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Abstract: Background: Chalcones are part of a family of small phenolic compounds that are being
extensively studied for presenting a diversity of molecular structures and biological activities. In this
paper, two chalcones, (E)-1-(2-hydroxy-3,4,6-trimethoxyphenyl)-3-(3-nitrophenyl)prop-2-en-1-one (1),
(E)-1-(2-hydroxy-3,4,6-trimethoxyphenyl)-3-(4-nitrophenyl)prop-2-en-1-one (2), were synthesized
by Claisen–Schmidt condensation. Methods: The molecular structures of these chalcones were
determined by Nuclear Magnetic Resonance and characterized by infrared, Raman spectroscopy,
and electrochemical analysis at room temperature. Vibrational wavenumbers were predicted using
Functional Density Theory (DFT) calculations, and their normal modes were analyzed in terms of
potential energy distribution (PED). Besides this, DFT calculations were performed to obtain the
molecular orbitals and their quantum descriptors. The UV-Vis absorption spectrum of the synthesized
chalcones was measured and compared with each other. In addition, analyses of antimicrobial
activity and modulation of antibiotic resistance were carried out to assess the antibacterial potential of
these chalcones. Results: The vibrational spectra of polycrystalline chalcones obtained by ATR-FTIR,
FT-Raman and DFT calculations allowed a complete assignment of the vibrational modes, and revealed
the quantum chemical parameters. Both chalcones did not show good responses when associated
with the antibiotics Ciprofloxacin and Cephalexin against S. aureus 10 and E. coli 06 strains. However,
a significant potentiating of the Gentamicin activity against S. aureus 10 and E. col 06 strains was
observed for chalcone 2. On the other hand, when associated with Norfloxacin, an antagonistic effect
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was observed. The results found for EtBr suggest that, although the tested chalcones behave as efflux
pump inhibitors, probably inhibiting other efflux pumps, they were not able to inhibit NorA. Thus,
these synthetic chalcones are not recommended for use in association with Norfloxacin against strains
of S. aureus 1199-B that overexpress the NorA gene. Conclusions: Spectroscopic data confirmed the
structure of the chalcones, and chalcone 2 showed potential as an adjuvant in antibiotic therapy.

Keywords: chalcones; NMR; UV-VIS; FT-Raman; ATR-FTIR; electrochemical; DFT;
antibacterial activity

1. Introduction

Chalcones are small open-chain flavonoids that present a wide range of structural properties with
biochemical and pharmacological relevance [? ]. Chalcones and their derivatives have been extensively
studied due to their relatively simple chemical structure, numerous substitution patterns with different
functional groups, and endless biological activities associated with their structural and molecular
diversity [? ? ? ? ? ? ? ]. The wide variety of activities that chalcones present include anticancer [? ? ],
neuroprotective [? ], antimalarial [? ], anti-HIV [? ], antioxidant [? ? ], antibacterial [? ? ],
and antileishmanial [? ] activities, among others.

Recently, an article was published on the spectroscopic characterization and evaluation of the
antimicrobial activity and potentiators of the antibacterial effect of chalcone (C18O5H18) [? ] derived
from the natural product 2-hydroxy-3,4,6-trimethoxyacetophenone isolated from Croton anisodontus
(Figure ??) [? ]. The data obtained in this study showed that the chalcone is more reactive and lipophilic
than its precursor molecule. Besides this, it has better antimicrobial potential than the molecule [? ].
These results agree with other studies with natural and synthetic chalcone derivatives, which have
significant antibacterial activity against Gram-positive and Gram-negative bacteria [? ? ? ]. In addition,
the potentiating effect of the action of different classes of antibiotics associated with natural and
synthetic compounds has been shown to be capable of reducing the resistance of pathogenic bacteria [?
? ].
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1. Introduction 

Chalcones are small open-chain flavonoids that present a wide range of structural properties 
with biochemical and pharmacological relevance [1]. Chalcones and their derivatives have been 
extensively studied due to their relatively simple chemical structure, numerous substitution patterns 
with different functional groups, and endless biological activities associated with their structural 
and molecular diversity [2–8]. The wide variety of activities that chalcones present include 
anticancer [9,10], neuroprotective [11], antimalarial [12], anti-HIV [13], antioxidant [11,14], 
antibacterial [15,16], and antileishmanial [17] activities, among others. 

Recently, an article was published on the spectroscopic characterization and evaluation of the 
antimicrobial activity and potentiators of the antibacterial effect of chalcone (C18O5H18) [18] derived 
from the natural product 2-hydroxy-3,4,6-trimethoxyacetophenone isolated from Croton anisodontus 
(Figure 1) [19]. The data obtained in this study showed that the chalcone is more reactive and 
lipophilic than its precursor molecule. Besides this, it has better antimicrobial potential than the 
molecule [18]. These results agree with other studies with natural and synthetic chalcone derivatives, 
which have significant antibacterial activity against Gram-positive and Gram-negative bacteria [20–
22]. In addition, the potentiating effect of the action of different classes of antibiotics associated with 
natural and synthetic compounds has been shown to be capable of reducing the resistance of 
pathogenic bacteria [23,24]. 
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Figure 1. Aerial parts of C. Anisodontus (a) 2-hydroxy-3,4,6-trimethoxyacetophenone (b). 
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accelerated the development of multidrug-resistant bacteria [25]. Consequently, there is an urgent 
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Figure 1. Aerial parts of C. Anisodontus (a) 2-hydroxy-3,4,6-trimethoxyacetophenone (b).

The intensive use of antibacterial agents for both medical and non-medical purposes has accelerated
the development of multidrug-resistant bacteria [? ]. Consequently, there is an urgent need for the
development of new antibacterial agents, as well as agents capable of inhibiting the mechanisms of
resistance to antibiotics of traditional use [? ? ]. In this context, the synthesis of chalcones and their
biologically active derivatives may allow the discovery of new, and more selective substances that may
be useful as adjuvants in antibiotic therapy [? ]. Therefore, this study had evaluating the antimicrobial
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activity of two synthetic chalcones and their potential as a modifier of the antibacterial activity when
associated with different antibiotics as its objective.

2. Results and Discussion

2.1. NMR Data

In the 1H NMR spectrum (Table ??), a signal observed in δH 3.90, 3.97, and 3.98 ppm, referring
to hydrogen from the methoxy groups. In δH 7.75 (J = 15.60) and 7.94 (J = 15.60) are assigned
to two doubles referring to unsaturated hydrogen α, β, whose coupling constant (J) confirms the
stereochemical trans of the double bond. The singlet observed in 6.04 ppm refers to hydrogen-bonded
to a carbon 5′ of ring A. The singlet in 8.45 ppm refers to H-2, the signal in 7.59 ppm corresponds
to H-5, whereas the signals in 8.22 (d, J =8.13 Hz) and 7.86 (d, J = 7.60 Hz) refer to H-4 and H-6,
respectively. In the 1H NMR spectrum, the signals in 3.90, 4.02, and 4.10 ppm referring to methoxyl
hydrogen can be observed. In 8.33 (J = 16.1) and 8.36 (J = 15.4) are attributed to two doubles referring
to unsaturated hydrogen α, β, whose coupling constant (J) confirms the stereochemical E of the double
bond. The singlet observed in 6.04 refers to hydrogen attached to the carbon 5′ of ring A. The signals
at 8.09 (d, J = 8.09 Hz) and 7.69 (d, J = 8.1 Hz) refer to H-3/5 and H-2/6, respectively.

Table 1. 1H and 13C NMR data from chalcones 1 and 2 in CDCl3. The chemical displacements in 13C
and 1H are in ppm.

1 2

C δC δH δC δH

1′ 106.9 106.9
2′ 158.9 158.8
3′ 131.1 131.2
4′ 159.6 159.6
5′ 87.2 6.02 (s) 87.4 6.04 (s)
6′ 159.2 159.1

MeO-3′ 60.9 3.84 (s) 60.9 3.90 (s)
MeO-4′ 56.3 3.97 (s) 56.4 4.02 (s)
MeO-6′ 56.2 3.98 (s) 56.3 4.10 (s)

C=O 192.7 192.7
1 137.5 137.6
2 122.3 8.45 (s) 122.3 8.09 (d, J = 8.09 Hz)
3 148.9 124.4 7.69 (d, J = 8.1 Hz)
4 124.4 8.22 (d, J = 8.13 Hz) 149.0
5 130.1 7.59 (t) 130.1 7.69 (d, J = 8.1 Hz)
6 134.5 7.86 (d, J = 7.60 Hz) 134.4 8.09 (d, J = 8.09 Hz)

Cα 130.6 7.75 (d, J = 15.60 Hz) 130.7 8.33 (d, J = 16.1 Hz)
Cβ 139.6 7.94 (d, J = 15.60 Hz) 139.3 8.36 (d, J = 15.4 Hz)

In the 13C NMR spectrum (Table ??), the δC 192.7 ppm signal is assigned to the carbonyl group in
the α, β unsaturated (enone) system. Ketone free carbonyl absorbs in 203.8. However, the presence of
α, β unsaturation causes displacement in the signal position due to the decreased double character of
the bond (C=O) [? ]. Olefin carbons α and β are observed at 130.6 and 139.6 ppm, respectively. The
signals at 60.9 56.3 and 56.2 ppm refer to methoxyl carbons. At 159.6 (C-4′), 159.2 (C-6′), 158.9 (C-2′),
131.1 (C-5′), 106.9 (C-1′), 87.2 (C-3′) ppm, the signals for carbons are present in ring A, while carbons 1
to 6 present in ring B can be observed at 148.9 (C-3), 137.5 (C-1), 134.5 (C-6), 130.1 (C-5), 124.2 (C-4) and
122.3 (C-2) ppm (Figures S1–S4, see supplementary material).
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2.2. Molecular Structure

Figure ?? shows the molecular structure of the chalcones. These structures are in accordance with
our NMR data reported in Table ??. The basic structure of the chalcones comprises two six-member
aromatic rings. Ring A is formed by atoms C1′, C2′, C3′, C4′, C5′ and C6′, and ring B is formed by
atoms C1, C2, C3, C4, C5, and C6. These two aromatic rings are joined by an unsaturated three-carbon
carbonyl system (C-Cα=Cβ). Therefore, these molecular structures are characteristics of chalcones [? ?
].
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Figure 2. Molecular structure in the ball and stick model with the numbering of atoms for chalcone
1 (a) and 2 (b).

2.3. Electrochemical Analysis

The cyclic voltammograms obtained by chalcones are shown in Figure ??. For chalcone 1
(Figure ??a), a broad shoulder located around 0.70 V is noted (forward scan), and it is related to the
electrochemical oxidation of chalcone 1. For chalcone 2 (Figure ??b), two broad shoulders, one around
0.4 V and the other about 0.95 V, are displayed in the forward scan, and one peak located around 0.35
V appears in the reverse scan. In Figure ??b, the process about 0.4 is related to the oxidation of the
chalcone 2, and the one around 0.95 is attributed to the second oxidation process of the chalcone 2
molecule and, finally, the process observed in the reverse scan of about 0.35 is attributed to the reduction
in the products formed in the forward scan. The fact that the potential related to the electrochemical
oxidation of the chalcone 2 (0.40 V) is less positive than the corresponding potential for chalcone 1
(0.70 V) shows that chalcone 2 requires less energy to be oxidized, which means that the chalcone 2 has
an electrophilic character in comparison to chalcone 1.
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Figure 3. Cyclic voltammograms obtained for chalcone 1 (a) and 2 (b) in dichloromethane at 50 mV 
s−1 and at room temperature ( 25 °C). 
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Figure 3. Cyclic voltammograms obtained for chalcone 1 (a) and 2 (b) in dichloromethane at 50 mV s−1

and at room temperature (�25 ◦C).

2.4. Quantum Chemical Parameters

The molecular orbital frontier theory developed by Kenichi Fukui in the 1950s plays a key role
in the understanding of chemical reactivity [? ]. HOMO is the most external orbital that contains
electron donors, and LUMO is the most internal orbital that contains free places to accept electrons.
The chemical behavior of the chalcones can be predicted by the following parameters: HOMO energy,
LUMO energy, energy difference (∆E = −ELUMO − EHOMO), vertical ionization energy (I–EHOMO),
vertical affinity of electrons (A = −ELUMO), chemical potential (µ = −(I + A)/2), electronegativity
(η = −µ), overall hardness (η = (I −A)/2) and electrophilicity index (ω = µ2/2η) [? ? ? ]. These quantum
chemical parameters for the optimized geometries of the substances and the graphical structures of the
molecular orbitals (Table ??).

Table 2. Quantum chemical parameters for optimized geometries of chalcones in (eV).

Chalcone EHOMO ELUMO ∆E I A µ χ η ω

1 −5.74 −2.44 3.30 5.74 2.44 −4.09 4.09 1.65 5.07
2 −5.83 −2.76 3.07 5.83 2.73 −4.30 4.30 1.54 6.00
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According to Figure ??, the aromatic ring A of the chalcones acts as an electron donor and the
ring B acts as an electron acceptor, which was already expected, since the ring A has methoxy donor
groups and the aromatic ring B has nitro (NO2) withdrawal groups with a different substitution pattern
for the molecular structures of the chalcones. The values of the energy gap, hardness, and chemical
potential in chalcone 2 are lower than the values found for chalcone 1. Therefore, the reduction in
these chemical parameters indicates that the reactivity of chalcone 2 is higher than that observed in
chalcone 1. Consequently, chalcone 2 has a better electrophilic character than chalcone 1, as observed in
the electrophilicity index values of these molecules (6.00 eV for chalcone 2 versus 5.07 eV for chalcone 1).
A possible explanation for this result can be attributed to the nature of the intramolecular charge
transfer by the resonance effect between nitrogen and the two oxygen atoms of its structure and by the
difference in the pattern of target substitution and for oriented nitro groups present [? ? ].
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Figure 4. HOMO and LUMO molecular orbitals for chalcone 1 (a) 2 (b).

For the chalcone 1, the electron removal effect of the NO2 group acts on the pi electrons (π) in
the B ring leaving the oxygen with higher charge density, which leads to an increase in the electronic
polarizability of the NO2 group and, consequently, a decrease in the polarizability of the connections
with the rest of the structure. For the chalcone 2, the nature of the intramolecular charge transfer occurs
more easily due to the fact that it has a flatter structure than the chalcone 1, thus allowing greater
conjugation and displacement of the system π π π* (of the HOMO and LUMO orbitals) than with the
carbonylic system (C=C-C=O) caused by a possible resonance effect, as can be seen in Figure ??b. It is
worth remembering that ring A of the chalcones is made up of electron donor groups and can influence
the stability and/or reactivity of each molecule.

The experimental UV absorption spectra of the chalcones in ethanol solution are shown in
Figure ??. From the analysis of the spectra, it is possible to observe two very characteristic bands
in the region of the ultra-violet, one of higher energy, (340 nm) attributed to transitions n→π* of
the aromatic ring B for the NO2 group, and the other of lesser energy in the region of the visible
(407 nm) attributed to transitions π π π* of the system Cα=Cβ-C=O for the NO2 of the chalcone 2.
The maximum wavelengths, λmax for chalcones 1 and 2, correspond to the energy values of 3.65
and 3.05 eV, respectively. These values corroborate the values calculated from the energy difference
between the HOMO and the LUMO, within a percentage error of 9.6%, and 0.7%, respectively.
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2.5. Vibrational Analysis

The chalcones have the molecular formula C18H17NO7, and therefore have 43 atoms, allowing
129 degrees of freedom (3N). Therefore, 123 vibrational modes are expected, excluding the three rotation
movements and the three translation movements (3N-6). The experimental spectra of FT-Raman of
polycrystalline samples of the chalcones are shown in Figure ??, while the experimental ATR-FTIR
spectra of these substances are shown in Figure ??. The complete attribution of all theoretical and
staggered vibration modes, associated with the wavenumbers observed in the experimental spectra of
FT-Raman and ATR-FTIR of the chalcones 1 and 2, respectively, are presented in Tables S1 and S2. In
each table, the first and second columns correspond to the calculated (ωcalc) and staggered (ωscal)
wavenumbers, respectively. The third and fourth columns correspond to the experimental wave
numbers of the FT-Raman (ωRaman) and ATR-FTIR (ωFTIR) spectra, respectively, and the fifth column
shows the assignment of vibration modes along with the contribution of potential energy distribution
(PED), with values higher than 10% for each vibration mode. The FT-Raman (Figure ??) and ATR-FTIR
spectra (Figure ??) for chalcones 1 and 2 samples present many bands that coincide with those
already reported in the literature for chalcones [? ], which is expected, since, in these chalcones, the
change that occurs is in the B-ring substitution pattern of these derivatives of the natural product
2-hydroxy-3,4,6-trimethoxyacetophenone.

The assignment for the chalcones 1 and 2 shows that most of the bands observed through FT-Raman
and FT-IR spectroscopy (Bruker, Billerica, MA, USA) correspond to a mixture of vibrational modes.
In addition, there is a good match between the staggered and experimental Raman and infrared bands.
In the step wavenumber region of the Raman and infrared spectra of 14–960 cm−1 of the vibrational
spectra, the presence of torsion modes, out-of-plane deformations, and deformations in the carbon
atoms of the aromatic rings and their ligands, as well as of the NO2 groups, predominates. It should be
considered that modes below 100 cm−1 are associated with external modes, which were not computed
because the DFT calculations were performed on isolated molecules, and therefore do not consider the
periodicity of the crystalline network.
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The chalcones 1 and 2 ATR-FTIR spectra show more intense absorbance bands in the range
from 670–1700 cm−1. The absorbance bands between 960 and 1671 cm−1 of the Raman and infrared
spectra consist mainly of the stretching modes CC, CO, CN, and NO and deformations of the HCC,
CCO, and ONO atoms. It is noted that the intensities of the most infrared bands in the region
between 1200 and 1000 cm−1 are more intense in the chalcone 1 than those observed in the chalcone 2.
The differences in the infrared intensities are expected, since this spectral region is within the fingerprint
region, which is unique to each one of those chalcones. As the chalcones 1 and 2 are polycrystalline,
their molecules are periodically arranged in their crystals. It is known that the intermolecular
interactions in molecular crystal depend on how the packing of molecules is arranged within its unit
cell, and how the electronegativity affects the intermolecular forces [? ? ]. Since the chalcone 2 has
higher electronegativity than chalcone 1, it has intermolecular interactions that are more intense than
the chalcone 1 (4.30 eV for chalcone 2 against 4.09 eV for chalcone 1). The values of the electronegativity
(χ) were calculated by the expression χ = (I + A)/2, where I is the vertical ionization energy that is equal
to minus the energy of the HOMO (I =−EHOMO), and A is vertical electron affinity that is equal to minus
the energy of the LUMO (A = −ELUMO) [? ]. Variations in the intermolecular interactions produce
changes in the dipole moment during the vibration, and therefore affect the infrared bands. In crystals,
the infrared bands tend to be more intense when the fingerprinting intermolecular interactions are
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weak [? ]. For this reason, as chalcone 2 has stronger fingerprinting intermolecular interactions than
chalcone 1, it is expected that the infrared bands have lower intensities when compared with those of
the chalcone 1. Moreover, in this region, it is possible to observe deformation modes of the methyl
groups. In fact, wagging vibrations and asymmetric deformations in the methyl groups are clearly
observed in these substances between 1426 and 1490 cm−1, as well as in the HYTPHENYL chalcone [? ].
The presence of the target and substituted nitro groups caused subtle displacements in these vibrational
modes among themselves, and, when compared with HYTPHENYL, due to the effect of removing
electrons from this group, which causes a displacement of electronic density and consequently a
variation in the intensity and region of vibrational, assisted in the differentiation of the spectrum for
chalcones 1 and 2.

The carbonyl stretching modes (C=O1) for chalcones are in the range of 1594 to 1671 cm−1. In both
spectra, it is possible to observe that the stretching modes C=O1, of carbonyl, are associated with the
stretching modes NO, CC, and CαCβ, being in infrared observed in 1618 cm−1 and 1636 cm−1 for
the chalcones, respectively. It is worth mentioning that the stretching modes C=O1 in the infrared
spectra have a lower intensity than those observed in other classes of organic compounds. In addition,
the presence of different functional groups can cause displacements in and characteristic intensities for
each sample [? ].

In the region with a scaled wavenumber greater than 2913 cm−1 present, the molecular vibrations
are associated with the symmetrical and asymmetrical stretching modes of the CH, CH3, and OH
groups of the chalcones as well as those of the HYTPHENYL chalcone [? ]. It is noteworthy that the
stretching modes of the OH hydroxyl in the infrared spectra have a lower intensity in the chalcone 2
than those observed in the chalcone 1. This effect is expected, since the intensity of the OH stretching
band can increase when hydroxyl group is forming a hydrogen bond [? ].

A complete description of all the modes that appear in the Raman and infrared spectra of the
chalcones 1 and 2 is provided in Tables S5 and S6 (see supplementary material), respectively. In the
experimental spectra of FT-Raman, the bands with higher absorption were related to the symmetrical
and asymmetrical stretching modes of the NO2 groups. The effect on the higher intensity of these
bands is due to the presence of NO2 groups’ increasing polarizability (inducing a potential resonant
effect among the oxygen directly linked to it) in these structures, which is more easily detected by the
FT-Raman technique.

2.6. Antimicrobial and Modulating Activities of Antibiotics

The results showed that the minimum inhibitory concentration (MIC) values obtained for chalcones
1 and 2 was ≥1024 µg L−1, meaning that the chalcones had no inhibitory action on bacterial growth at
the highest concentration levels tested. Previous studies with chalcone derivatives have shown good
antibacterial activity against Gram-positive and Gram-negative strains. However, these antibacterial
activities are dependent on their pattern of structural replacement [? ? ? ? ? ? ]. When associated
with Ciprofloxacin or Cephalexin, both chalcones 1 and 2 were not able to potentiate the antimicrobial
activity of these antibiotics against multidrug-resistant strains S. aureus SA10 (Figure ??a,c) and E. coli
EC06 (Figure ??a,c). However, the potentiating action of the chalcone 2 was observed when associated
with Gentamicin against both strains. These results suggest that chalcone 2 is a compound candidate
for a deep investigation into their benefits as an adjuvant of Gentamicin against multidrug-resistant
S. aureus and E. coli strains. On the other hand, the addition of chalcone 1 to the growth medium
resulted in an antagonistic action against both strains, increasing the MIC values the Gentamicin from
16 to 20.15 µg mL−1 for S. aureus SA10 and from 32 to 256 µg mL−1 for E. coli EC06 (Figures ??b and
??b).
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Figure 8. Minimum inhibitory concentration (MICs) of the Ciprofloxacin (Cip) (a), Gentamicin (Gen) 
(b), and Cephalexin (Cep) (c) in the absence or presence of the chalcones 1 and 2 at sub-inhibitory 
concentrations (MIC 1/8) against multidrug-resistant S. aureus SA10. Each result is the geometric 
mean of three simultaneous experiments. (***) Statistically significant values (p < 0.0001); (*) (p < 0.05). 

Figure 8. Minimum inhibitory concentration (MICs) of the Ciprofloxacin (Cip) (a), Gentamicin (Gen)
(b), and Cephalexin (Cep) (c) in the absence or presence of the chalcones 1 and 2 at sub-inhibitory
concentrations (MIC 1/8) against multidrug-resistant S. aureus SA10. Each result is the geometric mean
of three simultaneous experiments. (***) Statistically significant values (p < 0.0001); (*) (p < 0.05).
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Figure 9. MICs of the Ciprofloxacin (Cip) (a), Gentamicin (Gen) (b), and Cephalexin (Cep) (c) in
the absence or presence of the chalcones 1 and 2 at sub-inhibitory concentrations (MIC 1/8) against
multidrug-resistant E. coli. Each result is the geometric mean of three simultaneous experiments.
(***) Statistically significant values (p < 0.0001).

Previous studies have reported that compounds with a nitro group, depending on their molecular
structure, are potential therapeutic agents due to their mode of action involving the biotransformation
of the nitro group, releasing intermediates in the redox process and causing changes in the stability of
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membrane structures of several microorganisms and cells [? ]. The computational chemical calculations
showed that chalcone 2 has a greater electrophilic character than chalcone 1 due to the higher value of
the electrophilicity index and the data obtained by the cyclic voltammetry of chalcones reveal that
chalcone 2 undergoes the oxidation process before chalcone 1, which indicates a greater electrophilic
character and greater chemical reactivity. The higher reactivity and electrophilicity of the synthetic
chalcone 2, can be responsible for intermediated interactions between the nitro group and the bacterial
cell wall and, when combined with the gentamicin drug, proved to be more efficient. It is worth adding
that the sensitivity profile of Gram-positive and Gram-negative bacteria to antibiotics is different,
and the bacteria tested in the present study already had an intrinsic resistance profile to these antibiotics.

Chalcones 1 and 2 were able to modulate the resistance to EtBr in the strain SA1199B overexpressing
the efflux pump NorA, indicating that both chalcones 1 and 2 could be efflux pump inhibitors
(Figure ??a,b). However, when associated with Norfloxacin, an antagonism effect was observed.
The results found for EtBr suggest that, although synthetic chalcones tested behave as efflux pump
inhibitors, probably inhibiting other efflux pumps, they were not able to inhibit NorA and consequently
were not recommended for use in association with Norfloxacin against S. aureus strains overexpressing
the NorA gene.
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Figure 10. MICs of the Norfloxacin (Nor) (a) and Ethidium Bromide (EtBr) (b) in the absence or presence
of the chalcones 1 and 2, as well as, Chlorpromazine (CPZ) and Carbonylcyanide m-chlorophenyl
hydrazone (CCCP) at sub-inhibitory concentrations (MIC 1/8) against SA1199-B (norA). Each result is
the geometric mean of three simultaneous experiments. (***) Statistically significant values (p < 0.0001).

3. Materials and Methods

3.1. Synthesis of Chalcones

The description of the procedure of the synthesis of the chalcones is shown in Scheme ??.
The chalcones (1,2) were synthesized by a Claisen-Schmidt condensation reaction in basic medium.
An ethanol solution of 2-hydroxy-3,4,6trimethoxyacetophenone (2 mmol) was added to a solution of
nitro benzaldehyde (2 mmol), followed by the addition of 10 drops of 50 % w/v aq. NaOH with stirring
for 48 h at room temperature. The solid that formed was filtered under reduced pressure, washed with
cold water, and analyzed by TLC.
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3.2. NMR

The 1H and 13C NMR were obtained using the Bruker spectrometer, model Advance DRX-500
(1H NMR: 500 MHz and 13C NMR: 125 MHz, Bruker, Billerica, Mass., United States), using deuterated
chloroform (CDCl3) as the solvent. Chemical displacements are observed as values δ in parts
per million (ppm) in relation to the solvent.

3.3. FT-Raman and ATR-FTIR

The Raman spectra with Fourier transform (FT-Raman) were obtained using a Bruker FTR system
RFS100/S and a D418-T detector (Bruker, Billerica, MA, USA), with an Nd: YAG laser, with a nominal
power of 150 mW, emitting in the laser line 1064 nm as the excitation source. The spectra were recorded
at room temperature in the region of 40 to 4000 cm−1 with a resolution of 4 cm−1, by the sum of 60 scans.
Fourier Transform Attenuated Total Reflection (FTIR-ATR) infrared spectra were obtained using a
Cary model 660 spectrometer. The spectra were recorded at room temperature in the region of 580 to
4000 cm−1 with a resolution of 4 cm−1 with 32 scans.

3.4. UV-Vis Spectroscopy

The UV-Vis absorption spectra of chalcones were obtained using a GENESYS™ 10S
spectrophotometer (Thermo Scientific, Waltham, MA, USA) in the wavelength range of 190 to
800 nm. The samples were prepared at a concentration of 0.1 mmol L−1 using ethanol as a solvent
to perform the absorption measurements in the UV-Vis region. All absorption measurements were
carried out at room temperature in quartz cells of a 1 cm optical path.

3.5. Cyclic Voltammetry Experiments

Cyclic voltammetry experiments were performed using a conventional glass electrochemical cell
containing three electrodes and connected to a potentiostat/galvanostat, model PGSTAT 101 (Metrohm,
Herisau, AR., Switzerland), which was controlled by computer using the software NOVA 2.1. A disk
glassy carbon (0.071 cm2) was the working electrode, while two platinum plates, one with 1.0 cm2

and the other with 0.5 cm2, were the auxiliary and reference electrodes, respectively. Prior to the
electrochemical measurements, the working electrode was manually polished with a 3 µm diamond
paste, followed by washing with ultrapure water. Next, the electrode was washed in ethyl alcohol and
in water under ultrasound irradiation. The cyclic voltammograms of both chalcones were obtained in
dichloromethane at 50 mV s−1 and at room temperature (�25 ◦C). The working solutions contained
50 mmol L−1 of tetrabutylammonium perchlorate and 0.5 mmol L−1 of one of the investigated chalcones.
All solutions were previously deaerated by nitrogen bubbling N2 (g) for 5 min.

3.6. Computational Methods

The computational calculations of quantum chemistry, based on the Functional Density Theory
(DFT), were performed using the Gaussian 09 software package [? ]. The B3LYP functional was used
along with the 6-31 G (d,p) basis set. The molecular structure of the 3-Nitro and 4-Nitro chalcones were
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designed in the ChemSketch program [? ], according to the data obtained from the 1H and 13C NMR
spectroscopy. The structure was optimized, and the wavenumbers and atomic displacements were
calculated for each vibrational mode. The calculations of each of the optimized molecular structures
do not provide any imaginary frequency. The wave functions of the electronic densities were also
obtained for the optimized structures of the molecules under study. In addition, DFT calculations were
performed to obtain the Kohn–Sham orbitals and the Highest Occupied Molecular Orbital (HOMO)
and the Lowest Unoccupied Molecular Orbital (LUMO), as well as the following quantum chemical
parameters: vertical ionization energy, electron affinity, chemical potential, electronegativity, global
hardness, and electrophilicity index. The Chemcraft program was used to build the shape of the
orbitals HOMO and LUMO [? ]. The theoretical frequencies observed in the Raman spectrum were
scaled through adjustments of least squares, as suggested by Rauhut and Pulay [? ]. For the chalcones,
dual-scaling factors with values of 0.9626 for frequencies below 2000 cm−1 and of 0.9440 for frequencies
above 2000 cm−1 were used. The calculated vibrational wavenumbers were adjusted for comparison
with the experimental frequencies of the Raman and infrared spectra. The descriptions of the normal
modes of vibration were made based on the potential energy distribution (PED) using the VEDA
program [? ].

3.7. Microbiological Characterization

3.7.1. Bacterial Material

Microorganisms used in the tests were obtained through the Laboratory of Microbiology and
Molecular Biology (LMBM) of the Regional University of Cariri (URCA). Standard and resistant bacterial
strains were used: Escherichia coli 06 and Staphylococcus aureus 10. The strain which overexpresses the
NorA efflux pump is S. aureus 1199-B. All strains were kept in Agar heart infusion (HIA, Difco Laboratories
Ltd., Jersey, NJ, USA). Before the assays, the strains were cultivated for 18 h at 37 ◦C in brain and heart
infusion broth (BHI, Difco Laboratories Ltd., Jersey, NJ, USA) the Ethidium bromide was obtained by
(Sigma Aldrich).

3.7.2. Drugs and Substances

The antibiotics Norfloxacin (Nor), Gentamicin (Gen), Ciprofloxacin (Cip) and the Ethidium dye
Bromide (EtBr), as well as chlorpromazine (CPZ) were obtained from Sigma Chemical Corp., (St. Louis,
MO, USA).

3.7.3. Intrinsic Antibacterial Activity

The test Eppendorf tubes were prepared in triplicate for each bacterium (in an equivalent
concentration using the McFarland scale 0.5) and each substance, each one containing 900 µL of 10%
BHI + 150 µL of the inoculum (corresponding to 10% of the total solution) for the MIC. A total of
100 µL of the final inoculum solution was added to each well of the microdilution plate, and then
the serial microdilution was performed with the 100 µL solution of chalcones per column, varying at
concentrations of 512 µg/mL in the first well to 8 µg/mL in the last well. Microdilutions were performed
in triplicate. The plates were taken to the incubator for 24 h at 37 ◦C. The MIC was determined by
adding 20 µL of resazurin in each well and observing the color change after 1 h. All experiments were
performed in triplicate [? ].

3.7.4. Modulation of Antibiotic

Eppendorf tubes were prepared, each one containing substances corresponding to the volume of
the sub-inhibitory concentration (MIC/8), a variable amount of 10% BHI according to the volume of
the sub-inhibitory concentration and 150 µL of the bacterial suspension (corresponding to 10% of the
solution). For the controls, the Eppendorf tubes were prepared with 1.5 mL of a solution containing
1350 µL of BHI (10%) and 150 µL of microorganism suspension. The plate was filled numerically by
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adding 100 µL of this solution into each well. Then, serial micro dilutions were performed with 100 µL
of the antibiotic agent. The reading was carried out by adding 20 µL of resazurin (0.05 g/mL) to each
well and through the observation of the change in color after 1 h. All experiments were performed in
triplicate [? ].

3.8. Ethidium Bromide MIC

The antibiotics and the chalcones under study were first dissolved in dimethyl sulfoxide (DMSO).
Subsequently, the compounds dissolved in DMSO underwent a new dilution, this time in sterile
water. The chlorpromazine and ethidium bromide were dissolved in sterile water and CCCP in
methanol/water (1:1, v/v). All the compounds were stored at −20 ◦C at a final concentration of
1024 µg/mL. To evaluate the inhibition capacity of the efflux pumps, the MICs of the strain-specific
antibiotics as well as ethidium bromide used as controls were compared with the MICs of their
associations with the standard inhibitors. The test solutions used in the aforementioned controls were
prepared in Eppendorf’s microtubes containing medium and inoculum. The test solutions used for
comparison were added to the chalcones and standard inhibitors in amounts that correspond to MIC/8
(sub-inhibitory concentration). Then, 100 µL of Eppendorf’s content were transferred to a 96-well plate
microtiter tray with two-fold serial dilution by adding 100 µL of antibiotics and ethidium bromide,
with a final concentration ranging from 0.5 to 512 µg/mL. The trays were incubated at 37 ◦C for 24 h,
and bacterial growth was revealed by staining with resazurin [? ].

3.9. Statistical Analysis of Microbiological Results

The results were analyzed using the statistical program GraphPad Prisma 5.0. All antibacterial
assays were performed in triplicate, and the results were analyzed using a two-way ANOVA test, using
the geometric mean of the triplicates as the central data and standard deviation of the mean. A post-hoc
Bonferroni test was then performed (where p < 0.05 and p < 0.0001 are considered significant and
p > 0.05 not significant). Possible discrepancies were checked with multiple T-tests.

4. Conclusions

Two chalcones, (E)-1-(2-hydroxy-3,4,6-trimethoxyphenyl)-3-(3-nitrophenyl)prop-2-en-1-one (1)
and (E)-1-(2-hydroxy-3,4,6-trimethoxyphenyl)-3-(4-nitrophenyl)prop-2-en-1-one (2), were synthesized
by the Claisen-Schmidt condensation reaction in a basic medium between the natural compound
2-hydroxy-3,4,6-trimethoxyacetophenone and isomeric nitrobenzaldehydes. In addition, the vibrational
spectra of polycrystalline samples by FT-IR spectroscopy (between 670 and 3600 cm−1), FT-Raman
(between 0 and 3600 cm−1) were reported for the first time. The DFT calculations were performed using
the Gaussian 09 package with the B3LYP functional set and the 6-31G base set (d, p), in order to obtain
information on the normal modes of vibration, allowing a complete assignment and various quantum
chemical parameters of the synthesized substances. Both chalcones did not show good responses when
associated with the antibiotics Ciprofloxacin, and Cephalexin against S. aureus and E. coli strains tested.
However, a significant potentiating of the Gentamicin activity against S. aureus and E. coli strains was
observed for chalcone 2. Therefore, these results demonstrate that the chalcone 2 compound presents
potential as an adjuvant of the Gentamicin, probably due to its higher reactivity and lipophilicity.
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