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Abstract

In this paper, we exploit the symmetry properties of 4th-order cumulants to develop new blind channel identification
algorithms that utilize the parallel factor (Parafac) decomposition of cumulant tensors by solving a single-step (SS) least
squares (LS) problem. We first consider the case of single-input single-output (SISO) finite impulse response (FIR)
channels and then we extend the results to multiple-input multiple-output (MIMO) instantaneous mixtures. Our approach
is based on 4th-order output cumulants only and it is shown to hold for certain underdetermined mixtures, i.e. systems
with more sources than sensors. A simplified approach using a reduced-order tensor is also discussed. Computer
simulations are provided to assess the performance of the proposed algorithms in both SISO and MIMO cases, comparing
them to other existing solutions. Initialization and convergence issues are also addressed.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Channel identification; Parameter estimation; Tensor decomposition; Underdetermined linear mixtures

1. Introduction

In digital telecommunication systems, parametric
channel modelling and estimation are of great
importance. The knowledge of the channel model
can be used to design equalizers to deconvolve the
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received signals. Channel identification and equal-
ization consist in the retrieval of unknown informa-
tion about the transmission channel and source
signals, respectively. In order to reach a desired
quality of service, broadband wireless communica-
tion systems classically perform channel identifica-
tion and/or equalization using pilot symbols, i.c.
training sequences composed of a priori known
signals. This supervised approach introduces an
overhead to the transmission system that may not
be suitable for certain radio communication systems
since it reduces the effective transmission rate. On
the other hand, unsupervised (or “blind”’) ap-
proaches take only the output signals into account
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with possibly some a priori hypothesis on the input
signals.

High-order statistics (HOS) have been an im-
portant research topic in diverse fields including
data communication, speech and image processing
and geophysical data processing. For stationary real
signals, the second-order statistics (SOS) are not
able to keep the phase information of a nonminimum
phase system and, unless additional information
about the input signal is known, the use of HOS is
generally mandatory for blindly identifying finite
impulse response (FIR) channels. The high-order
spectra have the ability to preserve both magnitude
and (nonminimum) phase information. Moreover, it
is well known that all the cumulants of order greater
than 2 vanish for Gaussian signals, which makes
HOS-based identification methods insensitive to an
additive Gaussian noise (cf. [1,2] and references
therein). A vast amount of papers exist on this
subject, proposing different methods that exploit
high-order cumulants (cf. [3-5] among others).

Output cumulants of order higher than two can
be viewed as tensors with a highly symmetrical
structure [6]. Among the earliest works exploiting
the cumulant symmetries with a tensor formalism,
Cardoso introduced the concept of eigen-structure
of 4th-order cumulant tensors [7,8]. He used the
uniqueness property of the cumulant tensors as an
advantage over singular value decomposition
(SVD), but pre-whitening was needed. Later on,
an extended Jacobi technique for approximate
simultancous diagonalization was proposed by
Cardoso and Soloumiac in [9]. This latter paper
introduced the JADE algorithm that uses second
and 4th-order statistics to estimate an instantaneous
multiple-input multiple-output (MIMO) channel in
the context of blind beamforming. The joint
diagonalization technique became very popular
and has been used by Belouchrani et al. to propose
the second-order blind identification (SOBI) algo-
rithm [10], which uses a set of correlation matrices
to identify stationary sources with different spectral
contents, also in the context of instantaneous
MIMO channels. On the other hand, the fourth-
order system identification (FOSI) algorithm [11]
treats single-input single-output (SISO) FIR chan-
nels and also involves an a priori transformation
over the cumulant matrices, which is often a source
of increased complexity and estimation errors.
Important modifications of the technique proposed
in [8] were provided by De Lathauwer et al. in [12],
resorting to joint diagonalization techniques. More

recently, the joint diagonalization approach has
been used in [13] to propose the ICAR algorithm,
which exploits the redundancies in the 4th-order
cumulant to estimate the mixture matrix, but only in
the overdetermined case, i.e. the case of systems
with more sensors than sources. The quadricovar-
iance is also used by the FOOBI-type algorithms
proposed in [14], making use of its column-wise
Kronecker structure to estimate underdetermined
mixtures (more sources than sensors).

Since the introduction of the independent compo-
nent analysis (ICA) concept in the seminal paper by
Comon [15], research efforts have been spent for
generalizing simultaneous diagonalization criteria
and establishing links with canonical tensor decom-
positions (cf. [16,17] and references therein). For
instance, in [18], De Lathauwer et. al reformulated the
canonical decomposition of high-order tensors as a
simultaneous generalized Schur decomposition. The
Parafac analysis of a P-dimensional tensor with rank
F consists in the decomposition of the tensor into a
sum of F rank-one tensors, each one being written as
an outer product of P vectors [19]. It is now well
known that the blind identification of linear mixtures
is closely related to the (simultancous) diagonaliza-
tion of symmetric cumulant tensors [20,21]. The key-
point in the use of the Parafac decomposition is its
uniqueness property, which can be ensured under
simple conditions that are stated in the Kruskal
Theorem [22]. Furthermore, canonical tensor decom-
positions do not impose any kind of orthogonality
constraints and the factorization of tensors composed
of high-order output cumulants has the advantage of
avoiding the so-called pre-whitening operation by
fully exploiting the multidimensional nature of the
cumulant tensor. Moreover, the tensor rank is not
bounded by the tensor dimensions as it is the case for
matrices, which conceptually allows for the blind
identification of underdetermined mixtures. Actually,
this problem has received a special attention from the
signal processing community under different tensor
approaches that include, among others, the decom-
position of quantics in sums of powers of linear forms
[23]; the use of congruent transformation [24]
exploiting the virtual array concept [25,26]; and the
use of high-order derivatives of the multivariate
characteristic function [27]. Besides, a frequency
domain framework for MIMO system identifica-
tion using Parafac was introduced in [28] using
HOS-based tensors. More recently, that approach
was further developed including the underdetermined
case [29-31].
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A formal relationship between Parafac decom-
position and simultaneous matrix diagonalization
has been established in [32] showing that the
components of the tensor decomposition can be
obtained from a simultaneous matrix diagonaliza-
tion by congruence transformation, leading to
weaker uniqueness conditions. These ideas gave rise
to the FOOBI algorithms [14], which are theoreti-
cally able to identify a greater number of user
channels for a given number of receive antennas.
The approach used by the ICAR method [13] can
also include the case of underdetermined mixtures,
resorting to 6th- [33] or higher-order statistics [24].
These latter papers propose methods avoiding pre-
whitening, but still breaking the problem into two
optimization procedures, which remains necessary
to extract the MIMO channel coefficients from an
initial estimate based on an eigenvalue decomposi-
tion (EVD).

Several algorithms propose solutions to fit a Pth-
order Parafac model. The well-known alternating
least squares (ALS) algorithm iteratively minimizes,
in an alternate way, P least squares (LS) cost
functions. Our main focus in this paper is to exploit
the redundancies of the factors of the 4th-order
cumulant tensor decomposition in the minimization
problem in order to develop new single-step (SS)
LS Parafac-based Blind Channel Identification
(SS-LS PBCI) algorithms. This approach is com-
pletely different from the previously cited ones,
since it proposes to estimate the channel coefficients
by searching the solution of a single minimization
problem, under very mild assumptions. In addition,
we treat both the convolutive SISO and instanta-
neous MIMO cases using the same underlying idea.
In the former case, the proposed approach consti-
tutes a new scheme for the estimation of FIR
systems. In the MIMO case, this paper seems to be
the first one to account for the redundancies
contained in the factors of the Parafac decomposi-
tion of the cumulant tensor in the LS minimization
problem.

In the sequel, we will be first interested in
recovering the impulse response of a complex-
valued SISO-FIR channel from the Parafac decom-
position of a 3rd-order tensor composed of 4th-
order output cumulants. Using our SS approach,
the permutation and scaling ambiguities intrinsic to
the Parafac decomposition are solved and the
uniqueness issue is addressed. After that, we
consider the problem of blind MIMO channel
(mixture) identification in the context of a multiuser

system characterized by instantaneous complex-
valued channels. We describe our SS-LS Parafac-
based blind MIMO channel identification (SS-LS
PBMCI) algorithms, based on the decomposition of
4th- and 3rd-order tensors composed of 4th-order
spatial cumulants. Although our main goal is not
the estimation of underdetermined mixtures, we
make use of some tensor properties to show that
under certain conditions our algorithms are able to
identify channels with more sources than sensors.
Computer simulations illustrate the performance
gains that our method provides with respect to other
existing solutions. We also assess the algorithms
performances by recovering the input signals using a
minimum mean squared error (MMSE) equalizer
built from the estimated channel. In the MIMO
case, we build a semi-blind MMSE equalizer using a
few pilot symbols.

The rest of this paper is organized as follows. In
Section 2, we present a review of the Parafac
decomposition with a brief description of the
quadrilinear and trilinear versions of the ALS
algorithm; in Section 3, we introduce the SISO
signal model and express the tensor of output
cumulants as a Parafac model; in Section 4, we give
the equations describing our cumulant tensor
decomposition, establishing a link between our
method and the (joint) matrix diagonalization
approach; we then introduce our Parafac-
based algorithm to estimate the channel parameters
based on a SS-LS minimization procedure; our
approach is extended to the multiuser and multi-
antenna case in Sections 5 and 6; Section 7 presents
some computer simulation results to illustrate the
proposed identification methods and, finally we
draw some conclusions and discuss perspectives in
Section 8.

Notations and definitions:

)" the conjugate operation

o7 the transpose operation

(.)H the conjugate transpose (Hermitian)

L, the n x n identity matrix

) the Moore—Penrose pseudoinverse, defined
for a full-rank m x n matrix X € C"*" as
X# = (X"X)7'X" if m>n,
X# = XH(XX™")™!  otherwise

Diag(-) a diagonal matrix built from the entries of
the vector argument

D;(-) a diagonal matrix built from the ith row of
the matrix argument
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X, the ith column of an m x n matrix X, i.e.
=[X... Xl
X normalized vector i.e. X = x/(xHx)l/z. For
an m x n matrix X we have
=[X;...X,]
vec(-) the vectorization operator: stacks the
columns of its matrix argument
into a column vector
) the outer product
® the Kronecker product
o the Khatri—-Rao product. For matrices X
and Y of dimensions m x ¢ and
n x g, respectively, the Khatri-Rao product
is defined as follows:
XoY2[X 1 ®Y ... X, ®Y,]
YDi(X)
— e Cmnxq’
YDu(X)

The following property of the Khatri—-Rao product
will be used [34,35]:

Property 1. If Z = XDiag(v)Y, where X € C"*9,
Y € C" and v € C™', then it holds:

vec(Z) = (Y' o X)v e C"™™1, (P-1)

2. Parafac tensor decomposition

The Parafac analysis of a P-dimensional tensor
with rank F consists in the decomposition of the
tensor into a sum of F rank-one tensors, each one
being written as an outer product of P vectors [19].
The trilinear Parafac model (P = 3) has become
very popular in the fields of Psychometrics and
Chemometrics [36,37] and also has been widely used
in signal processing applications (cf. [38,23,39]
among others).

Let us consider the Pth-order tensor 7 of
dimensions [I; x --- x Ip having the following
F-component decomposition:

til...ip Zallf les (])

where i, € [1,1,], with p € [1, P]. The sum expressed
in (1) is the scalar representation of the Parafac
decomposition of tensor 7P, The rank of a
tensor is defined as the minimum number F of
factors needed to decompose it in the form (1). The
tensor 7P can be written as the sum of F outer

products” involving P vectors, as follows:

g-(P)_ Z lel lpe([l)o . oe E;P)

11_1 ip=
= S Ao oA, o
7=

. . I
where o is the outer product and the notation egp” )

stands for the i,th canonical basis vector of R’7,
I (Ip)

€llLL) pell.P, and AP =% a7’
f €1, F], corresponds to the fth column of matrix
AP with dimensions I, x F. The P matrices AP

with elements a? inf ) contain all the tensor information

B

and will be referred to as the loading factors. We

define a d-dimensional slice of tensor 7 as the set
of elements obtained by freezing P —d of its P
indexes and making the d other ones to vary in their
respective ranges. As a result, one-dimensional (1D)
tensor slices can be viewed as vectors and two-
dimensional (2D) tensor slices are matrices.

The main property of Parafac is its uniqueness for
tensors of order higher than 2. The Parafac
decomposition of a tensor 7 ¥ with loading factors
AV . AP )} 18 said to be essentially unique if any
other set (A 1) )} satisfying the Parafac
decomposition (1) is such that

AP = APAIL,  Vp e[l P, (3)

where IT is a permutation matrix and A,, p € [1, P],
are diagonal scaling matrices satisfying H,I:=1 A, =
Ik [40]. A sufficient uniqueness condition was stated
by Kruskal in [22] for the case of a 3rd-order tensor.
Sidiropoulos and Bro extended the Kruskal Theo-
rem to the case of Pth-order tensors, as follows [37]:

Theorem 1. The Parafac decomposition of a Pth-
order tensor with rank F> 1, is essentially unique (up
to column scaling and permutation) if

P
Nk =2F + (P - 1), (4)
p=1

where k ., denotes the k-rank of the loading factor
A” pell, Pl

The outer product of two arrays /D e C1***IP and %@ ¢
C/rIrexJo consists of a tensor of order P+ Q in which the

element in position i1, i, ...,ip,j|,j2s--->jo €quals the product
b

iy iy..ipljija-ig-
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Table 1
Parafac formulae for a 4th-order tensor 7

Planes 2D slices (dim.) Unfolded matrices (dim.)

Ixi Ty = A(4)D_/(A(z))Dk(AG))A(l)T LxI Tps = (A(2) o A® <>A(4))A(1)T JKL x I
xJ T = AV DAD)DIAD)A" I'xJ Tpa = (AD 0 A® 6 AD)ADT KLI x J
Jjxk Tis = A2 D AD)DAD)ADT Jx K Ty = (A9 0 AV o A AT LIJ x K
kx| Ty = A“’D,-(A“))Dj(A(z))A(“)T KxL Toa = AD 6 A? <>A(3))A(4)T IJK x L

The k-rank of an m x n matrix X equals the
largest integer ky such that any set of ky columns of
X is independent. From this definition, we notice
that ky <ry <min(m,n), where ry = rank(X). Sev-
eral authors have addressed the Parafac uniqueness
problem and different proofs have been given to the
Kruskal Theorem [22,37,41]. Uniqueness represents
a great advantage of Parafac over matrix decom-
positions, since Parafac does not produce rotational
ambiguities. In addition, there are no orthogonality
constraints such as in SVD, even in the symmetric
case where such constraints also apply to EVD.

Let us consider a 4th-order tensor J¥ of
dimensions [ xJ x K x L with elements t;; =
Y dpdlaial), where ie[1,1], je[lJ]. ke
[1,K] and / € [1, L]. In order to obtain 2D slices of
tensor 7@, we fix a pair of indexes (ny,n,),
ny,ny € {i,j,k,1}, thus defining a plane along two
dimensions of the tensor. For instance, freezing the
third and fourth indexes (k,/) in #;z;, we get the 2D
slices along the plane i x j, which form a set of KL
matrices T.;, with dimensions I x J, as follows:

I J F

(N 3) @A) 2T

(TR 9 SRR S
=1 j=1 =1

— AUDLAP)DAMA?T, Kk e[l,K],

le[l,L], 5)
where AV e CI*F) A® ¢ ¢7*F) A® e CX*F and
A® e CF are the loading factors with elements
af}), a_;?), agf) and a;‘), respectively. Stacking the
slices T.xy, [ € [1, L], for a given fixed k we have
Ty, = [T Tl 1" e C*, ke[l,K].
Using (5) we get
Ty, = [D1(AD)DAC)AD

. DL(A(4))Dk(A(3))A(1)T]TA(Z)T

— [A(4) o (A(I)Dk(A(3)))]A(2)T

Stacking the matrices T, for k € [1, K], we get an
unfolded representation of tensor 7~ (4), as follows:

Tia, AW o ADD(A®)
Tpa = = : e
Tui, AD 6 ADD(AD)
— (A® 6 AW 6 ADYAQT ¢ CKLIXI, ©6)

where the notation Tp34 indicates that the third
index, k, varies more slowly than the fourth index, /.
Besides plane i x j, there exist five other slicing
planes for a 4th-order tensor. However, for the
purpose of estimating the loading matrices, we only
need four unfolded representations. Table 1 sum-
marizes the 4th-order Parafac formulae, including
tensor slices, unfolded representations and their
respective dimensions. Other slicing planes are
omitted since they will not be used.

For P =3, slicing tensor 7 along each of its
three dimensions leads to horizontal, vertical and
frontal slices. The expressions for these matrices are
given in Table 2 with their corresponding unfolded
representations Ty, Ty and Tp).

Algorithms

To estimate the loading factors of the Parafac
model, we will be particularly interested in cumu-
lant-matching approaches based on the use of ALS-
type algorithms. In the case of a Pth-order tensor,
the basic idea is to estimate each loading factor by
iteratively minimizing P LS cost functions, condi-
tioned to previous estimates of P — 1 factors. The
algorithm iterates until no improvements are
observed (cf. [42] and references therein). Main
drawbacks include possible slow convergence and/
or convergence to local minima due to inadequate
initializations.
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Table 2
Parafac formulae for a 3rd-order tensor 7
Slicing directions 2D slices (dim.) Unfolded matrices (dim.)
Horizontal (i) T, = A‘z)D,»(A(U)AG)T (J x K) Ty = (A0 oA(z))A(3)T (IJ x K)
Vertical (j) T, = A® Di( A®) AT (K x 1) Ty = ( A 6 A®) AT (JK x I)
Frontal(k) T = AVDLAD)A?T I xJ) Ty = (A9 0 AD)ADT (KI x J)

Quadrilinear ALS algorithm. For a 4th-order tensor
T @ the matrices {A1, A®, A® AW} are estimated
by minimizing, in an alternate way, the four
following LS criteria, deduced from Table 1:

A2 203 i@
wl(Aijl,Aijl,Agjl,A(l))
2 NE NG T
= | Tps — (A2, 0 A, 0 ADHAD |2,

NOBNO NG 2
V(A ALY AT AD)
NE ORI T
= ITp — A, 0 A, 0 AMA |,
A AQ A6 ;
~ 4 ~ ~ T
= 1T — A, 0 AN 0 AD)AC 2,
Yy (A, AP AP AW)
- ~ ~ T
= [Tz — (A 0 AP 0 ADAD 3,
where r stands for the iteration number and | - ||
denotes the Frobenius norm. Each loading factor is
updated by fixing the three other ones to their
previously estimated values. The solutions are

obtained from classical LS minimization. Matrix
AW, for instance, can be estimated as follows:

AT . ~) ~3) A4
A = argminiyy (A2 AL AR AM)
N® NE) 14 \#
= A2 oA 0 A Ty, ()

The initial guesses Agz) , AS) and Ag‘) may be chosen
as Gaussian random matrices, though this is not
necessarily the best choice [42]. Similar expressions
can be obtained for A®, A® and AW.

The algorithm can be summarized as follows: at
each iteration r>1, using the preceding estimates
A(z_)l, Af_)l and A(f_)l we compute A" by means of
(7). Then, taking 1&,(.1) into account and still using
A?_)l and A%, we estimate A from the minimiza-
tion of \,. After that, A(f) is obtained by minimizing
Y3 using the current estimates Aﬁl) and A)(;) as well

as A% . Finally, A® is estimated from i, using A",
Af.z) and Af.3). The algorithm iterates until the
difference between the measured tensor and the
tensor reconstructed using the estimated loading
factors does not significantly change between two
successive iterations. The above described proce-
dure will be referred to as the quadrilinear Parafac-
ALS (QALS) algorithm.

Trilinear ALS algorithm. A similar ALS approach
can be applied to a 3rd-order tensor 7. Using the
expressions in Table 2, the loading factors A, A?
and A® are estimated by minimizing the three
following LS criteria, in an alternate way

NOENE 22 NE T
W](Ai—)l’Ag—)lﬂA(l)) = ||T[2] - (Ag—)l <>A(r—)l)A(l) ||%,
N NE NE N T
Yo (AN, AD | AY) = 1T — (A, 0 AM)A |1,

N A A ~ T
Y3AD, AP, A) = [Ty — AD 0 AD)A" |2

For instance, the estimation of matrix A is
given by

LT , NI
AV = argmin(y; (4,2, A2, AT))
NOIPUNE
= (A2, 0 AP )Ty, ®)
At each iteration, we successively update the three
loading factors by fixing the two other ones to their
previous estimated values. This method will be
called the Trilinear Parafac-ALS (TALS) algorithm.
As for the QALS algorithm, the TALS algorithm is

stopped when the difference between the measured
tensor and the reconstructed one converges.

3. SISO channel model and 4th-order output
cumulants

Let us consider a SISO-FIR communication
channel for which the output signal y(n), after
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a o Cop Lol j-L-1 kL) D

Fig. 1. (a) Three-dimensional tensor ¥ of 4th-order output cumulants; (b) frontal slices of tensor ).

sampling at the symbol rate, is written as follows:

y(n) = x(n) + v(n),
L

x(m) = hstn 1), ©9)
=0

with A4y = 1, which is equivalent to a simple unit-
norm constraint. Moreover, the following assump-
tions are made:

Al. The non-measurable, complex-valued, discrete
input sequence s(n) is stationary, ergodic,
independent and identically distributed (iid)
with symmetric distribution, zero-mean and
non-zero kurtosis y,, assumed to be known.

A2. The additive Gaussian noise sequence v(n) is
zero-mean with unknown variance ¢ and
unknown autocorrelation function. It is as-
sumed to be independent from the input
signal s(n).

A3. The channel frequency-response is H(w) =
>, e with complex coefficients /; repre-
senting the equivalent discrete impulse re-
sponse, including the pulse shaping filter, the
channel itself and the receiving filter.

A4. The FIR filter with impulse response {/;} is
assumed to be causal with memory L, i.e.
hy =0, VI¢[0, L], hy #0 and L#0.

The 4th-order cumulants of the output signal y(n)
are defined as follows:

Cay(t1, 72, T3) Ecum[y* (n), y(n + 11),
V(4 1), y(n + 13)]. (10)

Using the channel model (9), taking assumptions A1l
and A2 into account and making use of the
multilinearity property of cumulants, we get [43]

L
§ : * *

c4,y(fla T2, 13) = '})4,\' h[ h1+‘51 ]+1—2h1+1’3 s (1 1)
=0

where 74, = ¢45(0,0,0). From assumption A4, we
deduce that
C4y(11,72,73) = 0, V|71, |72, |T3] > L. (12)
Hence, making the time-lags 7|, 7, and 73 vary in the
interval [—L, L], we have all the possible nonzero
values of c4,(71,72,73). Such a choice induces a
maximum redundancy in our information model.

Let us define the 3rd-order tensor %G e
CRLADXCLADXQLED  ¢ontaining all the 4th-order
output cumulants, as follows:

2L+412L+12L+1

2L+1 2L+1 2L+1
609 23" 30 el o 6P o L,
i=1

j=1 k=1
(13)
where the element in position (i, , k) corresponds to
cjk = cap(i—L—1,j—L—1,k—L—1) as shown
in Fig. la. Replacing (11) into (13), we can write the

tensor " as a sum of L + 1 outer products, each
one involving 3 vectors, as follows:

L

3 =y, > hHp o HY o Hopyy, (14)
=0

where Hipy =300l €D Eq. (14) re-

presents the Parafac decomposition of the tensor

#G7. Let us define the channel coefficient matrix
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H e CCLHUXEI+D 44 follows:

H2 #(h) = [H H,...H ]

0 0 -k
0 hy --- hp
=| h h - b |, (15)
hL_1 hL 0
hy 0 ... 0

where #°(-) is an operator that builds a Hankel
matrix from its vector argument as shown above
and the channel coefficient vector is defined as

h=/[hy...h]" € CED, (16)

In the next section, we establish a link between
the Parafac decomposition (14) and the simulta-
neous matrix diagonalization approach. Then, we
present a SS LS algorithm to blindly estimate the
channel coefficient vector.

4. Blind SISO channel identification using the
Parafac decomposition of the 4th-order output
cumulant tensor

Slicing the cumulant tensor ¥ along each of its
three dimensions yields 2L 4+ 1 cumulant matrices
Ci., C; and C., i,j,k € [1,2L 4 1], respectively,
each of which being of dimensions (2L + 1)x
(2L +1). In Fig. 1b we show the frontal slices
C., obtained by fixing the third index k, which are
given by

2L+12L+1

Cp= Z Z i e52L+1)e§2L+1)T
=1 L_/:l
= Yag /Z; B hyg— - HHY
= 74, HD(Z)H", a7
for k € [1,2L + 1], where
¥ = H Diag(h)* € CLHD*L+D, (18)

Notice that the frontal slices defined in (17) have the
form of T. in Table 2 with the three loading factors
depending on H as follows:

AV =H, A®=H* and A® = Va2 (19)

Hence, by analogy with the other equations in
Table 2, we get the following expressions of the
vertical and horizontal slices:

Cj. =7, ED;HY'H', je[l,2L+1], (20)

Ci. = 7, H*D,(H)ET, ie[l,2L+1]. 1)

It is interesting to note that Egs. (17), (20) and
(21) suggest that the Parafac components of the
cumulant tensor can be obtained from the factor-
ization of a 2D slice or, more precisely, from the
simultaneous diagonalization of a set of matrices,
such as C.x, k e€[1,2L + 1]. However, since the
channel matrix H is not unitary, it cannot be
recovered from a simple application of a diagona-
lization technique, such as SVD,? without a
previous orthonormalization of the slices C.. This
extra operation, often referred to as pre-whitening,
consists in constructing a new set of modified
cumulant matrices that admit an orthogonal
decomposition. The modified cumulant matrices
are obtained by means of a linear transformation W
so that C., = WC.,WH, with WH unitary. The
computation of matrix W usually requires resorting
to SOS. This additional step, very common in HOS-
based methods [10,44,45], is time-consuming and
often responsible for increased estimation errors
[30,31]. Without resorting to a tensor formalism,
the joint-diagonalization approach is exploited in
[11], using cumulant matrices that can be obtained
from (17), with non-negative time-lags only, i.c.
0<1,72, 73 <L or, equivalently:

L+ 1<i,j,k<2L+1.

Eq. (14) shows that the rank of tensor &
equals the number F of non-zero coefficients in h, so
that F <L+ 1. Assumption A4 ensures that F>2.
Due to its Hankel structure, H is full column-rank
and then k ;1) = k ;o) = rg = L + 1. From (18) and
assumption A4, we deduce that ry = F>2. If all the
channel coefficients are nonzero, then F =L + 1
and we have k ;) = rz = L + 1; otherwise k ,3) =0
because, if F<L+ 1, at least one column of
Y is zero. From the Kruskal uniqueness condi-
tion (4), we conclude that, if F =L+ 1, then
ko) +k 0 +k,0 =3L+3>2F+2; otherwise,
if F<L+1, then kA(l) +kA(2) +kA(3) =2L+2>

It is well known that the SVD of a matrix yields a
factorization of the type X = UDVH, with D diagonal and U
and V unitary. When dealing with Hermitian matrices, this
orthogonality constraint also applies to EVD.
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Table 3
Parafac formulae for the 3rd-order tensor ¢

Direction Tensor 2D slices Unfolded representations
Horizontal ~ C;. =y, H*D;,H)E"T  Cpj = y4,(Ho H)ET
Vertical C, =7, ZD;HHH"  Cp =y, (H o DH'
Frontal C.x = 74 HDUEH"  Cpy = 74,(Z o H)H"

2F + 2, which implies that the Kruskal condition is
always satisfied. Thus, any set {A1, A® AG)
satisfying the Parafac decomposition of the cumu-
lant tensor €3 has the form (3), with AD, A® and
A® given in (19).

Tensor 3 can be expressed under unfolded
matrix representations obtained by stacking up the
2D slices (17), (20) or (21). Taking the equations in
Table 2 into account and using the correspondences
(19), we obtain the equations in Table 3. These
unfolded matrices can be used to estimate H and X
by means of the TALS algorithm. Once H is
estimated it is straightforward to deduce the channel
parameters. However, we can improve the efficiency
of the estimation procedure by coupling both
estimation steps, i.e. taking the relationships be-
tween the channel coefficient vector h and the
matrices H and X into account, thus eliminating
column scaling and permutation ambiguities [46,47].

SS-LS Parafac-based blind channel identification
algorithm

In this section, we propose a SS-LS algorithm to
estimate the channel coefficient vector h by means of
the previously described tensor decomposition.
Using (18), we can express Cp) (given in Table 3)
as follows:

Ciij = 74,(H o H*)Diag(h)*H'. (22)

Applying property (P-1) to this equation, we get
vec(Cpip) = 74,(Ho Ho H)h™. (23)

The channel coefficient vector h can be obtained
by iteratively minimizing the following LS cost
function:

W, b D)2 [vec(Cpy) — 74,60 V0|1, (24)

where

A (r—1)*

Gr-D — (Y o A o /I (25)

and, from (15), H"™" = #(h"~"). At iteration r, we

get ﬁ(’):arg minl,b(h*,ﬁ(rfl)). The algorithm is

initialized with a Hankel matrix H® in which the

: ~(O)T .
first column is [OIL) B " and the last row is

(i 07,1, where B = [1 vT]", ve € is a Gaus-
sian random vector and 0z is an all-zeros vector of
dimension L. The algorithm is iterated until
||ﬁ(’)—ﬁ(’_1)||/||ﬁ(")||<s, where ¢ is an arbitrary
small positive constant. In order to take the
constraint /iy = 1 into account at each iteration r,
we normalize the previous estimate h~! with
respect to its first entry ﬁf{_l) before using it to
update H"™" using (15). Then, G"~V is updated
from (25) using H""Y. The normalization step
eliminates the scaling ambiguity and forcing the
Hankel structure allows us to avoid column
permutation in the Parafac decomposition.

The above described strategy ensures the Hankel
structure of H at each iteration, taking advantage of
its full-rank property to make the tensor decom-
position essentially unique and the channel estima-
tion free from ambiguities. Furthermore, a SS-LS
minimization procedure is used instead of the
classical trilinear ALS algorithm. For that reason,
our method should be expected to increase the
convergence speed. After initializing h® as a
Gaussian random vector, the SS-LS Parafac-based
Blind Channel Identification (SS-LS PBCI) algo-
rithm can be summarized as follows, for r>1:

1. Use (15) to build A" = #(1/A7"h"D).
2. Compute G" using (25).
3. Minimize the cost function (24) so that

. A1V
b = 571GV vec(Cpyy). (26)

4. Tterate until ||A” — "=V} /[h?| <e.

The identifiability of the channel coefficient
vector h depends on the rank of the matrix
G Ve C(2L+1)3X(FJ;1). Due to its Hankel structure,
given by (15), A" is ensured to be full column-
rank. So, we have k_.,_;) =L+ 1 and therefore
GV, defined in (25 as a double Khatri-Rao
product, is also full column-rank [48], which implies
the uniqueness of the LS solution given by (26).

5. MIMO channel model and 4th-order spatial
cumulant tensors

Let us consider an instantaneous MIMO channel
with Q signal sources and M receive antennas. The
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signals received at the front-end of the antenna
array at the time-instant n, are modeled as a
complex-valued vector y(n) € CM written as

y(n) = Hs(n) + v(n), (27)

where the clements of the instantaneous mixing
matrix H € CM*€ are the MIMO channel coeffi-
cients /,,,. The following assumptions are made:

B1. The source signals s,(n) are stationary, ergodic
and mutually independent with symmetric
distribution, zero-mean and non-zero kurtosis
Va5, = C4.5,(0,0,0) assumed to be known.

B2. The vector v(n) € CY*! is the additive Gaussian
noise at the output of the antenna array. It is
independent from the source signals and has an
unknown spatial correlation.

B3. The MIMO channel matrix H € C**¢ has
elements £, ,, representing a Rayleigh flat
fading propagation environment, i.e. the chan-
nel coefficients are complex constants with real
and imaginary parts driven from a continuous
Gaussian distribution.

Assuming that Vs, is known is not really
constraining in the context of telecommunication
systems, where the source modulation schemes are
generally known at the receiver. Although usual,
this assumption is not absolutely necessary and
could be relaxed. Note also that we do not constrain
the source kurtoses to have equal sign. Assumption
B3 allows us to say that H is full k-rank with
probability one, even when M < Q.

We now consider the blind MIMO channel
identification problem using 4th-order output sta-
tistics only. It is well known that solutions to this
problem only exist up to a column scaling and
permutation indeterminacy. The 4th-order spatial
cumulants of the array outputs are defined as

Cay (i k, )& cum(y} (n), y(n), yi(n), y/(n)]- (28)

Under the above mentioned assumptions, it is
straightforward to show that

Q
Cay(injile 1) =Y pas, it highie hig, (29)
q=1
Notice that the cumulants Cy4,(i,/,k,/) only exist
for 1<i,j,k,I<M. Let us define the 4th-order
tensor ¢4 e CM*MxXMxM iy which the element
in position (i,/,k,[) corresponds to Ca4,(i,j, k1),

so that
M M M M
LR 9 9 9) HIRAVT L.
i=1 j=1 k=1 I=1
e oe™ o e, (30)

Replacing (29) into (30) we can rewrite ¥*" as a
sum of Q rank-1 tensors, each one being written as
an outer product involving four vectors:

FH = ZH* oH, 0 Hy o (3, H,), (31)
q=1

where H, = M 1, .6 g e[1,Q]. Eq. (31) is the

Parafac decomposition of tensor ¢*”, where the

four loading factors depend on H, as follows:

AV =H*, AP =H, AY=H

and

A® = HIy,, (32)
where

Ly = Diag(y4’sl, .. -’"/4,5Q)- (33)

Using the above correspondences, the 2D repre-
sentations of #“” can be deduced from the
equations in Table 1. For instance, slicing %
along the k x [ plane gives the following matrix

M3xM
C[I,Z] eC .

Cpy=MH oHoH)I, H'. (34)

According to the unfolding procedure described in
Section 2, Cji is obtained* by stackmg matrlces
Cpy;» i €[1, M], defined as Cpp, = [Cn - C R
where Cj.. are the 2D slices of tensor %' 4 dlong
the kx/ plane, with [Cj.]y,; = Ca,(i,/,k,1),
k,le[l, M].

From the general equations given in Table 1, we
easily get Cj. :H*D,-(H*)DLSDJ-(H)HT. This for-
mulation naturally leads to a simultaneous diag-
onalization problem. A similar set of equations can
be obtained from the output quadricovariance
matrix, which is the basic idea behind the FOBIUM
algorithm [49]. In fact, FOBIUM can be viewed as a
4th-order extension of the classic SOS-based SOBI
algorithm [10]. Indeed, it needs a 4th-order pre-
whitening step and requires non-Gaussian sources
having kurtoses with the same sign and different

“In practice, the /th-column of Cf; 5 is formed with the elements
Cy4,(i, ], k, 1) arranged in such a way that the indices i,/, k € [1, M]
vary in nested loops with k being the innermost one (fastest) and i
the outermost one (slowest).
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trispectra. By exploiting the Kronecker structure of
a particular unfolded tensor representation, the
method reported in [32] solves the canonical tensor
decomposition problem by means of a simultaneous
matrix diagonalization. Making use of similar
ideas, the algorithms proposed in [14] have the
advantage of permitting weaker uniqueness condi-
tions and hence, theoretically allowing for the
identification of more sources for a fixed number
of antennas. Although avoiding pre-whitening,
these latter algorithms still have to solve two
optimization problems in order to extract MIMO
parameters from an initial EVD-based estimate. On
the contrary, we propose solutions that can be
obtained from a single minimization problem, under
very mild assumptions.

5.1. Uniqueness

Notice from (31) that the rank of the 4th-order
tensor ¢*” is F = Q. In addition, since H is
assumed to be full k-rank, we have k 1) =k 0 =
k ,¢) =k 4 = rg = min(M, Q). We conclude from
(4) that the Kruskal uniqueness condition reduces to

4rp=20+3. (35)

The two following cases can be considered:

® The MIMO channel is an overdetermined sys-
tem, i.e. M>Q. In this case ry = Q and (35)
states that the Parafac decomposition of ¢4 is
essentially unique if 0>3/2, i.e. 0> 1. There are
no further constraints on the number of sensors.

® The MIMO channel is an underdetermined
system, i.e. M<Q. In this case ry = M and
hence equation (35) becomes

0<2M —2. (36)

Table 4 gives the maximum number of users that
our model can deal with, for a given number of
receiving antennas varying from M = 2 to 7. Under
these conditions, the Parafac decomposition of
tensor ¥*” is unique, up to trivial permutation
and scaling ambiguities. In other words, the loading

Table 4
Relationship between M and Q for the uniqueness of ¢

Number of antennas M= 2 4 5 6 7
Maximum number of sources Q0< 2 6

3
4 g§ 10 12

factors of ¢ are given by (3) with AV, A® A®
and A® defined in (32).

5.2. Reduced-order cumulant tensor

It is possible to reduce the 4th-order tensor
defined in (30) to a 3rd-order one by combining its
3D slices, thus reducing the complexity of the above
described tensor decomposition. Without loss of
generality, we freeze the index k in the cumulant
definition (28), and define the 3D slices as

G0 = Z Z Z Cay(inj ke, Det™ o e o ef™)

i=1 j=1 I=1
(37)

*oH,oH,. (38)

Q9
- Z 7/4’thqu
q=1

Summing these slices for all k € [1, M] we get

Q M
3 (.y) _ *
@By — E d E ] Hf‘q oH, o (y4’qu.q kg hkq)'
= =1

(39)

From this equation, we conclude that ¥3) is a
3rd-order Parafac model with the following loading
factors:

AV —H* A® =H and A® =HAI,, (40)

where A is a diagonal matrix given by

M
A= Z Dy (H)". (41)
k=1

Using the correspondences (40) in the equations
of Table 2, we get the unfolded representations of
tensor @), Selecting, for instance, the horizontal
slicing direction (first row in Table 2), we have

Cpy = (H* o )[4 ,AH. (42)

In practice, Cjjj is obtained by stacking the matrices
Ci, iel[l,M], where [C.];= Yok Cayinj ke, 1),
J,1 €[1,M]. This is equivalent to [Cpjli_i)ps =
Yok Cayinj k1), i,j,1 € [1, M].

Due to assumption B3, the diagonal entries of A
are nonzero with probability one. This allows us to
conclude that k i) =k 40 =k 43) = rz = min(M, Q)
and the Kruskal uniqueness condition (4) becomes
3ry=20Q + 2. This yields Q=2 for M>Q and
O0<(3M —2)/2 when M <Q. Table 5 shows the
maximum number of sources for a given number of
receive antennas varying from M = 2 to 7 so that



C.E.R. Fernandes et al. | Signal Processing 88 (2008) 1382-1401 1393

Table 5
Relationship between M and Q for the uniqueness of the Parafac
decomposition of ¢

Number of antennas M= 2 3 4 5 6 7
Maximum number of sources Q< 2 3 5 6 8 9

the model is unique. Under these conditions, the
Parafac loading factors of " can be written as in
(3) with AV, A® and A® defined in (40).

6. Parafac-based blind MIMO channel identification
(PBMCI) algorithms

Based on the explicit relationships presented in
the previous section, we now propose two algo-
rithms to estimate the instantaneous MIMO mixing
matrix, up to column scaling and permutation. This
is achieved by means of a single (non-alternating)
LS minimization procedure, thanks to the symmetry
properties of the 4th-order cumulant. The basic idea
behind the algorithms proposed in the sequel is to
consider only one of the unfolded representations of
the cumulant tensor ¥**) by exploiting the relation-
ships (32) (or (40) in the case of #©®). This is
equivalent to rewrite any of the unfolded tensor
representations defined in Table 1 (resp. Table 2) in
terms of A?, for a fixed p. After that, we also
present the procedures for estimating the mixing
matrix using the classical ALS-type algorithms
described in Section 2.

6.1. 4D SS-LS PBMCI algorithm

Eq. (34) enables us to estimate the MIMO
channel matrix by iteratively minimizing a single
LS cost function, written as follows:

YA, H)2 | Cpy — (H, o H,_y o HF_ )[4 HT|2,
(43)

where r denotes theAiteration number. The iterative
minimization of W(H,_, H) yields the following LS
solution:

H 2 argminy(H,_. H)
= F;i (I:I;k_l <o I,‘\Ir,] <o I:I:(_l)#C[l,z], (44)

where Hj is initialized as a complex M x Q
Gaussian random matrix. In order to improve
estimation at each iteration r> 1, before computing
ﬁ,., we normalize each column of the previous

estimate H,_, by dividing it by its 2-norm. The
algorithm is stopped when |H, — H,_, ||F/||I:I,.||F <e,
where ¢ is an arbitrary small positive constant.

In the underdetermined case, the uniqueness of
the Parafac decomposition of ) is ensured under
the condition stated by the Kruskal Theorem (4),
which leads to the relationships between M and Q
given in Table 4. Due to the lemma introduced in
[48], if kg + ky = Q + 1 then H* ¢ H is full column-
rank, which yields ky+oz = Q. In the underdeter-
mined case, we have ky = M and hence the
previous condition becomes Q<2M — 1. Applying
the same lemma on the double Khatri-Rao product
H* o Ho H*, the condition kpy+.y +k;; =0+ 1 is
equivalent to Q4+ M>Q+ 1, which is always
satisfied, implying that the double Khatri-Rao
product is full column rank, which guarantees the
uniqueness of the LS solution given by (44). Notice
that this constraint is slightly weaker than the
uniqueness condition (36), so that, by satisfying this
latter one, we can ensure that any matrix H obeying
to (34) is such that H = HAII, where IT is a
permutation matrix and A a diagonal matrix with
unit-modulus diagonal elements. Therefore, since
we are dealing with complex values, the scaling
ambiguity is not completely eliminated but it is
reduced to a single phase indeterminacy. The above
described method will be referred to as the 4D
SS-LS Parafac-based Blind MIMO Channel
Identification (4D SS-LS PBMCI) algorithm. The
above developments were presented, without loss of
generality, for C; 5. Any other equation in Table 1
can be used instead.

6.2. 3D SS-LS PBMCI algorithm

The SS approach can also be formulated using
tensor ) defined in (39). Eq. (42) yields the
following LS cost function:

Y(H,_ 1, )2 |Cyy — (H, o H, )[4 A,  HT|2,
(45)

where A,_; = Dk Dk(I:I;k_l). Iteratively minimizing
(45) leads to

AT A1l A ~
H, =T /A, (H:_ oH,_)*Cp,. (46)

Here again, Hy is initialized as a complex M x Q
Gaussian random matrix and H,_; is normalized
before computing the next estimate H,. This method
will be called the 3D SS-LS PBMCI algo-
rithm. Sufficient uniqueness conditions are given
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in Table 5. According to the lemma introduced in
[38], we need OQ<2M — 1 in order to ensure that the
Khatri-Rao product in (46) is full column-rank,
which guarantees the uniqueness of the LS solution.
This condition is weaker than the uniqueness
conditions discussed in Section 5.2.

6.3. ALS-type PBMCI algorithms

Classical ALS-type algorithms can also be used to
solve the blind channel identification problem. In
particular, the QALS and TALS algorithms de-
scribed in Section 2 provide solutions to the Parafac
decomposition of tensors " and ¥, using the
equations provided in Tables 1 and 2, respectively.
Although these algorithms do not take the relation-
ships between the loading factors into account, we
can nevertheless initialize QALS with a complex
M x Q Gaussian random matrix A( ) and then
deduce A(z) and A(4) using (32). After that, the
QALS algorlthm is started with the computation of
A(ll) using (7).

Denoting by r = oo the iteration at which
convergence is reached, the estimated loading
factors Ag’g), p=1,...,4, have the form (3). Taking
the correspondences (32) into account, this yields
the following different equations for estimating H,
up to column scaling and permutation:

A =AY A,
A ~(2)

AY = H AL,
AD = A% AsI,

AY = AT, AL (47)

The estimates H" and H® can be obtained by
simple conjugation of A“) and A(3), respectively.
The above procedure Wlll be referred to as the
quadrilinear ALS Parafac-based blind MIMO
channel identification (QALS-PBMCI) algorithm.

Concerning the TALS algorithm, it can also be
initialized with a complex M x Q Gaussian random
matrix A and A} is deduced from (40) and (41).
The correspondences (40) indicate that the loading
factors AQ*, A2 and AY are estimates of H, up
to column permutation and scaling. This method
will be called the trilinear ALS Parafac-based
blind MIMO channel identification (TALS-PBMCI)
algorithm.

Although scaling and permutation ambiguities
are not explicitly solved, these indeterminacies do

not represent a concern in the context of blind
mixture identification and, in the overdetermined
case, it is even possible to recover the source signals.

7. Computer simulations

In this section, we present some computer
simulation results in order to assess the performance
of the proposed blind identification algorithms. We
first consider a SISO-FIR communication channel
and compare the performance of the SS-LS PBCI
method with the results obtained using the well-
known FOSI algorithm, which is based on a joint
diagonalization technique. As suggested by the
authors of [11], the FOSI algorithm performance
is evaluated by averaging the results of the two
solutions proposed therein. We also compare our
method with the optimal algebraic solution in the
total least squares (TLS) sense, proposed in [5].

Afterwards, we consider a quasi-static MIMO
channel scenario where the complex channel coeffi-
cients are drawn from a Rayleigh distribution and
are assumed to be time-invariant within the dura-
tion of a time-slot, composed of N symbol periods.
The performance of the QALS-PBMCI and TALS-
PBMCI algorithms are compared with those of the
SS-LS PBMCI algorithms. Although our main
interest is in mixture identification, we also provide
results concerning the recovery of the transmitted
symbols using the channel estimates obtained with
the proposed identification methods in both SISO
and MIMO cases.

7.1. SISO channel identification

The parametric channel estimation performance
is evaluated by means of the normalized mean
squared error (NMSE) of the estimator, computed
by means of the following formula:

1B — h|)?

NMSE =
PZ IIhII2

) (48)

where P is the number of Monte Carlo simulations
and ﬁgf) is the channel estimate obtained after
convergence of the experiment p € [1, P], assuming
perfect knowledge of the channel memory L. Except
otherwise stated, 4th-order cumulants were esti-
mated using N = 1000 output data samples.
For each Monte Carlo simulation, a different
complex channel coefficient vector was randomly
generated in such a way that minimum-phase,
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Fig. 2. NMSE performance with QPSK modulation.

nonminimum-phase as well as maximum-phase
channels may occur. Furthermore, we allow for
some channels to be possibly ill-conditioned (/i
very small in magnitude). The results illustrated in
the following curves represent the average of P =
200 Monte Carlo runs. The input signal is QPSK
modulated.

In Fig. 2, the NMSE is plotted against the signal-
to-noise ratio (SNR) for SS-LS PBCI, FOSI
and TLS algorithms. The curves on the left-hand
side show that our approach performs better
than both, the FOSI algorithm and the TLS
solution, for channels with memory L = 3. The
relative behavior of the algorithms shown in that
figure was also verified for L =2 and 4. On the
right-hand side of Fig. 2, we compare the results of
SS-LS PBCI for L =4 with those of the FOSI
algorithm for L =2,3 and 4. Note that the
estimation errors obtained with SS-LS PBCI for
L = 4 are smaller than those of FOSI for L = 4 and
3. Furthermore, for low SNR values, the perfor-
mance provided by the SS-LS PBCI algorithm for
channels with L =4 is close to that obtained with
FOSI for channels with L =2. We can therefore
conclude that, increasing the channel delay spread,
the SS-LS PBCI method provides better perfor-
mance than the two other algorithms, especially in
highly noisy situations.

In order to evaluate the effect of the output
data sequence length used to estimate the 4th-
order cumulants over the performance of the identi-
fication algorithms, we plot in Fig. 3 the NMSE
against the channel memory for N = 1000 and
3000 output data, with SNR =21dB. We can
conclude that SS-LS PBCI with N = 1000 yields
better results than TLS and FOSI algorithms with
N = 3000.
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m
g 2
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25 Qe x| TLS
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35 . n
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Fig. 3. NMSE x channel memory with SNR = 21 dB.

Number of iterations for convergence of SS—LS PBCI

150
I initialization: random
[ initialization: TLS
E: 100 [Jinitialization: C(q,k) T
8a)
7 Iﬂ |
ol e W0
1 2 3 4
100 T
I initialization: random
z [ initialization: TLS
s [Jinitialization: C(q.k)
A 50 f J
58]
=
3 4

0 n B
1 2
Channel memory (L)

Fig. 4. Convergence analysis for SS-LS PBCI with three different
initializations (SNR = 21 dB).
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It is interesting to note that the number of
iterations required for convergence of the SS-LS
PBCI algorithm can be reduced by initializing it
with an algebraic solution such as the TLS solution.
In Fig. 4 we show the mean and median number of
iterations needed for convergence of SS-LS PBCI
with SNR = 21dB using three different initializa-
tions: (1) a Gaussian random vector; (2) the TLS
solution and (3) the C(g,k) solution [50]. Using
either the TLS or the C(g, k) solutions as initializa-
tion decreases the number of iterations in compar-
ison with the random initialization. Finally, it is
worth to mention that the NMSE performance after
convergence remains unchanged, i.e. initialization
only affects convergence speed.

7.1.1. Recovery of the input signal

Several equalization approaches exist to recover
the input data sequence using the estimated channel.
The optimal solution in the minimum mean squared
error (MMSE) sense is provided by the Wiener
solution. The coefficient vector w € CK+D*1 of the
optimal equalizer is given by

wOPY = (THT + 671(1.41) ' s, (49)

where T is a (K + L+ 1) x (L + 1) Toeplitz matrix
built from the channel coefficients as follows:

h() h1 /’lL 0 0 T
0 /o hp_1 hy -+ 0

T= (50)
0 0 ho hl hL

and s; = e;KJrL“), where d represents the equaliza-

tion delay, usually chosen as d = (K + L+ 1)/2 if
K+ Lisoddord =(K+ L+2)/2if K + Lis even.

—— SS-LS PBCI
- - -FOSI
1111 Opt. MMSE
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m
L T S S
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The input signal is recovered as follows:

K
Sy = Wiy — k). (51)
k=0

In Fig. 5, we present the performance of SS-LS
PBCI and FOSI algorithms in terms of the symbol
error rate (SER) for channels with L =2 (left)
and L =3 (right), and a QPSK modulated input
signal. The dotted lines represent the results
obtained with the optimal MMSE filter assuming
perfect knowledge of the channel. For a target SER
of 1073, with L = 2, SS-LS PBCI provides a gain of
about 5dB in SNR with respect to FOSI. For
L =3, despite the expected performance loss of
both algorithms, this gain is around 8dB in SNR
for a target SER of 2 x 1073.

7.2. MIMO channel identification

In this section, we consider a quasi-static trans-
mission scenario where the complex MIMO channel
coefficients are drawn from a Rayleigh distribution
and are assumed to be time-invariant within the
duration of a time-slot composed of N symbol
periods. At each new time-slot the channel varies
independently. Except otherwise stated, the length
of the time-slot is N = 1000 symbol periods and the
output data samples received in this interval are
used to estimate the spatial cumulants. Our results
are averaged over 300 time-slots.

In order to evaluate the performance of the
proposed Parafac-based blind MIMO channel
identification algorithms, we utilize the identi-
fication performance index given in [51,52], which
is based on the matrix ®? = H*H,, where Hy,
is the channel estimate after convergence of the

1072

107* ¢

—— SS-LS PBCI
- - -FOSI
Opt. MMSE

1073 : :
10 15 20
SNR (dB)

0 5 25

Fig. 5. Symbol error rate (SER) x SNR (QPSK modulation).
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experiment p € [1, P]. Since we estimate the channel
up to column scaling and permutation, it is easy to
conclude that ® is a scaled permutation matrix.
The identification performance index is computed
as follows:

2 |\ G\ 5 max, 19}

1

+<Z<Z—'¢§5)lz )—1)] (52)
j i maXf|¢§»pJ)|2 ,

where (bﬁ? are the entries of ®%). The performance
index &(-) equals zero if its matrix argument has the
exact structure of a scaled permutation matrix, and
small values indicate proximity to the desired
solution. In our case, &(®?)) tends towards zero
when the channel estimate approximates the actual
MIMO channel matrix, up to column scaling and
permutation. Eq. (52) provides, therefore, a mea-
sure of the global level of interference rejection

Q=2,M=3
10!
—e—4DSS-LS
—A—3D SS-LS
100 0 QALS
A A TALS

Performance index

Performance index
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between the estimated channels, irrespective of the
trivial ambiguities. In the following figures, we plot
the value of the average performance index, i.c.
(1/P)Z£:1 (@), where P = 300 is the number of
time-slots (Monte Carlo simulations).

We first evaluate the PBMCI approach by
comparing the proposed algorithms 4D SS-LS and
3D SS-LS with their ALS-based counterparts
(QALS and TALS, respectively). Using M =3
sensors, we show in Fig. 6 the average identification
performance index computed using (52) in function
of the SNR for Q = 2 (left) and Q = 3 (right) QPSK
modulated sources. We can conclude that the
methods based on 4th-order tensors (4D SS-LS
and QALS) performed better than their 3rd-order
versions (3D SS-LS and TALS). As expected,
increasing the number of sources degrades the
performance, but 4D SS-LS is less affected than
the other methods.

In Fig. 7, we show the mean number of iterations
needed for convergence of the four algorithms when

Q=3,M=3
10!
—6—4D SS-LS
0 —A— 3D SS-LS
10 AL 0 QALS
A A TALS
107!
1072
1073
107
0 5 10 15 20 25
SNR (dB)

Fig. 6. Average identification performance index x SNR.
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Fig. 7. Mean number of iterations for convergence with SNR = 21 dB.
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QO = 2 (left) and Q = 3 sources (right) with SNR =
21dB. Although 4D SS-LS takes generally more
iterations to converge than QALS, the former one is
a more attractive solution due to its smaller
computational complexity, since it involves only
one LS minimization per iteration, instead of four.
Note that increasing the number of users for a given
number of antennas significantly increases the
number of iterations needed for convergence. As
expected, the methods based on the 4th-order tensor
converge faster than those based on the 3rd-order
one. Finally, we observe that the algorithms take
more iterations to converge when the number of
antennas decreases, i.e. when the spatial diversity
decreases.

As recent papers have compared new approaches
with several classical blind channel identification
algorithms (cf. see [13]) we compare our methods
with some of the most performing algorithms
reported in the literature. In the sequel, we show
some simulation results comparing the identification
performance of the 4D SS-LS PBMCI with the
classical JADE [9] algorithm, the FOOBI [14] and
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the ICAR [13] methods. The SOBI algorithm [10]
and its counterpart to high-order cumulants
(FOBIUM [49]) have not been considered because
they are theoretically unable to deal with sources
that have similar trispectra.

For Q = 2 users and M = 3 antennas, Fig. § (left)
shows that the 4D SS-LS PBMCI performance is
close to that of the ICAR and FOOBI algorithms.
Note that JADE degrades when the noise power
increases, becoming less performing than the other
methods for SNR lower than 12dB. For 0 =3
sources and M = 3 antennas, Fig. 8 (right) indicates
that our approach performs better than the other
tested algorithms. We have also simulated the case
of M =5 antennas and observed improved results
for all the algorithms. For instance, with M = 5 and
0 =3, JADE becomes better than 4D SS-LS for
SNR >7.5dB. Besides, ICAR and FOOBI also take
advantage of the additional degrees of freedom and
both attain nearly the same performance as 4D SS-
LS. In these scenarii, 4D SS-LS seems to be a very
interesting solution, especially when noise becomes
important and the ratio M/Q is close to one.
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Fig. 8. Comparison with other algorithms.
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Finally, concerning the recovery of the source
signals, Fig. 9 illustrates the performance of the 4D
SS-LS PBMCI algorithm in terms of the average
SER per user, for Q =2 and 3 users. The source
symbols were recovered using a semi-blind MMSE
filter built from the estimated MIMO channel
matrices. A few pilot symbols were used in order
to eliminate scaling (phase) and permutation
ambiguities. The results are compared with those
obtained with the optimal MMSE receiver using
perfect knowledge of the channel. Note that, for
Q =2 as well as for Q = 3, the performance of 4D
SS-LS is quite close to the optimal MMSE
reference. The average SER for Q = 2 users presents
the same global behavior as that for Q = 3 users,
except for a vertical shift in the curves, indicating an
expected performance loss due to an increase of the
number of users.

8. Conclusions and perspectives

A new blind FIR SISO channel identification
algorithm has been presented using the Parafac
decomposition of a 3rd-order tensor formed of
4th-order output cumulants. The so-called SS-LS
PBCI algorithm relies on an iterative single-step LS
minimization. The Parafac decomposition fully
exploits the three-dimensional nature of the cumu-
lant tensor and has the advantage of avoiding the
pre-whitening step needed by the joint-diagonaliza-
tion based methods. Uniqueness and convergence
issues have been addressed. Computer simulations
show that our approach provides better estimation
performance than both the TLS solution and the
FOSI algorithm, which is based on a simultaneous
matrix diagonalization. Furthermore, the conver-
gence of the PBCI algorithm can be accelerated
when it is initialized with the TLS solution.

We have also addressed the problem of blind
MIMO channel (mixture) identification in the
context of a multiuser system characterized by
instantaneous complex-valued channels. We have
presented an iterative SS-LS identification algo-
rithm based on the Parafac decomposition of a 4th-
order tensor composed of 4th-order spatial output
cumulants. Quadrilinear and trilinear ALS solutions
have also been described and compared with the
SS-LS method. We have established uniqueness
conditions limiting the maximum allowed number
of users and showing that, under certain conditions,
our algorithm can identify underdetermined mix-
tures. Computer simulations have been presented

assessing the performance of the proposed algo-
rithm and showing that using the SS approach can
be of great interest in reducing computational
complexity of tensor-based MIMO channel identi-
fication algorithms.

Some works deriving from the ideas presented in
this paper are considered for the near future,
including the use of the SS-LS approach for the
estimation of multipath parameters in wireless
channels. Preliminary studies have been done on
the estimation of the direction-of-arrival (DOA) of
the sources placed at the far-field of an antenna
array, exploiting specific properties of the MIMO
channel matrix. Extending this solution to the case
of convolutive MIMO channels is also envisaged in
order to treat multipath channels.
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