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“Predicting the future isn’t magic, it’s artificial

intelligence.”

(Dave Waters)



ABSTRACT

Due to the rapid technological growth worldwide, manufacturing sectors are becoming increas-

ingly demanding in terms of the effectiveness of their solutions. As a result, companies are

leveraging innovations and advanced technologies to meet market demands. Among them,

welding can be highlighted, as a process that is continuously studied and presents a series of

problems to be solved for the design and manufacturing community. Fusion welding is one of

the categories of these processes existing in the literature, in which the union of materials is

performed through the fusion of elements. The level of energy involved in this process can cause

damage to the resulting structure if it is not properly treated or controlled. Investigating the

variables that influence the process and analyzing the generated temperature fields are useful

measures to prevent these problems. Numerical simulation is a tool frequently used in scientific

and technological research, seeking to reduce the costs of experimental development, presenting

highly precise results comparable to experimental ones. In the same sense, the field of artifi-

cial intelligence, with deep learning algorithms, has been widely used with great efficiency in

prediction and low computational costs. Therefore, this study aims to use the Element-based

Finite Volume Method (EbFVM) to perform numerical simulations and evaluate the thermal

behavior of the Tungsten Inert Gas (TIG) autogenous welding process in austenitic stainless

steels. The study also uses deep learning networks to predict the thermal cycles generated during

the process. In addition, a comparison will be made between the experimental results in the

literature with the numerical simulations and predictions obtained through deep learning. Based

on the comparisons made, it is concluded that the applied methodologies were highly efficient in

understanding the welding process behavior. This strategy proves to be an excellent option for

future studies in the area.

Keywords: tig welding; austenitic stainless steel; numerical simulation; ebfvm; deep learning;



RESUMO

Devido ao rápido crescimento tecnológico em todo o mundo, os setores de fabricação estão se

tornando cada vez mais exigentes em relação à eficácia de suas soluções. Como resultado, as

empresas estão se alavancando em busca de inovações e tecnologias avançadas para atender

às demandas do mercado. Dentre eles, pode-se destacar a soldagem, um processo que é con-

tinuamente estudado e apresenta uma série de problemas a serem resolvidos para comunidade

de projeto e fabricação. Soldagem por fusão é uma das categorias desses processos existentes

na literatura, na qual é realizado a união de materiais através da fusão dos elementos. O nível

de energia envolvido nesse processo pode causar danos à estrutura resultante, caso não seja

adequadamente tratado ou controlado. Investigar as variáveis que influenciam o processo e

analisar os campos de temperatura gerados são medidas úteis para se prevenir quanto a esses

problemas. A simulação numérica é uma ferramenta frequentemente utilizada em pesquisas

científicas e tecnológicas, que busca reduzir os custos do desenvolvimento experimental, ap-

resentando resultados altamente precisos comparáveis aos experimentais. No mesmo sentido,

área de inteligencia artificial, com algoritmos de aprendizado profundo, vem sendo bastante

utilizada com uma ótima eficiência de previsão e baixos custos computacionais. Sendo assim,

este estudo tem como objetivo utilizar o Método de Volumes Finitos Baseado em Elementos

(EbFVM) para realizar simulações numéricas e avaliar o comportamento térmico do processo de

soldagem TIG autógeno em aços inoxidáveis austeníticos. O estudo também busca prever os

ciclos térmicos gerados durante o processo, utilizando redes de aprendizado profundo. Além

disso, será realizada uma comparação entre os resultados experimentais da literatura com as

simulações numéricas e previsões obtidas por meio do aprendizado profundo. Com base nas

comparações realizadas, conclui-se que as metodologias aplicadas foram altamente eficientes

na compreensão do comportamento do processo de soldagem. Essa estratégia se mostra uma

excelente opção para estudos futuros na área.

Palavras-chave: soldagem tig; aço inoxidável austenítico; simulação numérica; ebfvm; apren-

dizado profundo;



LIST OF FIGURES

Figure 1 – Basic and derived groups of stainless steel alloys. . . . . . . . . . . . . . . 22

Figure 2 – Austenitic stainless steels family. . . . . . . . . . . . . . . . . . . . . . . . 24

Figure 3 – Some important welding processes. . . . . . . . . . . . . . . . . . . . . . . 25

Figure 4 – The TIG process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 5 – Comparison between Ar and He gases. . . . . . . . . . . . . . . . . . . . . 28

Figure 6 – Schematic diagram of TIG welding equipment. . . . . . . . . . . . . . . . . 29

Figure 7 – Classical CWM modelling scheme of fusion welding without a welding

process model and without fluid flow. . . . . . . . . . . . . . . . . . . . . . 30

Figure 8 – Temperature and heating/cooling rate as functions of time for a point. . . . . 33

Figure 9 – (a) Finite difference and (b) finite element discretization of arbitrary object. . 34

Figure 10 – This figure illustrates the structured mesh used to analyze two discretization

methods: (a) the finite element method and (b) the finite volume method. . . 35

Figure 11 – EbFVM discretization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 12 – Data splitting in five-fold cross-validation. . . . . . . . . . . . . . . . . . . 38

Figure 13 – Structure of a neural network through a MLP. . . . . . . . . . . . . . . . . 39

Figure 14 – Subdivision of area of artificial intelligence. . . . . . . . . . . . . . . . . . 39

Figure 15 – Arrangement of welding process on rectangular plates. . . . . . . . . . . . . 46

Figure 16 – Double ellipsoidal heat source. . . . . . . . . . . . . . . . . . . . . . . . . 47

Figure 17 – Mean values of MAPE in cases under study. . . . . . . . . . . . . . . . . . 53

Figure 18 – CV values in cases under study. . . . . . . . . . . . . . . . . . . . . . . . . 54

Figure 19 – Generated mesh - Case 01 - R01. . . . . . . . . . . . . . . . . . . . . . . . 55

Figure 20 – Numerical-experimental comparison - Best MAPEm - Case 01 - R01 - ∆t = 1.0s. 56

Figure 21 – Numerical-experimental comparison - Best MAPEm - Case 02 - R02 - ∆t = 1.0s. 56

Figure 22 – Numerical-experimental comparison - Best MAPEm - Case 03 - R02 - ∆t = 1.0s. 57

Figure 23 – Numerical-experimental comparison - Best MAPEm - Case 04 - R03 - ∆t = 1.0s. 57

Figure 24 – Numerical-experimental comparison - Best CV - Case 01 - R03 - ∆t = 0.25s. 58

Figure 25 – Numerical-experimental comparison - Best CV - Case 03 - R02 - ∆t = 0.25s. 58

Figure 26 – Numerical-experimental comparison - Best CV - Case 04 - R03 - ∆t = 0.50s. 59

Figure 27 – Temperature field - Case 01 - R01 - ∆t = 1.0s. . . . . . . . . . . . . . . . . 61

Figure 28 – Temperature field - Case 02 - R02 - ∆t = 1.0s. . . . . . . . . . . . . . . . . 61

Figure 29 – Temperature field - Case 03 - R02 - ∆t = 1.0s. . . . . . . . . . . . . . . . . 62



Figure 30 – Temperature field - Case 04 - R03 - ∆t = 1.0s. . . . . . . . . . . . . . . . . 62

Figure 31 – Numerical predictions obtained - Case 01 - R01 - ∆t = 1.0s. . . . . . . . . . 63

Figure 32 – Numerical predictions obtained - Case 02 - R02- ∆t = 1.0s. . . . . . . . . . 64

Figure 33 – Numerical predictions obtained - Case 03 - R02 - ∆t = 1.0s. . . . . . . . . . 64

Figure 34 – Numerical predictions obtained - Case 04 - R03 - ∆t = 1.0s. . . . . . . . . . 65

Figure 35 – Plate with the variables defined. . . . . . . . . . . . . . . . . . . . . . . . . 69

Figure 36 – Specific points in the thermal cycle. . . . . . . . . . . . . . . . . . . . . . . 71

Figure 37 – Example of how the means used in study are calculated. . . . . . . . . . . . 72

Figure 38 – Score x Settings - Type 01. . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Figure 39 – Boxplot analysis based on a hidden layer and mean settings - Type 01. . . . 75

Figure 40 – Score x Settings - Type 02. . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Figure 41 – Boxplot analysis based on hidden layer and of mean type - Type 02. . . . . 76

Figure 42 – Boxplot analysis based on optimizer and of loss function - Type 01. . . . . . 76

Figure 43 – Boxplot analysis based on optimizer and of loss function - Type 02. . . . . . 77

Figure 44 – Loss curves generated in training and testing deep learning networks - Point

01 - Type 01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Figure 45 – Loss curves generated in training and testing deep learning networks - Point

02 - Type 01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Figure 46 – Loss curves generated in training and testing deep learning networks - Point

03 - Type 01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Figure 47 – Loss curves generated in training and testing deep learning networks - Point

04 - Type 01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Figure 48 – Loss curves generated in training and testing deep learning networks - Point

05 - Type 01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Figure 49 – Loss curves generated in training and testing deep learning networks - Full -

Type 02. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Figure 50 – Type 01 Comparison - Deep Learning x 3D Numerical x Experimental - Case

01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Figure 51 – Type 01 Comparison - Deep Learning x 3D Numerical x Experimental - Case

02. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Figure 52 – Type 02 Comparison - Deep Learning x 3D Numerical x Experimental - Case

01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82



Figure 53 – Type 02 Comparison - Deep Learning x 3D Numerical x Experimental - Case

02. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83



LIST OF TABLES

Table 1 – Comparative properties of stainless steels. . . . . . . . . . . . . . . . . . . . 23

Table 2 – Main features of case studies. . . . . . . . . . . . . . . . . . . . . . . . . . 48

Table 3 – Material properties of case studies. . . . . . . . . . . . . . . . . . . . . . . . 48

Table 4 – Global heat transfer coefficient of case studies. . . . . . . . . . . . . . . . . 49

Table 5 – Division of case studies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Table 6 – Parameters of heat source of case studies. . . . . . . . . . . . . . . . . . . . 51

Table 7 – Mesh refinement of case studies. . . . . . . . . . . . . . . . . . . . . . . . . 51

Table 8 – Division the predictions of each cases under study. . . . . . . . . . . . . . . 52

Table 9 – Maximum temperatures in cases under study. . . . . . . . . . . . . . . . . . 60

Table 10 – Computational cost in cases under study. . . . . . . . . . . . . . . . . . . . 63

Table 11 – Maximum temperatures in numerical predictions. . . . . . . . . . . . . . . . 65

Table 12 – Computational cost of numerical prediction cases. . . . . . . . . . . . . . . 66

Table 13 – Description and values of defined variables. . . . . . . . . . . . . . . . . . . 70

Table 14 – Build types for the deep learning model. . . . . . . . . . . . . . . . . . . . . 71

Table 15 – Distribution of neurons for Type 01. . . . . . . . . . . . . . . . . . . . . . . 72

Table 16 – Distribution of neurons for Type 02 - Qty. hidden layers 2-4. . . . . . . . . . 73

Table 17 – Distribution of neurons for Type 02 - Qty. hidden layers 5-7. . . . . . . . . . 73

Table 18 – Combinations with the best performances. . . . . . . . . . . . . . . . . . . . 77

Table 19 – MAPE performance of training and test data. . . . . . . . . . . . . . . . . . 81

Table 20 – MAPE performance of proposed comparisons. . . . . . . . . . . . . . . . . 83



LIST OF ABBREVIATIONS AND ACRONYMS

MAPEm Average MAPE

2D Two Dimensions

3D Three Dimensions

AC Alternating Current

AI Artificial Intelligence

AISI American Iron and Steel Institute

AM Arithmetic Mean

Ar Argon

BEM Boundary Element Method

C Carbon

CFD Computational Fluid Dynamics

CNNs Convolutional Neural Networks

CPU Central Processing Unit

Cr Chromium

CSM Computational Solid Mechanics

Cu Copper

CV Coefficient of Variation

CVFEM Control Volume-Based Finite Element Method

CWM Computational Welding Mechanics

DC Direct Current

DL Deep Learning

DNNs Deep Neural Networks

EbFVM Element-based Finite Volume Method

FDM Finite Difference Method

Fe Iron

FEM Finite Element Method

FVM Finite Volume Method

GM Geometric Mean

GMAW Gas Metal Arc Welding

GTAW Gas Tunsgsten Arc Welding

He Helium



HF High-Frequency

LDFC Computational Fluid Dynamics Laboratory

MAG Metal Active Gas

MAPE Mean Absolute Percentage Error

MIG Metal Inert Gas

MLP Multilayer Perceptron

MMAW Manual Metal Arc Welding

Mn Manganese

MSE Mean Squared Error

MSLE Mean Squared Logarithmic Error

N Nitrogen

Ni Nickel

PH Precipitation Hardened

PM Weighted Mean

PReLU Parametric ReLU

ReLU Rectified Linear Unit

RMSprop Root Mean Squared Propagation

SAW Submerged Arc Welding

SGD Stochastic Gradient Descent

SMAW Shielded Metal Arc Welding

TIG Tungsten Inert Gas

UFC Federal University of Ceará

UNS Unifield National Standard



CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.1.1 General objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.1.2 Specific objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2 Dissertation organization . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1 Stainless steels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.1 Austenitic stainless steels . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Welding processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.1 TIG welding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Computational welding mechanics . . . . . . . . . . . . . . . . . . . . . 29

2.4 Thermal processes in welding . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.1 Heat transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.2 Welding thermal cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 Numerical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5.1 Element based Finite Volume Method . . . . . . . . . . . . . . . . . . . . 35

2.6 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6.1 Deep learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.6.1.1 Activation functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.6.1.2 Backpropagation algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.6.1.3 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 NUMERICAL SIMULATION OF THERMAL BEHAVIOR IN TIG

WELDING WITH AUSTENITIC STAINLESS STEELS USING EBFVM 44

3.1 Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.1 Numerical welding modeling . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.2 Welding cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.4 Performance of numerical simulations . . . . . . . . . . . . . . . . . . . . 52

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66



4 THERMAL ANALYSIS OF TIG WELDING WITH AUSTENITIC

STAINLESS STEELS USING DEEP LEARNING . . . . . . . . . . . . 68

4.1 Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.1 Data preparation and collection . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.2 Deep learning simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.2.1 Model construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.2.2 Training and testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.2.3 Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 CONCLUSIONS AND FUTURE WORKS . . . . . . . . . . . . . . . . . 85

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87



17

1 INTRODUCTION

Welding processes are present in practically all metal-mechanical industries with

growing demands for their application in the world. The search for continuous improvement and

technological innovations in the sector promotes a large and frequent development in this area

(XIA; JIN, 2018; FAVI et al., 2019). There are different welding processes, and the selection of

a specific process depends on the intended application (MESSLER, 2008).

Among the most common processes currently applied in industry, Tungsten Inert

Gas (TIG) welding is the procedure that joins elements by fusion, using a tungsten electrode

(non-consumable), protected by a constant gas flow. Because it is a process with excellent quality

and precision, it has applications in aerospace, nuclear, food, pharmaceutical, metal-mechanical

sectors, and others (SINGH et al., 2017; FRENCH et al., 2018; DRAMICANIN et al., 2019;

GAUTAM et al., 2019).

Due to the characteristics of the TIG process, several materials can be welded, but it

is widely used in stainless steel, a type of alloy that has high resistance to corrosion, weldability,

formability, and extensive service life (PANDYA et al., 2021). These steels can be divided

according to their predominant microstructure, such as austenitic stainless steels (HOLMBERG,

2002). This way, several types of research are being developed related to TIG welding with these

steels (KUTELU et al., 2018; GARG et al., 2019).

The material used in the process is one of the parameters that directly influence

welding. Therefore, it is of great importance to evaluate all factors that can cause problems in

the resulting part. (SHAO et al., 2019; ASADI et al., 2020). One of the ways to prevent welding

problems is using the simulation tool that approximates the thermomechanical behavior of the

process. With good modeling of the welding process, approaching the boundary conditions of

a real process, it is possible to analyze the behavior of the process through simulations. This

does not mean that simulation will replace experimental studies since many parameters (input to

simulations) come from experimental results (GOLDAK; AKHLAGHI, 2005).

In this context, models are developed seeking to better approximate the behavior of

the heat source and how the heat transfer in the process is carried out. The double ellipsoidal

model is well accepted and complete for electric arc welding processes and can be applied to the

TIG process (VARGHESE et al., 2012; PAVAN et al., 2019).

Due to the complexity of existing problems in this area, the use of numerical methods

is necessary. An approach that is still underutilized in the field of Computational Solid Mechanics
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(CSM), but is precise and stable, is the Element-based Finite Volume Method (EbFVM) with

unstructured meshes (PIMENTA; MARCONDES, 2019). This method can also be called the

Control Volume-Based Finite Element Method (CVFEM). However, according to (MALISKA,

2004), this terminology is inappropriate because the method is based on finite volumes rather

than finite elements. It only includes the definition of elements and their shape functions.

In this same context, other ways can be used to predict these behaviors. It can be

highlighted the use of Artificial Intelligence (AI) for these applications, using machine learning

algorithms to better understand the behavior of the welding process and generate results close

to the real ones. In the last decades, efforts have been made in the search to develop this field

in increasingly specific areas. The concept of deep learning, together with neural network

architectures, can be inserted in this sense by using more layers and parameters, deepening the

variables involved (SHINDE; SHAH, 2019)(MAHADEVAN et al., 2021).

Several researchers have been working with this tool and are finding excellent results

in various applications in the field of welding. Among them, Martínez et al. (2021) analyzed the

Gas Metal Arc Welding (GMAW) process with machine learning and deep learning techniques,

predicting the weld bead geometry. Jiao et al. (2021) has already worked with the Gas Tungsten

Arc Welding (GTAW) process predicting weld penetration from end to end. Kesse et al. (2020)

proposed an algorithm that can help human welders in the selection of final parameters to obtain

a good weld quality in the TIG process as well. Sarkar et al. (2021) sought to predict and analyze

the temperature field in submerged arc welding. In addition, this tool can also be used to monitor

the actual welding process, as shown in a short review by Cai et al. (2019). Therefore, the study

has the following objectives.

1.1 Objectives

1.1.1 General objectives

The objective of this study is to analyze the thermal behavior of the autogenous

TIG welding process applied to rectangular plates of austenitic stainless steels (316L, 316, and

304). The study will involve comparing the temperature distribution of experimental cases from

the literature with numerical simulations using EbFVM, as well as with predictions generated

by deep learning models. By conducting these comparisons, the study aims to gain a deeper

understanding of the welding process and its associated thermal behavior.
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1.1.2 Specific objectives

• Model the autogenous TIG welding process applied to austenitic stainless steels;

• Validate the welding processes in experimental cases from literature with numerical

simulations using EbFVM;

• Compare the simulated thermal cycles with the experimental ones, qualitatively (visual

analysis) and quantitatively (Mean Absolute Percentage Error (MAPE) and Coefficient of

Variation (CV) performance indices);

• Investigate the influence of spatial and temporal refinement on the thermal behavior of

process;

• Predict thermal cycles for different welding configurations through numerical simulation;

• Analyze the computational cost of simulations performed;

• Investigate the main variables that influence the autogenous TIG welding process;

• Create a database with the main variables and the thermal cycles generated in numerical

simulations for each set of corresponding parameters;

• Investigate the best hyperparameters to be applied in training the deep learning network;

• Build, train and test deep learning networks with data obtained from simulations;

• Compare the predictions of thermal cycles obtained with deep learning with the results

found by numerical and experimental simulation, qualitatively and quantitatively.

1.2 Dissertation organization

This dissertation was divided into four main topics, seeking to complete the proposed

objectives and fulfill all requirements as a partial requirement for obtaining the title of Master in

Materials Science and Engineering.

The first topic (Chapter 2) makes a literature review presenting the main concepts

that were necessary for the development of research. Themes about stainless steels, welding

processes, computational welding mechanics, thermal processes in welding, numerical methods

and machine learning were addressed.

For the second topic (Chapter 3) numerical simulations were performed using

EBFVM to analyze the thermal behavior in TIG welding process with austenitic stainless

steels. For the next topic (Chapter 4) deep learning networks were constructed, trained and tested

to predict the thermal cycle of same process of previous chapter with TIG welding in austenitic
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stainless steels, but with lower computational costs.

Finally, the fourth topic (Chapter 5) summarizes the conclusions obtained in previous

chapters.
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2 LITERATURE REVIEW

In the field of welding and computational mechanics, various areas of focus contribute

to a comprehensive understanding of the subject matter. This chapter presents an overview of

several key subsections. Firstly, there is a discussion on stainless steel, with a specific focus on

austenitic stainless steel. The chapter then moves on to explore welding processes, including

the widely used Tungsten Inert Gas (TIG) welding method. Computational welding mechanics

is the next topic, where numerical methods are used to model and analyze welding processes.

The thermal processes that occur during weldings, such as heat transfer and the welding thermal

cycle, are also covered. Additionally, the chapter highlights the element-based Finite Volume

Method as an essential numerical method in welding. Lastly, the chapter touches upon the main

concepts and tools used in machine learning, particularly Deep Learning (DL). Through the

exploration of these subsections, readers can gain a comprehensive understanding of welding,

computational mechanics, and machine learning.

2.1 Stainless steels

Stainless steels are formed by high alloy steels that contain Fe and Cr as the main

metallic elements in alloy composition. Chromium is largely responsible for the good corrosion

resistance of these materials, both at ambient and high temperatures, so must have at least

10.5%wt Cr for steel to belong to the stainless steel group (LIPPOLD; KOTECKI, 2005). In

addition to this property, these steels have higher ductility, strength and hardness (STEELS,

2021).

New compositions can be developed in search of specific properties with the addition

of several other alloying elements, such as nickel, manganese, silicon, titanium, and molybdenum,

among others (ANGELO; BAVISANKAR, 2019).

Experiments involving chromium-added steels were initially developed by the

Frenchman Berthier in 1821. After that, other studies were initiated by Germans and British

around 1910. However, with the increasing interest in corrosion-resistant steels for industrial

applications, an effort extra development was done to start the commercialization of these alloys.

Finally, in 1920, in the United States, commercial production of stainless steel began. (LIPPOLD;

KOTECKI, 2005; ANGELO; BAVISANKAR, 2019). These alloys are available through coils,

sheets, bars, and wires and can be applied in food, aerospace, automotive, and medical industries,
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among others (YOUSSEF, 2016).

Stainless steels are classified by their predominant metallurgical phase, subdividing

into five groups, three basic groups (ferritic, austenitic, and martensitic) and two derived groups

(duplex and precipitation hardened) (YOUSSEF, 2016). Duplex steels have approximately 50%

of austenite phase and 50% of ferrite phase, mixing the properties of interest of each phase.

Precipitation Hardened (PH) is hardenable by aging heat treatment and form strengthening

precipitates (LIPPOLD; KOTECKI, 2005). Figure 1 illustrates this division. In addition, a

comparison of some properties of each type of stainless steel is shown in Table 1.

Figure 1 – Basic and derived groups of stainless steel alloys.

Source: Adapted from Youssef (2016).
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Table 1 – Comparative properties of stainless steels.

Alloy group Austenitic Ferritic Martensitic Duplex
Precipitation
hardening

Magnetic
response Generally, no Yes Yes Yes Yes

Work
hardening Very high Medium Medium Medium Medium

Corrosion
resistance High Medium Medium Very high Medium

Hardenable By cold work No Quench & tem-
per

No Age hardening

Ductility Very high Medium Low Medium Medium
High temperature
resistance Very high High Low Low Low

Low temperature
resistance Very high Low Low Medium Low

Weldability Very high Low to high Low High High
Source: Adapted from Steels (2021).

The American Iron and Steel Institute (AISI) uses a three-digit series number,

followed by a letter to indicate an additional characteristic, to represent stainless steel. Series

400 (405-409-429-430-434-436-439-442-444-446) for ferritic, series 400 (403-410-414-416-

420-422-431-440) for martensitic, and series 200 Iron (Fe)-Chromium (Cr)-Manganese (Mn)

and 300 series Fe-Cr-Nickel (Ni) for austenitic. The Unifield National Standard (UNS) also

represents stainless steels using a five-digit code (YOUSSEF, 2016).

2.1.1 Austenitic stainless steels

Austenitic stainless steels are widely used due to their versatile properties, making

them suitable for a range of applications, including kitchenware, connections, welded construc-

tions, lightweight transportation equipment, parts of ovens and heat exchangers, and materials

for chemical environments. These steels were first invented in Germany and are now produced

on a global scale, with this country being the world’s leading producer (PLAUT et al., 2007;

YOUSSEF, 2016).

These steels generally have good ductility, toughness, excellent resistance to atmo-

spheric or high-temperature corrosion, and good weldability. In addition, their cost is higher

when compared to martensitic and low to medium Cr content ferritic (LIPPOLD; KOTECKI,

2005).

The addition of some alloy elements can stimulate the formation of austenite, such

as Ni, Carbon (C), Nitrogen (N) and Copper (Cu). Nickel is added at values above 8wt%,

while carbon and nitrogen also improve the strength of steel. Some suffixes can be inserted in
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the designation given by AISI to illustrate changes in the original configuration of alloy type.

Reinforcement through nitrogen is illustrated with the suffix "N". The "L" suffix represents lower

carbon levels around 0.03wt% and the "H" around 0.1wt% (LIPPOLD; KOTECKI, 2005).

Austenitic stainless steels include alloys of 200 and 300 series according to AISI,

with the second series being the most used within this steel class. For the 200 series alloys, there

are high levels of carbon, manganese, and nitrogen, having less nickel content when compared to

the 300 series alloys. Among the most used are types 304 (the most used), 316, 321, 347, and

their variants (LIPPOLD; KOTECKI, 2005; YOUSSEF, 2016). Figure 2 illustrates the family of

austenitic stainless steels.

Figure 2 – Austenitic stainless steels family.

Source: Adapted from McGuire (2008).

2.2 Welding processes

Welding is the oldest manufacturing art form used for joining materials. In 1881,

the use of the electric arc to melt metals was pioneered in France, marking a significant step

towards modern welding. The technique was later employed in Russia for welding metals with

consumable metal electrodes. The first patents for metal arc welding were granted in the United

States in 1889. During this time, a process using mixtures of air and organic fuels was also

developed. (MESSLER, 2008).

The welding process is generally more advantageous, with many options of process
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modalities, applications to various materials, manual or automatic operation, can be portable

internally or externally, and has an acceptable average cost. However, it has some disadvantages

such as the fact that it is difficult to disassemble joints welding without destroying the parts that

have details. Process heat can affect base properties and cause distortion or residual stresses.

Furthermore, good operator skills and a high equipment cost may be necessary depending on the

specific application (MESSLER, 2008).

Typically, the processes are classified into two different groups, welding with pressure

and fusion welding, one using pressure to join the materials and the other using base metal fusion

to make the weld. Among the pressure welding processes, there are the types of resistance, cold,

friction, diffusion, explosive, and magnetically impelled arc butt. For fusion, there is Manual

Metal Arc Welding (MMAW), Submerged Arc Welding (SAW), Gas Tunsgsten Arc Welding

(GTAW) or Tungsten Inert Gas (TIG), Gas Metal Arc Welding (GMAW), laser, and the electron

beam (NORRISH, 2006). Figure 3 illustrates some important welding processes.

Figure 3 – Some important welding processes.

Source: Adapted from Norrish (2006).

Shielded Metal Arc Welding (SMAW) or MMAW is a widely used process because

it has simpler equipment, can be portable, and offers a wide variety of consumables. However, it

has low operational efficiency and requires considerable operator skill. The process applies an

arc as a source of heat, which is protected by gases generated in the electrode coating itself and
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by the slag formed (NORRISH, 2006).

Submerged Arc Welding (SAW) is a process that has high deposition rates, automatic

operation, and offers many flux/wire combinations. Because the arc is protected by a molten

slag, there is no visible arc radiation. However, it is a procedure that can only be used in flat or

horizontal positions and is normally used for parts with a thickness above 6 mm (NORRISH,

2006).

Gas Metal Arc Welding (GMAW) can also be called Metal Inert Gas (MIG) or Metal

Active Gas (MAG). It is a process that allows continuous operation because the consumable wire

is fed continuously, resulting in a high deposition rate, but with a lower heat input compared to

SMAW and SAW. Additionally, the arc is formed between the tip of a consumable wire and the

workpiece, being protected by an inert gas, resulting in lighter slag and low hydrogen, which

reduces post-weld cleaning and the risk of cold cracking (NORRISH, 2006).

Laser welding has a low-power confined heat source that can be used as an alternative

to fusion welding. The process provides deep penetration at high power, and reduces distortion

and thermal damage, but it has a high equipment cost (NORRISH, 2006).

Electron beam welding is a process that also has a confined source but with very

high energy density, as a beam of electrons is accelerated to a high voltage. Vacuum is normally

required, and it has a high depth-to-width ratio of welds and a high cost as well (NORRISH,

2006).

2.2.1 TIG welding

TIG welding is an electric arc welding process created between a non-consumable

tungsten electrode and the material to be welded. Weld protection against atmospheric gases is

done by an inert gas, such as Argon (Ar) or Helium (He), which does not react with the molten

metal (TIMINGS, 2008). Figure 4 shows the TIG welding process in detail.
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Figure 4 – The TIG process.

Source: Norrish (2006).

The process has a stable arc and excellent control of welding results, having appli-

cations in all welded materials, in particular stainless steel, light metals with aluminum and

magnesium alloys, and copper, with the exception of lead and zinc (WEMAN, 2012). Further-

more, the arc density is relatively high, with low deposition rates resulting in good joint quality.

(NORRISH, 2006).

Among the parameters of TIG welding, the welding current is the one that most

influence the process, having a direct influence on the shape of the bead, speed, and quality of

the weld. Most of these processes use direct current to the negative electrode resulting in greater

penetration into the weld and higher travel speed. Welding voltage is related to the shape of the

fusion zone and the weld reinforcement and can be fixed or flexible depending on the application

and equipment. On the other hand, the welding speed does not influence the formation of the

weld pool, only the volume of molten material (KUTELU et al., 2018).

Shielding gases can influence the result of the welding process. Argon gas is the

most used in TIG welding, in addition to being cheaper than helium gas, which is also applied.

This gas has a low ionization potential that facilitates the ignition of an electric arc and shields

the molten pool. Normally, argon is used with carbon and stainless steel and thin aluminum

alloy components. On the other hand, helium is applied to thicker aluminum parts and materials

with high conductivity (KUTELU et al., 2018). Figure 5 shows a comparison of gases argon and
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helium.

Figure 5 – Comparison between Ar and He gases.

Source: Adapted from Marques et al. (2011)

The basic equipment used in the process includes the welding torch (with the elec-

trode included), a High-Frequency (HF) generator, a power source, a gas tube with a regulator,

and control equipment. The torch can be both air-cooled and water-cooled and can handle a

maximum current limit of 200 A and 400 A, respectively. Additionally, they must be easy to

handle and well-insulated. The tungsten electrode must have good electron emission and thermal

conductivity with low electrical resistance but with a high melting point to prevent consumption

during the process. The HF generator generates a spark that indicates the initial conduction

path for the low-voltage welding current. The energy source can be Direct Current (DC) or

Alternating Current (AC), depending on the material used in the process. The control equipment

can be used for pre-flow and post-flow of shielding gas and for controlling the HF generator. Its

importance increases with the level of automation in the procedure (WEMAN, 2012). Figure 6

illustrates a schematic diagram of TIG welding equipment.
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Figure 6 – Schematic diagram of TIG welding equipment.

Source: Weman (2012).

Furthermore, in the TIG process, the filler metal is applied directly to the weld pool

by being melted and joined with the workpiece material in the region. However, this welding

can also be done without this metal by melting the heated edges of the part. This option is called

autogenous welding (KUTELU et al., 2018).

2.3 Computational welding mechanics

Computational Welding Mechanics (CWM) uses methods and models to deal with

the welding process, including the modeling of heat generation, melting pool phenomena, thermal

stresses, and large plastic deformations. Welding is a multiphysics problem involving fluid flow,

heat transfer and conduction, and deformation. Therefore, the equations that represent the physics

of these phenomena must be coupled to obtain a solution. However, there are simplified models

that can be used to facilitate the process. One of them replaces the physics in the weld with a

heat input model, which has a weaker coupling. The division of the problem into thermal and

mechanical phases (staggered approach) together with the choice of a fixed coordinate system

are common approaches (LINDGREN, 2007). In most CWM studies, the heat input distribution

is prescribed and calibrated with experimental measurements, while the fluid flow is ignored.

Therefore, if the fluid flow is not the main objective of the study, the CWM scheme can be

represented as shown in Figure 7.
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Figure 7 – Classical CWM modelling scheme of fusion welding without a welding process
model and without fluid flow.

Source: Adapted from Lindgren (2007).

The approach used in CWM models does not take into account the physical character-

istics of the weld pool. Instead, the focus is on the fundamental principle of energy conservation,

which is used to analyze the thermal behavior of the problem. In CWM, nonlinear heat conduc-

tion solutions are used to analyze the heat transfer, which is more direct and requires smaller

models when compared to nonlinear deformation solutions. Although the physics of the weld

pool is not explicitly considered in the approach, the thermal analysis is still effective in predict-

ing the behavior of the system. By analyzing the heat transfer, the model can provide valuable

insights into the temperature distribution and thermal history of the weld, which are crucial for

determining the quality of the weld. Additionally, the use of nonlinear heat conduction solutions

makes it possible to model complex thermal behaviors with relative ease, providing a powerful

tool for the analysis of welding problems (GOLDAK; AKHLAGHI, 2005; LINDGREN, 2007).

While in conduction a scalar temperature field is used, in deformations a tensor field

is used. By specifying the heat input, the temperature field in the neighborhood of the melt pool

can be found. Heat source models prescribe temperature or flux at the domain boundary near the

pool or describe the source term. The solution to the problem can be unique, however, it depends

on the existence of phase changes and their thermal properties (GOLDAK; AKHLAGHI, 2005;

LINDGREN, 2007).
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The great foundation of welding sources comes from experimental observations

or detailed models of the welding process. Since the physics of this phenomenon is complex,

thermal models of heat sources are developed to simplify the mathematics of the process. The

classification of models can be given in categories from the first to the fifth generation, this order

of complexity (GOLDAK; AKHLAGHI, 2005):

• First generation – Three different heat source models were used: point, linear, and flat.

• Second generation – Distributed area and volume sources based on heat conduction were

used;

• Third generation – Tried to predict the liquid-solid interface based on energy equations;

• Fourth generation – Fluid dynamics equations were used in molten weld pool;

• Fifth generation – Complemented the previous models with the magnetohydrodynamics

equations of welding.

Kinematic models illustrate the direction of heat flows (in plane, cross-section, radial,

or freely in three dimensions). In reality, in a 3D simulation, the computational cost is the highest.

However, it is possible to restrict a dimension of analysis, in order to obtain lower costs, keeping

a good precision of results. (GOLDAK; AKHLAGHI, 2005).

Welding deformation is one of the main problems that are investigated in the process.

In plate welding, the main cause of deformation is the shrinkage of the weld in longitudinal and

transverse directions, which generates transverse or longitudinal contraction effects, bending,

distorting in angular shape, or warping. The influence of welding speed related to the heat

diffusivity has great weight in the analysis of process behavior (LINDGREN, 2007).

The basic concepts of heat transfer and numerical methods are necessary for the

formulation and discretization of thermal simulation of the welding process.

2.4 Thermal processes in welding

2.4.1 Heat transfer

For thermal analysis of the welding process, the fundamental principle is energy

conservation. Thus, the development of heat transfer theory is focused only on energy, ignoring

stress, strain, and displacement. Generally, in a thermal problem, the material properties, and

initial and boundary conditions are used as parameters. The mathematics of heat transfer

in welding is expressed as a nonlinear partial differential equation having the temperature,
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T (x,y,z, t), as a function of spatial and time coordinates, occurring at all points in the domain, Ω

(GOLDAK; AKHLAGHI, 2005):

Dh
Dt

+∇.(−k∇T )+Q = 0, (2.1)

with:

Q - source or sink rate of heat in Ω (W/m3),

k - thermal conductivity (W/mK),

h - specific enthalpy (J/Kg).

The increment in specific enthalpy, if no phase change occurs, can be expressed as:

dh = cdT, (2.2)

with:

c - volumetric specific heat (J/m3K).

For Equation 2.1, the first term represents the rate of change of specific enthalpy, the

second term is the flow of heat into or out of surroundings, and the last term is the source of heat

generation.

Boundary conditions for prescribed temperature (essential) or prescribed heat flux

(natural) must be satisfied within the domain boundary Ω. The essential condition can be defined

as:

T (x,y,z, t) = T1(x,y,z, t), (2.3)

on the boudary S1 com (x,y,z) ∈ S1 : t > 0.

The natural condition can be defined as:

kn
∂T
∂n

+q+hc(T −T0)+σε(T 4 −T 4
0 ) = 0 (2.4)

on the boudary S2 com (x,y,z) ∈ S2 : t > 0,

with:

kn - thermal conductivity normal to the surface (W/mK),

q - a prescribed flux (W/m2),

hc - heat transfer coefficient for convection (W/m2K),

σ - Stefan-Boltzmann constant (W/m2K4),

ε - emissivity,

T0 - the ambient temperature for convection and/or radiation (K).
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Finally, the initial condition can be specified in terms of (x,y,z) ∈ Ω:

T (x,y,z,0) = T0(x,y,z), (2.5)

2.4.2 Welding thermal cycle

In most welding processes, especially in melting processes, heating in the welded

joint can generate temperatures ranging from room temperature to values above the liquidus

temperature of the material. The temporal history of temperatures at a given point illustrates

the welding thermal cycle. The dimensions of welded joints, thermophysical properties of the

material, initial and boundary conditions, parameters of the heat source, and the position of

the material in relation to the source are characteristics that influence the thermal cycles. The

analysis of this history is important because it indicates the effects caused by the structure-

property relationship of the process. Figure 8 shows the behavior of these cycles (KARKHIN,

2019; MESSLER, 2008).

Figure 8 – Temperature and heating/cooling rate as functions of time for a point.

Source: Karkhin (2019).

The thermal cycle T (x,y,z, t) at an arbitrary point (x,y,z) represented in Figure 8

exemplifies a single-step welding process with a simple power distribution in time and space.

The second curve
∂T
∂ t

(x,y,z, t) shows the rate of temperature versus time at which it can be

used to better understand the behavior of a process. In addition, other thermal cycle information
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may be relevant in an analysis, such as the maximum temperature of the cycle or also called

peak temperature Tmax(x,y,z), residence time of metal ∆tT1 which indicates the time the curve

was above the temperature T1, or the mean rate of heating and cooling
(

∂T
∂ t

)
m
=

(
T3 −T2

∆tT2/T3

)
(KARKHIN, 2019).

Furthermore, Experimentally, this cycle can be acquired through thermocouples at

the position in which we want to collect and understand the historical temporal behavior of

temperature (MESSLER, 2008).

2.5 Numerical methods

In general, finding exact solutions to engineering problems is not easy. Approximate

solutions can be developed using numerical methods, such as the Finite Difference Method

(FDM), Finite Element Method (FEM), Finite Volume Method (FVM), Boundary Element

Method (BEM), Element-based Finite Volume Method (EbFVM), among others (MALISKA,

2004; CORDAZZO, 2006).

The finite difference method is one of the oldest and simplest methods that solve

differential equations, approximating the solution using different difference schemes. There

are three ways to express derivatives with this method, forward, backward, and central scheme

(CHAKRAVERTY et al., 2019).

The finite element method has a methodology of numerically discretizing with finite

elements so that the entire domain is partitioned using any shape in general. In addition to that

converts differential equations into algebraic equations. This method is widely applied in fields

of science and engineering (CHAKRAVERTY et al., 2019). Figure 9 illustrates a comparison of

discretization between the FDM and FEM.

Figure 9 – (a) Finite difference and (b) finite element discretization of arbitrary object.

Source: Chakraverty et al. (2019).
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The finite volume method uses an approach in which volumes are investigated in

discrete places over a meshed geometry. This method has a conservation property that makes

it more preferred compared to others, mainly for applications of fluid flow and heat and mass

transfer simulations. In addition, it can be formulated in non-regulated polygonal meshes and

with easy implementation for boundary conditions (CHAKRAVERTY et al., 2019). Figure 10

illustrates the representation of a structured mesh for FEM and FVM.

Figure 10 – This figure illustrates the structured mesh used to analyze two discretization
methods: (a) the finite element method and (b) the finite volume method.

Source: Jeong and Seong (2014).

Boundary element method is used to solve certain classes of differential equations.

The main advantage of this method is the fact that it only discretizes the domain contours while

the others use the entire domain (CHAKRAVERTY et al., 2019).

2.5.1 Element based Finite Volume Method

The EbFVM intends to use the conservation principles directly in finite element

ambient and emerged as its beginning applications in solving the Navier-Stokes equations

together with unstructured meshes. The idea of the method is to have the properties conserved in

discrete volumes around the mesh nodes. Thus, in EbFVM there is a control volume for each

main node of mesh that is contained in sub-control volumes (CORDAZZO, 2006; FILIPPINI,

2011). Figure 11 illustrates the discretization of EbFVM.
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Figure 11 – EbFVM discretization.

Source: Pimenta and Marcondes (2019).

EbFVM can be applied to Two Dimensions (2D) and Three Dimensions (3D) with

unstructured meshes, this is due to the fact that the method has a more general and flexible

approach in its discretization, as unstructured meshes have vertices with eventually variable local

neighborhoods, offering a better convenience in mesh adaptation (BERN; PLASSMANN, 2000;

XU et al., 2020).

2.6 Machine learning

Machine learning is a rapidly growing field that brings together knowledge from

several disciplines, including statistics, artificial intelligence, and computer science. The aim of

machine learning is to develop algorithms that can learn from data, extract meaningful insights,

and make predictions or decisions based on the patterns and relationships found in the data.

There are two primary types of machine learning algorithms: supervised and unsupervised

learning. In supervised learning, the algorithm is provided with labeled data, where the desired

output is already known. By training on these data, the algorithm can learn to predict the correct

output for new inputs. In contrast, unsupervised learning algorithms attempt to identify patterns

and relationships within an unlabeled dataset without any predetermined output. This type of
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learning is often used for exploratory analysis or to gain a deeper understanding of the data

(MÜLLER; GUIDO, 2016; ALPAYDIN, 2009).

To be processed by machine learning algorithms, data must be converted into a

format that computers can understand. Typically, data is organized into a table or matrix, with

rows representing individual data samples and columns representing the different properties

or features of those samples. The process of preparing data for machine learning is known as

data preprocessing and involves tasks such as cleaning, normalization, and feature engineering.

Supervised learning problems can be further divided into two categories: classification and

regression. In classification problems, the algorithm predicts the category or label of a given input.

If there are only two possible label options, it is known as binary classification, while problems

with more than two possible labels are referred to as multiclass classification. Regression

problems, on the other hand, involve predicting a continuous or numerical value, such as a price

or temperature (MÜLLER; GUIDO, 2016; ALPAYDIN, 2009).

To ensure that machine learning models can generalize well to new, unseen data, it is

essential to evaluate their performance on a separate test set. This can be achieved by splitting

the available data into two sets: a training set, which is used to fit the model, and a test set, which

is used to evaluate its performance. One commonly used method for splitting the data is called

cross-validation. In this approach, the data is partitioned into several subsets, or "folds", and

the model is trained and evaluated multiple times. The most popular form of cross-validation is

k-fold cross-validation, where k is a user-defined parameter typically set to 5 or 10.

In k-fold cross-validation, the data is divided into k roughly equal parts, with each

part being used once as a test set and the remaining k-1 parts used as the training set. The model

is trained on the training set, and its performance is evaluated on the test set. This process is

repeated k times, with each fold being used as the test set exactly once. Once all k iterations

are complete, the performance of the model is summarized by calculating the average accuracy

across all folds. This approach provides a more robust estimate of the model’s performance on

new data than a single train-test split, as it reduces the risk of overfitting to a particular training set.

Additionally, k-fold cross-validation can help to optimize the model’s hyperparameters, which

are settings that affect the model’s performance but are not learned from the data (MÜLLER;

GUIDO, 2016). Figure 12 illustrates this division.
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Figure 12 – Data splitting in five-fold cross-validation.

Source: Müller and Guido (2016).

When comparing this method to a simple random division, it is evident that it offers

a range of advantages due to its ability to use data more effectively. By taking advantage of the

inherent structure of the data, it is possible to derive insights and make more accurate predictions,

which is particularly useful in applications where accuracy is of utmost importance. However, it

is essential to consider the higher computational cost that comes with this method, which can be

k times greater than that of the simplest case. Depending on the specific application, this may

have a significant impact on the choice of method and should be carefully considered before

proceeding.

To optimize the parameters of this method, a powerful technique called Grid Search

can be utilized. Grid Search is a method within the scikit-learn library in Python that enables the

testing of all possible combinations of hyperparameters that will be shown later and identifies

the option with the best performance among those tested. This approach is particularly useful

in situations where it is not clear which combination of parameters will result in the best

performance, as it systematically tests each possible option to provide a comprehensive overview

of performance. Additionally, Grid Search can be used in conjunction with cross-validation

to evaluate the strengths and weaknesses of each methodology and to identify the optimal

configuration for a given application (MÜLLER; GUIDO, 2016).

2.6.1 Deep learning

During training, the neural network adjusts its parameters through a process called

backpropagation, which involves passing the errors generated during each iteration of training

back through the network. This allows the network to learn from its mistakes and adjust its

internal weights and biases to improve its performance over time. However, it’s important to

note that there are other ways to update weights beyond backpropagation.

For example, some neural networks use reinforcement learning to adjust their pa-

rameters based on feedback from the environment, while others employ evolutionary algorithms
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to optimize the weights and architecture of the network. Each of these methods has its own

strengths and weaknesses, and the choice of which method to use will depend on the specific

task and the characteristics of the data being analyzed. Figure 13 illustrates the structure of a

neural network through a Multilayer Perceptron (MLP) (CORRIGAN, 2018).

Figure 13 – Structure of a neural network through a MLP.

Source: Corrigan (2018).

Deep learning is a subarea of machine learning that uses multi-layered neural net-

works, with two or more hidden layers, in its architecture. Figure 14 shows a representation of

this subarea. While this approach has seen tremendous advances in recent years, it’s important

to note that there are many other architectures that can be used as well, each with its own

unique characteristics and capabilities (HEATON, 2015). Despite this challenge, the continuous

advancements in hardware technology have made deep learning more accessible and practical

for a wide range of applications.

Figure 14 – Subdivision of area of artificial intelligence.

Source: Shinde and Shah (2019).
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2.6.1.1 Activation functions

Activation functions play a crucial role in neural networks by introducing non-

linearity to the model. They determine the output of a neuron or a layer and help the network

learn complex relationships between inputs and outputs. Several activation functions have been

proposed and used in different neural network architectures.

One of the commonly used activation functions is the sigmoid function, which maps

the input to a value between 0 and 1 (RUMELHART et al., 1986). The sigmoid function is given

by:

f (x) =
1

1+ e−x (2.6)

The sigmoid function was widely used in earlier neural networks, but it has some

limitations. One of the major issues is the vanishing gradient problem, where gradients become

extremely small for inputs far from the origin, leading to slow learning. This limitation led to the

development of alternative activation functions.

Another popular activation function is the Rectified Linear Unit (ReLU), which

computes the output as zero for negative inputs and linear for positive inputs (GLOROT; BENGIO,

2010). ReLU has gained popularity due to its simplicity and ability to alleviate the vanishing

gradient problem. However, ReLU suffers from a dying ReLU problem, where a large number

of neurons may become inactive and never update their weights. This led to the development of

variants such as Leaky ReLU and Parametric ReLU (PReLU). ReLU is defined as:

f (x) = max(0,x) (2.7)

Other activation functions include the hyperbolic tangent (tanh) function, which

maps inputs to a value between -1 and 1, and the softmax function, commonly used in the output

layer for multi-class classification tasks (GOODFELLOW; COURVILLE, 2016).

A linear combiner is a fundamental component in artificial neural networks that

combines the weighted input signals and a bias term to compute the net input of a neuron

(RUMELHART et al., 1986). The net input is then passed through an activation function to

produce the neuron’s output or activation. The linear combiner can be represented mathematically

as follows:

y = f

(
n

∑
i=1

wixi +b

)
(2.8)

where:
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• y represents the output signal of the neuron,

• f (·) denotes the activation function,

• wi represents the synaptic weight associated with the input signal xi,

• b is the bias term, and

• n represents the total number of input signals.

2.6.1.2 Backpropagation algorithm

The Backpropagation algorithm is a widely used technique in training artificial neural

networks. It enables the network to learn from labeled training data and adjust its weights and

biases to minimize the prediction error. This algorithm consists of two main phases: forward

propagation and backward propagation.

During the forward propagation phase, input data is fed into the neural network,

and the network’s activation values are calculated layer by layer. Each neuron’s activation is

determined by applying an activation function to the weighted sum of its inputs, followed by

passing it through a non-linear activation function. This process continues until the output layer

is reached.

In the backward propagation phase, the error between the predicted output and the

expected output is calculated. This error is then propagated back through the network, layer by

layer, using the chain rule of calculus. The gradients of the weights and biases are computed

with respect to the error, allowing for their adjustment. The weights and biases are updated

using an optimization algorithm, such as stochastic gradient descent, which iteratively adjusts

the parameters to minimize the error.

Backpropagation has been instrumental in the success of various neural network

architectures, including multilayer perceptrons (MLPs) and Deep Neural Networks (DNNs).

Its ability to efficiently train neural networks with multiple layers and non-linear activation

functions has led to significant advancements in areas such as image recognition, natural language

processing, and reinforcement learning.

Several seminal works have contributed to the development and understanding of

the Backpropagation algorithm. Rumelhart et al. (1986) introduced Backpropagation in their

influential paper, which outlined the basic principles and mathematical foundations of the

algorithm. The paper demonstrated the effectiveness of Backpropagation in training multilayer

neural networks.
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Further advancements and refinements to the Backpropagation algorithm have been

made over the years. LeCun et al. (2015) introduced Convolutional Neural Networks (CNNs) and

made significant improvements to the Backpropagation algorithm for image classification tasks.

Their work demonstrated the effectiveness of Backpropagation in deep learning applications.

2.6.1.3 Hyperparameters

Hyperparameters are parameters that are set before training and control the behavior

and performanceof neural networks. These parameters are not learned during the training process

but play a crucial role in determining the network’s architecture and optimization process. Some

commonly used hyperparameters in neural networks include:

• Learning rate: Determines the step size at each iteration of gradient descent. A high

learning rate may cause the algorithm to overshoot the optimal solution, while a low

learning rate may result in slow convergence. Choosing an appropriate learning rate is

crucial for efficient and effective training (BOTTOU, 2012).

• Number of hidden layers: The depth of the network, i.e., the number of layers between the

input and output layers. Deep networks have the potential to capture complex relationships

but may be more prone to overfitting.

• Number of neurons per hidden layer: The number of neurons in each hidden layer.

Increasing the number of neurons can increase the capacity of the network but may also

lead to overfitting.

• Batch size: The number of training examples processed in each iteration of gradient

descent. Larger batch sizes can result in faster training but may require more memory.

• Dropout rate: Dropout is a regularization technique that randomly sets a fraction of the

activations to zero during training. It helps prevent overfitting by reducing the reliance

on individual neurons and encourages the network to learn more robust representations

(SRIVASTAVA et al., 2014).

• Activation function: As discussed earlier, the choice of activation function can have a

significant impact on the network’s performance. Different activation functions may be

more suitable for specific tasks or network architectures.

• Initialization of weights: The initial values assigned to the weights can affect how quickly

the network converges and whether it gets stuck in local minima. Proper initialization tech-

niques, such as Xavier or He initialization, can improve training performance (GLOROT;
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BENGIO, 2010).

• Optimization algorithm: Gradient descent is the most commonly used optimization algo-

rithm for updating the weights in neural networks. However, variations such as Stochastic

Gradient Descent (SGD), Adam, or Root Mean Squared Propagation (RMSprop) can be

used to enhance convergence speed and generalization (GOODFELLOW; COURVILLE,

2016).

• Early stopping: It involves monitoring the validation loss during training and stopping the

training process when the validation loss starts to increase. This helps prevent overfitting

and ensures that the network is not trained for too long.

These are just a few examples of hyperparameters used in neural networks. The

choice of hyperparameters depends on the specific problem, dataset, and network architecture. It

often requires experimentation and fine-tuning to find the optimal set of hyperparameters for a

given task.

The process of selecting hyperparameters is often iterative and involves techniques

such as grid search, random search, or more advanced methods like Bayesian optimization.

Careful tuning and experimentation with different hyperparameter configurations are necessary

to find the optimal settings for a specific task.
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3 NUMERICAL SIMULATION OF THERMAL BEHAVIOR IN TIG WELDING

WITH AUSTENITIC STAINLESS STEELS USING EBFVM

3.1 Review

This work analyzed the thermal behavior of autogenous TIG welding process in plates

with austenitic stainless steels (316L, 316 and 304) using numerical simulation with EbFVM,

comparing the simulated temperature distributions with the temperatures found in experimental

cases in the literature. Experimental case studies were collected from the literature and used

to investigate and validate this phenomenon. The numerical process was developed in Fortran

language applying the numerical method EbFVM. The numerical-experimental comparison

was made both qualitatively, through the graphs of thermal cycles, and quantitatively, through

the performance indices (MAPE and CV). The spatial and temporal refinements used in the

simulation were investigated to understand the influence of each of these factors on thermal

behavior. With the numerical validation of these experimental cases, predictions of thermal cycles

and maximum temperatures of possible welding configurations were performed. In addition, a

study on the computational cost of these simulations was carried out. This used methodology

proved to be efficient in the analysis of thermal behavior of this welding process applied to these

materials.

3.2 Materials and methods

3.2.1 Numerical welding modeling

The TIG welding process can be modeled from the heat energy that is diffused

into the workpiece. This heat transfer can be understood through a general thermal analysis

considering the fundamental phenomena of conduction, convection, and radiation. For this

case, some hypotheses can be assumed seeking to simplify the computational costs, keeping the

modeled process close to the real one. It is assumed that the welded material is at rest in relation

to the welding source and that the thermal properties of the material are constant in the directions

of chosen coordinate system. Thus, based on the Cartesian coordinate system, the process can be

represented through the heat energy governing equation as a function of temperature T (x,y,z, t)

(GUR; PAN, 2008):

∂

∂x

(
k(T )

∂T
∂x

)
+

∂

∂y

(
k(T )

∂T
∂y

)
+

∂

∂ z

(
k(T )

∂T
∂ z

)
+Q(x,y,z, t) = ρ(T )cp(T )

∂T
∂ t

, (3.1)
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with,

k - thermal conductivity [Wm−1K−1],

ρ - density [kg m−3],

cp - heat capacity [J kg−1K−1],

Q - intensity of heat source [Wm−3].

The boundary conditions for this equation relate the heat exchanges that occur for

this welding process. The natural boundary condition relates the heat transfer coefficient between

the workpiece and the ambient area through the equation below:

−kn
∂T
∂n

= hg(T∞ −Ts) (3.2)

with,

kn - thermal conductivity normal to the surface [Wm−1K−1],

∂T/∂n - temperature gradient on the boundary along the external normal direction [Km−1],

hg - global heat transfer coefficient [Wm−2K−1],

T∞ - ambient temperature [K],

Ts - surface temperature [K].

The global heat transfer coefficient can be divided as a function of convection and

radiation coefficients:

hg = hc +hr (3.3)

with,

hc - heat transfer coefficient for convection [Wm−2K−1],

hr - heat transfer coefficient for radiation [Wm−2K−1],

in which,

hr = εσ(T 2
∞ +T 2

s )(T∞ +Ts) (3.4)

with,

ε - emissivity,

σ - Stefan-Boltzmann constant [Wm−2K−4].

The initial temperature was considered to be to equal the ambient temperature of the

area where welding takes place and the fluid flow in the molten weld pool hasn’t been considered.

Figure 15 shows the arrangement of the process on rectangular plates, illustrating the path and
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direction of welding, the heat source, the melting pool generated, and the adopted coordinate

system.

Figure 15 – Arrangement of welding process on rectangular plates.

Source: Own author.

The heat source term can be calculated from a model among those already existing in

the literature. However, new models are continually being studied and validated, seeking to better

represent the behavior of heat sources. According to Goldak and Akhlaghi (2005), the most used

model for welding heat input is the double ellipsoidal one, coming from the second generation

of source models. It is a Gaussian power density distribution within a double ellipsoidal moving

along the weld. This model has a good approximation, convenient, accurate, and efficient for

the TIG welding process, as it reflects the depth and the generated shapes. Therefore, this

methodology is chosen to be used for this study. Malik et al. (2008) adapted the equations of

this volumetric method as a function of the cartesian coordinate system (x,y,z):

Q f (x,y,z, t) =
6
√

3 f f S
a f bcπ

√
π

e(−3x2/a2
f )e(−3y2/b2)e(−3z2/c2) (3.5)

Qr(x,y,z, t) =
6
√

3 frS
arbcπ

√
π

e(−3x2/a2
r )e(−3y2/b2)e(−3z2/c2) (3.6)
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with,

a f - length of front ellipsoidal [m],

ar - length of rear ellipsoidal [m],

f f - fraction of heat in front ellipsoidal,

fr - fraction of heat in rear ellipsoidal,

S - total heat input [W ],

b - half-width of heat source [m],

c - depth of heat source [m],

Q f - power density in front ellipsoidal [Wm−3],

Qr - power density in rear ellipsoidal [Wm−3].

In which S = ηEI e f f + fr = 2, with η being the arc efficiency, E the welding voltage [V ] and I

the welding current [A]. Figure 16 show the double ellipsoidal heat source with the parameters

needed in modeling.

Figure 16 – Double ellipsoidal heat source.

Source: Own author.

3.2.2 Welding cases

Based on the modeling developed for the welding process, experimental data were

searched in the literature to validate and measure the performance of this methodology. Four

cases were selected that use the autogenous TIG process with only one step to weld austenitic

stainless steel plates. Table 2 shows the main characteristics used in experimental case studies,

such as the type of material, plate geometry, welding parameters (voltage E, current I, welding

velocity vw and efficiency η), the ambient temperature T∞ and the source of research.
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Table 2 – Main features of case studies.

Case Material
Geometry

[mm3]
E

[V ]
I

[A]
vw

[mms−1] η
T∞

[K] Source

Case 01 316L 250 x 160 x 10 10.0 150 1.0 0.68 302
(CARMO; FARIA, 2015)
(DEPRADEUX, 2004)

Case 02 316 110 x 60 x 10 16.3 306 7.98 0.80 298 (SILVA et al., 2020)
Case 03 304 200 x 100 x 2 10.0 100 10.0 0.70 300 (JOO et al., 2016)
Case 04 304 150 x 75 x 3 24.0 100 2.44 0.60 313 (VENKATKUMAR; RAVINDRAN, 2016)

Source: Own author.

Table 3 shows the necessary properties, as a function of temperature, for simulation

with the steels used in four case studies (product between density and heat capacity ρcp and

thermal conductivity k). The chosen temperatures seek to take better advantage of intervals found

between the case studies, however, temperatures are added that cover the range in which the

phase transformations of these steels occur (MIYATA et al., 2021; MUKHERJEE et al., 2017).

The values of properties not provided in these experimental works were interpolated to maintain

the same temperature range (273K −1773K) in all case studies.

Table 3 – Material properties of case studies.
Case Case 01 Case 02 Case 03-04

T
[K]

ρcp
[Jm−3K−1]

k
[Wm−1K−1]

ρcp
[Jm−3K−1]

k
[Wm−1K−1]

ρcp
[Jm−3K−1]

k
[Wm−1K−1]

273.0 4593000.0 13.48 4153504.0 27.78 3649800.0 14.60
373.0 4593000.0 14.92 4248304.0 28.58 3908480.0 15.10
473.0 4593000.0 16.36 4343104.0 29.38 4008960.0 16.10
573.0 4593000.0 17.80 4437904.0 30.18 4089750.0 17.90
673.0 4593000.0 19.23 4532704.0 30.98 4185000.0 18.00
873.0 4593000.0 22.11 4722304.0 32.58 4419820.0 20.80

1073.0 4593000.0 24.98 4911904.0 34.18 4566240.0 23.90
1473.0 4593000.0 30.73 5291104.0 37.38 4982120.0 32.20
1573.0 4593000.0 32.17 5385904.0 38.18 5065440.0 33.70
1673.0 29810000.0 47.57 5480704.0 38.98 5094720.0 76.85
1773.0 4927000.0 60.00 5575504.0 39.78 5124000.0 120.0

Source: Own author.

Table 4 shows the global heat transfer coefficient hg as a function of temperature.

For Case 01, the coefficient calculation considers only convection, ignoring radiation, but in

other cases, both phenomena are included. According to this case study 01, some properties were

considered constant. For Case 02, the calculation is performed using the Equations 3.3 and 3.4.

In Cases 03 and 04, they use a set of equations according to the defined temperature intervals.
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Table 4 – Global heat transfer coefficient of case studies.
Case Case 01 Case 02 Case 03 Case 04

T
[K]

hg
[Wm−2K−1]

273.0 10.000 18.606 0.000 18.236
373.0 10.000 20.914 6.680 24.916
473.0 10.000 24.318 13.360 31.596
573.0 10.000 29.049 20.040 38.276
673.0 10.000 35.341 26.720 44.956
873.0 10.000 53.532 56.500 119.563

1073.0 10.000 80.747 102.700 165.763
1473.0 10.000 169.672 195.100 258.163
1573.0 10.000 200.444 218.200 281.263
1673.0 10.000 235.095 241.300 304.363
1773.0 10.000 273.859 264.400 327.463

Source: Own author.

3.2.3 Simulations

After the process modeling and the selection of experimental cases in the literature,

a computational code in Fortran developed jointly with the members of the Computational Fluid

Dynamics Laboratory (LDFC), was modified using 3D hexahedron elements and an implicit

formulation with EbFVM to solve this non-linear transient problem. Only the symmetrical

half (in relation to the weld bead) of the plate was used in the approach, seeking to reduce

computational costs. This procedure doesn’t affect the final result and reduces the calculation

performed by a computer. The grid used in simulations was designed in ICEM Computational

Fluid Dynamics (CFD) tool of ANSYS software. In the same tool, with the developed geometry,

the meshes defined for this study were generated. For this, the code was created with a function

that reads the mesh files generated in the pattern provided by this software.

To better organize the results, the cases under study were divided according to the

positions on the plate where the experimental data were collected, together with the final time of

the thermal cycle. Table 5 illustrates this division. For all cases, the total time of thermal cycles

used in experimental work was used, except for Case 04, which was reduced to 400s as it would

be enough to understand the behavior.
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Table 5 – Division of case studies.

Cases Label Cycle
time
[s]

Position

x
[mm]

y
[mm]

z
[mm]

Case 01

C01-E01 400 10.0 95.0 10.0
C01-E02 400 20.0 95.0 10.0
C01-E03 400 50.0 95.0 10.0
C01-E04 400 0.0 95.0 0.0
C01-E05 400 8.0 95.0 0.0
C01-E06 400 20.0 95.0 0.0
C01-E07 400 35.0 95.0 0.0

Case 02 C02-E01 70 0.0 55.0 5.0

Case 03

C03-E01 300 0.0 100.0 0.0
C03-E02 300 5.0 100.0 0.0
C03-E03 300 10.0 100.0 0.0
C03-E04 300 16.0 100.0 0.0
C03-E05 300 24.0 100.0 0.0
C03-E06 300 32.0 100.0 0.0
C03-E07 300 40.0 100.0 0.0

Case 04
C04-E01 400 9.5 47.5 3.0
C04-E02 400 7.5 75.0 3.0
C04-E03 400 7.5 102.5 3.0

Source: Own author.

For performing all these simulations, a computational cluster composed of a headnode

with computational nodes having two types of servers was used. Headnode has two Intel Xeon

E5-2630 v4 2.2GHz processors, 64GB DDR3 1866Mhz ECC RAM and five 8TB SAS HDDs

in RAID 5. The first type of compute node has two Intel Xeon E5-2630 v4 2.2GHz processors,

64GB DDR3 RAM 1866Mhz ECC, and a 1TB SATA HDD. The second type has two Intel Xeon

X5660 2.8GHz processors, 48GB RAM, and a 500GB HDD. This equipment was made available

by the Computational Fluid Dynamics Laboratory (LDFC) which is located in the Department

of Metallurgical and Materials Engineering at Federal University of Ceará (UFC).

In order to obtain the best results, close to those found in literature, the four defined

cases were simulated several times, varying the parameters of the heat source with a time-step

equal to ∆t = 1.0s. Table 6 shows the parameters of the heat source that presented the best

performance for these cases under study.
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Table 6 – Parameters of heat source of case studies.

Case Heat source parameters

a f
[mm]

ar
[mm]

b
[mm]

c
[mm] f f fr

Case 01 6.0 6.0 6.0 6.0 1.4 0.6
Case 02 10.0 1.0 3.5 10.0 1.6 0.4
Case 03 8.0 12.0 5.0 2.0 0.8 1.2
Case 04 10.0 16.0 3.0 10.0 1.4 0.6

Source: Own author.

With these parameters defined, a refinement study was made in time and space. The

following time-step ∆t were used: 0.25s, 0.50s, 1.0s to understand the behavior of the solution

with a greater division of steps. The sizes in mesh refinement were defined in order to reduce the

size of elements close to the weld bead. In addition, an attempt was made to match the position

of points collected experimentally in the case of studies, in positions of nodes of generated

meshes, to facilitate comparisons. Table 7 shows the number of elements and nodes of each

mesh generated under investigation.

Table 7 – Mesh refinement of case studies.
Case Mesh Elements Nodes

Case 01
R01 1600 2601
R02 6000 9333
R03 15000 18666

Case 02
R01 440 759
R02 6600 10323
R03 13200 17205

Case 03
R01 2000 3198
R02 9000 13938
R03 18000 23230

Case 04
R01 3480 5490
R02 6960 9150
R03 13688 21330

Source: Own author.

In addition, simulations were performed seeking to estimate and predict the behavior

of these cases in different situations with other values of current, voltage, and welding efficiency,

keeping the welding process velocity, geometry, and thermal properties. The predicted values

were collected from the central point of the plate in the upper region with the source parameters,

and with the temporal and spatial refinements that performed better with Average MAPE

(MAPEm) in experimental case studies. Table 8 shows how these simulations were organized.
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Table 8 – Division the predictions of each cases under study.

Case Label Cycle
time
[s]

Welding parameters Position

E
[V ]

I
[A] η

vw
[mms−1]

x
[mm]

y
[mm]

z
[mm]

Case 01

C01-P01 400 10.0 150 0.68 1.0 0 125 10
C01-P02 400 16.3 306 0.80 1.0 0 125 10
C01-P03 400 10.0 100 0.70 1.0 0 125 10
C01-P04 400 24.0 100 0.60 1.0 0 125 10

Case 02

C02-P01 70 16.3 306 0.80 7.98 0 55 10
C02-P02 70 10.0 150 0.68 7.98 0 55 10
C02-P03 70 10.0 100 0.70 7.98 0 55 10
C02-P04 70 24.0 100 0.60 7.98 0 55 10

Case 03

C03-P01 300 10.0 100 0.70 10.0 0 100 2
C03-P02 300 10.0 150 0.68 10.0 0 100 2
C03-P03 300 16.3 306 0.80 10.0 0 100 2
C03-P04 300 24.0 100 0.60 10.0 0 100 2

Case 04

C04-P01 400 24.0 100 0.60 2.44 0 75 3
C04-P02 400 10.0 100 0.70 2.44 0 75 3
C04-P03 400 10.0 150 0.68 2.44 0 75 3
C04-P04 400 16.3 306 0.80 2.44 0 75 3

Source: Own author.

3.2.4 Performance of numerical simulations

To compare the numerical results with those collected experimentally in case studies,

statistical metrics were used to help measure the performance of each simulation. The Mean

Absolute Percentage Error (MAPE) metric is an excellent quantitative indicator that is widely

used to check errors between actual values and predictions (GUIMARÃES, 2020). For this case,

the MAPE [%] is calculated using the following equation (ANSARI et al., 2018):

MAPE =
n

∑
i=1

1
n
|T e

i −T s
i |

T e
i

×100 (3.7)

where:

T e
i - temperatures collected in each experimental thermal cycle [K],

T s
i - temperatures collected in each simulated thermal cycle [K],

n - number of points of each thermal cycle.

Since in most of these case studies, there is more than one point collected experimen-

tally, then a mean of MAPE of the thermal cycle of each point is performed. In addition, to verify

and compare the refinements used in the same case, the Coefficient of Variation CV was used.

This measure of dispersion shows how homogeneous the set of errors is within the same case, as

it relates the variability of data (standard deviation) with the magnitude of its mean.(FAVERO;

BELFIORE, 2019). The CV is calculated this case using the following equation (HEUMANN;
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SCHOMAKER, 2017):

CV =
s

MAPEm
(3.8)

with,

s =

√
n

∑
i=1

(MAPEi −MAPEm)
2

n
(3.9)

and MAPEm is a mean of MAPE values.

Finally, to compare the computational costs of simulations performed, the total

Central Processing Unit (CPU) time tCPU in seconds was used.

3.3 Results

With all the simulations performed, it was possible to compare the results of perfor-

mance metrics. Figure 17 illustrates the MAPEm for all cases for the different mesh refinements

and time steps.

Figure 17 – Mean values of MAPE in cases under study.

Source: Own author.

It can be seen that in Case 01 it had the lowest value of MAPEm among all cases,

with 2.92%, in which it used a mesh with 1600 elements and ∆t = 1.0s. For this case, there was

an increase in metric with a greater refinement of mesh or with a decrease in a time interval.
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This increase can be considered irrelevant since the differences are small and can be attributed to

some approximations. For Case 02, the best value was 5.81% using a mesh of 6600 elements

and with a time-step of 1.0s. For Case 02, there was a behavior similar to Case 01 when temporal

refinement is performed. However, there is a decrease of MAPEm with spatial refinement in

most configurations for Case 02. For Case 03, the lowest value was 3.66% with 18000 elements

in mesh and ∆t = 1.0s. However, there was a decrease in metric with mesh refinement and an

increase with decreasing time intervals. Finally, for Case 04, we had the highest value of MAPEm

among all the lowest in other cases, with 7.36%, using a mesh of 13688 elements and an interval

of 1.0s. The same behavior of Case 03 with the refinement of time intervals occurs for this case,

however in mesh refinement from R01 to R02 there is an increase, and from R02 to R03 there is

a decrease.

The same analysis was performed by comparing the CV values in which it was

possible to visualize the homogeneity of errors. Figure 18 shows this comparison for the cases,

except Case 02 because it has zero variability, having only a single experimental collection point.

Figure 18 – CV values in cases under study.

Source: Own author.

For Case 01, the smallest CV value was 0.189 when it was simulated with a mesh of

15000 elements and with ∆t = 0.25s. With the refinement of mesh and the time interval, it was

noticed, in general, a more homogeneous behavior. The value of 0.894 was the lowest found
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in Case 03, using a mesh of 9000 elements and with ∆t = 0.25s. The best values for this case

with mesh refinement occurred with type R02. In addition, the decrease in time-step resulted

in a greater homogeneity of errors for this case. Finally, in Case 04, the lowest CV value was

found among all cases, with 0.162 when a mesh of 13688 elements was used and ∆t = 0.50s.

The extreme values in this case were very close with a maximum relative absolute difference of

8.64%. The highest value of Case 04 is smaller than all the others of other cases. However, more

homogeneous data was obtained when passing from the refinement R01 to R03 and from the

time interval 1.0s to 0.25s directly, without going through the intermediate refinement layer.

Figure 19 illustrate the mesh generated for case 01 with the refinement 01 that was

used in simulations, in which it is possible to visualize the type of refinement performed for this

case in three Cartesian directions, for example.

Figure 19 – Generated mesh - Case 01 - R01.

Source: Own author.

The thermal cycle results obtained with the best MAPEm can be seen in Figures

20-23 and with the best CV in Figures 24-26, together with the data collected experimentally for
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each case.

Figure 20 – Numerical-experimental comparison - Best MAPEm - Case 01 - R01 - ∆t =
1.0s.

Source: Own author.

Figure 21 – Numerical-experimental comparison - Best MAPEm - Case 02 - R02 - ∆t =
1.0s.

Source: Own author.
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Figure 22 – Numerical-experimental comparison - Best MAPEm - Case 03 - R02 - ∆t =
1.0s.

Source: Own author.

Figure 23 – Numerical-experimental comparison - Best MAPEm - Case 04 - R03 - ∆t =
1.0s.

Source: Own author.
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Figure 24 – Numerical-experimental comparison - Best CV - Case 01 - R03 - ∆t = 0.25s.

Source: Own author.

Figure 25 – Numerical-experimental comparison - Best CV - Case 03 - R02 - ∆t = 0.25s.

Source: Own author.
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Figure 26 – Numerical-experimental comparison - Best CV - Case 04 - R03 - ∆t = 0.50s.

Source: Own author.

It can be seen that the numerical results of thermal cycles were close to those

found experimentally for the four cases, both for the best values of MAPEm and for the greater

homogeneity given by CV , showing the efficiency of the adopted methodology. The temperature

peaks of the cycles are consistent with the allocated positions on the plate, being smaller in

positions further away from the heat source and greater the closer the heat source. Values

consistent with the experimental cases under study. In addition to these graphs, it was possible

to compare the maximum temperatures obtained in simulations. The temperature value found

for the best MAPEm was used as a reference to calculate the relative difference between the

maximum temperature values. Table 9 shows these values.
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Table 9 – Maximum temperatures in cases under study.

Case Label MAPE[Ref.] CV Relative
difference

[%]
Tmax
[K]

Case 01

C01-E01 862.83 825.70 -4.30
C01-E02 586.39 568.79 -3.00
C01-E03 409.27 402.67 -1.61
C01-E04 1083.90 1082.29 -0.15
C01-E05 886.41 862.78 -2.67
C01-E06 586.37 568.79 -3.00
C01-E07 456.39 447.07 -2.04

Case 02 C02-E01 1382.77 - -

Case 03

C03-E01 1190.07 1145.63 -3.73
C03-E02 708.78 700.34 -1.19
C03-E03 507.18 499.98 -1.42
C03-E04 423.97 418.77 -1.23
C03-E05 377.01 373.71 -0.87
C03-E06 358.95 356.57 -0.66
C03-E07 354.01 351.93 -0.59

Case 04
C04-E01 804.01 803.56 -0.06
C04-E02 943.02 943.99 0.10
C04-E03 948.77 945.42 -0.35

Source: Own author.

Comparing the two performance indices, the maximum relative difference in the

module was only 4.30% for C01-E01. However, the smallest relative difference was found in

configuration C04-E01 with a value of 0.06%. Furthermore, the highest maximum temperature

reached among all cases was in Case 02 in configuration C02-E01, with a value of 1382.77K.

The lowest maximum temperature of 351.93K was found in C03-E07 when using CV .

Figures 27-30 illustrate the temperature field generated on the plates with the welding

process for all case studies. These figures show the results of best-performing configurations of

MAPEm.
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Figure 27 – Temperature field - Case 01 - R01 - ∆t = 1.0s.

Source: Own author.

Figure 28 – Temperature field - Case 02 - R02 - ∆t = 1.0s.

Source: Own author.
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Figure 29 – Temperature field - Case 03 - R02 - ∆t = 1.0s.

Source: Own author.

Figure 30 – Temperature field - Case 04 - R03 - ∆t = 1.0s.

Source: Own author.

For Case 01, the time that the torch reaches the center of the plate is greater due to

its welding velocity being the lowest among all cases. For all cases shown in Figures 27-30,

maximum temperatures were generated around 2706K, 2904K, 1554K and 1843K, respectively.

The minimum temperature values correctly represent the ambient and initial temperatures of

each case.



63

Table 10 shows the values of CPU times, illustrating the computational cost generated

in simulations for all cases.

Table 10 – Computational cost in cases under study.

Case Mesh ∆t = 0.25s ∆t = 0.50s ∆t = 1.0s Total time
[h]tCPU

[s]
tCPU
[s]

tCPU
[s]

Case 01
R01 566.55 287.71 151.79

7.70R02 3143.64 1606.69 822.56
R03 11865.89 6117.63 3158.04

Case 02
R01 23.33 12.15 6.71

1.18R02 647.20 332.93 189.00
R03 1719.27 867.40 446.41

Case 03
R01 569.41 291.10 151.62

8.85R02 4475.72 2319.31 1164.49
R03 12937.53 6635.68 3314.90

Case 04
R01 1492.52 753.38 490.28

8.60R02 3587.38 1848.88 948.95
R03 12624.34 6096.41 3133.35

Source: Own author.

For Case 03, there was the highest tCPU , with approximately 8.85h. This time is

due because this case has more elements than the other cases. However, the smallest tCPU

was found for Case 02, with 1.18h. Table 10 illustrates the increase in tCPU with spatial and

temporal refinement. This behavior occurs because it increases the number of calculations that

the computer has to perform.

Finally, the thermal cycles found in prediction cases (Table 8) using the configurations

that had the best performance with MAPEm are illustrated in Figures 31-34.

Figure 31 – Numerical predictions obtained - Case 01 - R01 - ∆t = 1.0s.

Source: Own author.
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Figure 32 – Numerical predictions obtained - Case 02 - R02- ∆t = 1.0s.

Source: Own author.

Figure 33 – Numerical predictions obtained - Case 03 - R02 - ∆t = 1.0s.

Source: Own author.
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Figure 34 – Numerical predictions obtained - Case 04 - R03 - ∆t = 1.0s.

Source: Own author.

The shape of curves of predicted thermal cycles shows the similarity of behavior

of temperatures validated in experimental cases. The maximum temperatures of these thermal

cycles are shown in Table 11. The reference temperature is the first Tmax of each case, as it is the

configuration that maintained the welding parameters of the respective experimental case.

Table 11 – Maximum temperatures in numerical predictions.

Case Label Tmax
[K]

Relative
difference

[%]

Case 01

C01-P01 2705.73 Ref.
C01-P02 4930.96 82.24
C01-P03 2734.88 1.08
C01-P04 2423.50 -10.43

Case 02

C02-P01 2115.93 Ref.
C02-P02 1128.56 -46.66
C02-P03 1714.10 -18.99
C02-P04 1029.13 -51.36

Case 03

C03-P01 1544.27 Ref.
C03-P02 1866.06 20.84
C03-P03 3719.18 140.84
C03-P04 1665.58 7.85

Case 04

C04-P01 1838.33 Ref.
C04-P02 1879.28 2.23
C04-P03 3148.26 71.26
C04-P04 1808.34 -1.63

Source: Own author.

Among all cases, the highest predicted temperature value was 4930.96K, which uses

the welding parameters of Case 02 in configurations of Case 01, which has the lowest welding

velocity. The lowest value was found for Case 02 using the welding parameters of Case 03, with
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a maximum temperature of 1029.13K. Case 03 had the highest mean relative absolute difference

among the other modifications, with a value of 56.51% resulting in a significantly greater change

when changing settings. Case 04, had the lowest mean in relative absolute difference, with

25.04%. The extreme temperatures that appeared in some configurations aren’t advised in a real

TIG welding process as they exceed the melting point of the tungsten electrode which is 3683K

and cause problems in the final workpiece, in the electrode, and in the equipment used or directly

the welder (MALLICK, 2010; MARQUES et al., 2011).

Table 12 shows the computational costs in simulations performed to predict the

thermal cycles in predicted cases. As there are 4 options in each predicted case, the mean tCPU

was calculated. Case 04 resulted in the highest (tCPU)m of 3093.26s with a total CPU time of

3.44h, among the other cases. This occurred because this case had a greater number of elements.

Table 12 – Computational cost of numerical prediction
cases.

Predicted
cases

(tCPU )m
[s]

Total time
[h]

Case 01 151.02 0.17
Case 02 171.25 0.19
Case 03 1146.30 1.27
Case 04 3093.26 3.44

Source: Own author.

3.4 Conclusions

In the present study, a numerical analysis of TIG welding process on rectangular

plates using austenitic stainless steels (316L, 316 and 304) was performed using a thermal

simulator based on EbFVM and compared with experimental results of thermal cycles generated

in the process. The influence of spatial and temporal refinement was investigated. The perfor-

mance of simulations was compared using the MAPE and CV metrics and their computational

cost. In addition, predictions were obtained by modifying some welding parameters, seeking to

understand the thermal behavior in these new situations. Based on the general numerical analysis

performed, the following observations were made:

• The modeling of the welding process using the double ellipsoidal source proved to be a

good option to represent the TIG process, as it generated a compatible behavior when

compared to the experimental one;

• The MAPE performance comparison metric showed good results, with relatively low
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values in four cases, between 2.92% and 7.67%. Case 01 had lower MAPE values, on

the mean, and Case 04 had the highest values. Regarding the CV, values between 0.162

and 1.04 were found. Case 04 had a more homogeneous behavior and Case 03 the least

homogeneous when compared to each other;

• The mesh refinement generated a decrease in mean MAPE values in most cases. In

addition, it caused greater homogeneity, through the CV, in most of the configurations of

case studies, mainly in Case 01;

• The temporal refinement in each time step generated an increase in mean values of

MAPE, in all cases. Furthermore, this refinement generated greater homogeneity in most

configurations of cases under study;

• The numerical-experimental comparison showed sufficient proximity to illustrate the

efficiency of the procedure performed;

• The absolute relative difference between the maximum temperatures of numerically calcu-

lated thermal cycles didn’t exceed 4.30%, showing a certain proximity between the best

result with MAPEm and with CV ;

• The heat map generated in the welding process illustrated the behavior and fidelity of the

heat source when compared with the experimental results;

• The prediction of new configurations for the cases under study showed a possible behavior

of temperature distribution respecting the physical logic found in experimental processes;

• The simulated cases confirmed that with the refinement of both the mesh and the time

intervals of each step, the computational cost will be higher. For the cases under study,

combining experiments and predictions, totaled 31.40h of CPU time.
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4 THERMAL ANALYSIS OF TIG WELDING WITH AUSTENITIC STAINLESS

STEELS USING DEEP LEARNING

4.1 Review

This work sought to present a faster way to thermally analyze the autogenous TIG

welding process on plates using austenitic stainless steels (316L and 304) through deep learning.

Neural network structures were used with deep learning algorithms in Python to predict the

thermal cycles of two experimental cases from the literature. In order to enhance the breadth of

available options, the database was enriched through the incorporation of additional numerical

simulations. These simulations encompassed the cases previously validated in the preceding

chapter, with deliberate adjustments made to the welding parameters. This approach ensured a

more comprehensive coverage of potential scenarios within the database. The construction of the

deep learning network was approached in two ways: Firstly, by dividing it into five networks, with

each network dedicated to one of the five fundamental points that characterize the thermal cycle.

Secondly, by using a single network to capture the entire temperature distribution. The data were

divided in the proportion of 80-20% between training (estimation with validation) and testing. To

determine the optimal hyperparameters for training the network, a cross-validation methodology

was employed. This approach ensured that the errors on the test data remained below 5%,

indicating a high level of accuracy and reliability in the results. This applied methodology proved

to be efficient when quantitatively and qualitatively compared with experimental and numerical

curves. The computational cost to predict the temperatures after construction and training the

networks is minimal. Thus, this tool becomes a great strategy for this type of application.

4.2 Materials and methods

4.2.1 Data preparation and collection

Initially, the main variables that directly influence the thermal cycle of the welding

process were stipulated. Among the existing categories of parameters, eleven variables were

defined that best summarize and represent the boundary conditions used in the simulation of

TIG welding on plates. As seen in the previous chapter, the analyzed plates were divided

symmetrically in relation to the bead weld. Figure 35 illustrates this division and the variables

considered in the problem. Therefore, one of the variables represents the symmetrical width of
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the plate (wp). In addition to this, there is the thickness of the plate (tp), the length of the weld

bead (lwb), the position in y at which the welding process begins (sw), the ambient temperature

(T∞), the type of material used (M) maintaining the thermal properties (ρ , cp and k ) respectively,

the mean global heat transfer coefficient (hm) between the smallest and the largest values, the

input heat in relation to welding velocity (Hw = S
vw

), and the relative positions on the plate

relative to the starting point of process (xr, yr, zr).

Figure 35 – Plate with the variables defined.

Source: Own author.

After defining the variables, two cases were chosen from the set of cases studied in

the previous chapter. The selection was based on identifying the cases with greater homogeneity

in their errors, determined by a lower coefficient of variation (CV) indicator. This information

fed the database that was used to train the deep learning network. These data were obtained

with simulations of Cases 01 (R03 - ∆t = 0.25s) and 04 (R01 - ∆t = 0.25s), modifying the

variables that address the welding parameters and positions on the plate. It’s worth pointing

out for Case 04 was chosen as the second best configuration as it would considerably reduce

the computational cost and not affect the efficiency of analysis. This CV difference between

the best configuration and the second best configuration, in this case, was 1.85%. The input

heat values used in simulations that fed the database were slightly different from the original
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ones applied in chosen cases. This strategy was adopted to cover more options in the analysis.

The same reasoning was applied to the relative positions (xr, yr, zr) of plate. The heat source

parameters were maintained according to the total heat input S of each case. The simulation time

of 400s and the mesh configurations also followed the same for selected cases. The material

type was defined as M = 0 for 304 steel and M = 1 for 316L steel. In addition, an extra value of

hm = 40Wm−2K−1 found in literature was added to have an extra option in analysis. Therefore,

20736 combinations were simulated in total (size of dataset). Table 13 illustrates all variables

and their defined values.

Table 13 – Description and values of defined variables.

Category No. Variable Label Unit Case 01 Case 04
Simulated

options

Geometry 1
Symmetrical

plate width wp [mm] 80 37.5 37.5 and 80

2 Plate thickness tp [mm] 10 3 3 and 10

Initial
condition

3
Weld bead

length lwb [mm] 230 110 110 and 230

4
Welding start

position sw [mm] 10 20 10 and 20

5
Ambient

temperature T∞ [K] 302 313 302 and 313

Properties 6
Type of
material M - 1 0 0 and 1

7
Mean global heat

transfer coefficient hm [Wm−2K−1] 10 172.85
10, 40

and 172.85
Welding

parameters 8
Heat input
in welding Hw [Jmm−1] 1020 590.16

365, 480,
1095 and 1440

Plate
positions

9
Relative

position x xr [%]
0, 10, 12.5, 25,
43.75 and 62.5 20 and 25.33 0, 25 and 50

10
Relative

position y yr [%] 36.96 25, 50 and 75 25, 50 and 75

11
Relative

position z zr [%] 0 and 100 100 0, 50 and 100

Source: Own author.

4.2.2 Deep learning simulation

4.2.2.1 Model construction

The deep learning model adopted two types of construction. Type 01 considers five

specific points that illustrate the behavior of the thermal cycle in Figure 36. The first two points

refer to time and temperature where the first appearance of a temperature value 5% higher than

the initial temperature occurs. The third and fourth points refer to time and temperature where

the highest temperature value occurs in a cycle. The last point refers to the temperature value
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at the end of the simulation (t = 400s). Type 02 considers all thermal cycle temperature values

during the 400s simulation with a single network, with a step-time of 1.0s. Table 14 summarizes

these types, detailing the number of networks and neurons in input and output layers.

Figure 36 – Specific points in the thermal cycle.

Source: Own author.

Table 14 – Build types for the deep learning model.

Type Qty. network Qty. neuron Description
Input layer Output layer

Type 01 5 11 1
A network to predict the

temperature in specific points.

Type 02 1 11 401
A network to predict the
complete thermal cycle.

Source: Own author.

To find the hidden layers, the possible number of layers and neurons was stipulated,

using Geometric Mean (GM), Arithmetic Mean (AM), and Weighted Mean (PM). The calculation

of these layers followed the pattern illustrated in Figure 37.
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Figure 37 – Example of how the means used in study are calculated.

Source: Own author.

Therefore, the number of neurons was calculated, rounding the values found in

geometric, arithmetic and weighted mean with the weights 2:1, 3:2, 3:1, 4:1, 4:3 for Type 01,

varying the number of hidden layers from 2 to 7. For Type 02, , the same logic was used, but the

weights were inverted because the number of neurons in output is greater than the input. The

results of these calculations are illustrated in Tables 15, 16 and 17:

Table 15 – Distribution of neurons for Type 01.

Mean Qty. hidden layers

2 3 4 5 6 7

GM [5,2] [6,3,2] [7,4,3,2] [7,5,3,2,1] [8,6,4,3,2,1] [8,6,4,3,2,2,1]
AM [8,4] [8,6,3] [9,7,5,3] [9,8,6,4,3] [10,8,7,5,4,2] [10,8,7,6,5,3,2]

PM (2:1) [10,7] [10,9,6] [11,10,9,6] [11,11,10,9,6] [11,11,10,10,9,6] [11,11,11,10,10,9,6]
PM (3:2) [9,6] [10,8,5] [10,9,7,5] [11,10,9,7,5] [11,10,10,8,7,5] [11,10,10,9,8,7,4]
PM (3:1) [10,8] [11,10,8] [11,11,10,8] [11,11,11,10,8] [11,11,11,11,10,8] [11,11,11,11,11,10,8]
PM (4:1) [11,9] [11,10,9] [11,11,10,9] [11,11,11,10,9] [11,11,11,11,10,9] [11,11,11,11,11,10,9]
PM (4:3) [9,5] [9,7,5] [10,9,7,4] [10,9,8,6,4] [10,10,9,8,6,4] [11,10,9,9,7,6,4]

Source: Own author.
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Table 16 – Distribution of neurons for Type 02 - Qty. hidden layers 2-4.

Mean Qty. hidden layers

2 3 4

GM [36,121] [27,66,163] [23,46,95,195]
AM [141,271] [108,206,303] [89,167,245,323]

PM (1:2) [234,345] [219,323,375] [212,313,363,388]
PM (2:3) [196, 319] [173, 281, 353] [161,261,327,371]
PM (1:3) [281,371] [274,362,391] [272,359,388,398]
PM (1:4) [308,382] [305,378,396] [304,377,395,400]
PM (3:4) [180,306] [154,261,341] [139,235,307,361]

Source: Own author.

Table 17 – Distribution of neurons for Type 02 - Qty. hidden layers 5-7.

Mean Qty. hidden layers

5 6 7

GM [20,36,66,121,220] [18,31,51,86,144,240] [17,27,42,66,104,163,256]
AM [76,141,206,271,336] [67,122,178,234,290,345] [60,108,157,206,255,303,352]

PM (1:2) [209,308,358,382,395] [208,306,355,380,392,398] [207,305,354,378,390,396,399]
PM (2:3) [154,249,312,354,382] [149,241,303,343,371,389] [146,236,297,337,363,381,393]
PM (1:3) [271,358,387,397,400] [271,358,387,396,400,401] [271,358,387,396,399,401,401]
PM (1:4) [304,377,395,400,401] [304,377,395,400,401,401] [304,377,395,399,401,401,401]
PM (3:4) [130,219,285,335,373] [124,208,271,319,354,381] [119,201,262,307,342,367,387]

Source: Own author.

4.2.2.2 Training and testing

With the data organized for each type of model, the group was divided into two parts:

one for training and another for testing, in a ratio of 80-20%, in that order. Within the training,

the Cross-validation technique was used to evaluate the best option for the hidden layers. All

layers defined in Tables 15-17 were applied, using the optimizer Root Mean Squared Propagation

(RMSPROP), the Mean Squared Logarithmic Error (MSLE) loss function, the number of epochs

equal to 50, the batch size equal to 16, the Mean Squared Error (MSE) metric and a cross-

validation subdivision equal to k = 5. It was chosen to fix the other hyperparameters due to

the high computational cost. This process was carried out in 6 different networks of two types

of models previously defined. With the distribution of neurons and layers established, further

comparisons were performed to understand the behavior and choose the best final combination

for each network. A new comparison was made by varying the optimizer (rmsprop, Adam,

and Stochastic gradient descent (SGD)), loss function (MSLE, MAPE, MAE), and fixing the

other parameters. The RELU activation function and the standard learning rate and momentum

hyperparameters were maintained in all analyzed comparisons. All these parameters were defined
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according to the literature found on the application of deep learning in engineering problems.

Finally, the separate test data (20.0%) were applied to models with the best combinations found

in analyzed comparisons.

4.2.2.3 Predictions

After the deep learning networks were trained and tested, it was possible to apply the

original input values of Cases 01 and 04 in final Deep Learning (DL) models found to predict

the points in two types of networks, present in Table 13. Therefore, the comparison between

simulated values using EbFVM and those predicted with Deep Learning can be performed,

verifying the performance of the applied methodology.

4.3 Results

Case 04, so-called in text until then, will be called Case 02 to simplify the text, from

that point on. In the first comparison, the best combinations of hidden layers for both types were

indicated. Figure 38 shows the results obtained with the Grid Search for the five points of Type

01, where it is possible to visualize the configurations with the smallest errors in each point,

illustrated by a normalized score.

Figure 38 – Score x Settings - Type 01.

Source: Own author.

In addition, these results were organized by categorizing by the number of hidden

layers and the chosen mean, to understand the influence of each of these variables on the error

values, which can be seen in boxplots of Figure 39.
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Figure 39 – Boxplot analysis based on a hidden layer and mean settings - Type 01.

Source: Own author.

The GM presented the worst performance in analyzed points, while the PM presented

the best mean values, with the lowest scores. Furthermore, regarding the number of hidden

layers, the option with 2 layers, visually, presented lower mean scores in general.

The same analysis was performed for Type 02, resulting in Figure 40 that illustrates

the values obtained in all the configurations tested in Grid Search.

Figure 40 – Score x Settings - Type 02.

Source: Own author.

From Figure 40 it was possible to visualize a worse performance, higher scores, for

the weighted mean group (PM) with 7 hidden layers. However, in the same mean type with 4

layers, there was a better performance in general. Figure 41 confirms this behavior showing the

boxplot separated by mean type and by the number of hidden layers.



76

Figure 41 – Boxplot analysis based on hidden layer and of mean type - Type 02.

Source: Own author.

From the best options found in first comparison, the second comparison was per-

formed, varying the optimizer and the loss function as defined in methodology. Similar to the

previous procedure, the influence of these parameters can be seen through Figures 42 and 43 for

Type 01 and Type 02, respectively.

Figure 42 – Boxplot analysis based on optimizer and of loss function - Type 01.

Source: Own author.
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Figure 43 – Boxplot analysis based on optimizer and of loss function - Type
02.

Source: Own author.

Based on the methodology adopted to choose the best configuration among those

defined and analyzing the comparisons made, the ones that had the best performance were found

and presented in Table 19.

Table 18 – Combinations with the best performances.
Type Point Setting Distribution Optimizer Loss Function

Type 01

Point 1 PM (2:1) - HL 7 [11,11,11,10,10,9,6] Adam MAPE
Point 2 PM (4:3) - HL 2 [9,5] Adam MSLE
Point 3 PM (3:1) - HL 6 [11,11,11,11,10,8] Adam MAE
Point 4 PM (3:2) - HL 7 [11,10,10,9,8,7,4] Rmsprop MSLE
Point 5 PM (2:1) - HL 7 [11,11,11,10,10,9,6] Adam MSLE

Type 02 Full PM (2:3) - HL 4 [161,261,327,371] Adam MSLE

Source: Own author.

From these configurations, the networks were trained with 80% of data separated for

training, increasing the epoch number from 50 to 200, but keeping the other hyperpameters fixed.

Among the 6 networks, the network used for point 4 of Type 01 was increased to 400, as it had

better MAPE results than with 200. For this phase, loss curves were generated with all data, both

training and of test, according to the loss function of each type in Table 19 These curves for the

five Type 1 networks and for the Type 2 network are illustrated in Figures 44-49.
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Figure 44 – Loss curves generated in training and testing deep learning networks - Point 01 -
Type 01.

Source: Own author.

Figure 45 – Loss curves generated in training and testing deep learning networks - Point 02 -
Type 01.

Source: Own author.
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Figure 46 – Loss curves generated in training and testing deep learning networks - Point 03 -
Type 01.

Source: Own author.

Figure 47 – Loss curves generated in training and testing deep learning networks - Point 04 -
Type 01.

Source: Own author.



80

Figure 48 – Loss curves generated in training and testing deep learning networks - Point 05 -
Type 01.

Source: Own author.

Figure 49 – Loss curves generated in training and testing deep learning networks - Full - Type
02.

Source: Own author.

All curves showed a decrease in loss as the number of epochs was increased for both

training and test data. Therefore, the MAPE index was calculated to verify the error generated

by these networks. Table 19 shows these values in both types.
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Table 19 – MAPE performance of training and test data.
Type Point Epochs Train [%] Test [%]

Type 01

Point 1 200 3.186 3.157
Point 2 200 0.438 0.435
Point 3 200 4.547 4.622
Point 4 400 3.639 3.562
Point 5 200 1.786 1.759

Type 02 Full 200 1.073 1.073

Source: Own author.

It can be seen that the maximum MAPE error percentage was 4.622% in data from

point 3 of Type 01 and the lowest in point 2, with 0.435%. With these networks found, it was

possible to predict the thermal cycle for both types. Figures 50-53 show a comparison of values

predicted by Deep Learning, with the results numerically simulated by EbFVM used in training

and with the experimental results of selected cases.

Figure 50 – Type 01 Comparison - Deep Learning x 3D Numerical x Experimental - Case 01.

Source: Own author.
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Figure 51 – Type 01 Comparison - Deep Learning x 3D Numerical x Experimental - Case 02.

Source: Own author.

Figure 52 – Type 02 Comparison - Deep Learning x 3D Numerical x Experimental - Case 01.

Source: Own author.
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Figure 53 – Type 02 Comparison - Deep Learning x 3D Numerical x Experimental - Case 02.

Source: Own author.

For both types, an extra treatment was performed to transform null temperature

results into values calculated with the interpolation between two equidistant times. Visually, it is

noted that the Type 01 results showed a close temperature distribution with the compared curves,

representing the expected behavior well. Type 02, also had similar behaviors, but in Case 01, an

extra smaller peak was presented at the beginning of the cycle. Table 20 it is possible to visualize

the MAPE errors obtained by comparing these curves.

Table 20 – MAPE performance of proposed comparisons.

Type/Case MAPE

Experimental [Ref.]
x 3D Numerical [%]

3D Numerical [Ref.]
x DL Predict [%]

Experimental [Ref.]
x DL Predict [%]

Type 01 Case 01 4.48 3.96 18.72
Case 02 7.60 4.73 4.33

Type 02 Case 01 4.48 6.29 15.48
Case 02 7.60 3.07 13.66

Source: Own author.

Table 20 shows that the maximum MAPE for the 3D Numerical x DL Predict

comparison was 4.73% for Type 01 and 6.29% for Type 2. These errors can be considered

low since visually the curves were very close. However, in the Experimental x DL Predict

comparison, it had a maximum MAPE of 18.72% for Type 01 and 15.48% for Type 02. Despite

these errors, similar behaviors can also be noticed visually, mainly in Case 02.
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4.4 Conclusions

In this study, a thermal analysis of the autogenous TIG welding process on rectangu-

lar plates using austenitic stainless steels (316L and 304) was performed using deep learning

algorithms and compared the predicted thermal cycles with the experimental results and nu-

merically simulated with EbFVM. The MAPE performance index was used to compare errors

between curves. Two types of deep learning network construction architecture were developed

and compared with each other. In addition, the influence of hyperparamters used in the construc-

tion of deep learning models was investigated. Based on the analysis carried out, the following

observations were made:

• The choice of variables that characterize the autogenous TIG welding process applied to

austenitic stainless steels proved to be efficient;

• Simulations of all planned combinations form a good dataset to feed deep learning net-

works;

• The two deep learning network construction frameworks gave different views on how to

arrive at efficient prediction results;

• The methodology adopted through meantypes, number of hidden layers and variation

of hyperparameters to choose the best ways to construct the network brought a good

prediction of thermal behavior in this welding process;

• The training of networks generated errors of less than 5% in tests performed;

• Most networks construct had better results when using the Adam optimizer, loss function

MSLE, weighted average, and number of hidden layers greater than or equal to 6;

• The loss curves confirmed that the amount of epoch number used was sufficient to generate

good forecasts with low errors;

• The comparison between the thermal cycles of experimental cases, those numerically

simulated with EbFVM, and deep learning predictions showed that visually the curves

were very close. Furthermore, in a quantitative sense, errors lower than 6.3% were obtained

when comparing DL Predict with the numerically simulated ones and lower than 18.8%

when compared with the experimental cases;

• Finally, with this methodology used, there was a solution to predict thermal cycles with

low computational cost when compared to numerical simulations.
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5 CONCLUSIONS AND FUTURE WORKS

5.1 Conclusions

Based on the studies developed in this dissertation it was possible to conclude:

• In Chapter 3, numerical simulations using EbFVM were developed to predict the thermal

behavior of autogenous TIG welding process with austenitic stainless steels, using rectan-

gular plates. The simulated thermal cycles were compared with the temperature field of

experimental cases from the literature. This comparison showed the good efficiency of

the methodology used in these simulations. In a qualitative sense, it was noticed that the

compared curves were very close and the temperature fields showed fidelity to the heat

transfer phenomenon. The MAPE and CV performance indices gave good quantitative

insight into the low errors generated in thermal cycle comparisons. Furthermore, it was

possible to analyze the influence of spatial and temporal refinements applied in simulations.

• In Chapter 4, deep learning networks were developed to predict the thermal cycle points

generated in an autogenous TIG welding process with austenitic stainless steels, using

rectangular plates. The two defined types of network construction offer distinct approaches

to predicting the same phenomenon, each with its own advantages. One approach provides

a simplified model, while the other offers a broader perspective. The database formed

through simulations validated in the previous chapter proved sufficient for applying deep

learning models. The methodology adopted for building the model, using mean types,

varying the number of hidden layers, and varying hyperparameters, proved to be efficient

for training the database and returning low test errors. Therefore, it was possible to predict

the thermal cycles of simulated cases and have excellent comparisons in a qualitative sense.

Finally, this path proved to be an excellent option for predicting this phenomenon, mainly

because it has similar efficiency and a much lower computational cost when compared to

traditional numerical simulations.

5.2 Future works

This work has been concluded, but it has the potential to explore several fronts, such

as:

• Develop an experimental study of the TIG welding process to generate the temperature
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field itself and build a deep learning model based on these results;

• A mechanical study of residual stress curves generated in TIG welding process with com-

parisons between experimental cases, numerical simulations and deep learning predictions;

• The construction of a database with information on thermal cycle curves or residual stresses

in different welding processes and materials to have a more generalized and more complete

model;

• Develop and compare plastic and viscoplastic models applied to the TIG welding process,

using numerical simulation with EbFVM and machine learning.
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