
UNIVERSIDADE FEDERAL DO CEARÁ

CENTRO DE CIÊNCIAS

DEPARTAMENTO DE COMPUTAÇÃO

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

MESTRADO EM BANCO DE DADOS

EMANUEL EDUARDO DA SILVA OLIVEIRA

TRAJECTME: PLANNING SIGHTSEEING TOURS WITH HOTEL SELECTION

FROM TRAJECTORY DATA

FORTALEZA

2018

EMANUEL EDUARDO DA SILVA OLIVEIRA

TRAJECTME: PLANNING SIGHTSEEING TOURS WITH HOTEL SELECTION FROM

TRAJECTORY DATA

Dissertação apresentada ao Curso de Mes-
trado em Banco de Dados do Programa de
Pós-Graduação em Ciência da Computação do
Centro de Ciências da Universidade Federal do
Ceará, como requisito parcial à obtenção do
título de mestre em Banco de Dados. Área de
Concentração: Banco de Dados

Orientador: Prof. Dr. José Antônio Fer-
nandes de Macêdo

Coorientador: Dr. Igo Ramalho Brilhante

FORTALEZA

2018

Dados Internacionais de Catalogação na Publicação
Universidade Federal do Ceará

Biblioteca Universitária
Gerada automaticamente pelo módulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

O46t Oliveira, Emanuel Eduardo da Silva.
 TrajectMe : Planning sightseeing tours with Hotel Selection from Trajectory Data / Emanuel Eduardo
da Silva Oliveira. – 2018.
 60 f. : il. color.

 Dissertação (mestrado) – Universidade Federal do Ceará, Centro de Ciências, Programa de PósGraduação
em Ciência da Computação, Fortaleza, 2018.
 Orientação: Prof. Dr. José Antônio Fernandes de Macêdo.
 Coorientação: Prof. Dr. Igo Brilhante Ramalho.

 1. Sightseeing tours planning. 2. Hotel selection. 3. Trajectories. 4. Genetic algorithm. 5. Trip Planning.
I. Título.
 CDD 005

EMANUEL EDUARDO DA SILVA OLIVEIRA

TRAJECTME: PLANNING SIGHTSEEING TOURS WITH HOTEL SELECTION FROM

TRAJECTORY DATA

Dissertação apresentada ao Curso de Mes-
trado em Banco de Dados do Programa de
Pós-Graduação em Ciência da Computação do
Centro de Ciências da Universidade Federal do
Ceará, como requisito parcial à obtenção do
título de mestre em Banco de Dados. Área de
Concentração: Banco de Dados

Aprovada em:

BANCA EXAMINADORA

Prof. Dr. José Antônio Fernandes de
Macêdo (Orientador)

Universidade Federal do Ceará (UFC)

Dr. Igo Ramalho Brilhante (Coorientador)
Universidade Federal do Ceará (UFC)

Prof. Dr. Joao Jose Vasco Peixoto Furtado
Universidade de Fortaleza (Unifor)

Prof. Dr. João Paulo Pordeus Gomes
Universidade Federal do Ceará (UFC)

Prof. Dr. César Lincoln Cavalcante Mattos
Universidade Federal do Ceará (UFC)

À minha família, que se orgulha do meu em-

penho e da minha dedicação. Principalmente à

minha mãe, Lúcia Bernardo, que me deu a opor-

tunidade de ser uma pessoa do bem e por ser

minha fonte de inspiração. À minha namorada,

Ilanna Cabral, por ser paciente, amiga, compa-

nheira e por ser a melhor pessoa do universo.

AGRADECIMENTOS

Agradeço à minha família, pelo incentivo e pelo orgulho mútuo.

Agradeço à minha namorada, Ilanna Cabral, pelo companheirismo de todos os

momentos, pela amizade e por não me deixar abater nessa árdua caminhada.

Agradeço ao meu orientador, José Antonio Macedo, pelas diversas oportunidades,

pela precisão de suas orientações e por ser uma engrenagem imparável, que torna as pesquisas

palpáveis, aplicáveis e úteis. Parabéns!

Agradeço ao meu amigo, parceiro de trabalho e coorientador, Igo Brilhante, pelas

inúmeras conversas, conselhos e trocas de conhecimentos, coisas sem as quais este trabalho não

seria viável. Muito obrigado!

Agradeço à instituição Universidade Federal do Ceará, bem como ao seu Programa

de Mestrado e Doutorado em Ciências da Computação, aos seus professores e servidores, pela

excelência, pelo esforço e por possibilitar, a mim e aos meus colegas discentes, uma oportunidade

ímpar.

Agradeço aos meus amigos e companheiros de trabalho: Guilherme, Alex, Victor,

Lucas, Felipe, Leonardo Ribeiro, Leonardo Anjos, Jonathan e Fugita, pela luta diária, pela

empolgação e por primarem pela qualidade de seus trabalhos.

Agradeço também aos demais membros do Insight Data Science Lab.1: Abelardo,

Andreza, Arina, Coutinho, Dayana, Erick, Florêncio, Francesco, Francisco, Hinessa, Holanda,

Leopoldo, Luís, Lívia, Nicksson, Peres, Rosana, Ticiana, Vitória, Zschornack e todos os demais,

pela dedicação em seus trabalhos e por tornar o laboratório um ambiente não só favorável às

pesquisas de ponta, mas também um ambiente motivador, enriquecedor e que faz todos sentirem

orgulho de escrever essa história. Ainda do Inisght, gostaria de agradecer ao gerente e amigo,

David Araújo, por organizar toda essa galera e não deixar de primar pela excelência, pela

confiança e pela sinceridade de sempre. Finalmente, agradeço imensamente ao Professor Regis

Pires por me apresentar ao grupo e pelas constantes trocas de informação sempre que tenho a

honra de encontrá-lo.

1 http://www.insightlab.ufc.br/

“Perdemos nossa noção de propósito quando a

espera se alonga.”

(HERBERT, 1965, p. 311)

RESUMO

Neste trabalho propomos o TRAJECTME, um algoritmo para resolver o problema de orientação

com a seleção de hotéis (OPHS, Orienteering Problem with Hotel Selection) a partir das traje-

tórias de turistas extraídas de serviços baseados em localização. Este método é uma extensão

do algoritmo memético proposto por Ali Divsalar em 2014, estado-da-arte do problema em

questão, também escolhido como baseline para comparação frente a solução proposta. Coletamos

dados de serviços como Foursquare e Flickr para reconstruir as trajetórias dos turistas. Em

seguida, construímos um modelo de grafo de hotéis (HGM, Hotel Graph Model) usando um

conjunto de trajetórias e um conjunto de hotéis para inferir sequências típicas de hotéis e pontos

de interesse (PoI). O HGM é aplicado na fase de inicialização e nas operações genéticas do

algoritmo memético para fornecer sequências de hotéis, enquanto a sequência de PoIs evolui

pela aplicação de movimentos de busca local. Avaliamos nossa proposta usando datasets reais

de três cidades italianas que possuem centenas de hotéis e PoIs. Os resultados mostram que o

algoritmo proposto supera o estado-da-arte em até 208% no score. Nosso algoritmo também faz

mais uso do budget disponível, sendo até 54% melhor do que o baseline nessa métrica.

Palavras-chave: planejamento de passeios turísticos; seleção de hotel; trajetórias; algoritmo

genético; planejamento de viagens.

ABSTRACT

In this work, we propose TRAJECTME, an algorithm that solves the orienteering problem with

hotel selection in several cities, taking advantage of the tourists’ trajectories extracted from

location-based services. This method is an extension of the state-of-the-art memetic-based

algorithm proposed by Ali Divsalar in 2014. To this end, we collect data from services such as

Foursquare and Flickr to reconstruct the trajectories of tourists. Next, we build a hotel graph

model (HGM) using a set of trajectories and a set of hotels to infer typical sequences of hotels

and point of interest (PoI). The HGM is applied in the initialization phase and in the genetic

operations of the memetic algorithm to provide sequences of hotels, whereas the associated

sequence of PoIs evolved by applying local search moves. We evaluate our proposal using a

large and real dataset from three Italian cities using up to 1000 hotels. The results show that the

proposed algorithm outperforms the state-of-the-art when using large real datasets. Our approach

is better than the baseline algorithm by up to 208% concerning the solution score and proved to

be more profitable toward PoI visiting time, being 54% better than state-of-the-art.

Keywords: sightseeing tours planning; hotel selection; trajectories; genetic algorithm; trip

planning.

LIST OF FIGURES

Figure 1 – Figure (a) shows the distribution of hotels in the city of Fortaleza while in

Figure (b) the trajectories of tourists captured from location-based services

are plotted together with the hotels. 15

Figure 2 – Hierarchy of problems and works related to TRAJECTME. Regular rectangles

are the problems. Rounded rectangles are the works. The darker the blue,

the more it belongs to the TRAJECTME hierarchy. The arrows present the

relations between them. Bold arrows are the hierarchy of TRAJECTME . . . 17

Figure 3 – OP illustration. Circles’ radius denote vertices’ score. 18

Figure 4 – TOP illustration. Circles’ radius denote vertices’ score. The colors differenti-

ate the paths. 20

Figure 5 – OPTW illustration. Dashed lines denote the scheduled route, while range

opening/closing times. 23

Figure 6 – Orienteering Problem with Hotel Selection illustration. 27

Figure 7 – TRAJECTME takes advantage of characteristics from MA and TripBuilder to

deal with large instances of OPHS. 30

Figure 8 – Example of the HGM building from 8 trajectories, 12 hotels and k = 1. (a) A

set of hotels and a set of trajectories. (b) Each trajectory endpoint matches

to the nearest hotel (k = 1 in this example). (c) By zooming out, we see the

built hotel graph model summarizing pairs of hotels that are more likely to

begin and end a trip, where each (d) edge carries the trajectory associated

with the pair of hotels. 35

Figure 9 – Generate initial population components. 37

Figure 10 – Workflow of generating new solutions for the pool. 38

Figure 11 – Genetic Operators. 39

Figure 12 – Creation of offspring solutions from parent solutions based on two pivot trips

T2 and T1. 40

Figure 13 – Example of the Crossover I operator over an offspring solution with a swap

between hotels h1 and h6. 40

Figure 14 – Crossover II example. 41

Figure 15 – Mutation example. The pair 〈h2,h6〉 has the highest score between possible

pairs starting from h2 . 42

Figure 16 – Management of population illustration. Each block represents a solution.

Dark blues are solutions with higher scores, in contrast, light blues are

solutions with lower scores. 44

Figure 17 – Components of Hotel Graph Model building process. 46

Figure 18 – Convergence score progress through the iterations. The y-axis represents the

maximum score from the current population for each iteration (x-axis). The

red line represents the MA algorithm and the grey ones represent variations

of TRAJECTME for different k values. Due to the boosted initialization,

TRAJECTME needs lesser iterations to archive high scores. 52

Figure 19 – Top 50 most scored PoIs in Florence (left) and Rome (right). The darker the

higher the score. The highest distance between these PoIs is 2.73 and 19.8

km, respectively. 53

Figure 20 – CPU time performance benchmark. Time in seconds. 55

LIST OF TABLES

Table 1 – Related works . 30

Table 2 – Data collected from Italian cities. 47

Table 3 – Average effectiveness of TRAJECTME compared to MA in Pisa. 49

Table 4 – Average effectiveness of TRAJECTME compared to MA in Florence. 50

Table 5 – Average effectiveness of TRAJECTME compared to MA in Rome. 50

LIST OF ALGORITHMS

ALGORITHM 1 – Hotel Graph Model Construction. 34

ALGORITHM 2 – TRAJECTME general structure. 36

ALGORITHM 3 – Populate the Pool. 38

ALGORITHM 4 – Memetic Algorithm Local Search. 43

CONTENTS

1 INTRODUCTION . 14

1.1 Contributions . 15

1.2 Publications . 15

1.3 Organization . 16

2 LITERATURE REVIEW . 17

2.1 Orienteering Problem . 17

2.1.1 Team Orienteering Problem . 20

2.1.2 Orienteering Problem with Time Window 22

2.2 Tourist Trip Desing Problem . 24

2.3 Orienteering Problem with Hotel Selection 26

2.4 Related Works . 28

3 TRAJECTME: TRAJECTORY BASED MEMETIC ALGORITHM . 31

3.1 Hotel Graph Model . 32

3.2 TRAJECTME . 34

3.2.1 Generate initial population . 35

3.2.2 Populate the Pool . 37

3.2.2.1 First level: generating new sequences of hotels with genetic operators 39

3.2.2.2 Second level: improving the score and reducing the costs with Local Search 42

3.2.3 Management of population . 44

3.2.4 Parameter Settings . 44

3.3 Building the Tourism Knowledge Base 45

4 EXPERIMENTS AND RESULTS . 48

4.1 Evaluation Metrics . 48

4.2 Experiments . 49

4.3 Result analysis . 51

4.3.1 Tour Score . 51

4.3.2 Tour Utility . 52

4.3.3 Sensitivity of k . 53

4.3.4 CPU Time Performance . 53

5 CONCLUSION . 56

REFERENCES . 58

14

1 INTRODUCTION

Trip planning is of crucial importance to tourists in achieving a genuine travel

experience. Presume a tourist who is planning to visit several cities within a region with many

points of interests (PoIs) to be visited. This visit will endure several days, and only the hotel

locations of departure and arrival are defined. For each day of this travel, the start and end hotel

must be selected optimally, maximizing the satisfaction and the visiting time to the selected

PoIs and minimizing the travel time among PoIs. The hotels can be selected from all suitable

hotels available in the city. This example can be modeled as a variant of the orienteering problem

known as the orienteering problem with hotel selection (OPHS) (DIVSALAR et al., 2013).

However, current OPHS state-of-the-art solutions (DIVSALAR et al., 2013) (DIVSALAR et al.,

2014) (Van Hoek, 2016) (CASTRO et al., 2015) (DUARTE et al., 2016) do not scale when the

number of hotels can reach the order of thousands hotels, which is the case of real applications.

These solutions carried out experiments for synthetic datasets with up to 15 hotels and 100 PoIs.

However, real-world problems have a higher scale. Let’s suppose a traveler searching for hotels

in Rome at Booking.com. He will find over 1000 hotel options available for her selection. In this

regard, this work is the first attempt in the literature to provide a solution that scales given a large

number of hotels. We have achieved this result using real data from tourist trajectories, which

are collected and reconstructed from location-based services, such as Foursquare and Flickr.

We leverage real tourist trajectories to find an initial solution to the OPHS more

quickly. These trajectories carry the wisdom of the crowds regarding the most popular tourist

routes. Besides, these trajectories help us to pick up to the most visited PoIs and identifying

which regions are better to stay in a hotel closer to the attractions and tours. Figure 1 presents

a scenario that helps us to understand the importance of using real trajectories to select hotels

more efficiently. In Figure 1a the hotels in the city of Fortaleza are plotted whereas in Figure 1b

the common trajectories of the tourists that visit the city are traced. We can see that the spatial

extension of the trajectories match the distribution of the hotels, demonstrating that we can use

the tourist trajectories to improve the selection of the hotels. It is worth noting that in Figure 1b

the PoI that is distant from the hotel agglomeration refers to the airport of Fortaleza.

15

Figure 1 – Figure (a) shows the distribution of hotels in the city of Fortaleza while in Figure (b)
the trajectories of tourists captured from location-based services are plotted together
with the hotels.

(a) Hotels in Fortaleza (b) Trajectories over hotels in Fortaleza

1.1 Contributions

The contributions of this work are three-fold: (1) an algorithm named Hotel Graph

Model that models a set of hotels in the form of a graph based on historical trajectories of

tourists in such a way that reduces the search space of solutions; (2) another algorithm named

TRAJECTME that uses the HGM to find solutions to the OPHS problem and that scales to

real-world cases generating solutions with quality comparable to competitors state-of-the-art

solutions; (3) a set of experiments using real data that demonstrates the accuracy and efficiency

of the proposal in scenarios with a large number of hotels.

We carried out experiments to validate our proposal using real datasets provided by

location-based services. We compare our proposal TRAJECTME to the Memetic Algorithm (MA)

presented in (DIVSALAR et al., 2014). The experiment’s results showed that our algorithm

overcomes the competitor achieving higher scores and better usage of time budget available

(travel utility metric), mainly when the number of hotels is large. Our approach is better than the

competitor by up to 208% with respect to the solution score and proved to be more efficient in

the use of visitation time, being 54% better than state-of-the-art.

1.2 Publications

As a result of this dissertation work, we have published the following paper:

• (OLIVEIRA et al., 2018) OLIVEIRA, E.; BRILHANTE, I. R.; MACEDO, J. A. F. de.

Trajectme: Planning sightseeing tours with hotel selection from trajectory data. In:

16

ACM. Proceedings of the 2nd ACM SIGSPATIAL Workshop on Recommendations

for Location-based Services and Social Networks. [S.l.], 2018. p. 1..

1.3 Organization

This work is structured as follows. Chapter 2 presents a review over related literature.

This review explains the problems related to TRAJECTME and his main target problem. For each

of these problems, we present the definition, practical applications, and approaches proposed by

literature to solve them. The first kind, Orienteering Problem, is presented in Section 2.1 and its

variations in the next ones: Team Orienteering Problem (Section 2.1.1), Orienteering Problem

with Time Window and Team Orienteering Problem with Time Window (Section 2.1.2). Still,

in this chapter, the Tourist Trip Design Problem (Section 2.2) is presented, since TRAJECTME

is mainly applied to solve problems related to tourism routing planning. Next, in Section 2.3,

the Orienteering Problem with Hotel Selection (OPHS), which is the target problem addressed

by TRAJECTME, is detailed. We conclude the Chapter 2 in the Section 2.4 discussing about

the related works. Chapter 3 presents the proposed approach of this work. Section 3.1 presents

the Hotel Graph Model (HGM), its definition and how it is built. Section 3.2 presents the

TRAJECTME , how it uses the HGM to extends the state-of-art algorithm and how it improves

the results and the performance over big OPHS instances. Section 3.3 describes how to build the

tourism knowledge base used by the proposed solution. Chapter 4 describes how was carried out

the experiments and results obtained. Chapter 5 concludes the work.

19

limited to a day (or week). Then the problem is to pick a feasible set of cities, which is

worth to visit in order to maximize the gains and minimize the losses.

• Tourist guide (SOUFFRIAU et al., 2008): For tourists visiting a city or region, it is often

impossible to visit everything they are interested in. Thus, they have to select what they

believe to be the most valuable attractions. Making a feasible plan in order to visit these

attractions in the available time span is often a difficult task. These planning problems are

called Tourist Trip Design Problems (TTDP) and will be discussed in Section 2.2.

• Home fuel delivery(GOLDEN et al., 1987): A fleet of trucks has to deliver to a large number

of customers on a daily basis. The customers’ fuel inventory level should be maintained

at an adequate level at all times. The forecasted inventory level can be considered as a

measure of urgency. A primary goal is to select a subset of customers to be visited each

day who urgently require a delivery and are clustered in such a way that efficient truck

paths can be constructed. This subset selection step is modeled as an OP where the urgency

of delivery at a customer is used as the score. It is the first step of the larger inventory and

routing problem of home fuel delivery. Other steps include the assignment of customers to

vehicles and constructing efficient paths for each truck, between the assigned customers.

• Military application (WANG et al., 2008): When a submarine or an unmanned aircraft is

involved in surveillance activities, the length of the expedition is limited by a fuel or time

constraint and the goal is to visit and photograph the best subset of all possible vertices.

• Another application mentioned in the literature is the single-ring design problem when

building telecommunication networks (THOMADSEN; STIDSEN, 2003).

To solve OP, several researchers proposed algorithms. On the one hand, optimal

approaches, like branch-and-bound (LAPORTE; MARTELLO, 1990)(RAMESH et al., 1992)

and branch-and-cut (GENDREAU et al., 1998a)(FISCHETTI et al., 1998). A branch-and-

bound algorithm consists of a systematic enumeration of candidate solutions thought of as

forming a rooted tree with the full set at the root and then the algorithm explores branches

of this tree, which represent subsets of the solution set. A branch-and-cut involves running

a branch and bound algorithm and using cutting planes, which are optimization methods that

iteratively refine a feasible set, to tighten the linear programming relaxations. However, it only

can handle instances only up to 500 vertices (VANSTEENWEGEN et al., 2011b). In the other

hand, many heuristics approaches was proposed to tackle bigger instance of OP, like stochastic

and deterministic algorithms (TSILIGIRIDES, 1984), centre-of-gravity heuristic (GOLDEN et

21

schools to visit each day and try to maximize the recruiting potential.

• Routing technicians to service customers (TANG; MILLER-HOOKS, 2005): Each TOP

path represents a single technician who can only work a limited number of hours in a

day. Thus, not all customers requiring service can be included in the technicians’ daily

schedules. A subset of customers will have to be selected, taking into account customer

importance and task urgency.

Column generation can be used as an exact algorithm to solve the TOP (BUTT;

RYAN, 1999). Column generation is an efficient algorithm for solving larger linear programs:

the overarching idea is that many linear programs are too large to consider all the variables

explicitly. Since most of the variables will be non-basic and assume a value of zero in the

optimal solution, only a subset of variables needs to be considered in theory when solving the

problem. Column generation leverages this idea to generate only the variables which have the

potential to improve the objective function, i.e., to find variables with negative reduced cost,

assuming without loss of generality that the problem is a minimization problem. They were able

to solve problems with up to 100 vertices when the number of vertices in each path remains small.

Another exact method to deal with TOPs is starting with column generation and couple this with

branch-and-bound to obtain a branch-and-price scheme (BOUSSIER et al., 2007). Branch and

price is a branch-and-bound method in which at each node of the search tree, columns may be

added to the linear programming relaxation.

The first published heuristic for the TOP was developed in 1996 (CHAO et al.,

1996a) and is more or less the same as their five-step heuristic for the OP. The five-step heuristic

only considers vertices that can be reached. In a Euclidean space, these vertices lie within an

ellipse using start and end vertex as foci and the available budget as the length of the major axis.

The initialization step creates many different paths, each starting with a vertex far away from

the start and end vertex, and always assigns all other vertices to one of the paths using cheapest

insertion. The best path is selected as the initial solution. Then more four steps are applied

to improve the solution by swapping or replacing already included and adding non-included

vertices. The difference between the first heuristic TOP and the five-steps heuristic is that, in

the first one, instead of only selecting the best path, a set of best paths are selected and two

reinitialization steps are used instead of one.

More metaheuristcs approaches were proposed to solve TOP, like tabu search heuris-

tic and Variable Neighbourhood Search (VNS) (ARCHETTI et al., 2007), Ant Colony Optimiza-

22

tion (ACO) (KE et al., 2008), Guided Local Search (GLS), Skewed Variable Neighbourhood

Search (SVNS) (VANSTEENWEGEN et al., 2009a)(VANSTEENWEGEN et al., 2009c) and

Greedy Randomized Adaptive Search Procedure (GRASP) with Path Relinking (SOUFFRIAU

et al., 2010).

GLS (VANSTEENWEGEN et al., 2009a) and SVNS (VANSTEENWEGEN et

al., 2009c) were the first to focus on obtaining good TOP solutions in only a few seconds of

computational time. Both algorithms apply a combination of intensification and diversification

procedures. Two diversification procedures simply remove a chain of attractions in each path.

Another procedure tries to gather the available budget spread over different paths within the

current solution, into a single path in the new solution. Two types of intensification procedures

are designed. The first type tries to increase the score and the second type tries to decrease the

travel time in a path. The SVNS algorithm outperforms the GLS algorithm. Furthermore, the

computation time of the SVNS algorithm is lower. The success of the SVNS algorithm can be

explained by a combination of factors. First of all, the SVNS framework appears suitable for

this type of problem. Accepting a slightly worse intermediate solution when it is far from the

incumbent, is a good strategy for selecting the vertices that will be part of the optimal solution.

Additionally, the importance of a good diversification strategy is experimentally demonstrated

and certain moves appear to be essential. The most important conclusion, however, is that it

will always be the specific combination and sequence of different moves that determine the final

quality of the algorithm.

2.1.2 Orienteering Problem with Time Window

In the Orienteering Problem with Time Window (OPTW), each vertex is assigned

a time window and only can be visited during the specified time window (KANTOR; RO-

SENWEIN, 1992) (Figure 5). There’s a variation of OPTW which multiple time-windows can

be assigned to the vertices (SOUFFRIAU et al., 2013). When first approached, Orienteering

Problem with Time Window (OPTW) and Team Orienteering Problem with Time Window

(TOPTW), discussed in the last paragraph of this section, received a lot of attention. The main

reason is that instances with time windows should be solved in a very different way than instances

without time windows. For instance, the well-known 2-Opt (LIN, 1965) move is indispensable

to obtain high-quality results for the OP, but due to the time windows, it cannot be applied to

efficiently solve the OPTW.

24

states are extended by adding an extra vertex at the end. Forward and backward states are matched

if feasible and dominance tests are applied to record only non-dominated states. Decremental

state space relaxation is used to reduce the number of states to be explored (RIGHINI; SALANI,

2009). A Special case of the OPTW in which the starting and end vertex are the same was

addressed with a simple constructive heuristic and a granular variable neighborhood search

(MANSINI et al., 2006).

Team Orienteering Problem with Time Window (TOPTW), as mentioned earlier, is

same as TOP, but with time window constraint in the vertex. Also as TOP, the goal of TOPTW is

to maximize the sum of the collected scores by a fixed number of routes. The applications of TOP

can be also extended to applications scenarios of TOPTW. For instance, a tourist visiting a city for

some days and the museums only stay open in the afternoon and the nightlife attractions only start

at midnight and end at sunrise. Some of solutions proposed to tackle TOPTW includes ant colony

optimization (MONTEMANNI; GAMBARDELLA, 2009), Variable Neighbourhood Search

(TRICOIRE et al., 2010), Iterated Local Search (ILS) metaheuristic (VANSTEENWEGEN et

al., 2009b).

Many practical applications of the orienteering problem and its extensions are related

to solutions of the touristic routing problem, also known as Tourist Trip Design Problem (TTDP).

This problem is discussed in the next section.

2.2 Tourist Trip Desing Problem

The tourist trip design problem (TTDP) refers to a route-planning problem for

tourists interested in visiting multiple points of interest (PoIs) (GAVALAS et al., 2014). TTDP

solvers derive daily tourist tours, i.e., ordered visits to PoIs, which respect tourist constraints and

PoIs attributes. The main objective of the problem discussed is to select PoIs that match tourist

preferences, thereby maximizing tourist satisfaction, while taking into account a multitude of

parameters and constraints (e.g., distances among PoIs, visiting time required for each PoI, PoIs

visiting days/hours, entrance fees, weather conditions) and respecting the time available for

sightseeing on a daily basis.

Personalized Electronic Tourist guides (PETs) may be used to derive personalized

tourist routes (BRILHANTE et al., 2015)(GARCIA et al., 2009)(KENTERIS et al., 2009).

Based on a list of personal interests and preferences, up-to-date information for the PoIs and

information about the visit (e.g. date of arrival and departure, accommodation address, etc), a

25

PET can suggest feasible and near-optimal routes that include visits to a series of most interesting

PoIs (VANSTEENWEGEN; OUDHEUSDEN, 2007).

A number of web and mobile applications have recently incorporated tourist route

recommendations within their core functionality (VANSTEENWEGEN et al., 2011a)(MTRIP,

2018)(GAVALAS et al., 2012). In effect, they incorporate the main functionalities of PETS i.e.,

they generate personalized routes taking into account several user-defined parameters within their

recommendation logic (days of visit, preferences upon POI categories, start/end location, visiting

pace/intensity), while also allowing the user to manually edit the derived routes, e.g. add/remove

PoIs. Recommended tours are visualized on maps (BRILHANTE et al., 2015)(PLANNER,

2018)(MTRIP, 2018)(GAVALAS et al., 2012), allowing users to browse informative content

on selected PoIs. Some tools also offer augmented reality views of recommended attractions

(MTRIP, 2018).

The generic problem of personalized tourist route generation which is mainly associ-

ated with the route generation functionality of mobile tourist guides and PETs has been defined

as the “Tourist Trip Design Problem” (TTDP) (VANSTEENWEGEN; OUDHEUSDEN, 2007).

The modeling of the TTDP is approached considering the following input data:

• A set of candidate PoIs, each associated with a number of attributes (e.g. type, location,

opening days/hours, etc).

• The travel time among PoIs calculated using multi-modal routing information among PoIs,

i.e. tourists are assumed to use all modes of transport available at the tourist destination,

including public transportation, walking and/or bicycle.

• The score of each PoI, calculated as a weighted function of the objective and subjective

importance of each PoI (subjectivity refers to the users’ individual preferences and interests

on specific PoI categories).

• The number of routes that must be generated, based upon the period of stay of the user at

the tourist destination.

• The anticipated visiting duration of a user at a PoI which derives from the average duration

and the user’s potential interest for that particular PoI.

• The daily time budget that a tourist wishes to spend on visiting sights; the overall daily

route duration (i.e. the sum of visiting times plus the overall time spent moving from a

PoI to another which is a function of the topological distance) should be kept below this

budget.

26

A basic classification of the TTDP variants may be based on the number of the

derived routes as follows: (i) single tour TTDP variants aiming at finding a single tour that

maximizes the collected profit while respecting certain tourist constraints and PoI attributes, and

(ii) multiple tour TTDP variants aiming at finding multiple tours based upon the number of days

the tourist’s visit will last.

Single tour variants of the TTDP can be modeled using the Orienteering Problem

(OP). Clearly, the OP may be used to model the simplest version of the TTDP wherein the PoIs

are associated with a score and the goal is to find a single tour that maximizes the profit collected

within a given time budget. Multiple tours variants of TTDP can be modeled using the Team

versions of OP. Extensions of the OP have been successfully applied to model more complex

versions both of the single and multiple tours of TTDP. The vast majority of the papers in the

TTDP literature use the OP and its extensions to model different variants of the problem.

Given we describe the two main upper kinds of problems related to our approach,

it’s the time to detail the main kind of Orienteering Problem address by our work, its variation

with hotel selection.

2.3 Orienteering Problem with Hotel Selection

The orienteering problem with hotel selection (OPHS) was defined by (DIVSALAR

et al., 2013) as a variant of the Orienteering Problem (OP). Is similar to Team Orienteering

Problem (TOP), the difference is that in the TOP all trips have to start and end in the same vertex

and no hotels need to be selected. OPHS is the main problem tackle by this work. To understand

it better, we need to present a formal definition below.

In the OPHS, a set of hotels H = {h1, . . .hM}, and a set of points of interest (PoIs)

P = {p1, . . . pN} are given to form the set of vertices V = {h1, . . .hM, p1, . . . pN}. Each PoI pi

is associated with a score Si representing its relevance, while hotels have no score. The time ti j

to travel from vertex i to j is known for all pairs. Therefore, a trip T is defined by a start hotel

hs, an ordered set of PoIs and an end hotel he. Each trip Ti is limited to a given time budget T d
i .

Finally, the solution tour T ∗ is defined as D connected trips, where the end hotel of a trip is also

the start hotel of the next one, and each PoI is visited at most once.

Given an integer D, the departure and arrival hotels, the goal of the orienteering

problem with hotel selection is then to determine a tour T ∗ with D connected trips that maximize

the total collected score of the visited PoIs.

28

It requires to save zones (hotels) for provisioning between two missions. There are several

possible points (vertices) to survey, but not all of them can be visited due to the limited available

time. The submarine wants to maximize its benefit by selecting the most interesting combination

of points. Only the initial departure and final arrival location of the whole surveillance activity

are fixed. The departure and arrival save zone of each mission during the activity should be

selected in an optimal way, considering the points that are selected for a visit. It is clear that

when the submarine ends its current mission (trip) in a certain save zone, the next mission has to

start in the same save zone.

Actually, depending on the exact practical circumstances, many of the applications

for the orienteering problem or for the traveling salesperson problem with hotel selection

(VANSTEENWEGEN et al., 2011b) can be modeled more appropriately by the OPHS. For

example, the well-known traveling salesperson problem turns into an OPHS under (realistic)

circumstances: if the traveling salesperson needs to select which of his possible clients he will

actually visit during his multiple day tours and he also needs to select the most appropriate hotels

to stay every night. Other examples are truck drivers with limited driving hours wanting to reach

an appropriate parking space, routing maintenance technicians with several depots to pick up

spare parts, etc.

At this point, we describe all kind of problems related to our work. In the next

section, we describe the works related to the TRAJECTME and the key differences between the

approaches.

2.4 Related Works

Skewed Variable Neighborhood Search (SVNS) (DIVSALAR et al., 2013) and

Memetic Algorithm (MA) (DIVSALAR et al., 2014) were the firsts works on OPHS. Brilhante

et al. (BRILHANTE et al., 2015) uses the trajectory drawn from the wisdom-of-the-crowd to

solve Tourist Trip Design Problem (TTDP). TRAJECTME joins both the state-of-art solution

construction steps and trajectories concept presented in (BRILHANTE et al., 2015) to solve

OPHS. A description of each work is given below, as well as the Table 1 comparing the main

characteristics of each one.

SVNS (DIVSALAR et al., 2013) introduced the hotel selection variant of the orien-

teering problem (OP). That work presents a mathematical formulation and possible applications

of this problem. A modified variable neighborhood search framework (VNS), called Skewed

29

VNS (SVNS), was created to deal with OPHS. The SVNS obtains high-quality solutions for a lot

of benchmark instances of varying size with known optimal solutions. However, hotel selection

is a sensitive step of the problem, since choosing a different hotel significantly affects the entire

solution. Thus, it is hard to determine which combination of hotels leads to a selection of high

score vertices.

The structure of the OPHS, and the fact that it is not possible to predict which

selection of hotels will result in a good solution, automatically leads to a two-level solution

strategy. In this way, one level focuses on the hotel selection and the other part concentrates

on the selection of PoIs. Thus, Divsalar et al. (DIVSALAR et al., 2014) created a memetic

algorithm (MA) that corresponds naturally to this two-level solution strategy.

Making use of historical data from tourists, collected from location-based services,

can provide a way to reduce MA’s computational search effort. A frequently visited sequence of

PoIs is an indicator of quality and can be used as a starting point for the construction of better

trips. Such sequence of PoIs is called trajectories in (BRILHANTE et al., 2015).

TRIPBUILDER (BRILHANTE et al., 2015) mines data from location-based services,

like Foursquare and Flickr, to build the tourist route that maximizes the tourist’s interest based

on his preferences. TRIPBUILDER is modeled as an instance of the Generalized Maximum

Coverage (GMC) problem. Internally, (BRILHANTE et al., 2015) extracts trajectories made

by tourists in the past to create solution routes. A trajectory is a sequence of PoIs and must be

fully considered to build a solution. However, TRIPBUILDER does not consider hotels as part of

sightseeing planning.

The Table 1 compares the features of related works to TRAJECTME. SVNS and

MA are computationally fast to solve OPHS with little variation for optimal solutions of their

syntactic instances, but they are limited to handle large instances, like in real scenarios with

hundreds of hotels and PoIs. On the other hand, TripBuilder takes advantage of trajectories that

carries out the wisdom-of-the-crowds information to reduce the computational effort required

to search for solutions in the solution space, but it doesn’t deal with hotel selection. Therefore,

TRAJECTME take advantage of characteristics from MA and TripBuilder to deal with large

instances of OPHS (Figure 7), like real world tourism destinations, and including hotel as part of

tour sightseeing planning. The next chapter presents a more detailed description of TRAJECTME

and how it makes use of the key features of both related works to solve OPHS.

31

3 TRAJECTME: TRAJECTORY BASED MEMETIC ALGORITHM

In this chapter, we describe our proposal called TRAJECTME to solve the oriente-

ering problem with hotel selection. TRAJECTME extends the original Memetic Algorithm by

incorporating historical movements of tourists into a hotel graph model that summaries relevant

pairs of hotels to boost the memetic algorithm procedures. We also present the Hotel Graph

Model that is the key feature of the TRAJECTME and sets it apart from the state-of-art. Then, we

detail the main components and the steps of the algorithm. First of all, we need to define some

concepts.

Let us recall some definitions mentioned earlier: H = {h1, . . . ,hM} as the set of

hotels and P = {p1, . . . , pN} as the set of PoIs. Each PoI pi and hotel h j are univocally identified

by its identifier, name and its geographic coordinates (latitude and longitude). The relevance

score of the PoI pi is given by Si.

As mentioned early in the related works section, TRAJECTME takes advantage of

the concepts from such works. Therefore, the following two definitions are strongly based on the

definitions presented by (BRILHANTE et al., 2015).

Definition 3.0.1 (User PoI History). Given a user u and the PoIs P , the PoI history of u is the

temporally ordered sequence of m points of interest visited by u. Each PoI pi of Hu is annotated

with the two timestamps indicating the start time t1i and the end time t2i of the visit:

Hu =< (p1, [t11, t21]), . . . ,(pm, [t1m, t2m])>

Let δ (t) be a function that returns a timestamp with time at the start of the day from

a given timestamp t. For example:

δ (2018-10-20 23:10:00)

2018-10-20 00:00:00

Definition 3.0.2 (Trajectory). Given a PoI history Hu, we define a trajectory Tu any subsequence

of Hu

< (pk, [t1k, t2k]), . . . ,(pk+i, [t1(k+i), t2(k+i)])>

32

such that:

i≥ 1 (3.1)

δ (t1k) 6= δ (t2(k−1)) , if k > 1 (3.2)

δ (t1(k+i)+1) 6= δ (t2(k+i)) , if (k+ i)< m (3.3)

δ (t1(k+ j)) = δ (t2(k+ j+−1)) ,∀ j s.t. 1≥ j ≤ i. (3.4)

The constraint 3.1 ensures that such subsequence has at least two PoIs. The constraint

3.2 ensures that the start of the day of the first PoI of such subsequence is different from start of

the day of the last PoI of the previous one (if exists, i.e., if k > 1). The constraint 3.3 ensures

that the start of the day of the last PoI of such subsequence is different from the start of the day

of the first PoI of the next one (if exists, i.e., if (k+ i)< m). Finally, the constraint 3.4 ensures

that the start of the day of all PoIs of such subsequence is the same.

The trajectories are intuitively sequences of PoIs visited consecutively on the same

day by the user, from the first visited PoI to the last one on that day. For sake of simplicity, we

denote Tu. f irst and Tu.last the first and last visited PoI in the trajectory T , respectively. In

addition, we can measure the relevance of trajectory by summing the relevance score of the PoIs

as:

k+i

∑
j=k

S j

Given the definitions, we can now describe precisely the Hotel Graph Model and the

TRAJECTME operation. Let’s start with HGM.

3.1 Hotel Graph Model

Divsalar et al. (DIVSALAR et al., 2014) claim that the first problem to solve in

OPHS is the selection of a good sequences of hotels, i.e., sequences that are feasible and are

able to produce good sequence of PoIs to be visited within the time constraint. In our proposal,

trajectories mined from the previous movement of tourists can highlight the best hotels in the

city to generate the trips for OPHS. In fact, the trajectories represent the daily visited PoIs, where

the users usually start and end their daily visitation. From this perspective, the start and end PoIs

of the trajectories can be seen as important locations for selecting nearby hotels.

33

Therefore, our intuition is that the first and last PoIs of the trajectories represent

good location candidates to find relevant hotels and, consequently, generate better sequences of

Pois to visit.

Definition 3.1.1 (Hotel Graph Model). The Hotel Graph Model (HGM) is a graph Gh = (H ,E),

where the set of vertices H = {h1, . . . ,hM} is the set of hotels, and the edges are defined as

tuples (hi,h j,ci j,Tu), where each edge carries a trajectory Tu and the cost ci j of traversing and

visiting PoIs in Tu starting at hi and ending at h j.

As we can see in the Definition 3.1.1, the edges of the HGM are essentially trips for

the orienteering problem with hotel selection: a sequence of PoIs (trajectories) connected by two

hotels.

In order to build the hotel graph model, we need to associate the trajectory set and

the hotel set in such a way the closest hotels are preferable over far hotels. Hence, we look up

the first and last PoIs of each trajectory to spatially match the closest hotels to each of those PoIs.

We resort to R-tree data structures for spatial indexing and k nearest neighbor querying.

Algorithm 1 demonstrate how HGM is built given the set of trajectories T , set

of hotels H and an integer k. The main loop of the algorithm consists of iterating for each

trajectory, applying k-nn over the first and last PoI of each trajectory, which are denoted by

Tu. f irst and Tu.last, to create the edge (H i
p,H

j
q ,ci j,Tu), where H i

p and H j
q are the i-th and j-th

closest hotels to PoIs p and q, respectively. The cost ci j can be obtained from any arbitrary cost

function, like the time to travel between two PoIs or the distance between them. Note that, in

line 14 of the algorithm, we keep only the trajectory Tu with the highest score for each edge,

when more than one trajectory is found for the pair of hotels.

Figure 8 depicts the overall process of building the hotel graph model from 8

trajectories, 12 hotels and k = 1. Given the trajectory and hotel sets (Figure 8a), the 1-nn is

applied to find the closest hotel for the start and end PoIs of each trajectory (Figure 8b). Then,

hotels connected by trajectory generate the edges in the HGM. Edges are then created between

hotels when at least one trajectory connects them (Figure 8c). An example of trajectory is

presented to help the understanding (Figure 8d). The connected trajectories are the User PoI

History defined in the Definition 3.0.1.

In the next section, we present our proposal TRAJECTME that boosts the Memetic

Algorithm by incorporating the hotel graph model built from trajectories of tourists.

34

Input :Set of trajectories T , the set of hotels H , an integer k
Output :Gk = (H ′,Eh)

1 u← 1;
2 while u≤ |T | do
3 p←Tu. f irst;
4 q←Tu.last;
5 Hp← ηk(p) ; /* apply k-nn given p over H */
6 Hq← ηk(q) ; /* apply k-nn given q over H */
7 i← 1;
8 while i≤ |Hp| do
9 H ′←H ′∪{H i

p};
10 j← 1;
11 while j ≤ |Hq| do
12 H ′←H ′∪{H j

q};
13 compute ci j;
14 update Eh with (H i

p,H
j

q ,ci j,Tu), keeping Tu with the highest score;
15 j← j+1;
16 end
17 i← i+1;
18 end
19 u← u+1;
20 end
21 return Gk = (H ′,Eh)

ALGORITHM 1: Hotel Graph Model Construction.

3.2 TRAJECTME

TRAJECTME is a genetic algorithm hybridized with local search techniques and

boosted by a hotel graph model. The genetic algorithm focuses on the (re)combination of

different sequences of hotels, where the local search technique is a Variable Neighborhood

Descent (VND) (DUARTE et al., 2016) which focuses on finding good sequences of PoIs

between each pair of hotels in the tour for the OPHS. TRAJECTME takes advantage of HGM

both for quickly generate of initial population and simplify the maintenance of data structure

that keeps the trips between pairs of hotels.

Again, as mentioned early in the related works section, TRAJECTME takes advantage

of the concepts from such works. Therefore, the general structure and the steps of this algorithm

are strongly based on the Memetic Algorithm (MA) presented by (DIVSALAR et al., 2014).

The main difference between them it’s the underlying presence of HGM during the initialization

phase as a preprocessor and as a data structure that keeps the best trips between the hotels. By

extends the MA, we need to describe it in all steps and details.

The general structure of TRAJECTME (Algorithm 2) consists of three main procedu-

36

Input :Hotel Graph Model Gk = (H ′,Eh), an integer D, an departure hotel hd and an arrival hotel ha

Result: Best_Found_Solution
1 Initialization:
2 Generate initial population;
3 MainLoop:
4 IterN← 1;
5 while IterN < MaxIterations do
6 Populate the Pool;
7 Sort the Pool according to quality;
8 Save the Best_Found_Solution;
9 Population management;

10 IterN← IterN +1;
11 end

ALGORITHM 2: TRAJECTME general structure.

generate sequences until the number of solutions (sequences) reaches the population size. The

size of the population is a parameter and will be discussed in Section 3.2.4. (b) A sequence of

hotels is created starting from the hotel of departure and selecting the next hotels one by one. The

HGM contains all possible next hotels from each start hotel through its edges. This process is

carried out until the arrival hotel is reached. (c) The choice of the next hotel is made through the

well-known selection method roulette wheel (GOLDBERG, 1989) (more about below). When

selecting a hotel makes it impossible to arrive at the hotel of arrival, the last selected hotel is

discarded and another is selected using the same probabilistic procedure. If there is no path of

size D in the graph between the hotel of departure and the hotel of arrival, this sequence is given

as infeasible.

As mentioned above, roulette wheel is the method used to select a next hotel. To

explain it, let Hi be a start hotel and Ei ⊂ Eh the set of edges of Hi in which are its possible

end hotels and fi it fitness value, which is the unit of measure of this method. In the roulette

wheel version used by TRAJECTME, the score of the edge between Hi and an end hotel H j is

used as the fitness value. The selection process starts by randomly choose value p such that

0≤ p≤ ∑ j∈Ei
f j. Then, a loop iterates over Ei through j until the accumulation of fitness values

f j reach p. Then, the j-est hotel whereupon the sum reach p is the selected one. Thus, the edge

with the highest score is most likely to be selected. Figure 9c illustrates how the roulette wheel

looks like: each instance (Ei) has its perimeter directly proportional to the fitness f j and p is

picked randomly within the roulette perimeter.

43

Input :X ← The incumbent solution of the Local Search
1 N←{ Insert, Move-Best, Two-Opt, Swap-Best, Extract-Insert, Extract2-Insert } ;
2 k← 0 ;
3 while k < 6 do
4 X ′← Apply neighborhood structure Nk on X;
5 if X ′ is better than X then
6 X ← X ′;
7 k← 0;
8 else
9 k← k+1;

10 end
11 end

ALGORITHM 4: Memetic Algorithm Local Search.

it made the whole solution cheaper. Only the movement that leads to the highest cost decrease is

applied.

Two-Opt: This move checks if the swap the order of two PoIs in the same trip leads to decrease

trip cost.Only the movement that leads to the highest trip cost decrease is applied.

Swap-Best: This move tries to exchange two PoIs between two different trips. Such an exchange

would execute only if one of the affected trips decreases its cost. To evaluate the exchange, this

move needs to consider the amount of time saved in affected trips and the best positions to put

on the PoIs. Only the movement that leads to the highest cost decrease is applied.

Extract-Insert: This move checks if by removing PoIs in each trip and then inserting available

ones, the score of the trip can be increased. This process is sequentially applied. The excluded

PoI is not considered again for insertion. Inserting the PoIs is done by Insert move, described

above.

Extract2-Insert: This move is identical to the Extract-Insert move, except for the fact that it

always considers two consecutive visited PoIs for exclusion.

In the main loop, at this point, due to the parameters CRI_R and CRII_R which

controls how many offspring solutions must be created, the Pool reaches twice PopSize, the

parameter which control the size of the population. Given that, a new generation should be

elected to be the next population. That means which some solutions will be selected and others

ones will be forgotten. This management will be explained next.

45

new population; and TabuSize used in the mutation operator to handle the number of times a

hotel is not selected for the same trip.

According to previous parameter sensitivity experiments (DIVSALAR et al., 2014),

the only changes in parameter values that have a significant impact on the performance of the

algorithm are MaxIteration and PopSize. By using higher values for them the quality of the

results are increased but at the cost of higher computation time.

In addition to the MA parameters, there is the TRAJECTME’s k parameter, used in

the hotel graph model. This parameter indicates how many hotels should be linked to trajectories’

end. The intuition behind k’s value is that higher values can increase the number of possible

hotels and lower values decrease instead. A higher number of hotels indicates that more solutions

can be found, which means that more arrangement of edges should be tested to find the better

ones. However, it also means more iterations and CPU time. An analysis of about k’s variation

will be given in Chapter 4.

We detailed all concepts, operations, and parameters of TRAJECTME so far. However,

to work appropriately, it relies on the available data about PoIs, hotels, and trajectories from

regions and cities. The next section will present the procedures carried out to extract and process

this data.

3.3 Building the Tourism Knowledge Base

To provide solutions to OPHS, TRAJECTME needs of a tourism knowledge base,

which consists of the sets of PoIs, hotels, and trajectories, and the hotel graph model. The overall

process to build this knowledge base is based on TripBuilder (BRILHANTE et al., 2015). Figure

17 depicts an overview for building the hotel graph model. We organize the architecture into

three components: (i) data collection, where the Flick photos, PoIs and hotel data are collected

from location-based services: Flickr and Foursquare; (ii) data processing to generate PoI History

for users to devise a trajectory set; and (iii) the construction of the hotel graph model given the

trajectory set.

PoI and Hotel Sets. We collected points of interest for a given city by querying the

Foursquare API1 using the bounding box of the targeted city. Moreover, we filtered out PoIs by

using their categories in order to keep only PoIs that are more relevant for tourism: architecture,

arts, churches, food & drink, history, monuments, museums, nature, nightlife, shopping, sports,
1 https://developer.foursquare.com/

47

Table 2 – Data collected from Italian cities.

City PoIs Hotels Trajectories
Pisa, Italy 61 402 59

Florence, Italy 146 1000 593
Rome, Italy 302 1000 1685

48

4 EXPERIMENTS AND RESULTS

We conduct a number of experiments to validate our proposal TRAJECTME using

real datasets provided by location-based services. For the best of our knowledge, this work is the

first one to investigate the OPHS using real datasets. The algorithms have been implemented in

Scala 2.11 and the experiments were conducted on a personal computer Intel© Core™ i5-5200U

2.20GHz CPU and 6GB of RAM.

We compare our proposal TRAJECTME to the memetic algorithm (MA) presented

in (DIVSALAR et al., 2014). To assess the effectiveness of both approaches, we consider two

evaluation metrics described as follows.

4.1 Evaluation Metrics

Tour Score Stour(T ∗). This metric aims at evaluating the total score of the PoIs in the solutions.

In fact, this metric is the objective function of the OPHS. It is the ratio of the total score of the

PoIs in the solution tour T ∗ over the sum of the scores of all the PoIs in P (Equation 4.1). We

recall that the PoI score in our experiments is represented by the number of check-ins of the PoI

collected from Foursquare.

Stour(T ∗) =
∑p∈T ∗ Sp

∑p′∈P Sp′
(4.1)

Tour Utility U tour(T ∗). It evaluates how good is the solution in terms of visiting time. It is

computed as the sum of the visiting time of the PoIs in the solution tour T ∗ over the sum of time

budget of each day (Equation 4.2). Higher scored tours are preferable since they favor the time

to enjoy attractions with respect to the traveling time.

U tour(T ∗) =
∑p∈T ∗ vt(p)

∑Ti∈T ∗ T d
i

(4.2)

In addition to the computed scores for the evaluation metrics, we present the impro-

vements of TRAJECTME over MA w.r.t each metric by calculating the improvement percentage

as

(
TM-kresult−MAresult

MAresult
)×100.

49

4.2 Experiments

We conduct a number of experiments by varying the number of trips D (days) and

the parameter k used in the k-nn query during the construction of HGM. Since the parameters

of TRAJECTME are the same as MA proposed by Divsalar et al. (DIVSALAR et al., 2014),

apart from k, we use the same configuration for these parameters as proposed by the authors in

order to provide a balance between runtime and quality of the solutions. Further experiments

with different parameter settings would be necessary to test the behavior of the baseline and our

proposal. However, as we’ll see in the performance results, the baseline takes a lot of processing

time making it impossible to test various parameter settings for it. The departure and arrival

hotels are randomly selected for each city but remain the same for all experiments in that city.

Tables 3 - 5 show the results of the experiments for each metric in different settings.

We studied algorithms by varying the number of days and the parameter k for each

city, except for Pisa where only considered D = 2 days because it is a small city where tourists

can visit almost all the PoIs in one or two days. We also studied the parameter k TRAJECTME ,

named of TM-k for each k in {1,3,5,10,15}.

All results are the averages of the three executions for each set of input parameters.

The best result is highlighted with bold, where we present the score and the improvement of

TRAJECTME with respect to the MA result.

Table 3 – Average effectiveness of TRAJECTME compared to MA in Pisa.

Days Algorithm Tour Score Tour Utility
1 MA 0.067 0.844

TM-1 0.067 (0%) 0.844 (0%)
TM-3 0.067 (0%) 0.844 (0%)
TM-5 0.067 (0%) 0.844 (0%)
TM-10 0.067 (0%) 0.844 (0%)
TM-15 0.067 (0%) 0.844 (0%)

2 MA 0.967 0.802
TM-1 0.960 (-0.698%) 0.812 (1.299%)
TM-3 0.965 (-0.177%) 0.812 (1.299%)
TM-5 0.966 (-0.025%) 0.802 (0%)
TM-10 0.965 (-0.134%) 0.812 (1.299%)
TM-15 0.964 (-0.235%) 0.812 (1.299%)

50

Table 4 – Average effectiveness of TRAJECTME compared to MA in Florence.

Days Algorithm Tour Score Tour Utility
2 MA 0.242 0.873

TM-1 0.413 (70.934%) 0.866 (-0.795%)
TM-3 0.455 (88.465%) 0.861 (-1.392%)
TM-5 0.465 (92.363%) 0.891 (1.988%)
TM-10 0.455 (88.429%) 0.870 (-0.398%)
TM-15 0.481 (98.952%) 0.878 (0.596%)

4 MA 0.790 0.871
TM-1 0.813 (2.912%) 0.868 (-0.299%)
TM-3 0.806 (2.049%) 0.892 (2.493%)
TM-5 0.804 (1.803%) 0.867 (-0.399%)
TM-10 0.827 (4.694%) 0.888 (1.994%)
TM-15 0.874 (10.597%) 0.863 (-0.897%)

7 MA 0.974 0.872
TM-1 0.982 (0.783%) 0.885 (1.536%)
TM-3 0.983 (0.907%) 0.892 (2.275%)
TM-5 0.984 (1.032%) 0.889 (1.991%)
TM-10 0.983 (0.914%) 0.892 (2.332%)
TM-15 0.981 (0.727%) 0.890 (2.105%)

Table 5 – Average effectiveness of TRAJECTME compared to MA in Rome.

Days Algorithm Tour Score Tour Utility
2 MA 0.125 0.446

TM-1 0.266 (113.313%) 0.583 (30.739%)
TM-3 0.261 (109.099%) 0.623 (39.689%)
TM-5 0.270 (116.421%) 0.559 (25.292%)
TM-10 0.264 (111.071%) 0.611 (36.965%)
TM-15 0.385 (208.099%) 0.691 (54.864%)

4 MA 0.331 0.602
TM-1 0.637 (92.364%) 0.619 (2.886%)
TM-3 0.574 (73.473%) 0.707 (17.460%)
TM-5 0.567 (71.078%) 0.627 (4.185%)
TM-10 0.578 (74.664%) 0.620 (3.030%)
TM-15 0.568 (71.452%) 0.610 (1.443%)

7 MA 0.601 0.685
TM-1 0.743 (23.712%) 0.682 (-0.434%)
TM-3 0.782 (30.223%) 0.682 (-0.434%)
TM-5 0.766 (27.585%) 0.720 (5.141%)
TM-10 0.790 (31.510%) 0.703 (2.679%)
TM-15 0.744 (23.838%) 0.676 (-1.376%)

51

4.3 Result analysis

We divided this analysis over four bias: (i) tour score, (ii) tour utility, (iii) k parameter

sensitivity and (iv) CPU time.

4.3.1 Tour Score

We first study the tour score results in the three cities. Results for Pisa show that

both algorithms achieved good results, where MA was slightly better than TRAJECTME (TM).

This result highlights that for cities with a small set of PoIs, both algorithms tend to perform

well since the tasks of selecting hotels and PoIs is simpler in this scenario. The high score 0.96

shows that the 2-days tours in Pisa the tourists visit almost all feasible PoIs.

In Florence and Rome, on the other hand, we can see a different behavior. TM

presented the highest scores, in special for 2-days tours, for both cities. As illustrated in Table

2, the number of PoIs and hotels are much larger than in Pisa. Consequently, finding good

tours become a harder task to achieve. We notice that as the number of days D increases, the

improvements of TM w.r.t MA decreases. However, the improvements are still significant,

especially in Rome, where we got the largest number of PoIs and hotels.

The results for Florence and Rome highlight another important behavior to explain

the reason why TM has shown important improvements over MA. The memetic algorithm

combined with local search moves seem to be very affected for the initial population and the

number of iterations in the main loop. Figure 18 compares the score convergence progress of

algorithms through the iterations. The y-axis represents the maximum score from the current

population for each iteration (x-axis). The red line represents the MA algorithm and the grey ones

represent variations of TRAJECTME for different values of k. Due to the boosted initialization,

TRAJECTME needs fewer iterations to reach high scores. The initialization with HGM provides

high score solutions then a few iterations are needed to refine the final one. On the other hand,

normal initialization generates delayed initial population leading MA to require more iterations

compared to TRAJECTME to improve their results.

Therefore, these findings highlight the importance of HGM and trajectories of real

tourists representing their daily sequence of visited PoIs. The inclusion of HGM into the memetic

algorithm proves that the initial population created from the initialization step brings an enormous

benefit when there a lot of PoIs and hotels to select. Thus more pleasurable and relevant tours

52

Figure 18 – Convergence score progress through the iterations. The y-axis represents the ma-
ximum score from the current population for each iteration (x-axis). The red line
represents the MA algorithm and the grey ones represent variations of TRAJECTME

for different k values. Due to the boosted initialization, TRAJECTME needs lesser
iterations to archive high scores.

(a) Florence in 7 days (b) Rome in 4 days

can be generated for tourists in a city.

4.3.2 Tour Utility

For Pisa and Florence, the algorithms present similar results. The generated tours

indeed favor for visiting/enjoying PoIs instead of traveling between them. Despite the similarity,

TM shows a slightly better result in terms of tour utility. However, TRAJECTME outperforms

MA in Rome, in particular for D = 2 days. The reason why this superiority for that case were

trajectories. The trajectories carry the knowledge of the crowd, i.e., of the tourists who made it.

Assuming that tourists enjoy the maximum amount of time available to visit, we can say that the

trajectories are excellent initial solutions for time planning. In MA, the initial solutions generated

by a greedy algorithm. Such algorithm focuses on having results that will be used only to get

a preview about the possible score between the hotel pairs (DIVSALAR et al., 2013), and can

lead to solutions with PoIs distant from each other. Hence, the generated tours do not privilege

the visit of PoIs and are penalized by a higher total traveling time. In summary, TRAJECTME

significantly overcomes MA in terms of tour utility, reflecting the quality of the generated tours.

We also empirically observed the impact of the territorial extension of the city on

Tour Utility. Figure 19 shows the top 50 most scored PoIs in Florence and Rome. We noticed

that PoIs in Rome is more distant to each other than in Florence. For instance, there are PoIs 19.8

km away from each other in Rome, while in Florence, the longest distance found was 2.73 km.

Thus, selecting relevant PoIs for the tour become harder, especially when the initial population

does not contain good solutions. Distant PoIs means that the solutions can include costly paths

54

quantity of possible combinations of PoIs-hotels-days, MA’s performance slows down. Thanks

to Hotel Graph Model (HGM), which is the main feature of TRAJECTME , we can handle big

instance in less CPU time.

MA spends a lot of time in the initialization phase. It solves an Orienteering Problem

between each pair of hotels through a greedy sub-op heuristic (DIVSALAR et al., 2013). For

example, in Rome instance, MA must compute one million OP solutions in the initialization

phase (1000×1000 pairs of hotels). On the other hand, HGM allows TRAJECTME start quickly:

it founds the k nearest hotels to each trajectory’s end a use trajectory itself as the initial solution.

This search is boosted by an R-Tree index. After that, the amount of hotels considered to next

steps tends to be proportional according to k. High k values mean that more hotels will be

considered to find solutions.

When k is high enough, and the amount of hotels grows, TRAJECTME approaches of

MA, which considers all the hotels. Low k values instead mean that fewer hotels will be selected

from the hotel set. Which in turn means fewer initial solutions will be found.

TRAJECTME makes the trajectory itself as the initial solution between each pair of

hotels selected, i.e., it doesn’t need any additional computation to find initial solutions between

pairs of hotels. Moreover, the search space becomes smaller and more accurate: by using

trajectories as the basis for selecting hotels, TRAJECTME prioritizes the hotels closest to the

PoIs. This means that the resulting search space is formed mostly by well-located hotels close to

the main tourist attractions, allowing good solutions to be found more quickly.

Figure 20 shows that TRAJECTME clearly outperforms MA in order of scale. While

MA spend hours to initialize, computing its initial solutions, TRAJECTME initialize almost

instantly. TRAJECTME’s initialization is a tiny portion of its execution.

56

5 CONCLUSION

In this work, we presented our proposal TRAJECTME, a memetic algorithm boosted

by a hotel graph model (HGM) to solve the orienteering problem with hotel selection (OPHS)

in a scenario with real datasets provided by location-based services and thousands of hotels.

TRAJECTME extends the work proposed in (DIVSALAR et al., 2014) by incorporating a hotel

graph model that carries historical trajectories of tourists in the city to support the generation

of tours for the OPHS in a more effective fashion. Trajectories of tourists were reconstructed

combining photos collected from Flickr and PoIs from Foursquare.

In Chapter 2, we presented an extensive literature review of TRAJECTME’s related

problems and works. For each type of problem, we present the definition, the practical applica-

tions and the approaches proposed in the literature to solve it. We also presented the Tourism

Trip Design Problem, which is a class of problems that mainly encompasses the task of touristic

routing and, therefore, has been studied in this work. At the end of that review, we presented

the related works and highlight two of them for their importance on the basic operation of the

TRAJECTME. We related the key features of each work and how they influenced the design of

the proposed algorithm.

We detailed our proposal in the next chapter (Chapter 3). We divided our approach

presentation into three sections. In the first one, we presented the HGM and what its role in the

proposed algorithm. In the following one, we presented the necessary definitions and detailed all

the steps of the TRAJECTME’s workflow and how it uses the HGM to optimize initialization and

other phases. In the last one, we presented how and from where the data for the proper operation

of TRAJECTME are obtained and processed.

To validate our work, we experimented it with real data collected for three cities

of different sizes in terms of territorial extension, number of PoIs and hotels. We compared

TRAJECTME to the Memetic Algorithm (DIVSALAR et al., 2014) under two evaluation metrics

to demonstrate the effectiveness of our proposal in solving OPHS with real datasets and thousands

of hotels. The results showed that both proposal generate good solutions for a small city, such as

Pisa. However, we significantly overcome the baseline achieving better efficiency, mainly when

the number of hotels and PoIs are large. We also analyzed the time performance of both the

algorithms over the same instances. As a result, we clearly see that TRAJECTME outperforms

the MA in CPU time since MA spent a lot of time at initialization phase.

We envision several future works. First, we need to evaluate the applicability of this

57

work for real users, such as extend our proposal towards a personalized tour generation with

hotel selection based on the preferences of the users and categories of the PoIs. We also need

to understand the behavior of changing hotels, since it’s uncommon to stay in more than one

hotel in the same city. An interesting direction is to exploit our HGM to deal with regions, such

as states and countries, thus a complete tour with hotel selection can be efficiently generated

crossing many cities. Besides, we aim to figure out the significance of k and the other parameters

used in our experiments to better understand the impact of the results in terms of performance

and effectiveness for finding tours. Our proposal rely on the connectivity present in the HGM

to be able to generate the tours. We intend to investigate the scenario when there’s not enough

trajectory available. New connections can be incrementally created to mitigate the sparse data

problem using heuristics and link prediction approaches.

58

REFERENCES

ARCHETTI, C.; HERTZ, A.; SPERANZA, M. G. Metaheuristics for the team orienteering
problem. Journal of Heuristics, Springer, v. 13, n. 1, p. 49–76, 2007.

ARKIN, E. M.; MITCHELL, J. S.; NARASIMHAN, G. Resource-constrained geometric
network optimization. In: ACM. Proceedings of the fourteenth annual symposium on
Computational geometry. [S.l.], 1998. p. 307–316.

BOUSSIER, S.; FEILLET, D.; GENDREAU, M. An exact algorithm for team orienteering
problems. 4or, Springer, v. 5, n. 3, p. 211–230, 2007.

BRILHANTE, I. R.; MACEDO, J. A.; NARDINI, F. M.; PEREGO, R.; RENSO, C. On planning
sightseeing tours with TripBuilder. Information Processing and Management, v. 51, n. 2, p.
1–15, 2015. ISSN 03064573.

BUTT, S. E.; CAVALIER, T. M. A heuristic for the multiple tour maximum collection problem.
Computers & Operations Research, Elsevier, v. 21, n. 1, p. 101–111, 1994.

BUTT, S. E.; RYAN, D. M. An optimal solution procedure for the multiple tour maximum
collection problem using column generation. Computers & Operations Research, Elsevier,
v. 26, n. 4, p. 427–441, 1999.

CASTRO, M.; SÖRENSEN, K.; VANSTEENWEGEN, P.; GOOS, P. A fast metaheuristic for
the travelling salesperson problem with hotel selection. 4OR, v. 13, n. 1, 2015. ISSN 16142411.

CHAO, I. et al. Algorithms and solutions to multi-level vehicle routing problems. University of
Maryland at College Park, 1993.

CHAO, I.-M.; GOLDEN, B. L.; WASIL, E. A. EUROPEAN JOURNAL OF OPERATIONAL
RESEARCH The team orienteering problem. European Journal of Operational Research,
v. 88, p. 464–474, 1996.

CHAO, I.-M.; GOLDEN, B. L.; WASIL, E. A. A fast and effective heuristic for the orienteering
problem. European journal of operational research, Elsevier, v. 88, n. 3, p. 475–489, 1996.

DIVSALAR, A.; VANSTEENWEGEN, P.; CATTRYSSE, D. A variable neighborhood search
method for the orienteering problem with hotel selection. International Journal of Production
Economics, Elsevier, v. 145, n. 1, p. 150–160, 2013.

DIVSALAR, A.; VANSTEENWEGEN, P.; SÖRENSEN, K.; CATTRYSSE, D. A memetic
algorithm for the orienteering problem with hotel selection. European Journal of Operational
Research, Elsevier B.V., v. 237, n. 1, p. 29–49, 2014. ISSN 03772217. Disponível em:
<http://dx.doi.org/10.1016/j.ejor.2014.01.001>.

DUARTE, A.; MLADENOVIĆ, N.; SÁNCHEZ-ORO, J.; TODOSIJEVIĆ, R. Variable
neighborhood descent. Handbook of Heuristics, Springer, p. 1–27, 2016.

FISCHETTI, M.; GONZALEZ, J. J. S.; TOTH, P. Solving the orienteering problem through
branch-and-cut. INFORMS Journal on Computing, INFORMS, v. 10, n. 2, p. 133–148, 1998.

GARCIA, A.; LINAZA, M. T.; ARBELAITZ, O.; VANSTEENWEGEN, P. Intelligent
routing system for a personalised electronic tourist guide. Information and communication
technologies in tourism 2009, Springer, p. 185–197, 2009.

http://dx.doi.org/10.1016/j.ejor.2014.01.001

59

GAVALAS, D.; KENTERIS, M.; KONSTANTOPOULOS, C.; PANTZIOU, G. Web application
for recommending personalised mobile tourist routes. IET software, IET, v. 6, n. 4, p. 313–322,
2012.

GAVALAS, D.; KONSTANTOPOULOS, C.; MASTAKAS, K.; PANTZIOU, G. A survey
on algorithmic approaches for solving tourist trip design problems. Journal of Heuristics,
Springer, v. 20, n. 3, p. 291–328, 2014.

GENDREAU, M.; LAPORTE, G.; SEMET, F. A branch-and-cut algorithm for the undirected
selective traveling salesman problem. v. 32, p. 263–273, 12 1998.

GENDREAU, M.; LAPORTE, G.; SEMET, F. A tabu search heuristic for the undirected
selective travelling salesman problem. European Journal of Operational Research, Elsevier,
v. 106, n. 2-3, p. 539–545, 1998.

GOLDBERG, D. E. Genetic Algorithms in Search, Optimization and Machine Learning.
1st. ed. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1989. ISBN
0201157675.

GOLDEN, B. L.; LEVY, L.; VOHRA, R. The orienteering problem. Naval Research Logistics
(NRL), Wiley Online Library, v. 34, n. 3, p. 307–318, 1987.

KANTOR, M. G.; ROSENWEIN, M. B. The orienteering problem with time windows. Journal
of the Operational Research Society, Taylor & Francis, v. 43, n. 6, p. 629–635, 1992.

KATAOKA, S.; MORITO, S. An algorithm for single constraint maximum collection problem.
Journal of the Operations Research Society of Japan, The Operations Research Society of
Japan, v. 31, n. 4, p. 515–531, 1988.

KE, L.; ARCHETTI, C.; FENG, Z. Ants can solve the team orienteering problem. Computers
& Industrial Engineering, Elsevier, v. 54, n. 3, p. 648–665, 2008.

KENTERIS, M.; GAVALAS, D.; ECONOMOU, D. An innovative mobile electronic tourist
guide application. Personal and ubiquitous computing, Springer-Verlag, v. 13, n. 2, p.
103–118, 2009.

LAPORTE, G.; MARTELLO, S. The selective travelling salesman problem. Discrete applied
mathematics, North-Holland, v. 26, n. 2-3, p. 193–207, 1990.

LIN, S. Computer solutions of the traveling salesman problem. Bell System Technical Journal,
Wiley Online Library, v. 44, n. 10, p. 2245–2269, 1965.

MANSINI, R.; PELIZZARI, M.; WOLFER, R. A granular variable neighbourhood search
heuristic for the tour orienteering problem with time windows. [S.l.], 2006.

MONTEMANNI, R.; GAMBARDELLA, L. M. An ant colony system for team orienteering
problems with time windows. Foundation Of Computing And Decision Sciences, v. 34, n. 4,
p. 287, 2009.

MTRIP. mtrip Redefining Mobile in Travel. 2018. Disponível em: <https://www.mtrip.com/>.

OLIVEIRA, E.; BRILHANTE, I. R.; MACEDO, J. A. F. de. Trajectme: Planning sightseeing
tours with hotel selection from trajectory data. In: ACM. Proceedings of the 2nd ACM
SIGSPATIAL Workshop on Recommendations for Location-based Services and Social
Networks. [S.l.], 2018. p. 1.

https://www.mtrip.com/

60

PLANNER, C. T. City Trip Planner The Ultimate City Break Guide! 2018. Disponível em:
<http://www.citytripplanner.com/>.

RAMESH, R.; BROWN, K. M. An efficient four-phase heuristic for the generalized orienteering
problem. Computers & Operations Research, Elsevier, v. 18, n. 2, p. 151–165, 1991.

RAMESH, R.; YOON, Y.-S.; KARWAN, M. H. An optimal algorithm for the orienteering tour
problem. ORSA Journal on Computing, INFORMS, v. 4, n. 2, p. 155–165, 1992.

RIGHINI, G. Dynamic programming for the orienteering problem with time windows.
Università degli Studi di Milano-Polo Didattico e di Ricerca di Crema, 2006.

RIGHINI, G.; SALANI, M. New dynamic programming algorithms for the resource constrained
elementary shortest path problem. Networks: An International Journal, Wiley Online Library,
v. 51, n. 3, p. 155–170, 2008.

RIGHINI, G.; SALANI, M. Decremental state space relaxation strategies and initialization
heuristics for solving the orienteering problem with time windows with dynamic programming.
Computers & Operations Research, Elsevier, v. 36, n. 4, p. 1191–1203, 2009.

SCHILDE, M.; DOERNER, K. F.; HARTL, R. F.; KIECHLE, G. Metaheuristics for the
bi-objective orienteering problem. Swarm Intelligence, Springer, v. 3, n. 3, p. 179–201, 2009.

SOUFFRIAU, W.; VANSTEENWEGEN, P.; BERGHE, G. V.; OUDHEUSDEN, D. V. A path
relinking approach for the team orienteering problem. Computers & operations research,
Elsevier, v. 37, n. 11, p. 1853–1859, 2010.

SOUFFRIAU, W.; VANSTEENWEGEN, P.; BERGHE, G. V.; OUDHEUSDEN, D. V. The
multiconstraint team orienteering problem with multiple time windows. Transportation
Science, INFORMS, v. 47, n. 1, p. 53–63, 2013.

SOUFFRIAU, W.; VANSTEENWEGEN, P.; VERTOMMEN, J.; BERGHE, G. V.;
OUDHEUSDEN, D. V. A personalized tourist trip design algorithm for mobile tourist guides.
v. 22, p. 964–985, 10 2008.

TANG, H.; MILLER-HOOKS, E. A tabu search heuristic for the team orienteering problem.
Computers & Operations Research, Elsevier, v. 32, n. 6, p. 1379–1407, 2005.

THOMADSEN, T.; STIDSEN, T. The Quadratic Selective Travelling Salesman Problem.
Richard Petersens Plads, Building 305, DK-2800 Kgs. Lyngby, 2003. (IMM-Technical
Report-2003-17). Disponível em: <http://www2.imm.dtu.dk/pubdb/p.php?2524>.

TRICOIRE, F.; ROMAUCH, M.; DOERNER, K. F.; HARTL, R. F. Heuristics for the
multi-period orienteering problem with multiple time windows. Computers & Operations
Research, Elsevier, v. 37, n. 2, p. 351–367, 2010.

TSILIGIRIDES, T. Heuristic methods applied to orienteering. Journal of the Operational
Research Society, Springer, v. 35, n. 9, p. 797–809, 1984.

Van Hoek, S. Tabu Search for the Orienteering Problem with Hotel Selection. 2016.

VANSTEENWEGEN, P.; OUDHEUSDEN, D. V. The mobile tourist guide: an or opportunity.
OR insight, Springer, v. 20, n. 3, p. 21–27, 2007.

http://www.citytripplanner.com/
http://www2.imm.dtu.dk/pubdb/p.php?2524

61

VANSTEENWEGEN, P.; SOUFFRIAU, W.; BERGHE, G. V.; OUDHEUSDEN, D. V. A guided
local search metaheuristic for the team orienteering problem. European journal of operational
research, Elsevier, v. 196, n. 1, p. 118–127, 2009.

VANSTEENWEGEN, P.; SOUFFRIAU, W.; BERGHE, G. V.; OUDHEUSDEN, D. V. Iterated
local search for the team orienteering problem with time windows. Computers & Operations
Research, Elsevier, v. 36, n. 12, p. 3281–3290, 2009.

VANSTEENWEGEN, P.; SOUFFRIAU, W.; BERGHE, G. V.; OUDHEUSDEN, D. V.
Metaheuristics for tourist trip planning. In: Metaheuristics in the service industry. [S.l.]:
Springer, 2009. p. 15–31.

VANSTEENWEGEN, P.; SOUFFRIAU, W.; BERGHE, G. V.; OUDHEUSDEN, D. V. The city
trip planner: an expert system for tourists. Expert Systems with Applications, Elsevier, v. 38,
n. 6, p. 6540–6546, 2011.

VANSTEENWEGEN, P.; SOUFFRIAU, W.; OUDHEUSDEN, D. V. The orienteering problem:
A survey. European Journal of Operational Research, Elsevier, v. 209, n. 1, p. 1–10, 2011.

WANG, X.; GOLDEN, B. L.; WASIL, E. A. Using a genetic algorithm to solve the generalized
orienteering problem. In: The vehicle routing problem: latest advances and new challenges.
[S.l.]: Springer, 2008. p. 263–274.

	Folha de rosto
	Agradecimentos
	Resumo
	Abstract
	Contents
	Introduction
	Contributions
	Publications
	Organization

	Literature Review
	Orienteering Problem
	Team Orienteering Problem
	Orienteering Problem with Time Window

	Tourist Trip Desing Problem
	Orienteering Problem with Hotel Selection
	Related Works

	TrajectMe: trajectory based memetic algorithm
	Hotel Graph Model
	TrajectMe
	Generate initial population
	Populate the Pool
	First level: generating new sequences of hotels with genetic operators
	Second level: improving the score and reducing the costs with Local Search

	Management of population
	Parameter Settings

	Building the Tourism Knowledge Base

	Experiments and results
	Evaluation Metrics
	Experiments
	Result analysis
	Tour Score
	Tour Utility
	Sensitivity of k
	CPU Time Performance

	Conclusion
	References

