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Molecular states of two vertically coupled systems of classical charged particles
confined by a Coulomb potential
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We numerically study the structure and the normal-mode spectrum of two vertically coupled finite-size
two-dimensional systems of interacting classical charged particles that are confined by a nonuniform distribu-
tion of background charge. The structural and dynamical properties of the system are analyzed as a function of
the separation between the planes of charges (d), as well as a function of the strength of the confinement
potential (Z). We find different asymmetrical ground-state configurations, as well as structural phase transitions
induced by the unbinding of particles, which were not present in previous models with a parabolic confinement
potential. Depending on the order of the structural transition the normal-mode frequencies exhibit a

discontinuity or a softening.
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I. INTRODUCTION

A systematic study of the structural and dynamical prop-
erties of the classical version of the two-dimensional (2D)
quantum dot (also called artificial atoms) has been made in
recent years.'® Such a classical approach of the problem
serves as a good starting point for more demanding quantum-
mechanical calculations. At low temperatures and in the
presence of high magnetic fields, electrons in quantum dots
become localized and can be approximated as pointlike
charges. In this limit, some structural and melting properties
of the original quantum system can already be obtained
through a classical approach.” The classical 2D system is
usually modeled as N pointlike charges confined by an ex-
ternal potential, which is most often chosen to be the para-
bolic one and which is equivalent to a uniform background
of neutralizing charge.

For a small number of particles the symmetry of the para-
bolic confinement potential is imposed over the triangular
structure as favored by the repulsive Coulomb interaction
between the charges. As a result, a circular shell structure is
observed as ground state.!>’” However, if a different confine-
ment potential, e.g., resulting from a nonuniform neutralizing
background, is considered, the electrostatic correlations be-
tween particles become more important, especially in the
limit of a weak confinement potential.>® In such a situation,
spontaneous symmetry breaking and very interesting asym-
metrical ground-state configurations as well as a nontrivial
melting behavior were predicted.>®"

Motivated by the increased interest in laterally coupled
quantum dots'%!5 and by the fact that many properties of
quantum systems can be already observed in a classical ap-
proach, the behavior of the classical double-layer system of
charged particles was recently studied for both vertical and
horizontal types of coupling cases.!®!” Due to the two-
dimensional nature of the system, the choice of vertical or
horizontal coupling will lead to different structural properties
of the system. Once more, we stress that in the previous
classical approaches only a parabolic type of confinement
was considered. In a first step such a confinement is very
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suitable, but it is also worth commenting that some interest-
ing physical properties appear only when corrections are
added to the parabolic potential—e.g., the violation of the
Kohn theorem' and an observable anticrossing behavior in
the power absorption spectrum.?%-2!

We extend our previous work™>3 to vertically coupled dots
and concentrate on the effects due to a nonparabolic type of
confinement potential on the structural and dynamical prop-
erties. The present model system is not completely academic
but it can be related to the “superatom” system introduced by
Watanabe and Inoshita.?> The superatom is a circular
modulation-doped heterojunction. In particular, it is a quasi-
atomic system that consists of a circular donor-doped core
and a surrounding impurity-free matrix with a larger electron
affinity. The quantum-mechanical electron structure of this
system was studied in Ref. 23, and it was found that due to
the absence of the 1/r singularity in the potential, the order-
ing of the energy levels is dominated by the no-radial-node
states, in contrast to real atoms, where s and p states are
dominant.

Apart from the above-mentioned analogy with quantum
dots in the classical limit, there exist other experimentally
realized systems that behave purely classically and for which
our study is relevant. Examples are charged colloidal suspen-
sions where it was found recently that correlation effects
between the counterions can result into an overscreening and
attraction between like-charged colloids.'®?* In addition, we
can also cite dusty plasmas and magnetic colloids>~?7 where
2D dotlike structures have been realized.

This paper is organized as follows. In Sec. II, we describe
the mathematical model and our numerical approach to ob-
tain the configurations and frequencies of the normal modes.
The results and discussions of our numerical simulations are
given in Sec. III. Our conclusions are presented in Sec. IV.

II. MODEL

Our system consists of 2N negatively charged particles,
which we label now as electrons, evenly distributed in two
planes or layers which are separated at a distance d. The
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FIG. 1. Schematic view of the model system where the positive
confinement charges are placed in the internal region between the
planes.

electrons in each layer are kept together by two positive
charges (each one equal to Z) which are located between
those two planes. A schematic view of the system is shown
in Fig. 1. The positive charge is displaced a distance a from
the electron plane and is assumed to be the same for both
electron layers. From now on we label this system as the
Coulomb confined molecule (CCM).
The potential energy of the CCM system is given by
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where (I,1I) represent the sums over particles in the respec-
tive layers. Here the symbol € stands for the dielectric con-
stant, r={x,y} is the two-component position vector in 2D
space, and |ri—rj+d2| represents the distance between the
electrons in the distinct electron planes.

We introduce units for the energy E,=e?/ea and distances
a. This allows us to rewrite Eq. (1) in the dimensionless form
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The ground-state configurations of the system were ob-
tained through the standard Metropolis algorithm (at zero
temperature) combined with the modified Newton method to
increase the accuracy of the ground-state energy.” The nu-
merical procedure considered in this paper allowed us to ob-
tain a different number of stable states, which depends on N
and Z. From all the obtained stable states, the one with lower
energy was taken as the ground-state configuration. To check
if a configuration is stable, we calculated, using the House-
holder diagonalization technique, the eigenvalues of the
dynamical matrix,
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which give us the square of the frequencies of the normal
modes of the system («, B=x,y and i, indicates the particle
number). The configuration was taken as final when all fre-
quencies of the normal modes were positive. When N<Z we
showed before>® that the structural and dynamical properties
of the single-layer Coulomb-confined system become the
same as the ones observed for the classical parabolic con-
fined dot.! We also found that the unit of frequency is pro-
portional to the square root of the confinement charge—i.e.,

wo=\e?/mea’\Z/2.° In the present paper we use w for the
unit of frequency.

III. RESULTS AND DISCUSSIONS

The structure and the normal-mode spectrum of the sys-
tem will be studied as a function of the distance (d—2) be-
tween the confinement positive charges and the strength of
the confinement potential (Z). As mentioned before, in the
limit Z> N the single-layer Coulomb-confined system be-
haves similar to the previously studied parabolic-confined
system.! We found that this is also true when we consider the
present system in the same limit and with the confinement
charges in the region outside the planes of electrons. The
vertically coupled system confined by a parabolic potential
was studied previously by Partoens et al.'®

For the configuration shown in Fig. 1, we will focus on
the neutral (Z=N) and the underconfined (Z<N) cases. In
these limits the electronic correlation effects are the most
pronounced and dominate the physical properties of the sys-
tem. We find that the main features of the present model can
already be observed if we consider the small, but nontrivial
cluster with 2N=6 particles. However, results for clusters
with different numbers of particles will also be presented for
completeness.

In order to better observe how the ground-state configu-
ration is affected by the distance between layers or, more
precisely, between the two Coulomb-confined atoms (d—2),
we investigate the distance of each particle from the z axis
(r;) as a function of (d—2). The dependence of the structural
properties on the intensity of the confinement potential will
also be considered.

We start showing r; as a function (d—2) for the cluster
with 2N =6 particles in the neutral case 2Z=6. Notice that all
particles in both layers have the same value of r;, which
depends on (d—2). The corresponding ground-state configu-
ration is an equilateral triangle in each layer, and the two
triangles are rotated with respect to each other in order to
maximize the interlayer particle distances. Note that the size
of the triangles increases with increasing value of (d-2),
which is a consequence of the weaker interaction between
the confinement charge (Ze) of one layer and the particles in
the other plane. The behavior of r; shown in Fig. 2(a) indi-
cates that for a sufficiently large value of (d—2) the distances
of all particles to the z axis approaches a constant value. The
long-range nature of the Coulomb interaction implies that the
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FIG. 2. (Color online) (a) Distance of each particle from the z
axis as a function of the separation between the positive charges
(d-2), for a system with 2N=6 and 2Z=6. (b) Normal-mode fre-
quencies as a function of (d—2) for the same system. The energy of
the minimum-energy configuration as a function of (d—2) is shown
in the inset of (b). An example of the ground-state configuration is
presented in the inset of (a). Open and solid circles represent par-
ticles in different layers.

system will never be independent, but for a sufficiently large
value of d the contribution of the interaction between par-
ticles in distinct planes is small enough not to influence the
configuration (and the energy) of the separate layers. For
example, for the case shown in Fig. 2(a), we found that for
(d-2)=3.5 the distance of each particle from the z axis is
already r;=~0.707, which is the same distance observed in
the single-layer system with N=3 and Z=3.568

The energy as a function of (d—2) is shown in the inset of
Fig. 2(b). No structural phase transition is observed when d
is changed, implying that the first and second derivatives of
the energy with respect to (d—2) are continuous. Thus the
system continuously transits from a moleculelike behavior,
where there is a strong coupling between the particles on the
distinct layers, to an atomlike behavior, where the contribu-
tion of the Coulomb interaction between particles in distinct
layers is very small.

The normal-mode spectrum, as a function of (d—-2), for
the same cluster is shown in Fig. 2(b). For large values of
(d-2) the normal-mode frequencies become the same as the
ones of the single system with N=3 and Z=3. In the opposite
case—i.e., for small separation between layer—some of the
degeneracies are lifted. The behavior of the normal-mode
spectrum corroborates the idea that the planes of particles
behave like independent systems for large values of (d—2).
The particular arrangement of the positive charges shown in
Fig. 1 screens the interaction between particles in distinct
layers. Only for small values of (d—2) does such an interac-
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FIG. 3. (Color online) (a) The distance of each particle from the
z axis, (b) the energy, (c) the first derivative of the energy with
respect to (d—2), and (d) normal-mode frequencies as a function of
(d-2) for a cluster with 2N=6, 2Z=4.4. Examples of the ground-
state configuration of the system are presented as inset in (d). Open
and solid symbols represent particles in distinct layers.

tion become strong enough to modify the system.

According to Ref. 8, a stable single-layer Coulomb-
confined system with N electrons is only possible if the con-
dition Z>N-1 is met. If this requirement is not fulfilled, one
or more electrons become unbound; i.e., they move to infin-
ity. The situation N>Z>N-1 is referred to as the over-
screened case.

The sketch presented in Fig. 1 suggests that the electrons
in each plane are confined by both positive charges for any
finite distance d. However, the effective interaction between
the electrons and the positive confinement charges depends
on d. We can argue that the electrons in each layer are con-
fined by the charge 2Z only when (d—2)=0. If d>2, the
Coulomb interaction between electrons in one layer and the
positive charge of the other layer is smaller than the interac-
tion between these electrons and their own confinement
charge, in order that the effective confinement charge of the
electrons in each layer is smaller than 2Z, but still larger than
Z. Note that when d — = the effective confinement charge for
the electrons in each layer becomes Z, since the Coulomb
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interaction between electrons and the second confinement
charge becomes negligible. Thus, for finite values of d, such
a confinement charge is effectively larger than Z.

Again, we stress that the arrangement presented in Fig. 1
suggests that it is possible to obtain stable ground-state con-
figurations by considering, for instance, a system with 2N
=6 electrons and 2Z=4.4. In this case, the effective confine-
ment charge for the electrons in each layer is Z,>2.2,
which is, in principle, in agreement with the condition given
in Ref. 8. However, if we consider that such a criterion
should take into account all charges in the system, as done in
Ref. 8, then we find that the condition 2Z>2N-1 is no
longer obeyed.

The results for the distance of each electron (r;) from the
z axis as a function of the separation between the confine-
ment charges (d—2) are presented in Fig. 3(a). As can be
observed, for (d—2)=1.999, the negative particles of both
planes stay at the same distance from the z axis, forming an
equilateral triangle in each plane [see the inset in Fig. 3(c)].
For (d—-2)=1.999, a sudden structural change takes place in
the system [see the inset in Fig. 3(c)]. Such a change is
associated with a first-order structural phase transition,
which is confirmed by Fig. 3(c) where a discontinuity of the
first derivative of the energy with respect to (d—2) is ob-
served at (d—2)=~1.999. The energy is continuous for all
values of (d-2). Note that all particles are bounded (i.e.,
confined) for all values of (d—2). The excess of negative
charge (overcharge) in the system is Ag=1.6, which is larger
than the allowed overcharge in the one-layer system.® The
overcharge is due to the screening (by the positive charges)
of the interaction between electrons in distinct planes. We
found that when the positive charges are placed at the region
external to the layers, there is no screening in the interaction
between electrons in distinct layers and the overcharge is
always Ag<1, as in the single-layer system. Note that the
electrons in distinct planes could be seen as counter-ions
adsorbed on the surface of a large colloidal particle. The
present model already demonstrates overcharging,'® which
here is a consequence of the screening of the interaction
between the counter-ions.

Now we present some other interesting and nontrivial fea-
tures of the present model. To do so we choose some par-
ticular distances d between layers and we study the system as
a function of the confinement charge Z. In general, we found
that asymmetric ground-state configurations and spontaneous
symmetry breaking can appear as function of (d,Z). When Z
is sufficiently decreased to confine a certain number of par-
ticles, one electron may suddenly leave the system and go to
infinity. Such an unbinding process or ‘“‘evaporation” of
particle is characterized by a first-order structural phase
transition.

As an example, the average distance of each particle from
the z axis (r;) and the frequencies of the normal modes as a
function of Z are presented in Fig. 4 for the cluster with
2N =<6 particles. The distance between the positive charges
is chosen to be (d—2)=2. We define in Fig. 4 nine different
regions which are associated with distinct ground-state con-
figurations, separated from each other by first- or second-
order structural transitions.
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FIG. 4. (Color online) (a) The distance of each particle from the
z-axis as a function of Z for a cluster with 2N<6, and (d-2)=2.
Black and red curves represent the positions of particles in distinct
layers. On top of this figure the number of confined particles is
given. (b) The normal mode frequencies as a function of Z. The
frequencies of the in-phase (blue circles) and the out-of-phase
(green stars) vibration of the particles around the center of the con-
finement charge in each plane, Egs. (5) and (6), respectively, are
also presented.

We start with the region (IX) (Z=2.201), where particles
in each layer are located at the vertices of an equilateral
triangle. Viewing from the top [Fig. 5(a)], the equilateral
triangles are orientated with respect to each other, forming a
hexagon, which indicates a correlation between particles sit-
ting in distinct layers. When Z=2.201 the system suffers a
first-order structural phase transition to region (VIII) (2.175
=<Z<2.201). Such a transition is characterized by an abrupt
change of the positions of the particles as a function of Z.
The new ground state configuration is shown in Fig. 5(b).
The particles in each layer are now located at the vertices of
isosceles triangles, which are oriented with respect to each
other. The intensity of the confinement potential is not strong
enough to keep all particles at the same distance, which
means that the electrostatic correlations between the elec-
trons already start to dominate the structure of the cluster
since the circular symmetry of the confinement potential is
no longer reflected in the symmetry of the ground-state con-
figuration.

For Z=2.175 another abrupt structural transition takes
place, leading the system to region (VII) (1.857<Z
<2.175), where now the configurations in each layer are
different [Fig. 5(c)]. The transition from region (VIII) to re-
gion (VII) is characterized by the unbinding of a single par-
ticle. Such an asymmetrical evaporation process results in a
spontaneous symmetry breaking of the ground-state configu-
ration of the entire system. The ground-state configuration
observed in region (VII) is also observed in regions (IX) and
(VII), but as a metastable state. As an example, for Z
=2.22 [region (IX)] the ground-state configuration [Fig. 5(a)]
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is observed with energy E,,,,q=—1.365 853, while the meta-
stable state corresponding to the configuration shown in Fig.
5(c) has energy E,,.,=-1.359 902. Notice that the ground-
state configuration is determined by the competition between
the attractive confinement potential and the repulsive inter-
action potential between the negative particles. In this case,
the unbinding of one particle results in a larger confinement
energy for the remaining particles, resulting in a larger en-
ergy of the entire system.

When Z is further decreased in region (VII) the configu-
ration changes continuously in order to reach a more sym-
metrical arrangement of the particles. As a consequence, one
electron of the layer with N=3 leaves the system in a con-
tinuous way up to Z=1.857 [Fig. 5(d)], where it suddenly
becomes unbound. The system is now in region (VI)
(1.268 <7< 1.857) with a very symmetrical minimum-
energy configuration and with two particles in each layer
[see Fig. 5(e)]. The evaporation of two particles makes again
the confinement potential the dominant term imposing the
symmetry of the ground state.

For Z=1.268 a new first-order structural phase transition
takes place, leading the system to the small region (V)
(1.247=7<1.268), where a very nontrivial ground-state
configuration is observed [Fig. 5(f)]. It is interesting to notice
that in spite of the evenly distributed number of particles in
the planes, the configuration is asymmetric; i.e., particles in
each layer are located at different distances from the z axis.
The symmetrical configuration observed in region (VI) is
still obtained as a stable state in region (V), but with higher
energy. For example, for Z=1.26 the ground-state configura-
tion [Fig. 5(f)] has energy E,,,,;=—0.561026, while the
symmetrical configuration similar to the one observed in
region (VI) appears as a metastable state with energy
E,...=—0.560 911.

For Z=1.247 the system reaches region (IV) (1.192<Z
<1.247) through a new first order structural phase transition,
which is associated with the unbinding of one more particle.
The system has now a different number of particles in each
layer [Fig. 5(g)]. The asymmetrical number of particles in
the layers observed in region (IV) occurs only over a very
short interval of Z. For Z=1.192 the ground-state configura-
tion changes rapidly and continuously, which is a second-
order structural transition. Such a transition is characterized
by the softening of one of the normal-mode frequencies [see
Fig. 4(b)]; i.e., one of the normal-mode frequencies becomes
zero at the transition point.

The system now is in region (III) (0.956=<Z<1.192),
where another particle starts to leave the system, becoming
unbound at Z=0.956, through a new first-order structural
transition to region (II) (0.190=<Z<0.956), where both par-
ticles are sitting on the top of its respective positive charge.
A further decrease of the confinement charge generates a
new first-order structural phase transition to region (I), in
which only one particle remains on top of its positive charge.
This occurs for Z=0.190. In general, we found that the value
of Z corresponding to such a transition is given by the
expression

d-1
d*

Z= 4)

which is obtained by making the energy of the system with
two particles equal to the energy of the system with only one
particle.

The corresponding normal-mode frequencies of the con-
figurations are presented in Fig. 4(b). In general, the normal-
mode frequencies are more degenerate when the ground state
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FIG. 6. (Color online) The same as Fig. 4 but now for (a), (b)
(d-2)=1 and (c), (d) (d-2)=5.

is symmetric. These modes are very sensitive to first- and
second-order structural phase transitions. For first-order
structural changes the frequencies exhibit abrupt jumps at the
transition points, while for second-order transitions there is a
softening of one of the modes."”

For all values of Z there is one mode with w=0, which is
associated with the rotation of the entire system around the z
axis. The normal-mode frequencies depend on the strength of
the confinement potential. There is an exception in region
(IT), where a nonzero mode with constant frequency is ob-
served. This is the in-phase vibration of the particles around
the center of the confinement potential—i.e., the center of
mass (c.m.) mode. Note that in region (II) there is another
mode which decreases with decreasing value of Z, and it is
the out-of-phase c.m. mode; i.e., the particles in distinct
planes oscillate always in the opposite direction around the z
axis. A simple calculation gives us, respectively, the follow-
ing expressions for the in-phase and for the out-of-phase vi-
bration of the c.m. mode:
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The frequencies obtained from Egs. (5) and (6) are, respec-
tively, shown in Fig. 4(b) as blue triangles (in-phase vibra-
tion) and green stars (out-of-phase vibration). Due to the
nature of the confinement potential, which is associated with
a nonhomogeneous charge distribution, there is not always a
center-of-mass mode for any number of particles in the sys-
tem, in contrast to the parabolic-confined case. In region (I),
there is only one particle and its motion is the same as the
one of the center of mass.

As suggested by Eq. (2) the physical properties of the
system are also ruled by the distance between the layers d.
To illustrate this we show in Fig. 6 results for different dis-
tances between the confinement charges: namely, (d—2)=1
and (d-2)=5. The regions labeled in these figures corre-
spond to the same configurations shown before in Fig. 5. As
can be seen in Figs. 6(a) and 6(c) some configurations ob-
served for (d—2)=2 (Fig. 4) are now absent. For example,
for (d-2)=1 the configurations associated with regions
(VII) and (V), in Fig. 5, are not observed. The cluster tran-
sits directly from region (IX) [Fig. 5(a)] to region (VII) [Fig.
5(c)] and from region (VI) [Fig. 5(e)] to region (IV) [Fig.
5(d)]. In both cases there is evaporation of one charge, which
leads the system to an unbalanced distribution of charges
over the layers. The same is observed for (d—2)=5, but now
the unbinding of one particle leads the system directly from
region (V) [Fig. 5(f)] to region (IIT) [Fig. 5(h)].

The distance between layers also influences the normal-
mode spectrum. In general, clusters with larger distance be-
tween layers present a more degenerated normal-mode spec-
trum due to the smaller interaction between charges of
distinct layers. This fact can be seen, e.g., in Figs. 6(b) and
6(d). For instance, notice that in region II the out-phase vi-
bration of the center-of-mass mode in the case (d—2)=5 is
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FIG. 8. (Color online) (a),(c) The distance of each particle from
the z axis as a function of Z for the cluster with 2N< 10 and with
distance between the confinement charges (d—2)=2. Black and red
curves represent the positions of particles in distinct layers. On top
of these figures the number of confined particles is given. (b),(d)
The normal-mode frequencies as a function of Z for the same
cluster.

much less sensitive to Z than the same mode in the case (d
—2)=1, where the interaction between particles in distinct
layers is stronger.

The general dependence of the ground-state configura-
tions of clusters with a maximum number of confined
charges 2N<6 on the parameters Z and (d—2) is summa-
rized in the phase diagram ZX (d-2), presented in Fig. 7.
The stability range of the different configurations depends on
the parameters (Z,(d-2)). For example, the ground-state
configuration associated with region (VIII) of Fig. 5 is ob-
served only for Z=2. Configurations (IIT), (IV), and (V) are
only obtained for some values of (Z,(d—2)). The transitions
between the different regions—i.e., configurations—occur
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FIG. 9. (Color online) Top view of the ground-state configura-
tions of the system with 2N<10 and (d—2)=2 for different regions
of Fig. 8. Particles in distinct layers are represented by different
symbols (open black circles and solid red spheres). The center of
the system is given by the black cross.

most often through first-order structural transitions. The spe-
cific case of structural changes induced by the evaporation of
one or more particles is always characterized by a first-order
structural transition. Second-order structural changes were
also obtained, but only between configurations (III) and (IV)
(Fig. 7).

The main features presented for clusters with 2N <6 were
also observed for other clusters with larger number of par-
ticles. Different ground-state configurations appear when the
number of particles increases, but the general behaviors of
the systems shown before are the same, as can be seen in Fig.
8 for clusters with 2N<10 [and (d—2)=2] as a function of
Z. A larger number of regions were labeled, and the configu-
rations associated with such new regions are presented in
Fig. 9. The other regions—namely, (I),(IT),...,(VIII)—are the
same as the ones shown in Fig. 5.

IV. CONCLUSIONS

We numerically studied the different structural configura-
tions and the corresponding normal-mode spectrum of two
vertically coupled 2D systems of interacting classical par-
ticles confined by a nonuniform distribution of charge. As an
example the background charge was taken to be pointlike.
These properties were analyzed as a function of the separa-
tion between the planes of charges (d), as well as a function
of the strength of the confinement potential (Z). Our findings
were illustrated for the 2N<6 and 2N=<10 molecule sys-
tems. The (d,Z) phase diagram exhibited a rich variety of
first- and second-order structural phase transitions that de-
limit regions with symmetric and asymmetric configurations
some of which are also associated with the unbinding of a
particle.

In comparison to the previously studied parabolic verti-
cally coupled dot systems by Partoens et al.,'® novel asym-
metrical ground-state configurations were found as well as
evaporation of particles. The competition between the attrac-
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tive confinement potential and the repulsive interaction po-
tential between the negative particles results in a rich and
nontrivial set of equilibrium configurations.

The evaporation of one particle leads the system to an
unbalanced distribution of charges over the planes and an
asymmetrical ground-state configuration. Such a modifica-
tion in the cluster is always characterized by a first-order
structural transition.

The model system studied in the present paper also ac-
counts for an overcharging which was found to be larger than
the one found by Farias and Peeters® in case of a single
Coulomb-confined system. The screening of the interaction
between charges in distinct layers is the cause of stability of
the ionic state, defined here by an excess of the confined
charges in the system.

The normal-mode spectrum is very sensitive to the sym-
metry of the ground-state configuration and to structural

PHYSICAL REVIEW B 76, 035336 (2007)

transitions observed in the system. In the former, a more
degenerate spectrum is observed in contrast to the asym-
metrical minimum-energy configurations. In the later, de-
pending on the type of structural transition, a typical signa-
ture is observed in the normal-mode spectrum. For a first-
order structural transition there is a sudden jump in the
normal-mode spectrum, while for a second-order structural
transition there is a softening of one of the frequencies.
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