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We study the mixing of two different kinds of particles, having different charge and/or mass, interacting
through a pure Coulomb potential, and confined in a parabolic trap. The structure of the cluster and its normal
mode spectrum are analyzed as a function of the ratio of the charges (mass ratio) of the two types of particles.
We show that particles are not always arranged in a shell structure. Mixing of the particles goes hand in hand
with a large number of metastable states. The normal modes of the system are obtained, and we find that some
of the special modes can be tuned by varying the ratio between the charges (masses) of the two species. The
degree of mixing of the two type of particles is summarized in a phase diagram, and an order parameter that
describes quantitatively the mixing between particles is defined.
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I. INTRODUCTION

In recent years there has been an increased interest in
theoretical and experimental studies of two-dimensional
(2D) confined clusters of classical particles. This is due to
the wide applicability of such theoretical 2D models to real
physical systems. For example, quantum dots are very well
described by these simple models in the weak density limit
and/or in the high magnetic field limit [1]. A classical ap-
proach to real systems is very convenient since many impor-
tant systems can be modeled in this way. As examples of
experimental realizations of such classical 2D systems, we
can cite electrons on the surface of liquid helium [2,3], col-
loidal suspensions [4], ion traps [5], and strongly coupled
dusty plasmas [6]. From a theoretical point of view, 2D
charged confined clusters are a very interesting system which
offers rich physics with several nontrivial effects (i.e., over-
charging, phase transitions, Wigner crystallization, reentrant
melting), and in which the reduced dimensionality and the
finite size of the system allow often an “exact numerical”
description.

In a parabolic confinement potential a 2D system of sin-
gly charged particles crystallizes in an ordered structure. For
clusters with a small number of particles (N), one observes
the formation of a shell structure. When the number of par-
ticles increases, there is a competition between the internal
triangular structure (i.e., Wigner crystal) and the circular
confinement potential, which is responsible for the ring
structure (i.e., leading to a 1D Wigner lattice at the edge) [7].
A Mendeleev-like table for these classical systems was pre-
sented in Ref. [7], and the normal mode properties of these
systems were studied in Ref. [8]. A similar study for a Cou-
lomb type confinement potential which corresponds to the
classical analog of a 2D atom was presented in Ref. [9].
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Very recently, systems with two types of charged particles
were studied [10,11]. The structure and melting of such clas-
sical clusters with the same mass were presented in Ref. [10].
It was shown that the particles arrange themselves in rings,
with those of larger charge located at the border of the clus-
ter. In addition, it was found that, for some special matching
configurations, an intershell rotation was activated for tem-
peratures higher than those observed in the cases of non-
matching configurations. The results presented in Ref. [10]
were restricted to the special case in which the ratio between
the two types of charges was ¢,/¢,=2. In Ref. [11] a detailed
study was made of the structure of clusters containing one or
two impurities of different charge and mass as were realized
in recent experiments [12]. References [10,11] did not ad-
dress systems with a larger number of impurity particles, and
did not study the normal modes of the system. As shown by
Schweigert and Peeters [8], the frequencies of the normal
mode spectrum can determine the melting temperature, and
the particular intershell rotation mode (as the mode with
minimum frequency) plays an important role in the melting
properties of the system. When the intershell rotation mode
is present the melting occurs in a two-step process with a
very low temperature for angular disorder.

In Ref. [10] the authors mentioned that is possible to pre-
dict the appearance of the intershell rotation based only on
the arrangement of the particles and on the ratio of the num-
bers of both types of particles in the cluster. However, we
show here that there are other parameters that are more im-
portant than the configuration of the particles in determining
the occurrence of the intershell rotation mode in the system.
The ratio between charges and the ratio between masses of
both types of particles are dominant parameters for the inter-
shell rotation mode, and consequently for the melting.

Here we extend the results of Refs. [10,11] and consider
an arbitrary number of the two species of charged particles.
The mixing of the two species of charges and their configu-
rations are investigated as a function of the ratio between the
charges and for different mass ratios. Concurrently, we also
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analyze the normal modes of the system, which give us in-
formation about the collective behavior of the particles and
the stability of the configuration. Normal modes can be ob-
served experimentally as shown recently in Refs. [13] and
[14] for a 2D finite cluster and for a 1D chain of dust par-
ticles, respectively.

The paper is organized as follows. In Sec. II, we describe
the model and the numerical procedure to find the minimum
energy configurations and the frequencies of the normal
mode spectra. The results for the structure as well as for the
normal mode spectra of the system in the cases of different
charges and masses of the two sets of particles are presented
in Sec III. A phase diagram for mixing of the particles is
constructed in Sec. IV. Our conclusions are given in Sec. V.

II. THE MODEL

Our system consists of a two-dimensional cluster with N,
particles with fixed charge ¢, and fixed mass my, and N,
particles with variable charge g, and/or variable mass m,. All
charged particles interact through a pure repulsive Coulomb
potential 1/r, and the particles are kept together by a para-
bolic potential. The Hamiltonian of such a system is given by

Nf 2 Nf 1

H= E mfwor +E mworiz+€£2
i=1 € i>j=1 |r,~—r,~|

2 N,

3 Loy Lo

€ j>i=1 |1'k 1'1| m=1 n= 1

(1)

l'l‘l

where € is the dielectric constant of the medium the particles
are moving in, 1, the mass of the particles with fixed charge,
m, the mass of the particles with variable charge, and r;
=|r;| the distance of the ith particle from the center of the
confinement potential. In order to reveal the important pa-
rameters of the system, it is convenient to define g,/ qr
=a,m,/m;=( and to write the energy and the distances in
units of Ey= (mfw(,q“/262)”3 and ry= (Zq/‘/mfewo)“3 respec-
tively. In so doing, we obtain the dimensionless Hamiltonian

Nf 1 Ny a2
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which indicates that the system depends on the numbers of
particles of both types (N, and N,), and on the parameters o
and B. Note that g, and my are the reference charge and mass,
respectively. To obtain the ground state, we employed the
Newton optimization technique after the standard Monte
Carlo routine (Metropolis algorithm [15]). This procedure
was outlined and compared with the standard Monte Carlo
technique in Ref. [8]. In order to have sufficient confidence
that we reached the ground state configuration, we consid-
ered typically 1000 different initial random configurations.
However, for some values of a and B(a= ), where a large
number of stable configurations (N,.) were observed (N,
~160), we considered more than 4000 initial random con-
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figurations. In this way, we found not only the ground state,
but also the metastable states. From all the obtained stable
states, the one with the lowest energy was taken as the
ground state. To check if a configuration is stable, we calcu-
lated, using the Householder diagonalization technique, the
eigenvalues of the dynamical matrix [8],

FH
Hmn,ij= Y (3)

(9rm,i Jd I’n’j
which give us the square of the frequencies of the normal
modes of the system (m,n=x,y and i,; indicate the particle
number). The configuration was taken as final when all fre-
quencies squared of the normal modes were positive and
real.

III. RESULTS

First we extend the results of Ref. [10] for a=2 and 8
=1 to an arbitrary «. In addition, we also analyze the case in
which the particles have different masses [i.e., 8# | in Eq.
(2)]. In general, the structure of the system is strongly de-
pendent on the parameters « and B3, and as will be show here,
the two types of charged particles do not always separate into
shells. In fact, the separation between the charges occurs for
some critical values of a and . Another important property
of the system that depends on the parameters « and f3 is the
normal mode spectrum. Since the normal modes can reveal
interesting features about the collective behavior of the par-
ticles and the stability of the configuration, thus will also be
analyzed as a function of a and B.

A. Variable charge
1. Structure

In this section we take by default S=1. However, some
results with S# 1 will also be commented on. The ground
state configurations of clusters containing N particles (black
symbols) with fixed charge and N, particles (gray symbols)
with variable charge are presented in Fig. 1 for different
values of the parameter «. As shown, a shell structure of the
same type of particles is not always present, and its forma-
tion depends on «, and on the numbers of particles of both
types (Nf,N,). In general, there is a clear separation in shells
between the two types of particles when « is distinct from 1.
In that case, the particles with largest charge are pushed to-
ward the edge of the system and the inner part of the cluster
contains the particles with the smallest charge. The ringlike
configuration, as well as the general structure of the particles
as a function of «, is better observed by considering the
distance of each particle (r;) to the center of the confinement
potential as a function of «. In general, there are two inter-
vals of a in which particles of each type are separated into
distinct shells forming perfect rings. This is shown in Fig. 2
for typical clusters where we took as examples the ones with
N;=N,=>5 particles and N=7, N,=6 particles. Regions I, II,
III, and IV separate the « intervals in which the cluster pre-
sents a shell structure from other « intervals characterized by
a different ground state configuration. The vertical dotted
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FIG. 1. Ground state configurations for clusters with different
numbers of particles, and with different values for the parameter a.
The ratio between the masses is always B=1. The black spheres
represent the N particles with fixed charge, while the gray spheres
represent the N, particles with variable charge. The numbers of
particles in the figures are (a)-(d) Nj=N,=5; (e)~(h) N;=7, N,=6;
(@)-(1) Ny=12, N,=6; and (m)-(p) Ny=19, N,=6.

lines represent the change from the shell structure to another
ground state configuration (and vice versa) through a first or
a second order structural phase transition. The vertical
dashed line in Fig. 2(b) indicates a transition from the shell
structure to a different arrangement of the particles with no
structural phase transition.

In Fig. 2(a) the perfect ringlike structure appears in re-
gions I and III [see, e.g., Figs. 1(a) and 1(d)], while in Fig.
2(b) this is so in regions II and IV [Figs. 1(f) and 1(h)]. For
a=~0.4 [Fig. 2(b)] the rings start to be slightly deformed, i.e.,
broadened. In some cases, the ring structure disappears in the
limit «— 0, as shown in Fig. 2(c), for the particular case of
the cluster with Ny=7 and N, =6 particles. Note that the par-
ticles with variable charge (gray symbols) behaves as one
single effective particle in this limit.

The variation in the parameter « generates several modi-
fications in the ground state configuration, which can be
clearly noticed in Fig. 2, through the abrupt changes in the
positions of the particles for specific values of «. However,
for some values of « the minimum energy configuration
changes continuously but for which the derivative of the en-
ergy exhibits a discontinuity. Such changes are structural
phase transitions, which can be classified as follows.

(1) When the ratio between charges and the ratio between
masses are equal to unity (i. e., a=B=1) there is an inter-
change of the positions of the particles with distinct charges.
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FIG. 2. Distance of each particle from the center of the confine-
ment potential as a function of « for clusters with (a) Ny=N,=5
particles, and with (b), (c) Ny=7 and N, =6 particles. The black dots
indicate the positions of one set of particles (i. e. Ny), while the gray
curves represent the other set of particles (i.e., N,).

Particles of one type that were located on the internal shell
g0 to the external one, and vice versa (see Fig. 2). This
changing is characterized by a first order structural phase
transition, i.e., there is a discontinuity in the first derivative
of the energy with respect to a. If 8+ 1, no interchange in
the position of the particles is observed for a=g.

(2) First order structural phase transitions also occur for
a # [, when the positions of the particles abruptly change as
a function of « (see Figs. 2 and 3).

(3) Transitions from region I to region II in Fig. 2(a), in
which no jumps in the positions of the particles are present,
correspond to a second order structural phase transition,
which is characterized by a discontinuity in the second de-
rivative of the energy with respect to a [Figs. 3(c)]. The first
derivative is continuous [Fig. 3(b)].
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FIG. 3. (a), (d) Energy as a function of « for clusters with N,
=N,=5 and Ny=7, N,=6 particles, respectively. The first and sec-
ond derivatives of the energy as a function of « are also shown in
(b), (e) and (c), (f), respectively. The vertical dotted (dashed) lines
indicate the points where there are (are not) structural phase transi-
tions between a ringlike configuration and a nonring configuration.

These features are also observed for the cases in which
B+# 1. In order to confirm such transitions, the energy curve
as well as its first and second derivatives with respect to «
are shown in Fig. 3, for the clusters with Nf=NU=5 and Nf
=7, N,=6 particles.

From Eq. (2), one expects that the energy of the system
decreases with decreasing value of the parameter «, as can
also be observed in Figs. 3(a) and 3(d). In the cases where
Ny=N,, the @<1 energy (E,~;) is obtained from the a>1
energy (E,-,) through the scaling E ., —E, - ;a*? and «
— 1/a. This scaling is also obvious from Eq. (2).

In the cases with Ny# N,, a similar scaling for the a<<1
energy, from the o> 1 energy, is possible through the rela-
tions £— Ea" and «— 1/, but now the exponent n depends
on the number of both types of particles (Ny,N,). For ex-
ample, for the cluster with Nf—7 N,=6 particles we found
n=1.23. For N;# N, there is no simple way to obtain this
scaling dlrectly from Eq. (2).

For a=1 a clear mixing occurs, i.e., particles of both
types are not separated in distinct shells [e.g., Figs. 1(c),
1(g), and 1(k),]. In that case, a large number of stable con-
figurations with different energy are present, as can be ob-
served in Figs. 4(b) and 4(e). For a=B=1 the number of
stable states suddenly decreases because the particles are
now identical and mixing becomes irrelevant. The number of
stable states presents the same qualitative dependence on the
parameter « in all studied cases. A very interesting feature of
the present system can also be observed in Fig. 4: a maxi-
mum value of the number of stable states is reached when
the ratio between the charges is approximately equal to the
ratio between the masses (a@= ). This maximum is larger
for Ny# N, and its appearance is a consequence of the near
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degeneracy of the configurations which differ only by an
interchange of, e.g., two particles of different type.

Concerning the structure of the system, it is also interest-
ing to notice the lack of rotational symmetry of the minimum
energy configuration observed in some cases [i.e., Figs. 1(b),
1(e), 1(g), and 1(k))]. Ground state configurations, which
present rotational symmetry, are observed in parabolic con-
fined clusters with a small number of single charged particles
[7], and this is a consequence of the symmetry of the con-
finement potential. However, in the present case, the posi-
tional correlations between the particles with distinct charges
overcome the circular symmetry of the parabolic confine-
ment potential, resulting in asymmetrical configurations. The
presence of particles with different charges strongly affects
the structural properties of the system.

2. Normal modes

As an example, we present in Fig. 5 the frequencies of the
normal modes as a function of « for a cluster with Ny=7 and
N, =6 particles. The frequencies corresponding to the center
of mass mode (CM) (w/wy= \2) the breathing mode (BM)
(w/ wy=16), and the mode with frequency w/wy=0 do not
depend on the parameter «, and such a behavior is observed
in all studied cases with S=1. This fact is a special feature of
the parabolic confinement potential when there exist power
law forces between the particles, which can be verified ana-
lytically [16,17]. However, for 8+ 1, which means particles
with distinct masses, there is a symmetry breaking in the
confinement potential [see Eq. (2)], which results in the dis-
appearance of the CM and BM.

In general, the normal mode frequencies exhibit jumps at
first order structural phase transitions (with exception of the
case a=B=1). In the case of second order structural phase
transitions no jumps in the normal mode frequencies are ob-
served, but the lowest nonzero frequency goes to zero at the
transition point. that is there is a softening of the minimum
frequency mode in this case.

The vertical dashed lines in Fig. 5 divide the « interval
into four regions (I, II, III, V) associated with the arrange-
ment of the particles in the cluster, as previously defined in
Fig. 2(b). In the particular regions II (0.053 < «<<0.694) and
IV (a=1.309) the particles with different charges are sepa-
rated into distinct rings. In such regions, the normal mode
frequencies present a larger degeneracy than that observed in
regions I («=<0.053) and III (0.694 < @< 1.309), and this is
associated with the higher symmetry of the ground state con-
figuration. In region IV some modes have frequencies that
become independent of «, while for other ones the normal
mode frequencies vary slowly as a function of a.

Now we carefully analyze the behavior of the lowest non-
zero frequency (LNF) and its associated normal mode, which
are associated with the stability of the ground state configu-
ration. In addition, the normal mode associated with the LNF
plays an important hole in determining the melting properties
of the cluster [8]. In Fig. 6 the LNF of the cluster with N,
=7, N,=6 particles is presented as a function of «. This
particular cluster is considered because it can present com-
mensurate (when the number of particles on the outer shell
can be written as an integer multiple of the number of par-

021406-4



STRUCTURE, NORMAL MODE SPECTRA, AND MIXING...

PHYSICAL REVIEW E 72, 021406 (2005)

N7 N=|  [p=05]]

00—
N

FIG. 4. Number of stable con-
figurations as a function of « for
clusters with Ny=N,=5 and Ny
=7, N,=6 particles and different
ratio between the masses of the
two different types of particles
(B=0.5, 1, 2).

., 7 —— ——y —
£ NS NS5 [p=0.5] 1eor ¢
g |5 g ob
% 30} Rt ] % 120 ¢
) o | ® °®
3 [ ¢ 100F L.
: : g 1
5 20+ T ; E E 80+ .“'
g o S 60 | e
£ .Y o) | o
S10F % ] S 400 . |
c | IS € [ e
2 = (a) 2 2+ . ¢
0- - N o
0. 05 1.0 15 20 25 0.0 05
[0}
—{N=5 N=5 120 F '
70 10[v f v - B3=1
o 60 8 . b4 J 2 100}
3 6 & o 5
© I ] *a
i 50 4 = - o 80
—_ =1 L | o)
g4 2mm e ] % 60l
@ L] 2
5 30 85 1.0 157 o
2 20 \ 3 40r
e} ° 7 E
5 10 3 2 20f
- \"— (b)_ =
0 My 0 !
0. 0 15 20 25 30 00 05
o
e g0 [
40 - N=7 N=6
) a0 AL
8 : = 120
© L
w 30¢ \ ] %
o £ © 100}
2 e}
:%20_ ; x ] g 80+
5 f ‘ 5 60
@ ; o
€ 10f : ] £ 401
2 < (C) 2 20l

O 1 1 1 1 1
00 05 10 15 20 25 3.0 35 4.0

o
N=7 N=6]
35 T d
by /ﬁfm L p=1

@/ o,

o\ A

o A

00 05 10 15 20 25 30
o

oy (b)]

w/e,

0.0 iy i
0.00 0.02 004 006 0.08
o

FIG. 5. (a) Normal mode frequencies as a function of « for a
cluster with Ny=7 and N,=6 particles. (b) Normal mode frequen-
cies at region I for the same cluster.
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ticles on the inner shell) or incommensurate configurations
depending on the values of « and B. We will analyze the
behavior of the LNF in such cases. The same regions defined
in Fig. 5 are also indicated. However, new subregions (dis-
tinguished by dotted lines) separating different « intervals in
which the ground state configuration is the same, but the
excited normal mode is different (regions IVa, IVb, IVc), are
also defined. In region II (0.053< < 0.694), the ground
state configuration and the lowest normal mode are shown as
insets. Particles with smaller charge (gray spheres) are lo-
cated in the internal region of the cluster, while the other
particles (black spheres) are placed on the external ring. The
system presents an incommensurate configuration (1,5,7)
(which means one particle on the center of the trap, five
particles on the first ring, and seven particles on the external
ring), since the number of particles on the outer shell is not
an integer multiple of the number of particles on the inner
shell. In regions (IV) the particles are also arranged in three
shells, but now in a commensurate configuration (1,6,6) in
which all particles with greater charge are pushed to the ex-
ternal shell.

In the present system we observe that the lowest normal
mode is strongly dependent on the parameter «. In regions
IVa, IVb, and IVc of Fig. 6(a), for example, in spite of the
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FIG. 6. (a) The lowest nonzero frequency (LNF) as a function of
a for a cluster with Ny=7 and N,=6 particles. (b) The LNF at
region I for the same cluster.

same configuration of the cluster, the associated lowest nor-
mal mode is tuned by the value of . In the « interval
1.43<a=<2.38 (region IVb the lowest normal mode corre-
sponds to a motion as in a vortex-antivortex pair, while for
a>2.38 (region IVc it is an intershell rotation(ISR) [see
insets of Fig. 6(a)]. This fact shows that the potential barrier
for the ISR mode is not uniquely controlled by the ratio of
the number of particles on the shells, as mentioned in Ref.
[10], but first by the parameter a, which controls the poten-
tial barrier formed by the two types of particles. However,
when the intershell rotation is the lowest normal mode, the
frequency for activation of such a mode is strongly depen-
dent on the ratio of particles on the shells. For example, in
region II, since the particles are arranged in an incommensu-
rate configuration, the LNF corresponding to the ISR mode
is very small (®,,, ~ 107*). On the other hand, in regions IV
the particles are arranged in a commensurate configuration,
and the excitation frequency for the normal mode (ISR) is
very large (w,,;, ~0.5-0.8) compared with the frequency for
the ISR mode in region II. A similar dependence of the LNF
with respect to the number of particles on the distinct shells,
in a system with one type of charged particle, was observed
by Schweigert and Peeters [8].

As mentioned before, in region IVc the ISR is the corre-
sponding lowest normal mode. As can be seen, the associated
LNF decreases with increasing value of «. Such a behavior is
understood through the effective coupling between the adja-
cent shells. The repulsive interaction between particles with
variable charge increases with increasing value of a. As a
consequence, the radius of the external ring becomes larger.
Since the radius of the internal ring does not change in re-
gion IV [see Fig. 2(b)], the distance between the adjacent
shells becomes larger too. This fact makes the interaction
between particles located in adjacent shells weaker, and the
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energy necessary to excite the ISR smaller. Such a behavior
is observed in all cases in which the particles are separated in
different rings, and when the ISR mode is present. The de-
pendence of the value of the frequency associated with the
intershell rotation mode on the parameter « is another par-
ticular feature of the present system. As commented before,
since the frequency of the intershell rotation mode (as the
mode with minimum frequency) plays an important role in
the melting properties of the system [8], we can conclude
that the ratio between the charges of both types of particles
should be also an important parameter to determine the melt-
ing properties of the cluster, and this is an interesting direc-
tion for further analysis of the present model system.

In the intermediate region I (0.694< &< 1.308), the
ground state configurations are mixed, i.e., the particles with
different charges are not completely separated in distinct
shells [e.g., Fig. 1(g)]. With the exception of the case a=1,
the normal modes do not correspond to the ISR. Instead, the
particles oscillate collectively around their equilibrium posi-
tion like in a vortice-antivortice pair.

B. Two species with different mass
1. Structure

Now we will present the results for the case in which the
system described by Eq. (2) consist of particles with different
masses. The first type has mass m;, while the second type has
mass m,, which we shall vary. The ratio between the masses
is given by the parameter S=m,/m;. Here, we consider two
cases for the ratio between the charges of the two types of
particles, namely, =1 and 2.

In Fig. 7 examples for the structure of clusters with dif-
ferent values of the parameter 8 are shown. For small and
large values of S the cluster configuration is characterized by
a separation of the particles into different shells. Particles
with smaller mass are pushed out toward the external shells.
Such a feature is due to the fact that particles with larger
mass move to the internal region of the cluster in order to
minimize the confinement energy [see Eq. (2)]. An interplay
between the electrostatic repulsion between the negative par-
ticles, and the confinement strength determines the minimum
energy configuration. For some values of 3, and in spite of
the circular symmetry of the confinement potential, we no-
tice that the system can be stabilized in a configuration with-
out any rotational symmetry, as shown, e.g., in Figs. 7(b),
7(c), 7(j), and 7(k).

In order to better observe how the the ground state con-
figurations is influenced by the parameter 8, we investigate
the distance of each particle from the center of the confine-
ment potential (r;) as a function of 8. This is shown in Fig. 8,
where we took as example typical clusters with Ny=N,=5
and Ny=6, N,=5 particles. Different regions (I, II, and III),
which are associated with distinct ground state configura-
tions, are indicated in the figure. For the cluster with Nf
=N, =5 particles [Fig. 8(a)], a perfect ringlike configuration,
similar to the ones in Figs. 7(a) and 7(d), is observed in
regions | and III, respectively. In the intermediary region II,
different configurations are present [e.g., see Figs. 7(b) and
7(c)]. The transitions from region I to region Il and from
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FIG. 7. Ground state configurations for clusters with different
number of particles and different mass ratios. The black spheres
represent the Ny particles with fixed mass, while the gray spheres
represent the N, particles with variable mass. In (a)—(d) and (i)—(1)
we consider the cluster with N;=N, =5 particles, while (e)—(h) and
(m)—(p) are clusters with Ny=6, N,=5 particles. The value for the
parameter S is indicated in the figures. In (a)—(h) the ratio between
the charges is a=1, while in (i)—(p) we consider a=2.

region II to region III occur in such a way that the positions
of the particles change continuously. This is a typical char-
acteristic of a second order structural phase transition. This
fact is confirmed in Figs. 9(b) and 9(c), in which the first and
second derivatives of the energy with respect to 8 are shown.
Note that at the transition points between regions I and II
(B=0.419), and between regions II and III (8=2.386), a dis-
continuity is observed only in the curve for the second de-
rivative. The first derivative presents no discontinuity.

For some values of S there is an abrupt modification of
the ground state configuration, which is associated with a
first order structural phase transition. When a=1, the first
order structural phase transition associated with the point 3
=« is characterized by an inversion of the positions of both
types of particles. For a# 1, the point 8=« does not corre-
spond to an inversion of the positions of the particles with
different masses. In general, for S<<1 particles with fixed
mass are located at the internal region of the cluster, while
for B>1 such particles are pushed toward the edge of the
system [Fig. 8(a)]. Such a behavior was observed in clusters
with distinct values for Ny and N, [e.g., Fig. 8(b)].

The total energy as a function of 3 is shown in Fig. 9(a).
As in the case of particles with different charges, the 8<1
energy (Eg-;) can be obtained from the 8> 1 energy (Ejz-,),
through the scaling Eg-. HEB>13‘”3 and S— 1/, which is
easily obtained from Eq. (2) by inspection. This is valid only
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FIG. 8. Distance of each particle from the center as a function of
B for clusters with (a) Ny=N,=5 particles, and (b)N;=6 and N,
=5 particles. The black curves indicate the positions of one set of
particles (i.e., Nf), while the gray curves represent the other set of
particles (i.e., N,).

if Ny=N,. When N;# N,, we can find similar relations nu-
merically, namely, Eg-— Eg- 87" and S— 1/, but now
the exponent n depends on Ny and N,,. For example, for the
cluster with Nf=6, N,=5 particles we found n=0.297,
while for the cluster with Nf=7, N,=6 particles we found
n=0.303.

For the cluster with N;=6, N,=5 particles [Fig. 8(b)] a
perfect ringlike structure [Fig. 7(e)] is observed only in re-
gion I. In the interval 8>1 no ring structure, in which all
particles in a ring are placed at the same distance from the
center of the confinement potential, is observed [see the inset
in Fig. 8(b)]. However, the particles with different masses are
still separated in distinct shells. Because of the noncommen-
surate number of particles on both shells, a ground state con-
figuration with perfect rings cannot be obtained, at least for
the considered values of B. As shown in Fig. 8(b), the posi-
tions of the particles change fast but continuously with 3 at
B=2.0. From Figs. 9(e) and 9(f), it is clear that no structural
phase transition is observed in the system. The A-like shape
of the derivative °E/df8° [see the inset in Fig. 9(e) and 9(f)],
is similar to the so called continuous transition, previously
found in Ref. [18] for the case of two coupled classical dots.

The transition from region I to region II is characterized
by an abrupt change of the positions of the particles. Such a
modification is associated with a first order structural phase
transition [Fig. 9(e)]. This behavior is different from the one
found in the case N/=N,=5, where a second order structural
transition is observed when the system changes from the
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FIG. 9. (a) Total energy per particle as a function of B for a
cluster with Ny=N,=5 particles. (b), (c) The first and second de-
rivatives of the energy with respect to 3. (d) Total energy per par-
ticle as a function of B for a cluster with Ny=6, N, =5 particles. (e),
(f) The first and second derivatives of the energy with respect to 8
for the same cluster. The third derivative of the energy with respect
to B is shown as an inset in (f).

ringlike configuration to the nonring one [Fig. 9(c)]. Second
order structural phase transitions were not observed in the
cluster with Ny=6, N, =5 particles. In general, we found that
the order of the structural phase transition depends on the
parameters « and 83, and on the number of particles of both
types, namely, N, and N,.

As shown in the previous case of particles with different
charges, a similar maximum in the number of stable configu-
rations is also observed as a function of 8 when the particles
have distinct masses. More specifically, a maximum in the
number of stable states is present when the ratio between the
masses is not exactly equal, but approximately equal to the
ratio between the charges (8= ). In the particular case «
=1, all particles have the same charge and the same mass,
and the number of stable states is equal to the number of
stable states of the system with (N+N,) identical particles.
In Fig. 10 the number of stable configurations is given as a
function of 8 where we took again as example clusters with
Ny=N,=5 and Ny=6, N,=5 particles. Note that in the cases
in which the particles also have different charges (a# 1), the
maximum in the number of stable configurations is slightly
shifted from the value B=« [see Figs. 10(a), 10(c), 10(d),
and 10(f)]. The maximum in the number of stable states is
slightly shifted to the left (with respect to the point a=g)
when « is increased, and slightly shifted to the right when «
is decreased.

2. Normal modes

In Fig. 11 the normal mode frequencies, as a function of
B, for the clusters with Ny=N,=5 and Ny=6, N,=5 particles
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FIG. 11. Normal mode frequencies as a function of B corre-
sponding to the ground state configuration of clusters with (a) N,
=N, =5 particles and (b) Ny=6 and N, =5 particles.
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FIG. 12. Lowest nonzero frequency as a function of S for clus-
ters with Ny=N,=5 particles. Regions I and III separate the 8 in-
tervals in which the system exhibits the ring configuration. In re-
gion II different configurations are observed. The subregions Ia, Ib,
Ic, IlIa, and IIIb separate the B intervals in which the same ground
state configuration is observed, but where distinct normal modes are
present.

are shown. These clusters are interesting because they
present commensurate or incommensurate configurations for
different values of & and B. The same regions defined in Fig.
8 are again considered. In general, the frequencies increase
with increasing value of B. With the exception of the mode
corresponding to the rotation of the entire cluster around the
z axis (w=0), the frequencies of all other modes depend on
B. However, for large values of 8 some modes have frequen-
cies which become independent on (. The center of mass
and the breathing modes, which are present in a parabolic
confined system with one type of particle, are not observed
in the present system, because the confinement potential is
no longer the same for all particles. Such a symmetry break-
ing in the confinement potential destroys the center of mass
mode and the breathing mode.

In the B intervals corresponding to the more symmetrical
ring configuration (regions I and III for the cluster with N
=N,=5 particles, and region I for the cluster with N;
=6, N,=5 particles), most of the normal mode frequencies
are degenerate.

The normal mode frequencies are affected by structural
phase transitions, and they can be used to identify such tran-
sitions. Similar general features for first and second order
structural phase transitions observed in the case with variable
charge are also present in the case of particles with distinct
masses.

As a general rule, we observed that the normal modes are
mainly determined by the ratio between masses, and to a
lesser extent by the number of particles Ny and N,. This
behavior could be confirmed in clusters with different num-
ber of particles, and with different ratios between the charges
of the two types of particles («). Such a behavior can be
clearly confirmed by the analysis of the LNF.

The LNF gives us information on the stability and the
deformability of the cluster configuration. As an example of
the obtained results, the LNF as a function of B, for the Ny
=N,=5 cluster, is shown in Fig. 12. The same regions de-
fined in Fig. 8(a) are considered again (regions separated by
vertical dashed lines). However, in order to better understand

PHYSICAL REVIEW E 72, 021406 (2005)

p=0.05] (1a) (@) [p=0.27] (b) (b)

’/\Lx] b '

o I N

N . ~ N\

p=0.35] (i) {c)

B=1] an_ (d) [p=3] qua) (e) [p=3.7] ub) (f)

» v -
Ve I .
-~ / / l toe '\ A n
LA 4 o
FIG. 13. Normal modes for the cluster with Ny=N, =35 particles
and a=1. In each figure the subregions defined in Fig. 12 are
indicated.

the results, additional subregions are also defined (distin-
guished by vertical dotted lines). Such subregions separate
the cases in which the cluster presents the same ground state
configuration, but distinct normal modes.

In region Ia (8=<0.136), Fig. 12, the particles are excited
in the intershell rotation mode [Fig. 13(a)]. By changing the
parameter (3, the ground state configuration remains the
same, but the excited mode is changed to the one observed in
region Ib (0.136 < 3<0.284) [Fig. 13(b)]. A further increase
in the parameter B leads the system to region Ic (0.284<pf
=<0.419), with a different normal mode [Fig. 13(c)], but the
particles are still arranged in the same ground state configu-
ration [Fig. 7(a)]. These results show that the potential deter-
mining the frequency of the LNF is mainly determined by
the parameter S.

In region II (0.419< 8=<2.385) different minimum en-
ergy configurations [Fig. 8(a)], as well as different normal
modes are found. In Fig. 13(d), the particular case B=1 pre-
sents the same normal mode observed in a single cluster with
N=10 particles, as it should.

For $=2.385 there is a second order structural phase tran-
sition to region Ila (2.385 < 8=<3.5), in which the system is
again a perfect ringlike configuration [Fig. 7(d)]. The asso-
ciated normal mode is presented in Fig. 13(e). For 3.5<p
=7.32 the system reaches region IIIb with the same ground
state configuration, as observed in region Illa, but with a
different normal mode, which corresponds to the one shown
in Fig. 13(f). Finally, when 8>7.32 (not shown in Fig. 12)
the system still remains in a perfect ring-like configuration,
but the lowest normal mode changes to the ISR mode.

As in the case for variable charge, and for all analyzed
cases with variable mass, we observed that when the par-
ticles are arranged in a commensurate configuration, the as-
sociated ISR is three to four orders of magnitude larger than
the frequency of the same mode of a noncommensurate con-
figuration. However, we note here that the effective potential
determining the frequency of the ISR mode can be tuned by
the parameters a and (3, and consequently, the stability of the
ground state configuration is tuned in this way.
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FIG. 14. Phase diagram: the ratio between the charges « as a
function of the ratio between the masses 3 for the cluster with Ny
=N, =5 particles. An enlargement is shown in (b). The insets in (a)
show the ground state configurations for some points («, B).

IV. THE PHASE DIAGRAM FOR MIXING

From the previously obtained results, we learned that the
structure of the cluster is strongly dependent on the ratio
between charges (@) and/or the ratio between masses () of
both type of particles. For specific values of « and/or B, the
different type of particles separate in distinct shells.

The degree of mixing of the two species of particles can
be summarized in a («,8) phase diagram. This is presented
in Figs. 14 and in 15 for the previously discussed clusters
with Ny=N,=5 and N;=7, N,=6 particles, respectively. The
phase diagrams are divided in different regions (I, II, III, and
IV) by lines (and symbols), which are defined here as the
transition lines where a structural phase transition between
the ringlike structure and other different ground state con-
figurations occurs. The transition points are associated with a
first (squares) or with a second (stars) order structural tran-
sition. In general, we observed that, at the same transition
line the order of the transition (first or second order) may
vary, which means that the character of the structural phase
transition also depends on « and B.

In Fig. 14(a), the phase diagram for the cluster with Ny
=N, =5 particles is shown. In regions I and III the different
type of particles are separated in distinct rings, as can be
observed in the inset of the same figure. In region II the
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FIG. 15. (a) The same as Fig. 14, but now for the cluster with
Np=T, N,=6 particles. The points A,B,C, and D correspond to the
configurations shown in Figs. 16(a), 16(b), 16(c), and 16(d), respec-
tively; while the points E,F,G, and H correspond to the configu-
rations presented in Figs. 1(e), 1(f), 1(g), and 1(h), respectively. (b)
Enlargement of the phase diagram (a) near 8=0.15. The ground
state configurations shown as inset correspond to the points
P{,P,,P3, and P,.

ringlike structure is not present and a mixing of the two
species of particles is observed. By mixing, we mean an
arrangement of particles in which both type of particles can
be found, e.g., at the same distance from the center of the
confinement potential. With other words, we can find both
type of particles in a given shell [see Fig. 1(c)]. For the
cluster with Ny=N, =5 particles, the change from the ringlike
configuration to another one and vice versa (transitions from
region I to region II and from region II to region III) is
always through a structural phase transition, and the order of
the transition depends on the values of « and S.

For the cluster with Ny=7, N,=6 particles, the ringlike
structure is observed in regions Il and IV of Fig. 15(a). As in
the previous case, a first or a second order structural phase
transition can be observed at the same transition line.
Changes between regions I and II, and between regions III
and IV are always characterized by a structural phase transi-
tion. However, the transition between the ringlike configura-
tion (region II) and a different arrangement of the particles
(regions III) is not always characterized by a structural phase
transition. As can be observed in Fig. 15(a), the transition
line characterizing the change from region II to region III is
no longer present for 5> 0.7. Such a behavior means that the
system passes from the ringlike structure to a different mini-
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FIG. 16. Ground state configurations for the cluster with N
=7, N,=6 particles in the points (a) A, (b) B, (c) C, and (d) D,
shown in Fig. 15. The distances of each particle to the center of the
confinement potential as a function of « are shown in (e) and (f) for
the cases 8=0.5 and 0.8, respectively.

mum energy configuration with no discontinuity in the first
or the second derivative of the energy with respect to a or .
The point (@, 8)=(0.558,0.7) is a critical point where we
have a second order transition. In Fig. 16(a)-16(d), we
present examples of the configurations in the regions II and
III at the points A (0.5, 0.3), B (0.5, 0.6), C (0.8, 0.43), and
D (0.8, 0.75).

Details of how the distance of each particle to the center
of the confinement potential changes as a function of «, in
regions II and III, are presented in Figs. 16(e) and 16(f), for
the cases B=0.5 and 0.8, respectively. In the case $=0.5
[Fig. 16(e)], the transition A— B is characterized by an
abrupt change in the positions of the particles at (8, a)
~(0.5,0.42) . Such a behavior is a typical feature of a first
order structural phase transition. In the case £=0.8 [Fig.
16(f)], the transition C— D occurs without abrupt change in
the positions of the particles when the system loses its ring-
like configuration (a=0.606). As in Fig. 2(b), the dashed
line in Fig. 16(f) indicates the change in the ground state
configuration, from the ringlike structure to a different one,
with no discontinuity in the derivatives of the energy with
respect to a. More examples of the ground state configura-
tions at the different regions of the («, 8) phase diagram, for
the cluster with N=T, N,=6 particles, are shown in Figs.
1(e), 1(f), 1(g), and 1(h) and such configurations correspond
to the points E,F,G, and H in Fig. 15(a).

The results presented in Fig. 14(a) and in Fig. 15(a) also
indicate that for small values of @ and S, the transition lines
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merge into one another when &« — 0 and 8— 0. In fact, this is
the case only for the cluster with N;=N,=5 particles, as
shown in Fig. 14(b). The cluster with N;=7, N,=6 particles
is more complex, since it presents more than two transition
lines. In the limit «—0 and B8—0, the transition lines that
separate regions I and II and regions II and III merge into the
other at (8,a)=(0.13,0.1) [Fig. 15(b)]. For smaller values
of (3 there is only one transition line, which separates the two
regions I and IV. In region IV the ground state configuration
is characterized by the presence of a shell structure, while in
region I a different arrangement of the particles is observed
[Fig. 1(e); point E of Fig. 15(a)].

It is worthwhile to comment that regions I and III are, in
fact, the same. As can be seen in Fig. 15(b), there is a very
narrow channel (point P5) which connects both regions T and
III. Thus the system presents an interesting reentrant ordered
configuration with respect to the parameter «. For example,
the ground state configurations presented as insets in Fig.
15(b) correspond to the points P, P,, P;, and P, in the
same figure. In region I the particles are arranged in a very
asymmetric mixed configuration (point P;). An increase in
the parameter « leads the system to an ordered ringlike con-
figuration (point P,). A further increase in « destroys such a
configuration, and puts the particles again in an asymmetric
arrangement (point Ps). Finally, in region IV, the ringlike
configuration is again restored (point P,), and no change in
the arrangement of the particles, for higher values of «, is
observed. Note also that the positions of the particles with
different charges are already inverted in this region.

As shown, several configurations could be obtained as
function of the parameters « and . Different from the ring-
like structure, we observed that for some values of («, 8) the
two types of particles can be arranged in asymmetrical and
mixed configurations. It is possible to quantify the different
minimum energy configurations in an alternative way by de-
fining a single new parameter, as will be shown in the next
paragraphs.

As pointed out by Landau and Lifshitz [19], it is possible
to describe quantitatively the change in the structure of the
cluster when it passes through the structural phase transition
point by an order parameter.

Since the present system is always considered at zero
temperature, only a solid phase is observed. However, we
can make here an analogy with the order parameter defined
by Landau. Our order parameter (labeled as 7) takes zero
value when the different types of particles into the cluster are
separated in distinct shells, as in a perfect ringlike configu-
ration [Figs. 1(a) and 1(f)], and it takes a nonzero value when
such an arrangement is destroyed. Thus, in the case of a
mixed configuration the order parameter will be nonzero. As
already commented, a mixed configuration is considered,
e.g., when particles of both types are placed on the same
shell [e.g., see Figs. 1(c) and 1(k), and Figs. 7(f) and 7(j)].

Before we can define our order parameter we first have to
introduce another quantity. The center of mass for each of
the clusters with one type of particle is defined as

1Y
R/, = ;E r, (4)
ji=1

where j=f, v labels particles with fixed charge and with
variable charge, respectively, and N; represents the number
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of particles with fixed or variable charge. When particles of
different types are separated in distinct shells, we noticed
that a symmetric configuration (with respect to the center of
the confinement potential) is obtained for each type of par-
ticle [e. g., see Figs. 1(a) and 1(h)]. In this case, the center of
mass for each cluster (with fixed and variable charge) is lo-
cated at the center of the trap. On the other hand, when a
mixing of the two type of particles is observed [e.g., see
Figs. 1(g) and 1(n)], the clusters with each type of particle
present an asymmetric configuration. In this case, the center
of mass for each of the two set of particles is no longer on
the center. Now, we are able to define an order parameter
which gives the information if the ordered state of the entire
cluster corresponds to a mixed configuration or not. The or-
der parameter is defined as the sum of the center of mass for
each of the two set of particles, i.e.,

©)

When the entire cluster has a perfect ringlike configura-
tion (where each ring is formed only by one type of particle)
the order parameter is zero.

As an example, we show in Fig. 17 the order parameter as
a function of « for clusters with different number of par-
ticles. More specifically, in Figs. 17(a) and 17(b), the dis-
tance of each particle to the center of the confinement poten-
tial (r;) and the order parameter (77) for the cluster with N,
=N, =5 particles (8=2.0) are presented. Notice that in the «
intervals corresponding to the perfect ringlike configuration
(regions T and III), the order parameter is zero. For other
configurations, a nonzero value for 7 is obtained (region II).

The distance of each particle to the center of the confine-
ment potential and the order parameter for the cluster with
Ny=7, N,=6 particles are shown in Figs. 17(c) and 17(d)
and, respectively. A perfect ringlike configuration is observed
only in part of region II, and in region IV. When this is the
case, the order parameter is zero. The perfect ringlike struc-
ture in region II starts to be destroyed at a=0.4. Note that
the distances of the particles to the center of the confinement
potential start to become slightly different from each other
[Fig. 17(e)]. The ground state configuration changes continu-
ously, and no structural phase transition is observed [see Fig.

n=Rl, +R’,.
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[N=7 N=6] [8=0.9]

FIG. 17. (a) The distance of
each particle to the center of the
confinement potential and (b) the
order parameter defined in Eq. (5)
as a function of « for the cluster

1.5(1) an with Ny=N,=5 particles (8=2),
: . and similar in (c) and (d) for N,
1.0 - =7, N,=6 particles (8=0.9). An
: H enlargement of this last case is
05 : H shown in (e) and (f).

0'8.0 01 0203 04 05 0.6|0.7
a

15(a)]. As a consequence, for @=0.4 the order parameter
also starts to become nonzero [Fig. 17(f)].

The order parameter is also sensitive to structural phase
transitions, especially in the case of first order transitions. In
such cases, there is a discontinuity in the order parameter, as
expected. For second order structural phase transitions, the
order parameter exhibits no discontinuity, but an abrupt
change in its behavior [e.g., see the behavior of 7 around
a=0.8 and a=3.2 in Fig. 17(b)].

V. CONCLUSIONS

In summary, we studied the structure and normal mode
spectra of two-dimensional clusters containing two types of
charged particles when they have different charges and/or
masses. The ground state configuration as well as the normal
mode spectra are strongly dependent on the charge and on
the mass of both types of particles. The particles do not
always arrange themselves in a ringlike configuration. How-
ever, in some range of values of the parameter a(3) there is
a clear separation of the particles with different charge
(mass) into distinct shells. Modifications in the structure of
the system are characterized by first or second order struc-
tural phase transitions. In spite of the circular symmetry of
the confinement potential, remarkable asymmetrical configu-
rations were found.

The normal modes present intrinsic features which de-
pend on the parameters « and . It was shown that the nor-
mal modes are mainly determined by « and 3, and not only
by the number of particles in the cluster (N; and N,) and the
ground state configuration. The center of mass and the
breathing modes, observed in a system with parabolic con-
finement of identical particles, are observed only in the case
in which the particles have different charges, but equal
masses. If the masses of both types of particles are different,
there is a symmetry breaking in the confinement parabolic
potential, which destroys the center of mass and the breath-
ing modes.

Commensurate ground state configurations appear here as
a very stable arrangement of particles. The lowest nonzero
frequency in such cases is typically three to four orders of
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magnitude larger than the lowest nonzero frequency ob-
served in cases of noncommensurate configurations. This be-
havior is observed in the case of particles with different
charges, as well as in the case of particles with distinct
masses.

A quantitative study of the mixing between the two types
of particles was also analyzed through an («,8) phase dia-
gram. We showed that there is a first or a second order struc-
tural phase transition when the cluster transits from a ringlike
(mixed) structure to a mixed (ringlike) configuration. The
order of the transition depends on the parameters « and S,
and a reentrant ordered ringlike configuration is observed for

PHYSICAL REVIEW E 72, 021406 (2005)

specific values of such parameters. The mixing between the
different types of particles was quantitatively characterized
by a one dimensional order parameter, which is very sensi-
tive to first or second order structural transitions.
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