

produced MSE values close to zero, however, the MSSE

was outside the range of the tolerance error (see Appendix

1). Table 2 presents the statistical properties of SVIME for

seasonal and monthly time series. In the rainy season (from

January to June), the State had lower variability than the

dry season (from July to December). This result is also

observed in Fig. 3, and that behavior is related to the

regular rainfall at this season, which is influenced by the

position of the ITCZ (Kayano and Andreoli 2006). In

addition, the rainy season variability map resembles the

mean annual rainfall map (Fig. 5b), which shows the

influence of rainfall concentrated only in this part of the

year. However, in the dry season, the State receives

unseasonal rain with no uniform pattern causing high

variability in its spatial extent. Thus, the dry season con-

tributes most to the annual relative variability. Noteworthy,

even though most of the annual rainfall comes from the

rainy season, the annual rainfall variability is contributed

mainly by the dry season. Similar conclusions were drawn

by Guntu et al. (2020) and Da Silva et al. (2016).

When individual months are compared, the

month(s) responsible for the seasonal variability can be

assessed, and consequently, the intra-variability of months

within a season. The results showed that high SVIME values

could be observed in August throughout November. Thus,

variability is higher in the individual months than in the

season. According to Mishra et al. (2009), intra-annual

variability will be more substantial at a smaller timescale
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and becomes smaller at a larger timescale, as observed in

our results. From the stations’ analysis at a monthly

timescale, Stations 16 (Western region) showed greater

variability values from January to June. Station 17

presented the highest values from July to December. Sta-

tion 1 (Northern region) showed the lowest values for

January and June, and also for July and December.

Fig. 4 Mean SVIME for annual, seasonal, and monthly rainfall time series of the analyzed stations

2292 Stochastic Environmental Research and Risk Assessment (2022) 36:2285–2301

123



Figure 7 shows that the Southern region and the Central

portion of the State presented higher values of SVIME

during July throughout December, which corresponds to

the considered dry season in this study. The State’s Central

region is strongly influenced by semi-arid climate condi-

tions, with low rainfall during a short period of the year and

prolonged dry seasons. On the other hand, February,

March, April, and May showed relatively low values of the

SVIME, suggesting lower uncertainty associated with the

State’s rainfall season. In December, there was a decrease

in the SVIME in the far South of the State related to the

higher altitude of Chapada do Araripe, which conditions

greater humidity and causes orographic rainfall. Further-

more, this pattern was captured in the State’s Southern

region on an annual timescale for SVIME. The Southern

region presented an opposite behavior to the rest of the

state (low rainfall was related to the high variability and

vice versa). In this region, there are orographic rainfalls

associated with the region’s topography, and the low

variability captured the presence of that rainfall. However,

compared to the rainfall intervals of the State’s Northern

region, the Southern region presented average to low pre-

cipitation. Thus, due to intra-annual variability, the annual

scale did not represent the variability of rainfall that the

State has so well.

5.2 Variability of rainfall apportionment
and intensity

After examining the variability of rainfall amount for

annual, seasonal, and monthly time series, it is necessary to

investigate the variability of rainfall distribution within a

year regarding the amount and the number of rainy days.

The AE and the SVIAE are calculated at daily, monthly, and

seasonal timescales. Additionally, the IE and the SVIIE are

calculated at monthly and seasonal timescales for every

rainfall station covering the entire length of the time series

data (1962–2006).

Figure 8 shows that the mean SVIAE for the studied

period at the daily timescale presented a lower variability

in the Northwestern and North Coast regions. This result

indicates the concentration of rainfall throughout the year,

which is generally the situation in the coastal region of the

State. The mean daily SVIAE for the other parts of the State

presented a homogenous pattern characterized by rainfall

concentration during only a few days of the year. At the

monthly scale, locations with low variability extended to

the Southern and Central regions, indicating that rainfall in

a major part of the State is scarce for most months. At the

seasonal scale, the state showed high variability in the

range of 0.4–0.8, with a mean value of 0.63 (see Fig. 8 and

Table 3). This result indicates that the rainfall variability

pattern becomes more prominent when the timescale

Fig. 5 Spatial distribution of

a mean annual SVIME, and

b mean annual rainfall over the

period 1962–2006

Fig. 6 Spatial distribution of

rainfall seasonal variability over

the period 1962–2006 based on

SVIME
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Fig. 7 Spatial distribution of rainfall variability for monthly timescale over the period 1962–2006 based on SVIME
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changes from finer to coarser. Similar results were found in

Guntu et al. 2020. In addition, for the SVIAE at the daily

and monthly scales, the mean value is found to increase

from the West and East to the Central portion of the State.

However, the opposite occurred in the seasonal timescale.

This pattern can be attributed to the significant uneven

rainfall distribution in the Central portion of the State over

the year, thus leading to remarkably high values of intra-

annual variability.

When looking at the variability over the years (Fig. 9a),

the first eight years presented values below the long-term

average. From 1975, there was a cyclical variation of two

to four years. In order to assess the relation between rain-

fall variability patterns and SST oscillation, the mean

annual ONI, applied by NOAA to monitor the ENSO

events was plotted against the SVI values. If the ONI is

greater than ? 0.5 �C, (lower than - 0.5 �C) an event is

classified as El Niño (La Niña). Results showed that some

years with higher SVIAE were also years with El Niño’s

presence (e.g., 1963, 1965, 1982, 1987, 1991, 1992, 1997,

2002). This result corroborates the influence that this

anomaly has over the studied region. During the El Niño

years, the precipitation is scarce, thus resulting in higher

variability. The same occurs for years that presented La

Nina events (e.g., 1973–1975, 1985, 1988–1989, and

1999–2000.

The number of rainy days at different timescales plays a

significant role in water resource planning. Hence, the IE

and the SVIIE are calculated. The spatial distribution of the

mean SVIIE, at the monthly scale, showed that low vari-

ability is concentrated throughout the State (Fig. 10). At

the seasonal scale, high variability regions are located in

the Northwestern region. The SVIIE pattern presented

similarities to the SVIAE at both timescales analyzed.

The variability in terms of SVIIE indicates that the rainy

days are concentrated only within a certain period of the

year for high variability. In contrast, low variability means

that the rainy days are distributed or scattered across the

year (Guntu et al. 2020). Further, in the monthly timescale,

the rainfall is distributed across the year. However, on a

seasonal scale, rainfall is concentrated only within a

specified period. Thus, the mean values of SVIIE indicated

that the variability is higher at the seasonal timescale

Table 2 Statistical properties of SVIME for seasonal and monthly time

series

Min Max Mean Std. dev Range

Month January 0.139 1.000 0.581 0.196 0.860

February 0.113 1.000 0.476 0.180 0.886

March 0.091 1.000 0.357 0.132 0.908

April 0.095 1.000 0.385 0.160 0.904

May 0.117 1.000 0.535 0.218 0.883

June 0.161 1.000 0.707 0.238 0.838

July 0.183 1.000 0.825 0.205 0.817

August 0.388 1.000 0.942 0.124 0.612

September 0.030 1.000 0.955 0.112 0.699

October 0.347 1.000 0.953 0.113 0.653

November 0.339 1.000 0.942 0.126 0.661

December 0.174 1.000 0.833 0.188 0.826

Season Rainy 0.140 1.000 0.581 0.196 0.860

Dry 0.113 1.000 0.476 0.181 0.887

Fig. 8 Spatial distribution of rainfall variability at different timescales based on SVIAE

Table 3 Statistical properties of Standardized Variability Index based

on Apportionment Entropy of rainfall distribution

Min Max Mean Std. dev Range

Daily 0.185 0.864 0.380 0.075 0.679

Monthly 0.096 1.000 0.311 0.091 0.904

Season 0.040 1.000 0.627 0.230 0.960
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compared to the monthly timescale (see Table 4). When

analyzing the SVIIE throughout the years (Fig. 9b), a rel-

atively lower SVIIE is observed in the first two decades,

similarly to the SVIAE. According to Cheng et al. (2017),

one explanation for this is that there are more zero values

in rainfall records. When analyzing the SVIIE and the ONI,

the same relation is also observed between intense El Niño

events (? 1.0 �C) and higher values of SVIIE (e.g., 1982,

1987, and 1997). Depending on the intensity of the El Niño

event, there may be inhibition in the formation and descent

of the ITCZ and, consequently, there may be a deficiency

of rainfall in the NEB region. Thus, the rainy days are more

concentrated in a part of the year. Overall, based on SVIAE
and SVIIE values, the State’s Coastal North area presented

low variability at the monthly and seasonal timescales,

which is consistent since that area receives a reasonable

amount of rainfall throughout the year. The variability

patterns were different at all timescales analyzed (daily,

monthly, and seasonal), highlighting the multiscale vari-

ability of the rainfall pattern. Thus, the intra-annual vari-

ability varies from scale to scale.

5.3 Decadal Variability of Rainfall

In order to verify the variability over more extended peri-

ods, the decadal SVIAE and the decadal SVIIE were cal-

culated. Figure 11 shows the mean decadal entropy values

for the different timescales (e.g., daily, monthly, and sea-

sonal), as for the individual months. For the rainfall

amount, the first decade (1967–1976) had a lower vari-

ability at the daily, monthly, and seasonal timescales than

the other decades. In contrast, the last decade presented the

lowest variability in January. From June to December, the

variability became almost the same. Thus, it is possible to

say that the temporal variability of rainfall amount varies

with the timescale and with the decades. The influence of

the changes in rainfall variability might also be linked to

climate indices with decadal variability. For instance, the

PDO is in its cold phase from 1967–1976, and there is a

Fig. 9 Mean a SVIAE (blue

line), and b SVIIE (blue line) of

rainfall time series of all stations

for the period of 1962–2006 and

ONI (green line) with the

dashed lines indicating the limit

to consider El Niño (? 0.5 �C)
or La Niña (-0.5 �C) conditions

Fig. 10 – Spatial distribution of

rainfall variability at different

timescales based on SVIIE

Table 4 Statistical properties of Standardized Variability Index based

on Intensity Entropy of rainfall distribution

Min Max Mean Std. dev Range

Monthly 0.020 1.000 0.254 0.095 0.980

Season 0.017 1.000 0.552 0.243 0.983
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shift to its warm phase (1977–1996). Many studies have

linked climate indices with decadal variability to the

rainfall patterns in NEB (Andreoli and Kayano 2005;

Kayano and Andreoli 2006; Garreaud et al. 2009; Kayano

et al. 2020). The variability of rainfall rainy days showed

similarities in the first decade at the monthly timescale. At

the seasonal analysis, there was a slight reduction in rain-

fall over the decades. However, for the individual months’

analysis, this reduction seemed to occur homogeneously

throughout the months.

5.4 Trend analysis of apportionment entropy

The Mann–Kendall trend test is applied to evaluate the

trends of SVIAE from the 31 stations. The results showed

that 26% of the stations presented a significant upward

trend in the daily timescale. Figure 12 illustrates the

upward trend at the analyzed locations, which indicates an

increase in SVIAE variability over the years. Thus, it is

noted that rainfall gets more concentrated only during a

certain period of the year. At the monthly timescale, 16%

of the stations showed a significant upward trend. At the

seasonal timescale, 32% of the stations presented a sig-

nificant trend. According to Khan et al. (2016), as precip-

itation at a small timescale is more prominent, its trend

characteristics may not be as significant as it is for longer

timescales. Thus, the presence of significant trends at larger

timescales indicates a significant increase in the variability

in the area. There were no stations that presented a

downward trend, which means no increase in the spread of

rainfall within a year. At all timescales, the stations with

positive trends were mostly concentrated in the Northern

part of the State. This result can be attributed to the

heterogeneity in rainfall over that State’s area.

5.5 Relation of rainfall and streamflow
variability

In order to evaluate the co-variability of different hydro-

logical variables, the mean values of SVIME of rainfall and

streamflow at a sample station (Station 16), located in the

Western region of Ceará, were compared at annual and

seasonal timescales (Table 5). Results showed that the

SVIME values of rainfall and streamflow were lower during

the rainy season, and the annual values were similar to the

rainy season. The coefficient of variation (CV) was also

calculated to verify the variability. The CV values were

high for the streamflow time series, while the rainy season

value was almost double the dry season. However, the

maximum value was observed for the annual streamflow

time series, reaching 336.1%. According to the CV results,

the streamflow is more variable than the rainfall in the

study area. Similar results were found by Da Silva et al.

2016, who studied the variability of rainfall using entropy

in semi-arid areas of Brazil.

Fig. 11 – Mean decadal

a SVIAE and b SVIIE of

rainfall time series at different

timescales. D, M and S refer to

daily, monthly, and seasonal

timescale, respectively
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6 Conclusions

This study aims to assess the underlying spatiotemporal

variability in rainfall using SVI applied to a semi-arid

region, which has been historically marked by severe and

sometimes multi-annual droughts. The results showed

lower variability in the State’s North Coast region at all

timescales and higher variability in the Eastern region for

most of the analyses. Although high variability was found

in areas with low rainfall amounts, this was not the case for

the whole State. Spatial distributions of seasonal entropies

revealed that the dry season contributes more to the annual

variability. This fact can be attributed to the propagation of

uncertainty due to the high spatiotemporal variability of the

State’s rainfall regime.

The rainfall variability pattern in the intra-annual anal-

ysis became more prominent as the timescales shifted.

Furthermore, due to significant uneven rainfall, the intra-

annual variability pattern can vary with timescales. Simi-

larly, the relative intra-annual variability for rainy days

showed that the rainfall was distributed across the year in

the monthly timescale. While, at a seasonal scale, rainfall

was concentrated only within a specified period. Thus,

multi-scales analyses are necessary for comprehending the

intra-annual variability of rainfall.

In the co-variability analysis, both rainfall and stream-

flow variability can be obtained to inferred regional

uncertainty of hydrological events. When comparing two

variability measures, the entropy-based method showed

that these variables vary similarly, while CV implied that

the streamflow varies much more at the annual timescale.

Thus, proper application of variability indices is needed to

draw more realistic assumptions regarding hydrological

variables’ variability. The trend test of SVIAE showed

stations with significant trends in the State’s Northern

region. Further, the State presented regions with an

increase in the variability of rainfall. Also, there was an

increase in variability amount and intensity throughout the

decades at the monthly and seasonal timescales. The

increase in variability over the State reveals the growth of

uncertainty intrinsic to hydrological variables over differ-

ent timescales. This information can be useful to improve

the planning and managing of water resources in the

region.

This study’s outcomes offer further evidence as to the

usefulness of the entropy-based methods for understanding

the spatiotemporal variability of hydrological variables,

such as rainfall, in the face of the occurrence of extreme

events. Potential future directions would be to consider

other entropy-based methods that incorporate rainfall and

streamflow simultaneously, allowing to determine whether

rainfall and streamflow carry the same information content

at different timescales.

Appendix

A—Mean Standard Error (MSE) and Mean Square Stan-

dard Error (MSSE) of the Kriging prediction for the dif-

ferent timescales.

Timescale of the data MSE MSSE

Annual SVIME 0.020 0.975

Mean Annual Rainfall 0.023 0.914

SVIME for January 0.014 0.958

SVIME for February -0.007 0.943

SVIME for March 0.005 1.076

SVIME for April 0.028 1.088

SVIME for May -0.001 1.018

SVIME for June 0.007 1.499

SVIME for July 0.007 1.122

SVIME for August 0.022 0.964

SVIME for September 0.030 0.967

SVIME for October -0.028 1.177

SVIME for November -0.019 1.057

SVIME for December 0.047 0.953

SVIME for the rainy season -0.017 0.990

SVIME for the dry season 0.015 1.009

Daily SVIAE 0.025 0.954

Monthly SVIAE 0.018 1.043

Seasonal SVIAE 0.031 1.426

Monthly SVIIE 0.067 1.098

Seasonal SVIIE -0.001 1.783

bFig. 12 Spatial pattern of meteorological stations that presented

significant trends based on Mann Kendall test for SVIAE at daily,

monthly, and seasonal timescales. The figures on the left show the

location of the stations, and the figures on the right present the

magnitude of the significant trend at the three timescales analyzed

Table 5 Mean values of standardized variability index for marginal

entropy (SVIME) and the coefficient of variation (CV) for the annual

and rainy and dry season rainfall and streamflow for station 16

Rainfall Streamflow

Annual Rainy Dry Annual Rainy Dry

SVIME 0.363 0.20 0.80 0.328 0.41 0.52

CV (%) 39.9 94.1 279.23 336.1 218.8 132.22
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