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The knowledge of net radiation at the surface is of fundamental importance because it defines the total
amount of energy available for the physical and biological processes such as evapotranspiration, air and
soil warming. It is measured with net radiometers, but, the radiometers are expensive sensors, difficult to
handle, that require constant care and also involve periodic calibration. This paper presents a methodol-
ogy based on neural networks in order to replace the use of net radiometers (expensive tools) by mod-
eling the relationships between the net radiation and meteorological variables measured in
meteorological stations. Two different data sets (acquired at different locations) have been used in order
to train and validate the developed artificial neural model. The statistical results (low root mean square
errors and mean absolute error) show that the proposed methodology is suitable to estimate net radia-
tion at surface from common meteorological variables, therefore, can be used as a substitute for net
radiometers.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Net radiation is a fundamental parameter that governs the
climate of the lower layers of the atmosphere and it depends criti-
cally on the structure and composition of the atmosphere and the
presence of clouds, in addition to surface features such as albedo,
emissivity, temperature, humidity and thermal properties of the
underlying soil. Thus net radiation is a fundamental quantity for
analyzing the evolution of climate, from both local and global per-
spective. It is the driving force of physical and biological processes
such as evapotranspiration, the latter being used to optimize the
quality and yield of crops, water resources planning, weather
forecasting, etc. (Bennie, Wiltshire, Hill, & Baxter, 2008; Ji, Kang,
ll rights reserved.

Alban, the European Union
America, scholarship no.

Remote Sensing Techniques
in the Valencia Community
epartment for Environment,
Climate Change, Generalitat

ish Ministerio de Educacion y
Refuerzo Aplicado en Farma-

ez-Sanchis).
Zhao, Zhang, & Jin, 2009; Li et al., 2009). Despite its importance,
the net radiation is measured only in a very few number of standard
weather stations because net radiometers are expensive instru-
ments and require constant care in the field, so that the net radia-
tion measurements can be reliable. Hence, this quantity is
difficult to obtain due to the cost of net pyrradiometers. This paper
presents a methodology for modeling net radiation using artificial
neural networks. After an initial period collecting data in order to
train the network with real samples, the neural network model
can be used as an estimator of net radiation samples for a given area
without using net radiometers at all times. The strategy here is to
train the neural network model using the net radiation collected
‘‘in situ’’ over a representative period and then use that model
and not the net radiometer. There are a large number of linear
and nonlinear models who perform modeling of the net radiation
at surface but using as input the incoming solar radiation or the
net radiation components separately (downwelling shortwave
radiation, reflected shortwave radiation, downwelling and upwell-
ing longwave radiation). But the root of the problem remains; radi-
ometers are needed to obtain these input variables to the model
(Alados, Foyo-Moreno, Olmo, & Alados-Arboledas, 2003; Daughtry
et al., 1990; Kohsiek et al., 2007). This problem can be avoided by
using as input parameters, in the neural networks developed to
model the net radiation at surface, the most common meteorolog-
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Fig. 1. Scheme of a neuron.

Fig. 2. Multilayer perceptron scheme. Dotted lines show the feedback in the model;
in this paper this type of connections was not used.
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ical variables collected in the majority of weather stations, around
the word, including those that send, daily, information to the Global
Telecommunication System (GTS). The GTS is defining as: The co-ordi-
nated global system of telecommunication facilities and arrangements
for the rapid collection, exchange and distribution of observations and
processed information within the framework of the World Weather
Watch citegts. These variables are: wind speed, air temperature,
atmospheric pressure and humidity.
Fig. 3. (left) Net radiometer used to measure net radiation at surface in the FESEBAV exp
separately (downwelling and reflected shortwave radiation, downwelling and upwelling
The following sections describe the neural model used, the mul-
tilayer perceptron. After this, the datasets and the variables in-
volved in the problem will be presented. Finally, we will present
the results and conclusions obtained in the study.
2. Multilayer perceptron

The multilayer percepron (MLP) has been the neural network
model used in this study. It consists of some individual process ele-
ments called neurons, which are arranged in a series of layers.
Fig. 1 shows the structure of these neurons.

This neuron is constituted, in its first part, by a multiplier,
which multiplies the inputs by a series of coefficients called synap-
tic weights. The objective of learning algorithm is to obtain the
optimum values for the synaptic weights (Haykin, 2009). In the
next part of the neuron we will find the activation function that
gives nonlinear behavior to the neural network model. Fig. 2 shows
the scheme of a MLP.

The number of neurons in the input and output layers is defined
by the problem addressed. The user is responsible for choosing the
number of hidden layers and neurons. There are many demonstra-
tions of the fact that the multilayer perceptron with a hidden layer
is an universal modelization tool of continuous functions. In the
case of discontinuous functions two hidden layers are required
(Reed & Marks, 1999). It is important to highlight that there are
rules that guide to designer on the number of hidden neurons in
each layer, however there is not work to set this number accu-
rately. In a large number of applications a ‘‘trial and error’’ strategy
is used in order to obtain the number of neurons in the hidden
layer (Haykin, 2009).

The operation of the neural network is given by the values of
synaptic weights. The learning algorithm is the procedure by
which the neural model obtain the optimal parameters for solve
the problem. There are many learning algorithms but, when choos-
ing a particular one of them is necessary to consider the following
features that any learning algorithm should fulfill (Bishop, 1995):
Effectiveness, robustness, independence from initial conditions,
high generalization ability, low computational cost and simplicity.
The aim of any learning algorithm is to obtain as an error (defined
eriment and (right) radiometer used at VAS that measure net radiation components
longwave radiation).



Table 1
Basic statistic of FESEBAV and VAS data sets. WS: Wind speed; AT: air temperature;
AP: atmospheric pressure; RH: relative humidity; RN: net radiation.

WS (m/s) AT (�C) AP (mb) RH (%) RN (W/m2)

FESEBAV (N = 13,248)
Maximum 5.05 40.05 937.00 99.30 741.30
Minimum 0.00 8.82 916.00 6.89 �73.30
Mean 1.21 21.99 926.12 54.74 144.94
Standard deviation 0.73 6.57 3.77 25.8 213.24

VAS (N = 23,616)
Maximum 8.30 36.50 938.00 95.00 1011.15
Minimum 0.00 4.00 914.00 8.00 �114.2
Mean 1.90 19.50 925.44 53.89 136.36
Standard deviation 1.42 6.07 4.06 21.78 244.34

14192 A. Geraldo-Ferreira et al. / Expert Systems with Applications 38 (2011) 14190–14195
as the difference between actual signal and the neural network
output) a value of zero. There are two different kinds of algorithms
(Haykin, 2009):

� On-line. In this type of learning, error is calculated by the neural
network model for each pattern in the data set. The synaptic
weights are updated using the error of each pattern.
� Batch. In this type of learning, error is calculated by the neural

network model for all patterns. After this, the synaptic weights
are updated using the average error for all patterns.

The learning algorithm used in this paper has been Levengert–
Macquart algorithm which presents a good compromise between
speed of convergence, steady-state error and complexity (Bishop,
1995; Haykin, 2009). Random synaptic weights have been used
for each architecture in order to avoid the problem of local min-
ima; the authors have initialized 100 times each neural
architecture.
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Fig. 4. Representation of net radiation predicted by the neural network model and the a
both data sets.
3. Data sets

In order to validate our approach were used two data sets ob-
tained from two surface areas with the same land use (vineyard
crop) but with different land cover (vineyard and bare soil). Meth-
odology and sensors employed to data collection are described
below.

� Data set 1 (FESEBAV). The first data set corresponds to data col-
lected during the field campaign called FESEBAV 2007 (Field
Experiment on Surface Energy Balance Aspects over the Valencia
Anchor Station area) conducted from June 19th to September
18th 2007. In this experiment a mobile weather station
(EMM) was installed in a field of vines (latitud 39� 310 2300N
and de longitude 1� 170 2200 W, at an altitude of 796 m above
sea level), in the study area of the Valencia Anchor Station
(VAS), near the town of Caudete de las Fuentes (Utiel-Plana de
Requena), Valencia, Spain, with the goal of collecting the data
necessary for the surface energy balance studies of the crops.
The net radiation was measured with a CN1 Net Pyrradiometer
(Middleton & Co. Pty. Ltd.), air temperature with a probe PT 100/
3 (Campbell Scientific Ltd.), the relative humidity with a probe
HMP45C (Campbell Scientific Ltd.) and wind speed with an ane-
mometer RM Young 05103 (R.M. Young Company). All sensors
were installed at 2 m over the surface, except for the wind that
was set to 2.10 m. The sensors were integrated into Campbell
CR1000 datalogger and were scheduled to collect data every
second. The data recorded every second was stored as 10 min
averages.
� Data set 2 (VAS). The second data set was obtained at the mete-

orological station known as VAS (latitude 39� 340 1500 N and lon-
gitude 1� 170 1800 W, lying at an altitude of 813 m above sea
level), a reference meteorological station used to calibrate and
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ctual values of net radiation. In the same graphs we can see the linear regression in



Table 2
Performance indices for FESEBAV data set.

FESEBAV data set MAE (W/m2) RMSE (W/m2) ME (W/m2) a b

Training set N = 8832 19.46 35.56 �0.38 0.97 3.73
Validation set N = 4416 21.65 39.88 0.027 0.97 4.46

Table 3
Performance indices for VAS data set.

VAS data set MAE (W/m2) RMSE (W/m2) ME (W/m2) a b

Training set N = 15,744 34.55 61.36 0.65 1.00 0.30
Validation set N = 7872 36.47 65.07 �0.26 0.99 0.46
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validate remote sensing missions low spatial resolution. The
station is installed in an isolate characterized by bare soil and
surrounded by vineyards. Details on the VAS and meteorologi-
cal parameters listed can be obtained at http://www.uv.es/
anchors/Estacion.html. VAS data used in the study are those
relating to the months of May, June and July 2007 and 2008.
Wind speed is measured with a sensor model 03102 (Campbell
Scientific Ltd.), temperature and humidity with a probe model
50U-44212 (Vaisala, USA), atmospheric pressure is measured
with a sensorSPA-900 (Druck Limited, USA), incoming shortwave
radiation and reflected solar radiation was measured with an
Albedometer CM14 (Kipp & Zonen, Netherland), upwelling and
downwelling of longwave radiation was measured with a pyr-
geometer (CG2) (Kipp & Zonen, Netherland). These sensors are
installed at 2 m over the surface. In this case the dataloggers
employed were UA Geonica, and the measurements were
acquired in the same way that in data set 1. Fig. 3 show the radi-
ometers used to measure the net radiation directly (left) or its
components separately (right).
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Fig. 5. Measured Rn values (� � �) and neural model prediction (-o-) for: (a) cloudy free-da
day, 15-8-2007, FESEBAV data set; (d) cloudy day, 26-6-2007, FESEBAV data set.
4. Results

In order to obtain the best neural network model, the models
were trained using two hidden layers (by the Cybenko theorem it
is known that two layers are necessary to establish the relation-
ships between two data sets (Haykin, 2009)). The number of hid-
den neurons in each layer was varied from 2 to 20, these limits
were imposed because, in all the tests, never reached the upper
limits for the number of neurons using cross-validation. Moreover,
since the learning algorithm is a local search algorithm on each
architecture, there were a total of 100 different initializations of
synaptic weights in order to avoid the problem of local minima
(Bishop, 1995). The Levenger–Macquart algorithm was chosen
using online learning because it is most appropriate in time series
modeling problems. Furthermore, cross-validation was used in or-
der to avoid the overfitting problem (Haykin, 2009). For this pur-
pose the data set 1 and data set 2 were divided into two subsets,
one for train the models (training set) and other for validate the
models (validation set). The proportion selected for this division
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y, 2-7-2007, VAS data set; (b) cloudy day, 21-5-2007, VAS data set; (c) cloudy free-
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Table 4
Performance indices in sunny/cloudy days.

MAE (W/m2) RMSE (W/m2) ME (W/m2)

FESEBAV data set
Cloudy days N = 8784 24.74 43.85 0.44
Sunny days N = 4464 11.41 17.21 �1.17

VAS data set
Cloudy days N = 17,712 41.64 71.46 �0.34
Sunny days N = 5904 15.84 22.38 2.41
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were 2/3 and 1/3 of each set. The input variables used to train the
model were: month, day and hour of the measures (temporal infor-
mation) and, wind speed, air temperature, air pressure and humid-
ity of the air (meteorological variables). The output or target
variable was net radiation. Table 1 shows the statistics of the input
and output variables statistics in each analyzed data set.

The criterion used for choose the best neural model was that
based on the lowest value of the mean absolute error, MAE, in
the validation set, this index has been used because it is more ro-
bust to outliers than the RMSE (Root Mean Square Error). Fig. 4
shows the representation of net radiation predicted by the neural
network model and the actual values of net radiation for the two
stations (FESEBAV and VAS) and for training and validation sets.

Tables 2 and 3 show the statistical results obtained for the two
sets using the best neural model. In these tables the values of MAE,
RMSE and mean error (ME, which give an indication of possible
bias on the model) can be seen. The indexes (slope and intercept)
of linear regression between the measured net radiation values
and the network output (the parameter a define the slope of the
adjustment, and must be close to 1 and the parameter b also gives
an idea of possible bias on model).

One possible source for the difference between MAE and RMSE
obtained for the two sets, shown in Tables 2 and 3, is due to the
quickly and high variation, in a short period of time, in net radia-
tion that occur on specific days due to presence of clouds, mainly
in the second set (VAS). In VAS dataset, the months of May and
June 2008 were those in which net radiation values registered
were higher than 800 W/m2, reaching up to 1011.15 W/m2, while
M D H WS AT AP HR
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Fig. 6. Relevance of input variables. The inputs are: Month (M), Day (D), Hour (H
in FESEBAV dataset, the maximum net radiation value was
741.30 W/m2 (see 4). Despite this difference, the errors obtained
show that neural networks can be used as substitute for radiome-
ters, mainly in clear days, because the prediction errors committed
by neural networks can be assumed in the net radiation estimation
(Alados et al., 2003; Carrasco & Ortega-Farías, 2008).

Fig. 5 shows the values of net radiation for sunny days (in these
cases are regular profiles of net radiation) and others with cloudy
sky (irregular profiles) for the two data sets. The same figure shows
the prediction of neural models. It is found that the diurnal cycle of
net radiation, in cloudy days, have highly irregular shape, so the
prediction is quite difficult in these days; in fact most of the errors
committed by the model came from these days.

Table 4 shows the difference between the predictions in cloudy
days and cloudy free-days.

After evaluate the performance of the neural models using dif-
ferent error rates, the next step was assess the model running
through a sensitivity analysis (Gomez et al., 2006) to obtain the
most important variables for the model. This kind of analysis has
two objectives: (a) check the validity of the conclusions derived
from the model; these conclusions should be consistent with the
physical theory and (b) obtain new qualitative understanding of
the problem. In order to do it the variation in the model output
is determined when considering or not determined input variable.
If the variation is small it means that the input variable is not very
important to obtain the net radiation (the output variable). In an-
other case, if there is much difference in the model output, take
into account a specific input variable, or removing it, it means that
this variables is very important to the problem. The sensitivity
analysis of the model was determined in a experimental procedure.
In the first step was choosing the better 25 neural models. After
that the input variables, for both, FESEBAV and VAS data set, were
arranged in each model by its importance. Finally a boxplot of the
input variables position in each of the 25 models is made, Fig. 6.

Fig. 6 shows that the most important variables for the neuronal
model are: atmospheric pressure, month, hour and air tempera-
ture. However the relevance of a variable sometimes can be
masked by other correlated variable, and the atmospheric pressure
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), wind speed, air temperature, atmospheric pressure and relative humidity.
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and air temperature are correlated variables. But it is important
highlight that the net radiation at surface depends on surface
atmospheric pressure rather than air temperature. Atmospheric
pressure is a parameter that is strongly correlated with cloud cover
(low pressure indicates more clouds and high pressure indicates
less cloud). Thus, atmospheric pressure is an important variable
in the radiation balance at the surface because the shortwave
and longwave radiation at surface are strongly dependent on cloud
cover fraction (Meetschen, van den Hurk, & Drusch, 2004).
5. Conclusions

Net radiation measure is important for the analysis and study of
climate, but the devices used to do this are very expensive and dif-
ficult to manage requiring further constant care in the field. This
paper demonstrates the ability of neural models to replace the
use of radiometers for the measurement of surface net radiation.
Using neural models and conventional weather variables can be
estimated net radiation with an acceptable error without using
expensive and costly radiometers. A sensitivity analysis has been
carried out in order to obtain the importance of the variables and
has been demonstrated that the neural model are valid from a
qualitative point of view (its quantitative performance has been
demonstrated using error measures). The conclusions drawn about
the importance of the variables have physical meaning and agrees
with the theory about that.
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