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A B S T R A C T   

The research presents a multisite annual streamflow generation model that combines the Generalized Linear 
Model (GLM), for determining the temporal structure, with copulas, for modelling the spatial dependence joint 
distributions. The performance of the GLM-Copula model was verified by comparing its ability to preserve 
historical features and simulate drought events with the multivariate auto regressive moving average (ARMA) 
model and the copula autoregressive (COPAR) model. The statistical measures adopted for the models’ perfor-
mance evaluation include summary statistics (mean, standard deviation, maximum, minimum and skewness 
coefficient), temporal and spatial correlation, simulation of drought conditions (maximum number of years 
under drought condition) and copula entropy as a nonlinear measure of total association. The combined GLM- 
Copula model’s main advantages are that (i) it does not require data normalization; ii) it allows the modelling 
of the dependence structures with different probability functions; and (iii) it is capable of representing non- 
conventional parsimonious autocorrelation functions. The ability of the GLM-Copula approach to preserve the 
summary statistics from the historical data was similar to both benchmark models. However, the GLM-Copula 
was considerably better in reproducing the longest drought duration that was underestimated by the ARMA 
model and was better in reproducing the copula entropy than both benchmark models. The approach is proposed 
in its simplest form but can be easily upgraded by combining GLMs with numerical data or extended to predict 
future streamflow with the incorporation of exogenous climate variables that affect streamflow. The proposed 
model may be useful in future studies/applications where data normalization jeopardizes the replication of data 
or/and in drought dependent stochastic applications, like the definition of optimal operation rules of a perennial 
reservoir system or long-term hydropower dispatch.   

1. Introduction 

Synthetic streamflow time series generation has an important role in 
water resources planning and management. It is applied to the design of 
reservoir systems and to the definition of their optimal operation rules, 
to drought evaluation and to several other studies with a stochastic 
nature (McMahon et al., 2006; Rajagopalan et al., 2010; Salas and Lee, 
2010). For a correct application, the generated synthetic series must 
preserve key historical data characteristics, such as statistical moments 
and dependence structure (e.g. auto and cross-correlation) (Zachariah 
and Reddy, 2013). 

The classical methods for streamflow simulation, such as the ARMA 
models (Box and Jenkins, 1976), are based on rigid assumptions about 
the variables’ dependence and require them to follow a Gaussian dis-
tribution (Sharma and O’Neill, 2002; Prairie et al., 2006). However, 

some hydrological variables are significantly skewed which requires 
their normalization, i.e. their transformation into alternatives variables 
that satisfy those models’ assumptions (Salas et al., 1980; Salas, 1993). 
Most of those models’ drawbacks arise from their rigid assumptions (e.g. 
the Gaussian) and from the limitations of the data transformation 
techniques resulting in a lack of flexibility that may influence the 
preservation of the historical characteristics (Sharma et al., 1997; Prairie 
et al., 2006; Rajagopalan et al., 2010; Hao and Singh, 2011; Lee and 
Salas, 2011; Pereira et al., 2017). 

The stochastic streamflow simulation literature presents several non- 
Gaussian modeling alternatives. The most famous are the Lag-1 Gamma 
Autoregressive model (GAR-1) (Fernandez and Salas, 1990) and the 
nonparametric approaches such as the K-Nearest Neighbor method 
(KNN) (Lall and Sharma, 1996), and the Kernel Density Estimators 
(KDE) (Sharma et al., 1997; Sharma and O’Neill, 2002). However, these 
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alternative models have their own limitations. The GAR-1 also lacks 
flexibility and cannot model long term persistency. Furthermore, 
resampling methods, like the KNN, reproduce only the observed values 
and the KDE may not be applied to higher dimensions (Rajagopalan 
et al., 2010; Lee and Salas, 2011). 

Recently, copula based approaches have been applied to hydrologic 
time series generation (Lee and Salas, 2011; Zachariah and Reddy, 2013; 
Chen et al., 2015; Pereira et al., 2017). The copula methods are para-
metric approaches that model the dependence structure apart from the 
marginal distributions, which provides high flexibility by allowing the 
use of any marginal distributions. Lee and Salas (2011) compared the 
performance of a copula and an ARMA model applied to single site 

annual streamflow generation and showed the former had some bene-
fits, if small. 

Generalized Linear Models (GLMs), introduced by Nelder and Wed-
derburn (1972) as an extension of the classical linear regression model, 
are parsimonious parametric methods that allow the modelling of 
non-Gaussian variables (McCullagh and Nelder, 1989). As stated by 
Rajagopalan et al. (2010), GLM approaches may be reasonable alter-
natives to the traditional parametric methods due to their flexibility and 
capability to preserve different features of the historical series. 

The use of GLMs is recognized in hydrology for stochastic generation 
of daily weather variables, like precipitation, temperature and potential 
evapotranspiration (Chandler and Wheater, 2002; Chandler, 2005; Yang 

Fig. 1. The Jaguaribe-Metropolitano reservoir system in Ceará, Brazil.  
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et al., 2005; Wheater et al., 2005; Furrer and Katz, 2007; Kleiber et al., 
2012; Verdin et al., 2014). However, to the knowledge of the authors, 
GLMs have not yet been applied for streamflow stochastic generation. 

Thus, the first part of this research addresses the applicability of GLM 
to generate single site annual streamflow and compares its ability to 
model temporal dependence and preserve historical statistics against a 
traditional univariate autoregressive (AR) method. 

For multisite time series generation, GLM approaches require the 
specification of the joint probability distributions of the time series 
which is obtained from a spatial dependence modelling that respects the 
marginal distributions (Yang et al., 2005). However, modelling the 
spatial structure is a complex process that is often done in the GLM- 
based weather generators by multivariate Gaussian assumptions that 
may need data normalization, reducing the approach’s flexibility (Yang 
et al., 2005; Kleiber et al., 2012; Verdin et al., 2014). 

Meanwhile, high dimensional copulas (d ≥ 3) lose their flexibility to 
represent the dependence structures as there is a limited set of higher 
dimensional copula families (Kao and Govindaraju, 2008; Aas et al., 
2009; Hao and Singh, 2013). To overcome this limitation, recent copula 
times series models are mostly built from two approaches: i) vine cop-
ulas that decomposes the multidimensional problem into a sequence of 
bidimensional copulas (Brechmann and Czado, 2015; Pereira et al., 
2017; Wang et al., 2019) or ii) maximum entropy copula that based on 
the concept of maximum entropy distribution from the information 

theory can fit a flexible high dimensional copula (Hao and Singh, 2013, 
2015; Singh and Zhang, 2018;). However, the complexity and the 
computational burden grows quickly with the dimension for both en-
tropy and vine copula models (Hao and Singh, 2015; Pereira et al., 
2017). 

The second part of this research presents a multisite annual 
streamflow generation model that couples GLM and copula, the first to 
represent the temporal structure and the second, to model the spatial 
dependence (i.e. the joint distributions). Its performance to reproduce 
historical statistics and dependence structures is compared with the 
traditional multivariate ARMA model and the copula autoregressive 
(COPAR) model (Brechmann and Czado, 2015), a state-of-art copula 
time series model that extends the vine copula concept to model both 
spatial and temporal dependence. 

The proposed model exploits both methods’ flexibility and synergy: 
the copula provides a flexible way for estimating the joint distribution 
that GLM needs for multisite generation; while the GLM lowers the 
problem’s dimension and allows copula models to be applied without 
the need for normalized data. 

Despite the existence of several stochastic multisite streamflow time 
series generation methods, none is universally accepted (Srinivas and 
Srinivasan, 2005; Chen et al., 2015; Hao and Singh, 2016). In contrast, 
the proposed model allows us to model both spatial and temporal de-
pendencies without normalization, is computationally efficient and can 

Fig. 2. Temporal autocorrelation (top-left and bottom-right) and spatial cross-correlation (top-right and bottom-left) functions of the annual streamflow series of the 
JAG and MET equivalent reservoirs. The dashed lines represent the 95% confidence intervals. 
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be used as a dimensional reduction, for vine and maximum entropy 
copula practitioners, which we suggest justifies its addition to the time 
series generation toolbox. 

2. Case study, data and preliminary analysis 

In this paper, the Jaguaribe-Metropolitano reservoir system in Ceará 
State (Brazil), represented in Fig. 1, was selected as the multi-site syn-
thetic flow series generation case study, since the annual inflows at its 
seven reservoirs are highly variable and skewed (Souza Filho and Lall, 
2003). The annual inflow data to those reservoirs are available for the 
1912–2012 period (101 years) from Barros et al. (2013). 

The Jaguaribe-Metropolitano is the State’s greatest water 
impounding system and the most important water supply source. It 
comprises two different basins, the Jaguaribe and the Metropolitano 
basins, with 72,000 and 15,200 km2 respectively, that were artificially 
connected by channels allowing the latter to receive water from the 
former. Most of the system is located in a semiarid region with a highly 
variable annual streamflow, due to the temporal variability of the pre-
cipitation and the predominance of shallow soils (da Silva et al., 2017). 

The Jaguaribe basin covers approximately 48% of the State of Ceará 
and its main water use is irrigation which accounts for about 90% of the 
state agricultural production. Although the Metropolitano basin is 
smaller, comprising approximately 10% of the State area, it has a larger 
population and supplies water to the capital city (Fortaleza) and to its 

metropolitan region for domestic supply, industry, and tourism. The 
water demand in the Metropolitano basin is almost uniform throughout 
the year while the one in Jaguaribe basin is concentrated in the second 
semester due to the crop irrigation period (i.e. the dry station) (Souza 
Filho and Lall, 2003; da Silva et al., 2017). 

The system is composed of seven major reservoirs (from upstream to 
downstream): Orós, Castanhão, Banabuiú, Aracoiaba, Pacajus, Pacoti 
and Gavião. The first three are in the Jaguaribe basin and the last four 
are in the Metropolitano basin (total storage capacity of 10,240 and 871 
hm3, respectively) (Fig. 1). For water resources planning and manage-
ment purposes, the Jaguaribe-Metropolitano system can be represented 
as two equivalent reservoirs, one for each basin, located at the most 
downstream sections of the main rivers of Jaguaribe and the Metro-
politano basins, as illustrated in Fig. 1. In this research, the annual in-
flows to the Jaguaribe (JAG) and Metropolitano (MET) equivalent 
reservoirs were obtained by summing the annual inflows to each of their 
major component reservoirs. 

The temporal correlation and the spatial cross-correlation of the 
annual inflows series thus obtained for JAG and MET are characterized 
in Fig. 2 for lags 0 until 17. 

In spatial terms, there is a high lag-0 correlation (>0.8), as shown by 
the cross-correlation function, because the rainfall regime in both basins 
mainly relies on the same climatic process: the Intertropical Conver-
gence Zone (ITCZ) displacement (Moura and Shukla, 1981; Andreoli and 
Kayano, 2004; Wang et al., 2004). 

Fig. 3. Empirical and fitted probability density (PDF) and cumulative distribution (CDF) functions of the annual streamflow series at the JAG (top) and MET (bottom) 
equivalent reservoirs. Note that preferably Lognormal fits JAG and Gamma fits MET. 
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In temporal terms, both series present a short-term persistency 
pattern with a fast correlogram decay after the first lag. There is also a 
long-term dependence pattern with significant positive correlation co-
efficients for lags 10 and 11. The short memory pattern may be a result 
of low groundwater flow, since both basins are situated in a crystalline 
Precambrian basement with shallow soils and poor vegetation cover 
(Frischkorn et al., 2003; Alexandre et al., 2005; Barros et al., 2013). The 
long-term persistency may be related to a decadal sea surface temper-
ature variability in the Tropical Atlantic that influences the ITCZ loca-
tion (Andreoli and Kayano, 2004; Andreoli and Kayano, 2006). 

The empirical and fitted cumulative distribution functions (CDF) and 
probability density functions (PDF) of the annual flows at each equiv-
alent reservoir are shown in Fig. 3, showing convincing similarity both 
series are non-Gaussian and right-skewed. The inflows to JAG are close 
to a lognormal distribution and those to MET, to a gamma distribution. 
The selection of the best-fit distribution was based in the Anderson- 
Darling test for the maximum likelihood estimated parameters and the 
fit of the CDFs is remarkably good throughout the range of data. 

3. Background and methodology 

3.1. Generalized linear models 

The classical linear regression model is defined as: 

yi = α+ βxi + εiεi N
(
0, σ2)i = 1,⋯, n (1) 

where, yi is each value of the response variable, α is the intercept, β is 
a vector of parameters, xi is the vector of predictors and ε is a normally 
distributed error (Salas et al., 1980). 

Equation (1) can be rewritten in the following form (Fahrmeir and 
Tutz, 2001): 

yi N
(
μi, σ2)ηi = α+ βxiηi= g(μi)i = 1,⋯, n (2) 

where, μi is the expectation of yi, ηi is a linear predictor, g(∙) is the 
function that links the expectation of the response variable with the 
predictors (i.e. a link function). The link function is equal to the identity 
in the model described by Eq. (1). 

The model described by Eq. (2) can be extended to a more general 

case (GLMs) with the assumption that each yi has a distribution in the 
exponential family with expectation E(yi| xi) = μi, a common dispersion 
parameter ϕ independent of i and function of the response variable 
variance (Fahrmeir and Tutz, 2001). The density function of these dis-
tributions is: 

f (yi|θi,ϕ) = exp
{

yiθi − b(θi)

a(ϕ)
+ c(yi,ϕ)

}

(3) 

where, θi is the natural parameter (dependent on μi), a(∙), b(∙) and c 
(∙) are specific functions related to the type of exponential family. 

The exponential family comprises some famous continuous (e.g. 
Normal, Lognormal and Gamma) and discrete (e.g. Poisson and Ber-
noulli) distributions and the link between its expectation and the linear 
predictors may be represented by any monotonic differentiable function 
(McCullagh and Nelder, 1989). Hence, the flexibility of GLMs to model 
different types of data (e.g. continuous, discrete and categorical) and 
Gaussian and non-Gaussian patterns. 

Although the GLMs were proposed to model independent variables, 
they can be extended to time series with lags as covariates (Fahrmeir and 
Tutz, 2001; Chandler, 2005). A more detailed description of the GLMs 
theory is in McCullagh and Nelder (1989) and Fahrmeir and Tutz 
(2001). 

3.2. Bivariate copulas 

Copulas are parametric functions that are able to combine marginal 
distributions into a multivariate distribution function. The copula 
concept allows flexibility to choose the univariate marginal distributions 
due to its dependence structure that sits within alternative variables that 
are uniform in the unit square and correspond to the values of the uni-
variate cumulative distributions (Nelsen, 2006). 

According to Sklar’s theorem (Sklar, 1959), a bivariate distribution 
function F(x, y) of two correlated random variables X and Y with 
respective marginal cumulative distributions F(x) and F(y), can be 
defined as a copula C: 

F(x, y) = C(F(x),F(y) ) = C(u, v) (4) 

where u and v are uniform and defined in the [0,1] interval and refer 

Fig. 4. Flowchart of the GLM-Copula annual streamflow generation procedure.  
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to the values of F(x) and F(y), respectively. 
Besides their marginal distribution flexibility, copulas can capture 

non-linear dependence features, their parameters can be estimated by 
maximum likelihood and there is a wide range of copula families (e.g. 
Normal, Frank, Gumbel, Clayton) which allows versatility in the 
dependence structure modelling as well. Some copula families’ de-
scriptions, their formulation and parameter estimation methods can be 
found in Joe (1997), Nelsen (2006) and Joe (2014). 

There are copulas defined for more than two variables; however 
higher dimension copulas are simply one parameter constructs and 
result in loss of flexibility and rigid dependence assumptions. It is better 
to model the joint distributions as a sequence of bivariate copulas (i.e. 
the vine copula method). Some are applied to pairs of univariate margins 
and others applied to pairs of univariate conditional distributions (Aas 
et al., 2009; Joe, 2014). Still, the number of parameters grows expo-
nentially with the number of variables in the vine copula approach. 
Fortunately, we are only dealing with a pair of time series. 

3.3. GLM single site streamflow simulation 

The annual streamflow time series for each site is modelled as a 
univariate GLM with constant variance and the annual streamflow lags 
with significant correlations (1st,10th,11th) as covariates (Fig. 2). The 
inflows to JAG were sampled from a Lognormal distribution with 
identity link and those to MET, from a Gamma with log link (Fig. 3). 
These models can be described as: 

f (JAGt)Lognormal
(
μ1,t,σ2

1

)
g(μ1,t)=β1,0+β1,1JAGt− 1+β1,2JAGt− 10+β1,3JAGt− 11

(5)   

f (METt)Gamma
(
μ2,t,σ2

2

)
h(μ2,t)=β2,0+β2,1METt− 1+β2,2METt− 10+β2,3METt− 11

(6) 

where JAGt and METt are each equivalent reservoir time series, t is 
the time, μ1,t and μ2,t are each series expected values for time t, g(∙) and h 
(∙) are the link functions identity and log respectively, σ1

2 and σ2
2 are the 

series variance and β1,i and β2,i (i = 1,2,…,number of covariates + 1) are 
each series GLM parameters. 

Maximum likelihood GLM parameter estimates are obtained using 
iterative weighted least squares (McCullagh and Nelder, 1989). This 
procedure was carried out using the ‘base’ stats package from the R 
programming language (R Core Team, 2013). 

3.4. Copula GLM multisite streamflow simulation 

The joint distribution of both sites’ times series is modelled as a 
bivariate copula: 

F(JAGt ≤ jagt,METt ≤ mett) = C(F(JAGt),F(METt) ) = C(u, v) (7) 

This model assumes that the spatial relation between inflows to JAG 
and MET is temporally stationary. Also, u and v, the marginal’s CDFs 
values, are random variables uniformly distributed between zero and 
one. 

To obtain the random values (u,v), one of the variables may be 
sampled from the uniform distribution, while the other from the con-
ditional bivariate copula distribution that can be defined as a function of 
the joint distribution: 

F(v|u) = C(v|u) =
∂C(u, v)

∂u
(8) 

The selection of the copula family and parameters estimation was 

Fig. 5. Comparison, for both equivalent reservoirs (JAG and MET), of some of the annual statistics of the historical series and of the synthetic series obtained by the 
GLM and AR models. The box ranges from the first to the third quartile and the whiskers have maximum length of 1.5 × IQR (interquartile range). 

V.C. Porto et al.                                                                                                                                                                                                                                 



Journal of Hydrology 598 (2021) 126226

7

done with the ‘VineCopula’ R-package (Schepsmeier et al., 2018). The 
package estimates the parameters for different copula families, using the 
Maximum Likelihood method and then selects the family with the lowest 
Akaike Information Criterion (AIC); it also verifies the performance of 
the fit by the reproduction of the Kendall τ correlation coefficient. 

Also, a verification of the copula’s tail asymmetry is carried out with 

the lower (ϱL) and upper (ϱU) tail-weighted bivariate measures of 
dependence proposed by Krupskii and Joe (2015). The two measures are 
defined as: 

ϱL(a, p) = Cor
[

a
(

1 −
u
p

)

, a
(

1 −
v
p

) ⃒
⃒
⃒
⃒u < p, v < p

]

(9) 

Fig. 6. Comparison, for both equivalent reservoirs (JAG and MET) of the annual autocorrelation function of the historical series and of the univariate synthetic series 
obtained by the GLM (top) and AR (bottom) models. The boxes range from the first to the third quartile and the whiskers have maximum length of 1.5 × IQR 
(interquartile range). 

Table 1 
Copula families applied to model the joint distribution of the annual flows at the JAG and MET equivalent reservoirs. Estimated parameters, tail-weighted dependence 
metrics and fit performance. Ordered from lowest to highest AIC values. Note that the BB1 copula is the one, with asymmetry towards the lower tail (ϱL > ϱU), that is 
closest to the observed data.  

Copula Parameters names Parameters values Kendall τ AIC ϱL ϱU 

Observed Data – –  0.67 –  0.81  0.64 
Gaussian ρ 0.85  0.65 − 111.76  0.67  0.67 
Student t ρ; ν 0.85; 30  0.64 − 109.21  0.68  0.68 
BB1 θ; δ 0.73; 1.93  0.62 − 105.92  0.76  0.65 
Rotated Gumbel (180◦) δ 2.6  0.62 − 105.49  0.81  0.50 
Frank δ 8.95  0.64 − 99.66  0.41  0.50 
Gumbel δ 2.52  0.60 − 97.70  0.47  0.76 
Clayton δ 2.31  0.54 − 90.4  0.84  0.17 
Joe δ 2.87  0.50 − 73.56  0.10  0.78  
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ϱU(a, p) = Cor
[

a
(

1 −
1 − u

p

)

, a
(

1 −
1 − v

p

) ⃒
⃒
⃒
⃒1 − u < p, 1 − v < p

]

(10) 

Where a(∙) is a monotonic increasing function in the [0,1] domain 
and p is the truncation level with values in the (0,0.5] interval. The 
monotonic increasing function and truncation level used were respec-
tively a(x) = x^6 and p = 0.5 as recommended by Krupskii and Joe 
(2015). 

Equations (7) and (8) provide only the spatial correlation structure. 
The temporal dependence is modelled, within each series marginal 
distribution, as the single site GLMs described by Eqs. (5) and (6). Thus, 
after ut and vt (spatially correlated variables) are sampled, JAG’t and 
MET’t (temporally and spatially correlated variables) can be determined 
by the inverse of the respective GLM’s CDF. 

3.5. Generation algorithm 

The proposed multivariate annual streamflow simulation procedure 
is detailed in Fig. 4. It can be described as an eight-step process:  

i The probability distributions of the annual inflow series at the 
equivalent reservoirs are evaluated to select the respective best fit 
exponential functions and the lags with relevant correlation co-
efficients that should compose the covariates.  

ii The temporal dependence is modelled as described by Eqs. (5) 
and (6) by fitting univariate GLMs with the covariates and 
exponential distributions selected for each series (marginal dis-
tributions) in step i. 

iii The uniform u-v variables are calculated from the estimated ex-
pectations and the GLMs’ CDFs at each time position.  

iv The spatial correlation structure is established by fitting a copula 
distribution between the observed u-v uniform variables. 

v After modelling both dependence structures, the random simu-
lation starts with the generation of n (the length of the synthetic 
time series) random u from the uniform [0,1] distribution and 
then n random v are drawn from the bivariate copula conditional 
distribution (Eq. (8)). 

vi The first (t = 1) synthetic generated ut-vt pair (spatially corre-
lated) is transformed into the JAG’t and MET’t synthetic stream-
flow pair (temporally and spatially correlated) by the inverse of 
the marginals GLMs’ CDF with expectations determined from the 
set of covariates (lags) values (the initial set may be a random 
sample from the historical series).  

vii The set of covariates values is updated with the generated JAG’t 
and MET’t.  

viii The time position is updated (t = t + 1) and the steps vi and vii are 
repeated for the next ut-vt pairs until all pairs are transformed 
into the synthetic generated streamflow series (t = n). 

3.6. Performance assessment 

In order to demonstrate the performance of the single site GLM and 
of the multisite GLM Copula annual streamflow time series stochastic 
simulation models, their efficiency is compared respectively to univar-
iate autoregressive (AR) and multivariate ARMA models described by 
Salas et al. (1980). The multisite GLM Copula is also compared to the 
state-of-art copula model, COPAR. The synthetic replicates from the 
stochastic models should preserve the statistical characteristics (i.e. 
mean, standard deviation and skewness) and the dependence structures 
(Srivastav and Simonovic, 2014). 

The univariate AR and the multivariate ARMA models were fitted to 
the normalized JAG and MET inflow series. The data normalization was 
done using the Box-Cox power transformation. The fitting and sampling 
procedures were carried out with the R MARIMA package (Spliid, 2017). 
The first order univariate AR and the (1,1) order multivariate ARMA 
were selected since they resulted in the lowest AIC values. 

The COPAR model (Brechmann and Czado, 2015) applies the Vine 
Copula theory (Aas et al., 2009) to model both serial and cross-sectional 
dependences. Vine copulas are based on the decomposition of the 
multivariate copula density into a product of bivariate copulas, also 
called pair copula construction. 

In this paper, a first order COPAR (1) model is chosen as benchmark. 
It was reproduced through the original algorithm described in Brech-
mann and Czado (2015). The application of the COPAR (1) to the case 

Fig. 7. BB1 copula simulation versus observed data scatterplots (left) and BB1 copula joint probability distribution function contour plot (right). Both plots are in the 
[0,1] uniform space. 
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study time series required the sequential fitting of five bivariate copulas: 
C(JAGt, JAGt-1), C(JAGt, METt), C(JAGt-1, METt | JAGt), C(METt-1, JAGt | 
JAGt-1) and C(METt-1, METt | JAGt-1, JAGt). 

The families and parameters of each of the bivariate copulas were 
estimated using the Two-Stage Maximum Likelihood Estimation method 
where the parameters of marginal distributions are initially estimated 
and then the parameters of the copula function are estimated using 
Maximum Likelihood with the marginals computed from the previously 
fitted marginal distributions (Singh and Zhang, 2018). The fitting and 
simulation procedures of the COPAR model were carried out with 
functions from the ‘VineCopula’ R-package. 

One hundred synthetic annual streamflow series (runs) with the 
same length as the observed series (n = 101 years) are generated by each 
model and their statistical characteristics and dependence structures are 
compared graphically based on boxplots against the historical data. A 
historical series behavior is judged to be preserved by the synthetic se-
ries when its values lie within the box (Salas and Lee, 2010; Lee and 
Salas, 2011; Hao and Singh, 2013). The use of one hundred runs is in 
accordance with the streamflow simulation literature (Lee and Salas, 
2011; Hao and Singh, 2013; Srivastav and Simonovic, 2014). 

As a nonlinear measure of performance, the copula entropy (CE) of 
the observed variables (JAGt, JAGt-1, METt, METt-1) was compared to the 
CE of the model’s synthetic series. Based on the definition of Shannon’s 
Entropy (Shannon, 1948), Ma and Sun (2011) proposed the copula en-
tropy as the entropy of the copula function and showed its relation with 
joint and marginal entropy. They also proved the equivalence between 
the negative of CE and mutual information (MI). 

MI is a traditional non-linear measure of the dependences/associa-
tion between random variables based on entropy theory (Cover and 
Thomas, 1991). However, the estimation of MI for more than two var-
iables is a hard task, while CE just requires the variables copula joint 
distribution (Alpettiyil Krishnankutty et al., 2020). Thus, CE is a useful 
multivariate estimator of MI. 

CE has been used to measure the association between stock market 
variables (Zhao and Lin, 2011), multiple degradation processes (Sun 
et al., 2019) and river flows (Chen et al., 2013). It was also used as a 
performance measure in feature selection for rainfall-runoff modeling 
and drought prediction (Chen et al., 2014; Huang and Zhang, 2019) and 
in selecting vine copula structure for multisite streamflow simulation (Ni 
et al., 2020). 

Fig. 8. Temporal and spatial dependency structures scatterplot, 100 points of observed data (red circles) and 10,000 points of simulated data (black crosses) from the 
GLM-Copula multivariate model. The panels in the off-diagonal show the relationships between the classifications on the diagonal blocks. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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In this research, the copula entropy of the observed data and the 
resulted from the synthetic time series were calculated through the 
‘copent’ R package (Ma, 2020) which calculates CE through a 
nonparametric estimation of the copula function. 

As a practical exercise, we also analyzed the performance of the 
models to simulate drought conditions, simply understood as being 
below average conditions. For this purpose, in each case study, the years 
with annual flows below the respective historical mean were assigned to 
drought conditions. 

The maximum number of consecutive years under drought condi-
tions (i.e. the longest drought period) in each of the one hundred syn-
thetic series of the GLM-Copula, ARMA and COPAR models were 
compared to the longest drought period of the historical series. The 
longest period under drought conditions is a relevant constraint in the 
design and in the operation of the artificial reservoirs. 

4. Results 

4.1. GLM single site streamflow simulation 

The ability of the single site GLM and AR methods to preserve the 
historical statistics and temporal dependence structures is presented 
respectively in Figs. 5 and 6. For this purpose and like all the other 
figures, boxplots were drawn of the generated values of the annual 

statistics and these were compared with the historical statistics. For the 
boxplots, the whiskers have maximum length of 1.5 × IQR (interquartile 
range) and the values outside the whiskers are considered to be outliers 
(Robbins, 2004). 

Fig. 5 shows that all the historical statistics are well reproduced by 
both methods except for the standard deviation of the inflows to MET 
from the GLM model and for the minimum of the inflows to JAG from 
the AR model. Individually, the GLM reproduced better the minimum 
and the skewness coefficient, the first since the AR model under-
estimated the minimum of both series and the latter may be due to not 
requiring data normalization. Also, the methods were better in repro-
ducing the maxima than the minima and, overall, presented the same 
performance in both JAG and MET regarding the replication of the 
sample statistics. 

From the autocorrelation function (ACF) analysis in Fig. 6, both 
methods were similarly efficient in representing the first lag autocor-
relation (the short-term temporal dependence) and also had similar 
dispersions. The GLM also depicted the long-term dependence peak at 
the 10th and 11th lags, however with better performance for the MET 
inflow series (gamma distribution). An interesting advantage presented 
by the GLM series is that their ACF is not represented as an exponential 
decay like the autoregressive models but instead it is able to capture the 
lagged correlations used as covariates (1st,10th and 11th). Thus, the 
GLM can be applied to mimic some complex ACF designs by considering 

Fig. 9. Comparison, for both equivalent reservoirs (JAG and MET), of some of the annual statistics of the historical series and of the synthetic series obtained by the 
multivariate GLM-Copula, ARMA and COPAR models. The boxes range from the first to the third quartile and the whiskers have maximum length of 1.5 × IQR 
(interquartile range). 
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a larger set of lags as covariates. However, the increase of the set of 
covariates increases the number of parameters and reduces the parsi-
mony of the model which can be a drawback depending on the ratio 
between the length of the observed series and the number of parameters. 

4.2. GLM copula multisite streamflow simulation 

4.2.1. Copula fitting and family selection 
Table 1 presents the estimated parameters, the tail-weighted 

dependence metrics (ϱL, ϱU) and the performance metrics of different 
copula families to model the joint distribution of the annual inflows at 
JAG and MET equivalent reservoirs. The Kendall τ is a nonlinear mea-
sure of correlation between two series. 

The copula family defines how the joint distribution is modeled. For 
instance, the Gaussian copula represents the joint distribution with the 
same association intensity despite the values, while the Gumbel copula 
has a higher association for large values and the Clayton copula for 
lower values. The Frank copula has a high association for the middle 
values and low in the extremes (Lee and Salas, 2008). More details of the 
tested copula families can be found in Nelsen (2006) and Joe (2014). 

Copula tail asymmetry can be inferred from the ϱL and ϱU values: i) if 
ϱL is stronger than ϱU then the joint probability distribution might have 
greater values in the joint lower tail, i.e. there is tail asymmetry toward 
the joint lower tail; ii) if ϱL is weaker than ϱU then the joint probability 
distribution might have greater values in the joint upper tail, i.e. there is 

tail asymmetry toward the joint upper tail; iii) if ϱL is about equal ϱU then 
the joint probability distribution values in both tails might be similar, i. 
e. there is no tail asymmetry. With these definitions, it is possible to 
understand the tail asymmetry of the observed data and of each of the 
fitted copulas presented in the Table 1. 

The Gaussian and Student copulas presented the minima AIC values 
and the Kendall τ values closest to the observed. However, as the 
observed data presented a small tail asymmetry towards the lower joint 
tail, symmetrical copulas like the Gaussian and Student t copulas might 
not be the best suited to model the observed data. Therefore, the BB1 
copula, which is the fitted copula with asymmetry towards the lower tail 
that presented the lowest AIC value, was the copula selected to model 
the spatial dependence for the case study. 

Fig. 7 illustrates the scatterplot of 300 random uniform pairs (F 
(JAG), F(MET)) simulated from the BB1 copula versus the observed 
values. It also depicts the contour plot of the BB1 copula joint probability 
distribution values. Fig. 7 shows that dependence structure was well 
preserved by the BB1 copula. 

4.2.2. Preservation of the dependency structure and historical statistics 
Fig. 8 presents, as an illustration of the dependency structure, the 

pair plot of the JAGt, JAGt-1, METt, METt-1 variables for the observed data 
and for the synthetic series generated by the GLM-Copula model. The 
GLM-Copula model visually reproduced the dependency structure of the 
observed variables. 

Fig. 10. Comparison, for both equivalent reservoirs (JAG and MET) of the annual auto and cross-correlation functions of the historical series and of the multivariate 
synthetic series obtained by the GLM-Copula model. The boxes range from the first to the third quartile and the whiskers have maximum length of 1.5 × IQR 
(interquartile range). 
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For both equivalent reservoirs, Figs. 9–11 compare some statistical 
characteristics of the historical series with those related to the depen-
dence structure of the synthetic annual flow series generated by the 
GLM-Copula, ARMA and COPAR multivariate models. 

All three methods were able to reproduce the historical statistics with 
similar efficiency. Like the univariate case, the GLM based model carried 
out the skewness coefficient better than ARMA and the ARMA model 
underestimated the minimum values. 

From the auto and cross-correlation functions, Figs. 10–12 for the 
GLM-Copula, ARMA and COPAR models respectively, the methods 
represented the short-term dependence structure, i.e. the first lag 
autocorrelation (temporal dependence) and the lag 0 cross-correlation 
(spatial dependence), with matched efficiency and spreads. 

Like the univariate GLM model, the GLM-Copula model also has the 
ability to represent the long terms dependencies as its correlation 

function do not necessarily follow an exponential decay (Fig. 10), which 
is not the case of the ARMA model regarding the long-term dependencies 
(Fig. 11). Thus, the proposed model showed the same performance in 
representing the short-term dependencies than the ARMA and COPAR 
models, while having the advantage over ARMA of being flexible and 
intuitive to depict isolated peaks in the auto and cross-correlation 
functions by choosing the appropriate lags as covariates and being 
simpler than the COPAR model. 

The relative errors (Eq. (11)) of the statistical characteristics between 
the synthetic and the historical series were computed as another per-
formance measure (Silva and Portela, 2012) and are presented in 
Table 2. 

Relativeerror(%) =
Gen − Hist

Hist
x100 (11) 

where Gen denotes the mean of the 100 statistics estimated from the 

Fig. 11. Comparison, for both equivalent reservoirs (JAG and MET) of the annual auto and cross-correlation functions of the historical series and of the multivariate 
synthetic series obtained by the ARMA model. The boxes range from the first to the third quartile and the whiskers have maximum length of 1.5 × IQR (inter-
quartile range). 
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generated synthetic series and Hist the same statistic estimated from the 
corresponding historical sample. 

The results of Table 2 corroborate those denoted by the previous 
boxplots and are not conclusive as to whether there is a better model for 
simulating annual streamflow when comparing the preservation of 
historical statistics. However, it can be noticed that GLM-Copula was the 
best in reproducing the temporal dependence statistic for both series 
which is likely to be due to the GLM’s margin modeling. In contrast, the 
GLM-Copula was the worst in reproducing the spatial dependence 
statistics. 

In comparison to the ARMA model, the GLM-Copula reproduced the 
Skewness better for both series while being worse reproducing the mean. 
By comparing GLM-Copula and COPAR, it can be noticed that the former 
was better in reproducing JAG statistics while the latter was better in 
reproducing MET’s, which also happened in the comparison between 
ARMA and COPAR. 

Fig. 13 presents the comparison of the copula entropy for the original 

data and the models’ synthetic series as a nonlinear measure of total 
association between the variables (JAGt, JAGt-1, METt, METt-1). It shows 
that the three models resulted in higher association than the observed 
data and that the GLM-Copula model was the closest to the observed 
total association and reasonable better than both benchmark models. 

4.2.3. Drought conditions 
In Fig. 14, the longest drought period from each of the synthetic 

series are compared with the historical values. Although the methods 
applied matched performance in reproducing the historical statistics, 
the GLM-Copula model was significantly superior in simulating drought 
duration for the JAG inflow series, however with greater spreads. The 
ARMA longest drought showed lower durations than the GLM-Copula’s 
and led to an underestimation in the JAG series. Both copula models 
(GLM-Copula and COPAR) were better than ARMA in this criterion for 
both series. For MET, the GLM-Copula and the COPAR presented 
matched performance while ARMA was slightly worse. 

Fig. 12. Comparison, for both equivalent reservoirs (JAG and MET) of the annual auto and cross-correlation functions of the historical series and of the multivariate 
synthetic series obtained by the COPAR model. The boxes range from the first to the third quartile and the whiskers have maximum length of 1.5 × IQR (inter-
quartile range). 

Table 2 
Relative errors of the annual parameters and historical values for both equivalent reservoirs. The values in bold identify the criterion with the best performance.  

Statistics JAG – Relative error % MET – Relative error % Historical values 

GLM-Copula ARMA COPAR GLM-Copula ARMA COPAR JAG MET 

Mean − 4.09  1.01  2.71 − 6.03  1.18  0.80  2007.91  896.24 
Standard deviation ¡1.35  − 1.42  14.31 − 10.42  5.63  ¡0.17  1719.42  717.27 
Maximum 2.02  1.20  25.89 − 14.79  10.15  ¡2.59  9751.80  3841.52 
Minimum 24.25  − 15.71  12.49 ¡3.8  − 17.66  − 38.92  176.38  56.13 
Skewness 2.08  − 6.84  16.94 − 11.86  16.30  ¡7.31  2.11  1.55 
Lag-1 auto-correlation ¡1.59  − 8.73  18.46 ¡1.74  − 14.07  2.54  0.29  0.24 
Lag-0 cross-correlation − 8.32  1.76  ¡0.57 – 0.85  
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While the greater dispersion presented by the GLM-Copula and 
COPAR time series models would not be a problem in the stochastic 
optimization of the reservoir system operation rules, the use of the 
ARMA generated series would imply a false higher water availability for 
the JAG series, increasing the vulnerability of the system to longer 
droughts and the risk of water shortage due to the pluriannual charac-
teristic of the reservoirs. 

5. Summary and conclusions 

This paper presents the implementation of a new multisite stochastic 
annual streamflow simulation approach based on the combination of 
bivariate copulas (spatial dependence) and Generalized Linear Models 
(temporal dependence). This research also brought a simple application 
of GLM to generate univariate streamflow time series. The authors 

believe this work is the first research to apply Generalized Linear Models 
to stochastic streamflow simulation. 

The GLM-Copula time series model efficiently exploits synergies and 
the flexibility of both techniques and its main advantages are that they:  

i Do not require data normalization, hence the GLMs flexibility to deal 
with any exponential family distribution.  

ii Have capacity to represent non-conventional long-term ACF designs 
intuitively by just considering significant lags as covariates of the 
GLMs.  

iii And have flexibility to model spatial dependence by defining the 
copula family 

The results showed that the GLM-Copula approach ability to preserve 
summary statistics from the historical data was similar to the classical 

Fig. 13. Comparison of the copula entropy (CE) for the observed data and the synthetic series obtained by the multivariate GLM-Copula, ARMA and COPAR models. 
The boxes range from the first to the third quartile and the whiskers have maximum length of 1.5 × IQR (interquartile range). 

Fig. 14. Maximum drought duration comparison for both equivalent reservoirs (JAG and MET) of the historical and of the multivariate synthetic time series 
generated by the GLM-Copula, ARMA and COPAR models. The boxes range from the first to the third quartile and the whiskers have maximum length of 1.5 × IQR 
(interquartile range). 
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multivariate ARMA and the state-of-art COPAR models. For the de-
pendency structures, the GLM-Copula reproduced what was narrowly 
the best in reproducing the short-term temporal dependence (lag-1 
autocorrelation), narrowly the worst in reproducing the spatial depen-
dence (lag-0 cross-correlation) and reasonable the best in reproducing 
the total association (copula entropy). Thus, the proposed GLM-Copula 
model can be an alternative with matched, if not better, performance 
when compared to the existing time series simulation methods. 

In comparison with the ARMA model, the GLM-Copula was better in 
reproducing both the skewness coefficient and the maximum drought 
duration, and the latter was underestimated by the ARMA model. 
COPAR was also better reproducing the maximum drought duration 
than the ARMA model. 

These results are similar to those obtained by other copula approach 
studies of skewness coefficient replication (Lee and Salas, 2011; Chen 
et al., 2019) and for drought representation (Lee and Salas, 2011). 
Although Lee and Salas (2011) considered these results as “marginal 
benefits”, we suggest that in both works it is clear that the ARMA models 
lead to an underestimation of drought conditions while the copula-based 
models do not. For an underdeveloped semiarid region like that 
considered in the case study, water resources planning with misleading 
drought information could result in heavy economical losses. Thus, the 
copula based GLM-Copula and COPAR synthetic series are preferable to 
those resulting from the ARMA model in drought dependent stochastic 
applications. In addition, the better reproduction of the skewness coef-
ficient might be related to the lack of data normalization. Thus, GLM or 
copula based methods like the GLM-Copula are flexible parametric ap-
proaches that can be applied even when data normalization fails. 

Compared to the COPAR model, the GLM-Copula has the advantages 
of being simpler and reducing the computational burden for multisite 
and/or greater-than-one lag applications, while maintaining the flexi-
bility of the marginal distributions modeling. The main drawback is that 
it does not model the temporal dependence nonlinearly. 

Despite the existence of multiple time series simulation methods, this 
research showed that there is still space for improvement. The proposed 
method is intuitive, robust, requires low computational effort and can be 
easily replicated with open-source R packages. Therefore, the authors 
consider that the proposed model might be useful in future studies/ap-
plications due to its flexibility and the solid results presented. 

The model was created in its simplest form and due to its flexibility, 
can be easily extended by combining Generalized Linear Models with 
numerical data or by extending them to include exogenous climate 
variables that affect streamflow. The extension of the GLM-Copula to 
higher dimensions (more than two spatially dependent time series) is 
straightforward by combining GLMs for temporal dependence modeling 
with vine or maximum entropy copulas for spatial dependence 
modeling. Modeling temporal dependencies in combinationwith GLMs 
would soften the curse of dimensionality in vine and maximum entropy 
copulas applications. 
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