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"As invenções são, sobretudo, o resultado 

de um trabalho teimoso.” 

(Santos Dumont) 



RESUMO 
 

Quando um Site de Viagens solicita recomendações de um trajeto entre dois pontos em uma 

determinada data, há potencialmente milhares de itinerários possíveis. Apenas retornar os 100 

voos mais baratos não é a resposta mais relevante, afinal as pessoas fazem suas escolhas 

considerando também outros aspectos da sua conveniência (Ex.: Quanto tempo? Quantas 

conexões? Qual é a hora de partida?). O problema aqui investigado não é selecionar o melhor 

voo, mas um subconjunto de voos que tenha uma elevada probabilidade de conter o voo 

selecionado. Motores de busca e sistemas de recomendação já são implementados no 

mercado, como Netflix, Google, Amazon etc. Por conseguinte, o desafio é aplicar esta 

abordagem à indústria de viagens. O grupo de engenharia de produtos Search, Shopping & 

Pricing (SSP) trabalha como principal órgão para o sistema de Distribuição da Amadeus, bem 

como o negócio de e-commerce de TI das companhias aéreas e os novos negócios, desde 

inteligência de viagens a TI em ferrovias. É responsável pelos produtos de Pesquisa e 

Compras de Viagens, que alimentam atualmente um grande número de websites de 

companhias aéreas e agências de viagens. Com base em um vasto histórico de reservas de 

voo, o objetivo do presente trabalho é analisar criticamente um dos principais produtos da 

SSP visando melhorar os seus algoritmos e otimizar o motor de busca da Amadeus, a fim de 

melhor retornar recomendações de viagem. A metodologia utilizada não é apenas para 

classificar as recomendações, mas também para encontrar o subconjunto de recomendações 

mais susceptível de contribuir para uma reserva. O trabalho introduz o conceito de um motor 

de busca (value search) e mostra como este sistema se baseia na probabilidade de reservas. 

Depois, ajustam-se alguns dos seus parâmetros, executam-se diferentes combinações, 

compara-se os seus resultados e escolhe-se o mais eficaz. Ao final, são obtidos resultados 

consideráveis que mostram o crescimento da performance do algoritmo, tornando os 

conceitos de seleção de subconjuntos simples e compreensíveis de implementar em um 

sistema de recomendação. 

 

Palavras-chave: reservas, recomendações, motor de busca, subconjunto, value search. 

 

  



ABSTRACT 
 

When a Travel Website requests for travel recommendations from one point to another on a 

given date, there are potentially thousands of possible itineraries. Simply returning the 100 

most unexpensive flights is not the most relevant answer. People make their choices 

considering additional aspects based on their convenience (e.g., How long? How many 

connections? What is the departure time?). The problem investigated herein is not to select the 

best flight, but an optimal subset that has a high probability of containing that flight. Search 

engines and recommendation systems are already implemented in the market, e.g., Netflix, 

Google, Amazon, etc. Therefore, a challenge is to apply this approach to the travel industry. 

The Search, Shopping & Pricing (SSP) product engineering group serves the core Distribution 

business of Amadeus as well as Airline IT e-commerce business and the Rail IT and Travel 

Intelligence new businesses. It is responsible for the travel Search and Shopping products, 

which power today a vast number of airline and travel agency websites. Based on past 

bookings, the main goal of the work presented in this final paper is to critically analyze one of 

SSP’s core products with the aim of enhancing their algorithms and optimizing Amadeus’ 

search engine to better return travel recommendations. The used methodology is not just to 

rank the recommendations, but to find the subset of recommendations that is the most likely 

to lead to a booking. It is introduced the concept of a value search engine and how this system 

is based on reservation probability. Then, it is adjusted some of its computing parameters, run 

different combinations, compared their results, and selected the most effective. At the end, the 

aim is to obtain considerable results that show the growth of the algorithm's performance, 

making the concepts of subset selection simple and understandable to implement in a 

recommendation system. 

 

Keywords: bookings, recommendations, search engine, subset, value search. 
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1 INTRODUCTION 

 

1.1 Initial Considerations 

 

Created in October 1987 by an agreement from Air France, Lufthansa, Iberia and 

SAS, Amadeus' main purpose was to generate a neutral global distributed system to connect 

provider’s content with travel agencies and customers in real time. The purpose was to bring 

together the entire air ticket sales process, regardless of airline companies.  

Its field of activity originally revolved around products focused for airlines. 

Amadeus currently offers multiple services related to tourism, such as the hotel industry, the 

car rental market, and the railway market. Today, the company is a major IT provider for the 

global travel and tourism industry, internationally known for developing and optimizing the 

best IT solutions to allow clients access optimal commercial results. The company covered 

3.2% of the world’s travel and tourism GDP in 2018 and operates in 190 different countries 

worldwide, processing over 55,000 transactions per second at peak (WORLD TRAVEL & 

TOURISM COUNCIL, AMADEUS, 2019). 

A great obstacle for companies such as Amadeus is to predict what travel 

recommendation(s) is(are) likely to be booked. There are many possible recommendations, 

and selecting the best one is a challenge for two main reasons: (i) it is hard to understand what 

the end users are likely to book, and (ii) there is a need to select a subset that is not common 

to machine learning – ML. For example, it is known that the most unexpensive 

recommendation is not always the one selected. There are other variables besides cost that 

impact consumers’ choice, and they need to be considered. 

 

1.2 The Problem  

 

When a Travel Website requests for travels from one point to another on a given 

date, there are potentially thousands of possible itineraries. It is a challenge and a major task 

to select the most interesting travel recommendations among all possible combinations. A 

good travel recommendation would have a higher chance to lead to a booking. 

Even if the recommended flight is the cheapest or the fastest, it does not guarantee 

that it is the most suitable for a specific request. Users have different needs for the same 

request, and moreover, the same user can change his or her mind depending on travel date and 

destination. Finally, the very recommendations offered at a moment to a user can influence 
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his/her decision-making process. This phenomenon is studied in what is called game theory 

(OWEN, 2013). 

Problems like the ones mentioned above show why choosing a group of flights to 

recommend to a given user can be so challenging even for a Machine Learning algorithm. The 

problem of product recommendation systems has been extensively addressed in the industry, 

i.e., Netflix for movies, Amazon for products, or YouTube for videos. But, when it comes to 

the travel industry, we are faced with a much larger and more dynamic sample space than the 

referred well known products. Business Bureau reported that Netflix offers 2,926 movie titles 

and 950 series (and more than 28,000 episodes) in Brazil (COSSETTI, 2018). Whereas 

Amadeus operates worldwide and processes over 55,000 transactions per second at peak. This 

makes the approach used on Netflix impractical for our case (WORLD TRAVEL & 

TOURISM COUNCIL, AMADEUS, 2019). 

 

1.3 General Concepts 

An engine was developed at Amadeus core to gather travel recommendations. 

Checking important criteria such as availability, price, and fares, it computes many possible 

flights combinations and returns the top recommendations subset for a single travel request. 

These computed results are given to Online Travel Agencies – OTAs. The referred engine is 

one of the main products of SSP’s flight recommendation system. The algorithm used to 

optimize this engine is called Value Search (VS). This algorithm computes a single value for 

every recommendation to sort them by chances of leading to a booking; the smaller the value, 

the greater the chance. 

When looking for a flight, there are some specific features implemented before 

starting the search at all, such as origin and destination pair – ONDs, travel date, number of 

passengers, etc. The assemble of these features compose a single flight demand, called query. 

A query can be made by a single passenger, an airline website, or an online travel agency – 

OTA. The latter can search in many airlines at the same time with tools called metasearch 

engines. Once the query is made, there are many possible itineraries, a combination of 

different flights that satisfy query’s parameters. The booking is made by choosing the most 

suitable recommendation among all the given ones. 

Once a flight ticket is bought, there are a big amount of information that comes 

with it. This information is called the trip information, or tripinfo, and it contains numbers 

such as departure time, number of connections, elapsed flight time (eft), i.e., the amount of 
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time of the entire trip with the connections, and of course, the price. Figure 1 shows a 

representative scheme of how a set of recommended flights is returned to an end user. 

 

Figure 1 – Scheme of a search for travel recommendations  

 
Source: Author (2022). 

 

There are many possible combinations of flight recommendations. Selecting the 

best options is a challenge for two main reasons:  

i. We need to understand what end users are likely to book, with the most 

unexpensive flight often not being the one selected. Most of the time, it is 

necessary to present a variety of recommendations, including the cheapest 

flight among them, even with this not being the best indicator of a good 

recommendation. That is why other flight criteria need to be analyzed. 

ii. The selection of this subset is not intuitive to machine learning algorithms. 

We do not know if it is an efficient way to solve the problem. The work 

herein will not cover this approach. Instead, we have developed a study that 

gathered personal criteria and used an optimizer to create a client-driven 

product. 

 

The focus is on a family of algorithms that assign a value to each recommendation 

based on its information, i.e., parameters, and sort them according to this value. Our challenge 

is to select the right parameters to correctly sort the recommendations, so the selected subset 

has a high chance of containing the booking. 
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1.4 Objective  

 

The general purpose of this work is to analyze the flight recommendation system 

through the Value Search engine and to optimize the selections of subsets containing the 

booked recommendation. Note that what is necessary is not correctly select a value for each 

recommendation or sort them differently, but to select a subset of recommendations that has 

the higher chance of containing the booking. 

Specific objectives of the work to achieve the general objective are as follows: 

- To select a combination of optimal weights related to fixed recommendation criteria. 

- To adjust the hyperparameters in the hyperopt optimizer, such as search space and number 

of iterations, necessary for a consistent statement. 

- To create an intuitive process to read and write data in a distributed system using the 

Hadoop cluster on HDFS and implement the algorithm in python with the PySpark 

framework. 

- To produce, with a certain margin of safety, a new algorithm that performs better than the 

algorithm used by the company to choose a subset of recommendations with the highest 

probability of containing booking. 

 

1.5 Workflow  

 

The work of this undergraduate final paper contains several steps, further detailed 

ahead. It can be generally divided in 3 main phases: (i) algorithm development, (ii) distributed 

data processing, and (iii) statistical analysis. Each of these phases is directly dependent on the 

result of the previous one. Table 1 presents the work organization in time, showing the phases 

that overlap each other, and those that only start when the previous has ended. 

  

Table 1 – Workflow organization in 2022 

Source: Author (2022). 

May June July August September October 
Data Mining       

Algorithm Development      
Data Analysis     

 Criteria analysis     
  Distributed Data    
   Segmentation  
     Statistical Analysis 
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The paper is divided in three main sections: (i) theoretical background and a few 

data science concepts, and machine learning practices; (ii) methodology, containing the used 

tools and techniques; (iii) results, which represent the most important part of this document. 

Noting that this work is a constant back and forth between observations and tunning of the 

parameters. In other words, this is how the optimizer developed seeks to improve the 

algorithm. Some statistical resources are used to assure the veracity of the observations. At 

the end, I intend to quantify, within a confidence interval, the improvement of the algorithm’s 

performance. 
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2 THEORICAL BACKROUND 

 

In data science, there are many methods used to analyze the behavior of a large 

dataset. In our case, a typical data set consists of hundreds of million travel searches that turn 

into billions of travel recommendations (i.e., Terabytes) every day.  

But there are many questions regarding these data. Do the flight prices follow a 

normal distribution? Is the data time related? If it needs to be predicted, should we use 

machine learning methods as linear regression or more complex neural networks like LSTM? 

What are the fairest methods to perform predictions on client’s intent to book? Which type of 

parameters are we trying to optimize? What is the reliability of the gathered results? To 

answer these questions, we need to understand how algorithms are used on recommendations 

systems. 

 

2.1 Recommendation systems  

 

Modern companies use recommendation systems that try to best fit the customer 

profiles. Feedback techniques are reported in the literature to implement a costumer driven 

approach based on a large dataset by filtering personalized information (DEBASHIS; 

SAHOO; DATTA, 2017). In Amadeus flight recommendation system such feedbacks are not 

that useful due the volatility and quantity of the data. Instead, we analyze the historical data of 

booked flights and train our selection algorithm to maximize the probability to find a good 

subset (AMDEUS, 2022). 

Unlike the recommendation systems handled by product companies such as 

Netflix or Amazon, based on the experience of other users who have used the same product as 

the customer, value search algorithm will be based on the customer's information, trip 

information and available recommendations. Then, pre-determined weights are applied to 

calculate a specific value per recommendation, called VS value, then rank the 

recommendations by this value, and select the top subset (generally 50 recommendations). 

This means that no machine learning will be applied in the subset selection process. 

The obstacle becomes finding a good subset among all recommendations. There 

are many subset selection methods but choosing the right one depends on the nature of the 

problem. Some works found in the literature address contents such as clusterization 

(DASZYKOWSKI; WALCZAK1; MASSART, 2002) and genetic algorithms (TOMINAGA, 

1998) that help algorithms to group elements that have similar criteria. But at this part of the 
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paper, the focus is on a good representation of the historical data, i.e., weighting the most 

relevant criteria. 

 

2.2 Relevant feature selection 

 

The Value Search engine ranks recommendations based on the VS value. This 

value is calculated by a weighted average of the recommendation criteria. Then, the top 50 

recommendations are selected. This subset has the most likelihood of containing a booking. 

The lower the value, the more chances a recommendation has of becoming a booking. 

Other phenomena that are important to be aware is the bias of the dataset. If the 

data is too related, it can cause some bias on the training phase of the algorithm, which can 

cause overfitting. One possible solution found in the literature is filtering the data, reducing to 

only the minimum features sufficient to determine the good prediction (JOHN; KOHAVI; 

PFLEGER, 1994). 

Flight criteria are the information considered by the customer when booking a 

flight, such as price, elapsed flying time (eft), number of connections, etc. For example, if the 

eft criteria have a value of 50€/ℎ (𝐶!"# = 50), it means that the traveler is willing to pay 50€ 

more on a flight ticket to avoid spending one more hour in the trip. But the criteria by itself do 

not accurately reflect the will of the user for booking. That is why it is applied a certain 

weight to each of the criteria to obtain VS value per recommendation. This value changes 

accordingly to the chosen weights. The formula that explains how the values are calculated is 

 

𝑉𝑆$%&'! = 𝑃 + ∑𝐶(𝑤( 		, where:                                                         (1) 

 

- VS: value search value (per single recommendation) 

- P: price of the flight 

- C: criteria  

- w: weight 

- i: index from zero to the number of criteria 

 

One should note that no weight was added to the price criteria. That is due the fact 

that we want to state the price as the unit, and all the other criteria will depend on varieties of 

the price itself. After defining the formula, it is time to find an optimal solution. The goal is to 
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compute a value to rank the booked recommendation as good as possible in the 

recommendations’ set. Table 2 illustrates how the recommendation criteria are distributed on 

the dataset and their respective types. 

 

Table 2 – Recommendation criteria representation. 
 

 

 

 

 

 

 

 

 
Source: Author (2022). 

 

Imagine that each of these criteria matter when it comes to the decision of 

purchasing a flight. A specific weight, initially random, is assigned to each of these criteria. 

Then the VS value is calculated as a weighted average for a single recommendation, which 

means that for Table 2 it is calculated one single VS value. Figure 2 illustrates how travel 

recommendations look at the beginning and the corresponding information obtained after the 

analysis. 

 

Figure 2 – Flight recommendation representation. 

 
Source: Amadeus. 

 

The Value Search formula was later changed for performance analysis, but for 

confidentiality reasons it is not published in this paper. The goal, however, was to keep the 

mathematical calculation linear. Linear programming is one of the simplest ways to perform 

Recommendation attributes Type 

Elapsed flying time Float 

Change of airport Integer 

Connections Integer 

Ground time Float 

Has late arrivals Boolean 

Has early departs Boolean 
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optimization. It helps solving some very complex linear programming problems and linear 

optimization problems by making a few simplifying assumptions (AVCONTENTTEAM, 

2017). 

 

2.3 Optimization using Hyperopt 

 

We train the algorithm updating its weights in every iteration. Since weights and 

criteria are the parameters of VS, the adjustments of how the algorithm works are the so 

called hyperparameters (ex.: number of iterations, search space, etc.). In machine learning, 

hyperparameters are defined as the values that are used to control the learning process. And 

the tuning technique that attempts to compute the optimum values of hyperparameters is 

called grid-search (MALATO, 2021). 

This used optimization technique consists in a repetitive attempt at different 

values of weights searched on a discrete space (called a grid) with the intention of minimizing 

a loss function. For this purpose, I have made use of a python package called hyperopt, an 

optimizer that uses Tree-based Parzen Esimtors - TPE to optimize a user-defined loss function 

(SINGH et al., 2019). 

 

Figure 3 – 3D grid search representation  

 
Source: Ippolito (2019). 

 

It is interesting to have a certain diversity on our recommendation set, for 

simplicity purposes, called RecoSet. For example, having only flights with similar price, eft, 
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and connections, would not be a diverse RecoSet. The first option would not be that different 

from the 10th one. This behavior could lower the chances of a booking. Determining how 

good a RecoSet is or evaluating algorithms’ performance is not a trivial task. The intention of 

this section is to contribute to a better understanding of how recommendations are selected 

and to suggest different score calculation formulas that return a better RecoSet. 

Assuming a good understanding of the nature of the data and implementing the 

grid search method for tunning VS algorithm’s hyperparameters, the problem is reduced to 

choosing the hyperparameters to be analyzed (JOHN; KOHAVI; PFLEGER, 1994). And for 

that, it is necessary to understand the performance of the algorithm, i.e., evaluate somehow its 

training. That is why I introduce on the next topic the validation methods. 
 

2.4 Validation methods 

 

The validation phase is extremely important in machine learning algorithms. 

Using proper validation techniques is useful to understand the model, but most importantly, 

estimate an unbiased generalization. The bias is a result caused by overfitting; a 

representation too close for a specific data set that causes problems to ML algorithms when 

trying to predict a model behavior. It can exist because the criteria used to choose the model 

was not the same one to judge the suitability of this model. 

 One of the validation methods used on the work herein is the random train/test 

split data. This allows the algorithm to shuffle the dataset before training again. With the 

correct hyperparameters, the algorithm is evaluated on the capacity of selecting a RecoSet 

containing the booked recommendation. After a few weeks, we were able to develop different 

formulas that could suggest a better performance of the “probability to book” a certain 

recommendation within a RecoSet, named as Booking Coverage Performance (BCP).  

 

𝐵𝐶𝑃 = )*	,!-./!#0	-.)#%()()1	*..2()1
#.#%&	)*	."	,!-./!#0

.                                                   (2) 

 

The above created parameter (BCP) represents the percentage of right guessed 

RecoSets, and its results can vary according to some variables like the size of the selected 

subset, aka setsize, as shown on Table 3. 
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Table 3 – BCP results for a small dataset  
 

Booking Coverage for Amadeus  
A

lg
or

ith
m

s  
  

  Setsize = 20 
  Train = 50% Train = 60% Train = 70% Train = 80% 
1 72.02 71.3 70.79 73.86 
2 80.90 81.16 77.89 80.55 
  Setsize = 70 
  Train = 50% Train = 60% Train = 70% Train = 80% 
1 83.21 79.79 85.8 82.96 
2 86.01 85.71 87.83 86.32 
  Setsize = 70 
  Train = 50% Train = 60% Train = 70% Train = 80% 
1 86.13 84.95 85.19 86.32 
2 88.56 87.83 88.03 86.32 

 
Source: Author (2022). 

 

A problem found on these results is the reliability of the BCP. Every time the BCP 

of a same training set was computed, the results were slightly different, which means that 

there was a certain noise on the observations. The next phase of this research consists in 

distributed programming. By performing big data analysis and obtaining multiple results of 

the same algorithm, we were able to use statistical assumptions. 

 
2.5 Statistical analysis  

 

The distributions of BCP could be close to a Gaussian curve, which is intuitive to 

presume. Suppose our algorithm has a BCP = 0.5, i.e., guesses correctly 50% of the RecoSets 

in each training dataset. If we compute the same algorithm again, with the same parameters 

and same data, it is very unlikely that we obtain a BCP of 0.4 or 0.6. In other words, our 

standard deviation – std should not be bigger than 10%. Analysis in statistical variables such 

as cumulative mean, std, and variance will be key aspects of our analysis to determine how 

accurate our algorithm is performing and what is the reliability of the obtained results. 

The major goal of this part will be to obtain the BCP mean of multiple 

observations of the same algorithm and training/testing dataset of two or more different 

formulas. Then, certify that the difference between these means is higher than the sum of std 

of both (BAKER; HARDYCK; PETRINOVICH, 1966). Only then we will be able to judge 

that one formula is performing better than another. 
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3 METHODS AND TOOLS 

 

3.1 Nature of the Data 

 

The dataset considered in the paper was built as following: for every booked 

recommendation, aka booking, we retrieved the 500 best recommendations (for convention 

designated as “recos”). Together we linked the booked recommendation to its related query 

and tripinfo. The raw dataset is composed by one booking per row. For every booking there 

are its related 500 recos. Together they compose our flight data. An illustration of the data is 

presented in Table 4.  

 
Table 4 – Flight data representation 
Column  Description 

Tripinfo A compact description of the discrepancy. Contains information 

about the client, booking date, origin/destination, stay of the trip 

Query Search date, quantity of passengers, origin/destination, etc.  

Booking Only the booked recommendation 

Recos 500 Round Trip recommendations 
Source: Author (2022). 

 

The original data set provided by Amadeus makes more than 2Tb of information.  

As a first approach, it was analyzed a (40Gb) file from April 2022, and only considering 

round trips. Further, we will explain how the algorithm can get these 500 recos and select a 50 

recos subset that best fits client’s needs. This subset of 50 recommendations is called 

RecoSet.  

At the biggening, the analysis was made in a small data sample so we could train 

the algorithm to choose the best flight criteria without losing much time or memory process. 

Once the algorithm was created, it was needed to scale it to obtain more reliable results. 

Which means we started working with Big Data, using Spark framework and the Hadoop 

Distributed File System to compute distributed data analysis.  

  



23 

3.2 Apache Spark  

 

Apache Spark is an open-source unified analytics engine generally used for big data 

processing. It uses multiple clusters for parallelism it scales the computation capacity of a 

normal GPU. Fortunately, python allows an interface possible to write Spark Applications 

using python APIs and provides a PySpark shell for interactive data analysis in a distributed 

environment. In other words, moving our work to Spark language allows us to scale analytics 

to large databases and run multiple processes in parallel (SHARMA, 2022). 

 

Figure 4 – Spark framework to python logo 

 
Source: https://aprendizadodemaquina.com/ 
artigos/pyspark-entenda-a-engine-do-spark-
para-rodar-python/ 

 

Apache Spark is a fast-computing system that has high integrity but also allows 

high-level tools like Spark SQL for SQL and MLib for machine learning (ROCCO, 2021). 

This engine allows processing large data sets with a distributed algorithm. Spark, unlike 

MapReduce, stores data in memory and uses different data storage models where data is 

fetched and joined from multiple sources. On the other hand, Hadoop uses replication to 

achieve default tolerance (SHARMA, 2022). 

 
Table 5 – RDD is visualized on PySpark interface 

+--------------------+--------------------+--------------------+--------------------+ 

|             flights|               query|            bookings|               recos| 

+--------------------+--------------------+--------------------+--------------------+ 

|"{""discrepancy_i...|UNB+IATB:1+FSITE+...|UNB+IATB:1+1ASIFQ...|UNB+IATB:1+1ASIFQ...| 

|"{""discrepancy_i...|UNB+IATB:1+FSITE+...|UNB+IATB:1+1ASIFQ...|UNB+IATB:1+1ASIFQ...| 

|"{""discrepancy_i...|UNB+IATB:1+FSITE+...|UNB+IATB:1+1ASIFQ...|UNB+IATB:1+1ASIFQ...| 

|"{""discrepancy_i...|UNB+IATB:1+FSITE+...|UNB+IATB:1+1ASIFQ...|UNB+IATB:1+1ASIFQ...| 

+--------------------+--------------------+--------------------+--------------------+ 

only showing top 4 rows 

Source: Author (2022). 
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Using the pre-processed data done on Jupyter Notebook with Spark framework, 

we compute the information in a way that is more convenient to store in cache. A first 

approach was on JSON format. JSON files are efficient for parallelization since they are open 

standard files that allow parsing and are reliable when dividing the information in different 

threads. For that we needed to adapt the code to PySpark. In this chapter, the second part of 

the transformation phase takes place. The final table is as Table 6 shown below.  

 

Table 6 – Recommendation information on JSON format 
+-----------+--------------------+--------------------+ 
|search_date| booking_id         | Json               | 
+-----------+--------------------+--------------------+ 
| 2022-06-02|ee7de1d530654083a...|{"booking_id": "e...| 
| 2022-06-02|2fb8814dbc0f457c9...|{"booking_id": "2...| 
| 2022-06-02|ce57fa20a5e6403e8...|{"booking_id": "c...| 
| 2022-06-02|52f2bd1fb88d420ab...|{"booking_id": "5...| 
| 2022-06-02|556fb59519a34c578...|{"booking_id": "5...| 
| 2022-06-02|495fa08fd1484055a...|{"booking_id": "4...| 
+-----------+--------------------+--------------------+ 

only showing top 5 rows  
Source: Author (2022 ). 

 

3.3 Hadoop Distributed File System – HDFS 

 

The Hadoop Distributed File System (HDFS) is a distributed system designed to 

run commodity hardware. Some of its advantages is that it is highly fault-tolerant, aka 

flexible, and is designed to be deployed on low-cost hardware. Due to its massive capacity 

and reliability, HDFS is a very suitable storage system for Big Data. In combination with 

YARN, it increases the data management capabilities of the Hadoop cluster and enables 

efficient Big Data processing (HADOOP APACHE, 2022). 
 

Figure 5 – Hadoop system logo 

 
Source: Hadoop Apache (2022). 

 

There is now too much data to be stored centrally, especially due to cost and 

storage capacity constraints. Figure 6 shows an example of how jobs were monitored while 

running on HDFS user interface. More figures about tasks distributions and job information’s 

can be found on the appendix of this paper. 
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Figure 6 – Hadoop user interface 

 
Source: Hadoop Apache (2022). 

 

It is also possible to check each job individually and to see the distribution of 

executors for every task. The interactive interface of Hadoop provides several other 

information, and examples are found on appendices of this final paper.  

The problem is how to parallelize our loss function. It is important to say that the 

loss function code is the only parallel computation done at every hyperopt iteration. First, the 

JSON files were created to store all the information. But, at computation phase, the cluster 

memory was exploding its limits (15Gb/Job) when loading into cache. The solution was 

therefore to change one more time the preprocessing file structure to Parquet files. Parquet is 

optimized for the Write Once Read Many (WORM) paradigms, which perfectly suits our 

needs, since we preprocess only once, and compute multiple times. 

 

3.4 Jupyter Notebook and Bash scripts 

 

The Spark code was launched from a spark-submit command. The data frame is 

read from HDFS, preprocessed in parallel and written in parquet back in HDFS. The problem 

faced during this phase of the work was that there was no python’s hyperopt library installed 

on the spark gateway. Since the code created a new Spark session, when calling hyperopt, 

spark errors were raised, and the job aborted.  

Later, the code was tested on Jupyter Notebook, where we managed to install 

hyperopt packages. But since Jupyter Notebook uses a spark session already existing, the 

problem is that there was no control on the session’s parameters. This means that we cannot 

set the allocated memory neither on driver nor on executors. Compacting the data back to 

parquet files and writing back to HDFS was exceeding spark session’s memory limits. 
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These are problems attributed to developers, and they usually are not difficult to 

solve since they can be managed by infrastructure adjustments. But they are not related to the 

scope of this work.  

The found solution was to divide the code into two main steps. Therefore, the 

preprocessing phase was done from spark submit scripts and the computation phase done in 

Jupyter Notebook with the Spark framework. Ii is also worth mentioning that the final parquet 

file was divided into smaller files and the writing process was repeated in a loop until there is 

no more data to be read. Figure 7 explains this parallelization-memory tradeoff. 

 
Figure 7 – Scheme of distributed programing workflow 

 
Source: Author (2022). 
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4 RESULTS 

 

The Hyperopt algorithm was evaluated with different parameters for each run. 

The results were compared by BCP. The algorithm’s performance of one single run translates 

by how many times the booking was located on its RecoSet. Table 7 exemplifies a scenario 

where the booking is inside 3 out of 5 selected RecoSets, this means that the algorithm 

performed with a BCP of 60%. We then define a loss function that behaves opposable to 

booking coverage. Maximizing BCP means minimizing our loss function. 

 

Table 7 – Illustration of algorithms’ RecoSet selection 
Recommendations Booking Algorithm RecoSets 

500 recos booking 1 Hyperopt Set N 
500 recos booking 2 Hyperopt Set N 
500 recos booking 3 Hyperopt Set N 
500 recos booking 4 Hyperopt Set N 
500 recos booking 5 Hyperopt Set N 

Source: Author (2022). 
 

𝑏𝑜𝑜𝑘𝑖𝑛𝑔-.$!3%1! = 60%,                                                    (3) 

𝑃%314%58𝑏𝑜𝑜𝑘𝑖𝑛𝑔-.$!3%1!9 = min8𝑙𝑜𝑠𝑠"')-#(.)9.                                 (4) 

 

Afterwards, we vary the size of the recommendation subset (setsize). We consider 

the recommendation sorting is a success if the booking is too be found in the first setsize 

recommendations. Of course, the larger the set size is, the better is the performance. Also, we 

modify the percentage of the total data that would be used to train the algorithm (DF_Train). 

What is interesting to see is that there is an optimal point of DF_Train setsize, because the 

bigger the training data is, the smaller is the testing data (DF_Test), decreasing the chances of 

finding a booking. Table 8 shows different BCPs for each setsize and training set percentage. 

Note it is intuitive to say that the bigger the setsize the better the BCP. 

 

Table 8 – BCP for different training set sizes 

Source: Author (2022). 

Booking Coverage Performance 

Algorithm Setsize No Train Train = 50% Train = 60% Train = 70% Train = 80% 

Hyperopt 

20 52.17% 56.52% 62.16% 53.57% 55.56% 

50 77.17% 76.09% 83.78% 85.71% 83.33% 

70 83.70% 86.96% 94.59% 89.29% 83.33% 
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The table represents the behavior of our algorithm for different train/test size and 

setsize. We can see that a split data of 60% for training and 40% for testing returns the best 

BCP.  

The loss function calculus is based in two main variables: bk_found and bk_rank. 

The bk_found is a value that returns a Boolean (1 or 0) showing whether or not the booking 

was found within the RecoSet. While the bk_rank is the bookings’ position among the 

recommendations sorted by VS value. The better the booking positioned is on the rank, the 

lower is the error, and the lower is the loss function’s output.  

It is worth mentioning that the final evaluation method is based on whether or not 

the booking was found. It turns out that for training the algorithm, this type of feedback was 

resulting in big discontinuities. A booking can be ranked 1st or 50th, and it will be rewarded 

the same (𝑠𝑒𝑡𝑠𝑖𝑧𝑒	 ≥ 	50). And even though we will keep the booking coverage as a final 

measure of success, we believed that we could help the optimization algorithm with a 

different loss function, adding up a part that tells us when we are getting closer to have the 

booking among the top 50. This change will boost the algorithm when the booking is on the 

49th position compared to the 50th one. 

The new loss function adds up the ranking criteria and finding criteria to compute 

one single score. We have named this function loss function score. Other loss function types 

were also tested but did not perform as well as the referred one. The formulas are as follows: 

 

bk6789: = 	𝑇𝑟𝑢𝑒	𝑖𝑓	𝑏𝑜𝑜𝑘𝑖𝑛𝑔	𝑖𝑛	𝑅𝑒𝑐𝑜𝑆𝑒𝑡	𝑒𝑙𝑠𝑒	𝐹𝑎𝑙𝑠𝑒,                         (5) 

bk;<9= 	= 	
)'4*!3	."	3!-.44!)>%#(.)0?	*..2()1	@.0(#(.)

)'4*!3	."	3!-.44!)>%#(.)0
.                           (6) 

Therefore, we can represent our loss function by 

loss689ABC79	DA7;E = −	8𝑏𝑘".')> + 𝑏𝑘3%)29, which is the most performant,              (7) 

loss689ABC79!"#$% = −	𝑏𝑘".')>,                                              (8) 

loss689ABC79&'$( = −	𝑏𝑘3%)2,                                                (9) 

loss689ABC79&'$(!"#$% = 𝑏𝑘3%)2(𝑛𝑜𝑡	𝑖𝑛	𝑏𝑘".')>), or even                       (10) 

loss689ABC79)%*+ =
&!)(3!-.44!)>%#(.)0)∗I?(*2,-./0J*212/3)

&!)(3!-.44!)>%#(.)0)∗I
.                        (11) 

 

The representativeness of the best performant loss function is shown below. 

Nevertheless, it is important to mention a limitation. For machine learning algorithms it is 

known that the lost function needs to obey certain requirements: it needs to be continuous, 
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derivable, and convex. In the case of the implemented loss689ABC79	DA7;E this is not the case 

since there is a discontinuity when loss689ABC79	DA7;E = 0. However, it fits the purpose of this 

work. The first one rates badly the booking outside the RecoSet, while the second one 

correctly rates the booking. The decision can be influenced by the computed weights on the 

grid search phase or by the chosen setsize. As an example, a setsize of 500 would pick all 

recommendations having an accuracy of 100%. 

 

Figure 8 – Loss function with a right-guessed RecoSet and a wrong-guessed RecoSet 

 
Source: Author (2022). 

 

The results may change accordingly to the setsize, loss function, weights (which 

are computed by our hyperopt algorithm), and even to the train/test split data. The same 

process was done for every row of the dataset, and the VS was computed for every RecoSet, 

obtaining an assemble of good-rated bookings and bad-rated bookings, or in other words, 

right-guessed and wrong-guessed RecoSets.  

Moreover, other calculations were suggested to increase hyperopt’s performance, 

but they are hidden for confidentiality purposes. They will be called Value_S, Value_P, 

Value_NS. The challenge translates in adjusting the VS calculus (as previously explained) to 

get a closer representation of the representativeness of a recommendation taking all the 

parameters (criteria and weights) into account. Figure 9 shows the variation of the BCP for 

our different formulas. Every line on the graph represents a different way of calculating VS. 
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Figure 9 – BCP of different Value Search formulas throughout different setsize 

 
Source: Author (2022). 

 

We train the algorithm recursively by combining formulas and loss functions for 

computing the booking coverage with the same hyperparameters. Afterwards, to assure the 

effectiveness of the results, the compilation was produced in different datasets. We created a 

table that combines different formulas with loss functions, using 70 hyperopt iterations and 

40% for test data. You can find all the data details on the appendices. Finally, the two 

combinations that better performed were chosen: loss function score and Value_P, and loss 

function score and Value_NS. Figure 10 shows the variation of performance by setsize of 

Value_NP for different loss functions. 

 

Figure 10 – BCP of different loss functions throughout different setsize 

 
Source: Author (2022). 
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There are other formulas that show higher BCP. This could allow us to perform a 

more refined analysis on the variation of weights for the different criteria at each iteration of 

hyperopt. Our challenge is then to select the right criteria to compute the value. 

It is worth noting that other analyses have been done varying the search space of 

the optimizer, but these modifications do not have such a consistent effect as the select type 

and the loss function.  

So, to move forward it is necessary to fix some settings: 

1. Loss function: either loss function rank or loss function score 

2. Formulas: either Value_P or Value_NS  

3. Space: Hyperopt Uniform from -50 to 50. 

4. DF_train/DF_Test percentage: 60% for train and 40% for test 

 
4.1 Distributed Analysis  

 

Sometimes, when analyzing BCP and comparing our algorithm’s formulas, we 

obtained quite different results, or it was difficult to compute larger datasets. To optimize data 

analysis, we need to introduce a new field of Data Science: Big Data is used when datasets 

start getting too large to deal by traditional data-processing applications software. Therefore, 

we need to migrate to a Distributed processing approach, and for that we will use PySpark on 

Hadoop cluster. Spark can parallelize the computation and transform the original Data Frame 

(DF) in a Resilient Distributed Dataset (RDD).  

In this phase, we read the preprocessed data stored on HDFS explained at the 

methodology chapter. The computation process consists in three main steps: scheme creation, 

grid search and evaluation. Then, we run different scenarios and log the results in a CSV 

format. 

  

4.1.1 Scheme creation  

 

Data indexation in spark demands a specific scheme that describes the structure of 

the Data Frame. Together they create a data structure in Spark SQL. This facilitates data type 

definitions, speeds up parallel computation and reduces process time. To create the full 

scheme (representative of the whole dataset), it was needed to read at least the first row, since 

all the rows have the same format. 
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4.1.2 Grid search 

 

Once the scheme is created, it is time to read the data. Spark only executes 

assigned tasks when needed. This means that some functions schedule tasks on an executer 

but really do not consume computational time. The structure of Spark only performs actions 

to compute the data when this information is demanded. This strategy is called lazy execution. 

We split the data at 60% train and 40% test. At training phase, just like before, the 

hyperopt algorithm runs multiples iterations and updates the weights to find the loss 

function’s local minimum. At the end of the computation, we obtain the optimal weights.  

 

4.1.3 Evaluation  

 

The recommendations are then sorted according to their computed VS and the top 50 

is chosen. The evaluation is done only on the test dataset. The Hyperopt analysis is again done 

for different formulas and the BCP is computed for every one of these guesses. By the end of 

the evaluation process, we obtain BCPs for fix hyperparameters: number of hyperopt 

iterations and number of dataset rows.  

 

4.2 Response Time  

 

As shown further ahead, we faced two main problems to correctly parallelize the 

Hyperopt Algorithm using Spark’s framework: (i) a long-time response, and (ii) the 

inconsistency of booking coverage performance.  

When analyzing the algorithm’s response time, we noticed a linear correlation 

with the size of the dataset. This was not the expected behavior. The code was shooting one 

job at a time and waiting one task to be finished to send the next one. The processing time 

was increasing tremendously, as indicated in Figure 11.  
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Figure 11 – Response time in seconds for different number of rows 

 
Source: Author (2022). 

 

On the first image we observe that the time of Hyperopt processing increases linearly 

with the size of processed rows. The goal is to flat this curve. The solution was to force the 

spark framework to distribute the data into partitions. The bigger the quantity of partitions, the 

easier it is for spark to distribute tasks into its workers. This means that small parts of the data 

are being processed at the same time in different executors. The next graphs are the 

representations of the same analysis with different number of partitions. Figure 12 illustrates 

this scenario. 
 

Figure 12 – Comparison of response time for different number of partitions 

 
1 partition      50 partitions 

 
200 partitions 

Source: Author (2022). 
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Once we solved the partition time consuming problem, is time to vary the number 

of hyperopt iterations to see how much time they take and how much representative they are 

when calculating loss function’s local minimum. Figure 13 shows the number of times in 

seconds taken by hyperopt to process 5,000 rows with different iterations number as 

hyperparameter.  
 

Figure 13 – Comparison of response time for different hyperopt iterations 

 
Source: Author (2022). 

 

When comparing BCP results, we conclude that the number of hyperopt iterations 

does not change more than 2% the algorithm’s performance for a 5,000 rows dataset. This 

means that the results between the models will only be valid with a confidence interval greater 

than 2% in this case.  

From Figure 14 we see the inconsistency of BCP when varying the number of 

dataset rows for a fixed number of iterations (left) or varying the number of hyperopt 

iterations for a fixed number of dataset rows (right). Since the dataset is being randomly split, 

every point has a different training/testing dataset and thus, provides a different result. 
 
Figure 14 – BCP variation for different dataset sizes and hyperopt iterations 

  
Source: Author (2022). 
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The solution was to run the same evaluation multiple times with the same 

hyperparameters to see if we get the exact same result. If not, we can get an approximate 

representation of the algorithm’s performance. Then, we compute the mean, median and 

standard deviation for the BCP, and we can validate the reliability of the results, i.e., provide 

confidence intervals.  

 

4.3 Parallelization-Memory tradeoff 

 

In this section, we compute the big data and obtain all the values we need to start 

the statistical evaluation. As previously mentioned, we have detected a certain variance in our 

BCP according to changes in parameters and hyperparameters. Then, the idea is to repeatedly 

simulate the same computation with fixed parameters to understand its distributions. To every 

run we called a round where we do the analyses and save the results.  

The main.py could be exemplified as follows: 

 

   Frame 1 – Main Function 
 

Main function 

1. Read dataset from HDFS 
2. For r in rounds: 

a. Train test split on dataset  
b. Grid search computation using hyperopt optimizer on train data 
c. Evaluate the obtained weights on test data  
d. Write results on a csv file  

 
Source: Author (2022). 

 

The results were computed approximately 50 rounds for each combination of 

different hyperparameters, aka hyperopt iterations and number of lines. Later, we added other 

parameters like number of partitions and setsize. Finally, the results were also compared with 

new evaluations using dummy algorithms as select functions, like a simple sort by price or 

sort by eft. Everything was added in the same file at each round. The final csv file looks like 

the content in Table 9. 
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Table 9 – Comparison of BCP for different formulas with the same hyperparameters 

 
Source: Author (2022). 

 

After preprocessing the data, the goal is to store it in a sample file format that 

could be easily loaded for further analysis. On the HDFS-Spark phase, load process was much 

more important, when at first it was not a problem over a small quantity of data. 

Once everything stored in HDFS, the readable data frame was given by four main 

information: (i) search: relative to query information’s such as search date and Origin and 

Destination (ONDs) pairs, (ii) booking: the booked recommendation information only, (iii) 

result: information about all the RecoSets available and the list of recommendations itself. 

Moreover, every Row was identified by a unique; (iv) booking id, allowing the information to 

by correctly indexed, as shown on Table 10. 

 

  Table 10 – Top 5 rows of RDD 
+--------------------+--------------------+--------------------+--------------------+ 

|          booking_id|              search|             booking|              result| 

+--------------------+--------------------+--------------------+--------------------+ 

|621afc246e2f43af9...|[116, 2022-09-25,...|                null|[559.9, 30.083334...| 

|c1f4b782489a4633b...|[109, 2022-09-18,...|                null|[188.5, 4.5, 4.5,...| 

|37bacc903c3e4d79a...|[15, 2022-06-16, ...|                null|[101.97, 3.566666...| 

|4742483cf1104e70a...|[1, 2022-06-02, T...|[2.25, 225.8,, 79...|[155.8, 2.0, 2.0,...| 

|18d65e94dde84eceb...|[2, 2022-06-03, J...|                null|[342.4, 3.25, 3.2...| 

+--------------------+--------------------+--------------------+--------------------+ 

 Source: Author (2022). 
 

Once filtering data from a million bookings, we end up with only approximately 

half (517,586 bookings). After preprocessing it, the actual amount of computable data reduces 

to 300,000 bookings, which we need to consider as a fair amount to make representative 

assumptions. 

When we trained the same algorithm several times, we find that the results were 

varying significantly from one run to another. This can be due the randomness train/test split 

or because of hyperopt grid search inconsistency, or even both. Comparing algorithms thus 

requires estimating this noise to make sure an increase of booking coverage from one 

algorithm to another is significant. It requires classic statistical analysis.  

Rounds Function Setsize Iterations Limit Repartitions BCP Dummy_1 Dummy_2 Dummy_3 
1 Value_P 50 10 100 300 66.67% 22.22% 61.11% 55.56% 
2 Value_P 50 10 100 300 63.89% 41.67% 63,89% 63.89% 
3 Value_P 50 10 100 300 52.78% 36.11% 50.00% 55.56% 
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To overcome this problem, we need to repeat the results and estimate an error margin. 

Moreover, we need then to adjust our parameters, i.e., determine a data length and several 

(hyperopt) iterations so that we can reduce this margin. The question is how much noise we 

should allow between evaluations in such a way that we can affirm with a certain accuracy 

that one formula is better than another. 

 

4.4 Statistical Analysis  

 

To start our analysis, we have assumed that our noise is normally distributed. The 

graph in Figure 15 presents a histogram with the frequency of BCPs obtained over 50 rounds.  

 

Figure 15 – Distribution of BCP within 50 rounds 

 
Source: Author (2022). 

 

Regarding the Empirical Rule for a normal distribution, we know that: 

~68% of the data is within one standard deviation of the mean  

~95% of the data is within 1.96 standard deviations of the mean  

~99.7% of the data is within 3 standard deviations of the mean  

Assumptions underlying the following empirical rule: 

• The mean estimation error is zero 

• The distribution of the errors in the estimates s normal 

Moreover, according to a math corollary: 
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Let 𝑌K, 𝑌I, … , 𝑌) be random sample of size n from a normal distribution with mean 

𝜇  and variance 	𝜎I. Then the sample mean, 𝑌L = K
)
∑ 𝑌()
( , is also normally distributed with 

mean 𝜇  but variance M
)

)
. Which implies that  N

4?O
M/√)

 is a standard nromal random variable Z. 

Which means that if the BCP is normally distributed, the average of 10 

simulations of BCP would also be normally distributed.  

Finally, with these values, we can estimate the acceptable noise Ɲ(𝜇, 𝜎I). 

Furthermore, it is intuitive that the bigger the number of iterations (𝑖𝑡𝑟) and the number of 

bookings analysed (𝑙𝑖𝑚) are, the better is the representativeness of our BCP average. Then I 

can start with a small number of 𝑖𝑡𝑟/𝑙𝑖𝑚	and if R is valid for these hyperparameters, it is valid 

for any larger set.  

The graph in Figure 16 shows the calculus of the sample mean of R rounds. The 

data is sampled 10 times, every time being a different simulation. The first simulations are 

means of 1 round, aka the BCP itself. As we increase the number of rounds, the means 

converges to a certain value, which intuitively is the mean of the entire sample. 

𝐻𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠: 𝑙𝑖𝑚 = 	5000, 𝑖𝑡𝑟 = 10	.   

 

Figure 16 – Distribution of the mean of 10 simulations of BCPs 
throughout the number of rounds (from 1 to 50) 

 
Source: Author (2022).  
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Now, considering some assumptions: 

- An acceptable error margin would be 1%. This means 𝜇 ± 	0.005. 

- The BCP average for 10 rounds is approximately 65% and its std is 0.78% or 

approximately 0.008. 

- To estimate a good formula over another we need a 	𝜎 ≤ 	0.005. 

 

The next step is to find our std (𝜎 = 0.005) on the graph. According to the Law 

of Large Numbers we admit that after a certain point, the average will converge into a value 

and the variance tends to zero (00.00) on the infinite, according to Figure 17.  

 

Figure 17 – STD evolution according to number of 
Rounds sampled  

 
Source: Author (2022). 

 
As we can see on the 4th quarter of the plot above, the std only decreases with the 

increase of R. Therefore, we could think that 10 rounds could allow a fair noise Ɲ(𝜇, 0.005I).  

Figure 18 shows the cumulative mean in blue and its related standard deviation in 

red, with the variation of the green zone being the margin of confidence representing 𝜎 <

0.005. On the other hand, when analyzing just around 5,000 rows, we face another problem. 

When estimating 𝜎 = 0.005 (left), we see that three rounds would be enough to accept the 

BCP results, which could give us an uncertainty of the representativeness of the data. On the 

flip side, increasing 𝜎 = 0.001 (right), we get that not even 50 rounds are enough to reach a 
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good margin of confidence, and therefore such more rounds would demand an enormous 

computational power. 
 

Figure 18 – Comparison over BCP variation for different standard deviations 

   
Source: Author (2022). 

 

The only way of overcoming this problem is by increasing the size of the data. 

When analyzing over 10,000 rows as shown in Figure 19, we can have a good guess that with 

𝜎 = 0.002 (20 rounds) we would be within a good confidence interval. 
 

  Figure 19 – BCP variation in a large dataset  

 
     Source: Author (2022). 
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Now that we have fixed 20 Rounds, we need to adjust the hyperparameters, 

starting by hyperopt iterations at grid-search phase, illustrated at Figure 20.  

This parameter defines the number of times the weights will be updated. As 

predicted, the more iterations we implement, the better will be the weights and bigger will be 

the BCP. What is an interesting thought is to see that the std of BCP increases considerably 

after 50 iterations. That could be explained due to overfitting, meaning that the weight 

dictionary is a well representative to the train data. And even though BCP has a good 

performance, it considerably changes its value at every random train test split. Then I believe 

an acceptable value would be 𝑖𝑡𝑟	 = 	30. 

 

Figure 20 – Mean and std variation for 20 rounds 

 
Source: Author (2022). 

 

The number of rows is equivalent to the number of bookings analyzed, because 

there is one booking per line. This number is defined at the filtering phase as the limit of rows 

read from the data frame. The bigger this number is, the better is the representation of the 

data, but also the bigger is the processing time. 

The graphs in Figure 21 show that for a fixed number of hyperopt iterations on 

grid search phase, the calculated loss function, and the variance of BCP decay when 

increasing the number of lines. We can see that after a certain point, the reduction is not that 

considerable, meaning that we can stop the evaluation after a certain limit allowing a small 

error. But which limit exactly? 
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Figure 21 – loss function and BCP std evolution throughout the number of dataset rows. 

  
Source: Author (2022). 

 

Table 11 shows the mean and standard deviation over 20 rounds for different data 

sizes. We can see that the 𝐵𝐶𝑃KRRR > 	𝐵𝐶𝑃KRRR over 0.01, which is a reliable affirmation 

since its 𝜎 = 0.008. We could then assume a 10,000 data sample to do our analysis (𝑙𝑖𝑚	 =

10,000). 

 

Table 11 – BCP statistical results 
BCP mean Std Rounds 
100 0.681944 0.080344 20 
1000 0.671040 0.026634 20 
10000 0.682749 0.008413 20 
50000 0.684284 0 1 
300000 0.690408 0 1 

Source: Author (2022). 
 

The highest dataset size that was successfully computed by main.py was 50 

thousand rows. The 300 thousand rows dataset was also computed but with only 10 hyperopt 

iterations (instead of 30). A greater number of iterations was too much computational memory 

to Jupyter’s spark session. 

The graph on Figure 22 illustrates the distribution of BCP in three different 

formulas of using hyperopt optimizer. It is possible to see that although with less variance, the 

eft results have a smaller average BCP than the two following ones. Also, Value_NS is more 

consistent than Value_P in terms of standard deviation. 

Finally, Table 12 compares multiple combinations of hyperparameters. If we 

assume that the mean of Value_P is bigger than the mean of Value_NS, we need to check of 

their standard deviation doesn’t scape the 95% confidence interval. When analyzing for 100 
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and 5,000 rows, this statement true, i.e., it stays on the confidence interval (in greed). 

However, when analyzing 10,000 rows it is not the case (in red).  

 

Figure 22 – BCP distribution for 20 rounds over 10000 rows 

 
Source: Author (2022). 

 
According to Table 12, we can see that Value_P algorithm performs 3.69% better 

than Value_NS for 5,000 rows (bookings) and 0.49% on 10000 rows. Although, only on the 

first case we achieve the confidence interval of 95% because its intervals of 1.96 standard 

deviations are lower than Value_NS’ mean on the first case. On the second example, more 

tests or different tunning methods should be improved to make a correct statement.  

It is important to mention that an improvement of 1% in our algorithm’s BCP 

represents over 6 million well recommended bookings per year, what could translate into an 

income over 5.5 million euros per year for Amadeus Air Business.  
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    Table 12 – BCP for different formulas and dataset sizes 

Source: Author (2022). 
  

  Rounds Value_P Price Eft Value_NS Rows 

Mean 

10 68,00% 39,00% 66,00% 65,00% 100 
20 68,00% 39,00% 66,00% 65,00% 100 
10 67,67% 38,68% 65,67% 60,80% 5000 
20 68,45% 38,82% 65,80% 64,76% 5000 
10 68,53% 38,38% 65,04% 67,82% 10000 
20 68,27% 38,19% 65,05% 67,78% 10000 

Std 

10 00,09% 00,01% 00,01% 00,12% 100 
20 00,09% 00,01% 00,01% 00,12% 100 
10 02,33% 02,49% 03,61% 01,32% 5000 
20 01,33% 00,81% 00,72% 03,53% 5000 
10 00,87% 01,38% 00,63% 00,84% 10000 
20 00,84% 00,94% 00,42% 00,64% 10000 
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5 CONCLUSIONS 

 

As part of the conclusions of the work presented in this final paper, 

recommendation systems are not trivial to model, and they involve multiple factors that 

change the nature of the problem. Regarding the algorithm developed and presented, the 

creation of a new formula, new loss function and the validation method were key to an 

improvement on Amadeus’ value search engine. 

With the related work we could find good estimators of weights for 

recommendation criteria by grid search method, and used hyperopt optimizer, to tune or 

hyperparameters. On the distributed programming part of the work, the scheme on Figure 7 

illustrates the different tasks using HDFS for the data read and write and Jupyter Notebook 

with Spark framework for the computation. Finally, statistical tests prove that the Value_P 

algorithm performs 1% better than Value_NS with a 95% of confidence interval. 

As a main conclusion, with the correct techniques and adjustments showed on this 

work, Amadeus’ value search engine can archive better booking coverage when selecting 

recommendations subsets. This factor could have a positive impact on Amadeus’ 

recommendation system. 

As additional conclusions, I believe that research in machine learning and deep 

learning algorithms are practical for understanding how to optimize subset selection, even if 

not fully used in real world scenarios. New technologies such as cloud computing that will 

soon be implemented in the Amadeus’ product system will change the way we store and 

analyze data. By initiating the code migration to Azure cloud from Microsoft, we can use 

MLib library in Databricks or even other machine learning methods, such as the Learn to 

Rank method or the Transformers technique on dynamic processes. 

As far as recommendations for future works, I suggest using Support Vector 

Machines – SVMs for classification and prediction analysis. Regarding past bookings, it 

would be interesting in analyzing price, eft, and number of connections behaviors separately 

and combining these criteria with other parameters not yet studied. Furthermore, one could do 

segmentation and clusterizations of queries by users’ profile, different time periods, flight 

criteria, etc. A possibility is also expanding the Database to OW+RT.  

As a final note, the research work reported in this paper is far from being finished. 

But it has brought a tangible result for Amadeus, high in the maturity technology level, so that 

the company can use the knowledge developed to improve its flight recommendation 

products. 
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APPENDICE A – GIT AND BASH ORGANIZATION 

 

At the start, the local part of the work was merged into the master branch of our 

Bitbucket Repository. But since we kept developing the code to distributed analysis, some 

major changes were necessary. Therefore, a release branch was created to save the POO code, 

and the master received the merge of the Spark code branch. A following step-by-step scheme 

illustrates the new branch organization.  

 
 
 
1. Created branch release/hyperopt_object_oriented from the 
master branch to save the code developed at master so far. 
 
 
2. Merge the code into feat/hyperopt_remote (developing branch). 
 
 
3. Updates to change the code into Spark framework. 

 

 

4. Pull request from feat/hyoperopt_remote to master branch  
 

 

 

 

 

From this point on, the git commits were not only made from our local machines, but 

also from our user accounts on the Hadoop cluster. On every major modification on the 

cluster, we needed to import the code at local. Using Linux terminal, from one side we have a 

logged account connected on the cluster and the other one from my local machine. The code 

transmission was made using git commands. The image below illustrates one simple 

operation. 
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From the cluster side, a gateway allowed us to access Hadoop storage and read and 

load large data files. As mentioned on section 4.3, after the pre-processing phase and writing 

the data on HDFS, we could check stored files divided by search date, as illustrated below. 

 

 
 

All the process of creation of a spark-submit environment consists in three steps: 

1. Virtual environment creation  
2. Install python requirements 
3. Build bandle.sh file  
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Table Results 

1A from 13/03/2022 
 LF_2_div LF_found LF_score LF_rank LF_rankfound 
Cheapest 78.67% 78.67% 78.67% 78.67% 78.67% 
Fastest 90.00% 90.00% 90.00% 90.00% 90.00% 
Value_S 94.17% 94.83% 95.00% 94.83% 95.00% 
Value_NS 90.33% 90.33% 90.33% 90.50% 90.50% 
Value_NSMV 90.17% 90.67% 90.17% 90.50% 90.33% 
Value_P 95.67% 95.50% 95.67% 95.50% 95.17% 
Value_NP 95.17% 95.50% 95.67% 95.50% 95.17% 
Value_NPMV 95.17% 95.17% 95.17% 95.17% 95.17% 
      

1A from 27/05/2022 
 LF_2_div LF_found LF_score LF _rank LF _rankfound 
cheapest 76.72% 76.72% 76.72% 76.72% 76.72% 
fastest 91.07% 91.07% 91.07% 91.07% 91.07% 
Value_S 94.00% 93.12% 93.56% 93.56% 93.56% 
Value_NS 90.92% 91.51% 91.36% 90.92% 91.36% 
Value_NSMV 91.65% 91.51% 90.78% 91.36% 91.22% 
Value_P 93.70% 93.70% 92.83% 92.97% 93.70% 
Value_NP 92.97% 92.68% 92.97% 92.97% 93.12% 
Value_NPMV 93.12% 93.12% 93.12% 93.12% 93.12% 
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Running Jobs  
 

 
 

 
  

 


