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Paulo Gonçalves de Sousa Junior , Roberta Bussons Rodrigues Valério , Juliana de França Serpa ,
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Highlights 

 The bibliometric method is used to evaluate hydrothermal gasification.  

 There is a growing interest in hydrothermal gasification research.  

 VOSviewer and CiteSpace are used to analyze 331 articles.  

 Comprehensive guidelines are given for hydrothermal gasification research.  

 Related technologies such as hydrothermal liquefaction and pyrolysis are evaluated. 
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Abstract  

Several researchers around the world have been investigating the use of supercritical fluids 

incorporated into the process to create a method known as hydrothermal gasification (HTG). 

Thus, the present study aims to evaluate what has been produced regarding biofuels produced 

from HTG. A bibliometric analysis of the Web of Science (WoS) database was performed for 

articles published between 2006 and 2022. In the first analysis, 331 articles were identified, 

and refined analyses for 320 and 311 publications of the Web of Science Core Collection 

database (2006- 2022) were performed using VOSviewer, CiteSpace, and Microsoft Excel. 

The year 2022 had the highest number of articles, with 54 publications, followed by 2021 and 

2015 with 45 and 31 publications, respectively. The three journals with the most significant 

impact were Bioresource Technology, Algal Research: Biomass Biofuels And Bioproducts, 

and Biomass & Bioenergy, with TPs of 26, 18, and 17, respectively. China, the USA, and 

Canada represented 11.48%, 10.89%, and 7.52% of the total publications. Investments in 

research on supercritical fluids and carbonization should be more significant in countries that 

publish more. Much research still needs to be done for the advancement of the area, as 

evidenced by the low number of publications. Future studies should focus on related 

technologies such as liquefaction and pyrolysis  

Keywords: supercritical fluids, hydrothermal gasification, Web of Science, citeSpace, 

VOSviewer, biofuel. 
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Abbreviation full term 

HTG – Hydrothermal gasification  

WoS – Web of Science  

PRISMA – Preferred Reporting Items for Systematic Reviews and Meta-Analyses  

TPs – Total Publications 

JC – Journal Citation 

TC – Total Citations 

ACY – Average Citations by Year 

IF – Impact Factor 

APPY – Average Publications Per Year 

CC – Citation by Country 

RIO+20 – United Nations Conference on Sustainable Development   

MPa – Mega Pascal  
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1 INTRODUCTION 

Since ancient times, humans have created and modified their environment to improve their 

safety and quality of life [1]. For a long time, simple fuels were used to generate fire to meet 

their energy needs; however, the discovery of fossil fuels, processes, and scientific advances 

led to the Industrial Revolution and new ways to harness this energy [2-4]. 

Among the characteristics of fossil fuels, their high energy density and versatility 

attract considerable attention worldwide. However, these resources are exhaustible and have 

associated environmental problems [5-7]. The increase in the concentration of carbon dioxide 

gas in the atmosphere due to combustion, one of the main reasons for the increase in global 

temperature through the greenhouse effect, is one of the main problems associated with it [8-

11]. 

In this sense, new ways are needed to explore more renewable energy, although the 

investment is more significant and financially less attractive [8]. To produce them, a suitable 

feedstock must be selected based on intrinsic factors, which are the situation of the 

environment in which it is intended to be produced [9]. When used to produce some form of 

energy, this feedstock is called biomass [10-13]. 

There are two basic types of energy—the first is traditional biomass, which differs 

from modern biomass (the second type of energy) in that it uses primitive, unsustainable 

methods standard in some isolated communities in Africa and Asia, and regions Latin 

America [14]. Modern biomass is considered sustainable because it is one of the products 

used to produce electricity or charcoal [15]. In addition, the proportion of biomass used in 

different regions of the world, whether traditional or modern, can vary greatly depending on 

their level of development—from 2% in OECD countries to 60% in some areas of Africa 
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[16]. 

The possibilities of biomasses are many, among which plant biomass stands out, 

which is an indirect way of producing energy from the sun by converting chemical energy 

through photosynthesis [17]. Plant biomass can be classified into two classes based on its 

constitution: lignocellulosic materials (e.g., lignin, cellulose, and hemicellulose) or low-

stability organic components (e.g., lipids, proteins, simple polysaccharides) [18-20]. 

Additionally, noteworthy are the groups resulting from the use of organic waste, which, 

although not strictly natural, have the potential to produce biofuels [21]. 

Biofuels have been a promising alternative source to replace fossil fuels. Their first 

generation produced these from various consumable crops such as corn, ethanol, and other 

vegetable oils [12-15]. After field development, biofuels were produced from lignocellulosic 

and other non-edible oils and crops [19,20]. They were making biofuels even more favorable 

to environmental and social development. Although some countries still need to adapt the use 

of second-generation biofuels better [21,22]. 

In Brazil, sugarcane for ethanol production has been a reality for several decades, 

despite the obstacles of working with a food-based raw material, first-generation biofuel 

production. In addition to this problem, due to the high energy potential of sugarcane, it is 

common for mills to generate excess electricity, which, although sold to regional electricity 

companies, is a condition that must be better controlled [22]. A parallel solution is to control 

the energy cycle so that it does not act wastefully in any way [23]. 

The application of the gasification process can make possible the co-production of 

several products, including electricity [24, 25], liquid fuels [26], chemicals [27], and the 

removal or minimization of potentially polluting products [28]. 
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Gasification aims to produce synthetic gas for use in high-efficiency gas turbines. 

Many authors emphasize that since research is still early, exploring gasification may be 

advantageous, especially for small producers in remote areas where there is still a need to 

produce energy as heat and electricity [16,29-31]. Several techniques have been implemented 

to improve gasification yields, thus drawing attention to the incorporation of gasification into 

supercritical fluid systems and transforming it into a new strategy for extractive processes 

called hydrothermal gasification or high-pressure gasification  (HTG) [32-36].  

The present study aims to evaluate, by means of bibliometric analysis of the Web of 

Science (WoS) database, from 2006 to 2022, the development processes and prospects for 

future biofuel production research by hydrothermal gasification. In doing so, we aim to 

understand how HTG influences literary production regarding biofuels. We also intend to 

answer the following questions RQs: 

 RQ1: How has scientific production been in research on HTG-produced biofuels from 

biomass and organic waste? 

 RQ2: What are the main research hotspots (keywords) used in this research? 

 RQ3: Who are the seminal founders (historical emergence of different perspectives) in 

HTG biofuel production research? 

 RQ4: What are the main subfields and emerging themes in research on HTG biofuel 

production? 

In an attempt to understand the process of approaching the issue, the studies produced 

over the years were quantified (Figure 1). 

Figure 1 – Distribution of publications on biofuel production from hydrothermal gasification 

between 2006 and 2022. 
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There has been an increase in research since 2012 (Figure 1). This may be because 

RIO+20 promoted more meaningful investments in the green economy, intending to 

contribute to poverty eradication and opportunities for sustainable development and economic 

growth. In this way, RIO+20 has expanded pathways that allow for real social inclusion, 

improve the well-being of communities, create new jobs, and contribute to preserving the 

Earth’s ecosystems. [37, 38]. 

The bibliometric analysis allows the reader to understand the overview of the studies 

carried out worldwide, the institutions promoting research, and the authors focusing on the 

content. It also allows the analysis of the total number of publications, citations, and impact 

factors, among other parameters [39]. To the authors' knowledge, this is the first research in 

the literature on the bibliometric analysis of biofuels through hydrothermal gasification, 

providing the scientific community with a systematic mapping analysis on the subject. 
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2 METHODOLOGY 

A systematic analysis of scientific mapping was adopted according to Catumba et al. [40] and 

Sales et al. [41]. The survey obtained according to the questioning of the RQs presented 

studies from different parts of the world, institutions, and authors, based on citations, 

publications, impact factors, and other parameters. In addition, to provide an image of the 

trends and perspectives of how the topic of biofuels through hydrothermal gasification 

evolves in the scientific community, a grouping by clusters is shown, according to Ranjbari et 

al. [42]. 

2.1 Data source 

In this study, data for bibliometric analysis were obtained from the Web of Science (WoS) 

database because many authors cite it as an essential research database in various fields of 

knowledge. [40, 41]. The search criteria are shown in Figure 2. 

Figure 2 – Structure representing the search and analysis criteria. 
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The keywords “hydrothermal,” “gasification,” and “biofuel” were searched on 

November 10, 2022. The initial search retrieved articles published between 2006 and 2022. 

Articles published in English were screened according to the Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA) statement [42-44]. Papers that did not 

include all the information on the platform, were presented at conferences, and were still in 

preprint format were excluded. 

2.2 Data analysis 

The free software CiteSpace (version 6.1. R4 Basic) was used to create the bibliometric maps. 

CiteSpace is software that supports the visualization and construction of bibliometric maps. 

The data obtained from WoS and compiled in CiteSpace allowed the construction of maps of 

journals, countries, institutions, authors, and keywords based on the correlation data. In 

addition, Microsoft Excel (Microsoft Office 365
®

) spreadsheets were used for data analysis 

and plotting. 
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3. RESULTS AND DISCUSSION 

To respond more clearly to the RQs of the study, the results obtained are presented in the 

sections: Distribution of Scientific Journals; Distribution by Country and Institution; 

Quantitative analysis of cited references [Ranjbari et al. 2022]. 

3.1 Distribution of Scientific Journals 

Through the 311 published papers [32-36, 45-350], 38 different journals were found (an 

average of 8.18 articles per journal and 19.44 articles per year). From these numbers, one can 

see a scientific interest in HTG-produced biodiesel. For a more detailed analysis, please see 

Table 1. 

Table 1 – Ranking of the 12 journals that have published the most on biofuel production by 

HTG between 2006 and 2022. 

N 
JOURNAL 

TITLE 
TPs % JC TC ACY COUNTRY IF APPY 

1 
Bioresource 

Technology 
26 8,36 59,35 1543 96,438 England 11.889 1,625 

2 

Algal Research: 

Biomass 

Biofuels And 

Bioproducts 

18 5,79 42,00 756 47,250 Netherlands 5,267 1,125 

3 
Biomass & 

Bioenergy 
17 5,47 83,18 1414 88,375 England 5,610 1,062 

4 

Renewable & 

Sustainable 

Energy Reviews 

17 5,47 151,59 2577 161,063 England 14.982 1,062 

5 

Biofuels 

Bioproducts & 

Biorefining 

14 4,50 72,07 1009 63,063 England 4.102 0,875 

6 Fuel 14 4,50 74,50 1043 65,188 England 6,609 0,875 

7 Energies 14 4,50 102,00 1428 89,250 Switzerland 3,004 0,875 

8 Journal Of 

Supercritical 
12 3,86 55,00 660 41,250 Netherlands 4.577 0,750 
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Fluids 

9 Energy & Fuels 11 3,54 53,00 583 36,438 USA 3.605 0,687 

10 

Science Of The 

Total 

Environment 

8 2,57 150,50 1204 75,250 Netherlands 7.963 0,500 

11 Energy 7 2,25 51,57 361 22,563 England 7,147 0,437 

12 
Fuel Processing 

Technology 
6 1,93 64,83 389 24,313 Netherlands 7,033 0,375 

TPs = Total Publications; % = Proportion; JC = Journal Citation; TC = Total Citations; ACY 

= Average Citations by Year; IF = Impact Factor in 2020; APPY= Average Publications Per 

Year. 

Through the quantitative analysis of the publications of these 12 journals, we observed 

that 164 of the 311 articles were analyzed (approximately 53% of the total articles). The 

journal Bioresource Technology has the most significant number of articles published on the 

subject (28 publications), representing slightly over 8% of the total publications analyzed and 

reaching 1,543 citations. 

The journal has the second-highest impact factor (surpassed only by Renewable & 

Sustainable Energy Reviews, which ranks 4
th

 in total publications). Science of the Total 

Environment, Energy, and Fuel Processing Technology ranked 10
th

, 11
th

, and 12
th

, 

respectively, and have higher impact factors than the other journals not mentioned. 

Characteristics such as these underscore the difficulty of producing articles in higher-impact 

journals, even if the results are promising. 

3.2 Distribution by Country and Institution 

Understanding the importance of the number of countries for a bibliometric analysis relates to 

the relevance of the topic for that location; thus, it can serve as an indication of possible 

trends in the number of production locations [39]. Thus, the 12 countries with the most 

publications were identified (Table 2). 
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Table 2 – The 12 most productive countries regarding HTG-produced biodiesel between 2006 

and 2022. 

N COUNTRY TPs % TC CC ACY H-Index 

1 CHINA 58 11,485 6.580 113,45 658,00 28 

2 USA 55 10,891 3.269 59,44 326,90 32 

3 CANADA 38 7,525 1.652 43,47 165,20 20 

4 INDIA 29 5,743 981 33,83 98,10 15 

5 GERMANY 22 4,356 737 33,50 73,70 11 

6 ENGLAND 22 4,356 1.848 84,00 184,80 13 

7 ITALY 18 3,564 828 46,00 82,80 11 

8 MALAYSIA 18 3,564 731 40,61 73,10 11 

9 BRAZIL 14 2,772 382 27,29 38,20 9 

10 JAPAN 13 2,574 393 30,23 39,30 7 

11 AUSTRALIA 12 2,376 484 40,33 48,40 8 

12 FRANCE 12 2,376 546 45,50 54,60 8 

TPs = Total Publications; % = Proportion; CC = Citation by Country; TC = Total Citations; 

ACY = Average Citations by Year. 

 The 12 most productive countries account for 61.60% of the total publications of the 

66 countries analyzed. China, with 61 publications, concentrates slightly over 11.7% of the 

total, followed by the United States (60 publications and 11.5%). H-index is relevant and 

represents the qualitative evaluation of researchers, analyzing the impact of each researcher 

[351]. In this work, the impact factor of American researchers exceeds by a margin of 4 

points, even with fewer researchers. Figure 3 illustrates the demographics of published papers 

through a map. 

Figure 3 – Geocoding of the organizations that publish the 311 articles analyzed. 
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Figure 3 shows that research is highly developed in several countries (e.g., China, the 

United States, Canada, and India). Figure 4 shows a network map of the collaborative links 

between the scientific groups analyzed. 

Figure 4 – National collaboration network of articles regarding HTG-produced biofuels 

published between 2006 and 2022 on WoS. The thickness of a line connecting two countries 

indicates the frequency of co-authorships (thicker lines mean more published articles), and the 

color clusters indicate groups of countries with a high level of collaboration. 
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China is the most collaborative country, followed by India (Figure 4). Despite the 

large amount of research carried out by the United States, there is little interaction between 

North American researchers and non-English speaking researchers. 

The analysis shows that 568 institutions are associated with 1,352 authors from 66 

countries who have written 331 published papers. Although many institutions are interested in 

the topic, 394 institutions (approximately 64.4%) have only one publication in the field, 

which is characterized by high institutional dispersion; for example, only 45 institutions have 

more than four published papers. In particular, the University of Saskatchewan in Canada 

stands out as the institution with the most significant number of published papers on the topic 

(N = 17), followed by the U.S. Department of Energy (N = 16). To understand how these 
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institutions interact, a map of the collaborative network between the institutions was created 

(Figure 5). 

Figure 5 – Map of collaboration among institutions. The thickness of a line connecting two 

organizations indicates the frequency of co-authorships (thicker lines mean more joint 

published articles), and the color clusters highlight groups of institutions with a high level of 

collaboration. 

 

We used the citations of the papers to observe how they interacted. A total of 67 

institutions (11.82%) were the most cited. It can be observed that even the institutions with 

the most significant number of published articles have few interactions, probably because 

their publications are primarily in low-impact journals. 

Considering an average density of approximately 4.5 authors per article and 2.4 

authors per institution, these data confirm a high dispersion of researchers. If only three 

authors with at least 10 publications are selected, the result is only three. Among them, Sonil 
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Nanda stands out with the most significant publications (18 papers and 639 citations in other 

articles). To better understand how the authors are articulated, Figure 6 summarizes a map of 

collaboration among the authors. 

Figure 6 – Map of collaboration among authors. The thickness of a line connecting two 

authors indicates the frequency of co-authorships (thicker lines mean more published articles), 

and the color clusters illustrate groups of authors with a high level of collaboration. 

 

According to the map, Nanda Sonil has the largest network of connections and the 

highest number of articles. Observing the trend of other research in the area, one would expect 

that small groups in this type of map would be obtained from small groups of researchers 

from the same country; however, the trend was different. The prominent authors interact with 

each other and create a system that includes all the other authors. 

3.3 Quantitative analysis of cited references 
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Among the factors that most contribute to disseminating a scientific article, we can highlight 

the selected articles, their references, authors, number of citations, and the most relevant 

journals [352]. Table 3 shows the 12 most cited publications in the analyzed period. 

Table 3 – Main publications on biofuel production by HTG between 2006 and 2022. 

NO. OF 

CITATIONS 
YEAR 

1
st
 

AUTHOR 
TÍTLE JOURNAL COUNTRY 

1,408 2008 Petterson 

Thermochemical 

biofuel 

production in 

hydrothermal 

media: A review 

of sub- and 

supercritical 

water 

technologies 

Energy & 

Environmental 

Science 

USA 

540 2015 Eliott 

Hydrothermal 

liquefaction of 

biomass: 

Developments 

from batch to 

continuous 

process 

Bioresource 

Technology 
USA 

527 2010 Brown 

Hydrothermal 

Liquefaction and 

Gasification of 

Nannochloropsis 

sp. 

Energy & 

Fuels 
USA 

444 2013 Barreiro 

Hydrothermal 

liquefaction 

(HTL) of 

microalgae for 

biofuel 

production: State 

of the art review 

and future 

prospects 

Biomass & 

Bioenergy 
USA 

370 2014 Tekin 

A review of 

hydrothermal 

biomass 

processing 

Renewable & 

Sustainable 

Energy 

Reviews 

Turkey 
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365 2008 Kruse 

Supercritical 

water 

gasification 

Biofuels 

Bioproducts & 

Biorefining 

Germany 

351 2011 Meyer 

Technical, 

Economical, and 

Climate-Related 

Aspects of 

Biochar 

Production 

Technologies: A 

Literature 

Review 

Environmental 

Science & 

Technology 

Switzerland 

336 2012 Biller 

Nutrient 

recycling of 

aqueous phase 

for microalgae 

cultivation from 

the hydrothermal 

liquefaction 

process 

Algal 

Research-

Biomass 

Biofuels and 

Bioproducts 

Dernmark 

331 2015 Chen 

Thermochemical 

conversion of 

microalgal 

biomass into 

biofuels: A 

review 

Bioresource 

Technology 
China 

321 2013 Eliott 

Process 

development for 

hydrothermal 

liquefaction of 

algae feedstocks 

in a continuous-

flow reactor 

Algal 

Research-

Biomass 

Biofuels and 

Bioproducts 

USA 

292 2008 Eliott 

Catalytic 

hydrothermal 

gasification of 

biomass 

Biofuels 

Bioproducts & 

Biorefining 

USA 

190 2015 Kruse 

Water - A magic 

solvent for 

biomass 

conversion 

Journal of 

Supercritical 

Fluids 

Germany 

 

Table 3 shows many highly cited publications by North American authors and 
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highlights Eliott as the first author in three of them and coauthor in one, although he is not 

among the authors with the most publications. North American authors maintain relationships 

to publish more. Compared with Figure 6, the authors with the highest number of publications 

in the field, except Kruse and Barreiro, are not among the authors with the highest number of 

citations. Energy & Environmental Science’s impact factor influenced the dissemination of 

the research (39,714 points), becoming the scientific journal with the highest score among 

those recorded in the present bibliometric analysis. 

4 HOT RESEARCH TOPICS 

In order to obtain a mapping of trends and future perspectives, an analysis of keywords and 

research areas is adopted, which allows the evaluation of the formed clusters. 

4.1 Quantitative analysis of frequent Keywords 

In addition to the points already mentioned (i.e., authors, affiliations, and impact factors), 

keywords are also important because, in addition to being a search tool in bibliographic 

queries, they present the main concepts that are related to the topic [353]. Table 4 shows the 

ranking of the top 12 keywords used in this study. 

Table 4 – Frequency analysis of the 12 most used keywords in research on biofuel production 

by HTG between 2006 and 2022. 

N KEYWORDS FREQUENCY % 

1 GASIFICATION 115 3.960 

2 BIOMASS 90 3.099 

3 HYDROTHERMAL LIQUEFACTION 73 2.514 

4 BIO-OIL 69 2.376 

5 HYDROGEN-PRODUCTION 62 2.135 

6 SUPERCRITICAL WATER GASIFICATION 52 1.791 

7 BIOFUEL PRODUCTION 52 1.791 
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8 CONVERSION 46 1.584 

9 SUPERCRITICAL WATER 43 1.481 

10 LIGNOCELLULOSIC BIOMASS 43 1.481 

11 MICROALGAE 39 1.343 

12 SEWAGE-SLUDGE 37 1.274 

 

A total of 2,904 keywords were obtained from 881 terms. Although different, many 

keywords had the same meaning, such as “supercritical water gasification” (6
th

 keyword and 

52 hits) and “supercritical water” (9
th

 keyword and 43 hits), and “pyrolysis fast” (13
th

 

keyword and 35 hits) and “pyrolysis” (14
th

 keyword and 31 hits). Although they have the 

same meaning, they were treated as independent terms. 

Two of the three keywords selected in the search tool were ranked in the first three 

positions, especially in the 3
rd

 position, which considers fuel liquefaction. The term “biofuel” 

appears only in the 7
th

 position with 52 hits. The 34
th

 position is occupied by the term 

“biofuel” (N = 15), the 40
th

 by the keyword “biofuels” (N = 14), the 114
th

 by the term “solid 

biofuel production” (N = 4), the 194
th

 by the term “biofuel production” (N = 2), and four other 

matches with only one citation. 

4.2. Research areas 

In addition to plotting graphs and creating maps, CiteSpace can be used to analyze and 

organize research data and understand possible trends in the field, as the software allows 

visualization of what is being developed [354]. Through CiteSpace, we can identify more 

projectable data based on various factors (e.g., keywords). Thus, CiteSpace is one of the most 

essential tools for developing viable methodologies for biofuel production using HTG 
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processes [354, 355]. Figure 7 shows the top five cocitation sets among the articles related to 

the topic of the study. 

Figure 7 – Map of the relationship between citations on biofuel production through HTG 

between 2006 and 2022. 

 

In Figure 7, four major groups can be observed—“hydrothermal liquefaction”, 

“pyrolysis”, “supercritical water”, and “hydrothermal carbonization”. We have the main 

keywords within these groups and how they are interconnected and related. Although the 

“pyrolysis” group has a cluster with a higher number of hits (e.g., “gasification” and 

“biomass”), the techniques are less numerous than those addressed within “hydrothermal 

liquefaction”. 

4.2.1 Research fields 

Cluster #0 has "hydrothermal liquefaction" as its main keyword. Hydrothermal 

liquefaction involves the conversion of biomass at high pressure and high temperature using 
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water as a solvent and other cosolvents as necessary [147, 210, 220, 235, 356-357]. In 

hydrothermal liquefaction, there is a catalyst that, together with water and other solvents, 

allows secondary processes such as hydrolysis, fragmentation, and repolymerization of the 

biomass to take place, prioritizing the formation of liquefied products from products derived 

from different feedstocks [82, 292, 335, 358]. 

A predominance of lipidic feedstocks, refined or not, of animal and plant origin, 

derived from discards or residues from other processes [124, 187, 241, 291, 335]. According 

to the analysis of the articles published on this topic, algae are used to produce oils that are 

converted into biofuels with low cost and high yield. In the second group, algae from sewage 

treatment or other liquid waste are used to reduce pollutants and produce biofuels [130], [250-

252, 289]. Most studies present the hydrothermal liquefaction process in a temperature range 

of 300°C to 450°C and pressure between 10 and 20 MPa. 

Cluster #1 has the keyword “pyrolysis”. Pyrolysis is a biomass decomposition proce at 

high temperatures in the presence of oxygen and other compounds in the gaseous, liquid, and 

solid phases [133, 163, 359-360]. The gas comprises mainly CO, CO2, hydrogen, and 

hydrocarbons with low molar mass. The liquid phase of the product comes from gas 

condensation, known as pyroligneous liquid, while the solid phase is called biochar [113, 211, 

308, 361-363]. Thus, Cluster #1 aims to discuss the decomposition process to obtain a new 

product and the analytical process to identify the composition of the phases, aided by other 

techniques to study the components [364]. Another completely different technique is 

microwave-induced pyrolysis to obtain a purer bio-oil. In the vast majority of works in this 

study, pyrolysis is just another process among the extraction, purification, and conversion of 

oil into biofuel [55, 316, 365-367]. 
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Considering this type of occurrence in several keywords, Figure 7 illustrates how these 

keywords reflect and relate to each other. 

4.2.2 Emerging trends 

Looking at the emerging proposals, we have two clusters that show evident 

differentiation characteristics (number 2). Supercritical fluid screening techniques have 

proven to be increasingly applicable to current technologies. However, many authors note that 

while it has shown value in bench tests and for high value-added products, its use 

exponentially increases the price of the final product, making it unattractive for application in 

biofuel production in the current scenario [52, 74, 105, 368-370]. 

A supercritical fluid is an extractive process consisting of a system of liquids and 

gases confined in a given space and remaining in equilibrium [88, 248, 371]. By heating the 

system, the physical and chemical properties (density, rise, refractive index, thermal 

conductivity, etc.) of the liquid/gas interface begin to interact and converge toward a common 

point and become equally as well as characterize this situation called the critical point and 

create a single supercritical phase [46, 127, 131, 370, 372-373]. Therefore, a supercritical 

fluid is any substance that, under conditions of pressure and temperature above its critical 

criteria, remains stable [370-371, 374]. 

Cluster #3 has the keyword “hydrothermal carbonization”, a thermochemical 

conversion process at moderate temperatures. Hydrothermal carbonization uses lipid- and 

carbohydrate-rich materials or lignocellulosic feedstocks as biomass to produce a product 

known as solid hydrothermal carbon [240, 248, 324]. 

Many works use hydrothermal carbonization, especially microwave-assisted 

hydrothermal carbonization, as a possibility to replace pyrolysis techniques. It is considered 
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more promising because it can be applied to organic materials with high carbon content and 

feedstocks that do not necessarily undergo a previous drying process; in addition, the average 

pressures and temperatures are lower, and the products obtained, depending on the purpose, 

can be more promising than those of pyrolysis [58, 153, 189, 215, 310]. 

As described in Cluster #0, the plants analyzed use hydrothermal carbonization, 

primarily as a method of treating and reusing wastewater components, industrial wastes (such 

as sawdust and ash), and byproducts of other extractive processes, as well as feedstocks such 

as grains, vegetables, and animal remains [56, 89, 189, 227, 321]. Hydrothermal carbonization 

performs well with wet and residual biomass feedstocks as with supercritical fluids, but the 

process becomes too costly for power generation [118, 139]. 

4.3 Quantitative analysis of categories and areas of knowledge 

The articles analyzed the production of biofuels using HTG are grouped into a total of 

38 knowledge areas, according to the Web of Science database (Table 5). 

Table 5 – Frequency analysis of the 12 categories with the most articles in research on biofuel 

production by HGT between 2006 and 2022. 

CATEGORIES OF WEB OF SCIENCE FREQUENCY 

Energy Fuels 198 

Engineering Chemical 97 

Biotechnology Applied Microbiology 84 

Environmental Sciences 53 

Agricultural Engineering 45 

Green Sustainable Science Technology 44 

Engineering Environmental 35 

Chemistry Multidisciplinary 26 

Chemistry Physical 21 

Thermodynamics 21 
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Mechanics 12 

Chemistry Applied 8 

 

The main category of articles is “energy fuels”, which is quite acceptable since one of 

the search terms was “biofuel” (Table 5). In addition, “chemical engineering” is observed in 

second place, followed by “biotechnology applied to microbiology”, which stands out for 

many researchers that used feedstocks for fuel production, organic waste, and water for reuse 

and wastewater. 

5 OPPORTUNITIES AND PROSPECTS 

The production cost of biofuels, and the use of first-generation biomass products, is still an 

associated economic challenge [375-377]. Using biomass as a generator of biofuels can lead 

to loss of the food supply chain, mainly when used in emerging countries [378, 379]. 

The transition from the production of first-generation biofuels to second-generation 

biofuels is necessary. However, the industry is a plural segment with its associated challenges. 

Thus, as this transition gains strength, other measures to reduce associated costs are 

employees [380–382]. 

The circular bioeconomy and the principles of biorefinery show that one of the 

transition opportunities is the use of biomass from macroalgae [383, 384]. There is a great 

advantage in the use of macroalgae over the production of biomass, in addition to being a 

component that does not interfere in the food chain, which is widely accessed in the 

production of species [385, 386]. Thus, the literature shows a growing perspective of 

implementing third-generation biorefineries capable of processing aquatic biomass through 

applications of hydrothermal system engineering platforms [387–389]. 

                  



27 

 

The use of first-generation biomass for the production of biofuels can also generate a 

logistical problem, such as, for example, excessive production of biomass that has not been 

transformed into biofuel [390, 391]. In addition to bioeconomic waste, this problem brings 

unnecessary food waste. Another opportunity that the clusters of this research showed as a 

perspective is the use of anaerobic digestion systems integrated with pyrolysis to treat food 

waste [392, 393]. The use of only anaerobic digestion of waste produces biogas with the 

presence of CO2, hydrogen sulfide (H2S), ammonia (NH3), and volatile organic content 

(VOCs) that reduce the quality and calorific value [394–396]. Pyrolysis is one of the options 

that can be integrated into the digestion system that effectively improves the biogas product 

[397, 398]. 

The opportunities and prospects for the growth of biorefineries, with platforms for 

hydrothermal systems and biogas products from pyrolysis, raise studies on the subject of 

gasification, generating better results in energy use in the natural gas network, diesel engines, 

cogeneration (CHP) for the production of electric and thermal energy [399, 400]. 

6 RESEARCH LIMITATIONS 

Systematic reviews present data and conclusions within a limited research universe, the 

amount of data found, formed clusters, and the research period. Although limited, the analysis 

was conducted to provide future directions for the area's development, showing more cited 

articles, authors, and more productive countries. For more consolidated conclusions, it is 

advisable to use tools such as text mining use of other databases, not limited to WoS, in 

addition to a broader period, identifying the initial research in the area. 

The use of patent data and gray literature review articles are excellent means of 

providing more data for the work, since in this systematic bibliometric review, with the 
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keywords used (“hydrothermal”, “gasification”, and “biofuel”), the amount of data is still in 

its initial phase. 

7 FINAL CONSIDERATIONS 

A comprehensive overview of a systematic bibliometric review was provided with the 

keywords “hydrothermal”, “gasification,” and “biofuel”. Three hundred thirty-one articles 

were presented, which were refined to 311 articles. The RQs questions were analyzed using 

WOSviewer, CiteSpace, and Microsoft Excel (Microsoft Office 365
®

) 

The three journals with the most publications on the topic were: Bioresource 

Technology; Algal Research: Biomass Biofuels And Bioproducts; Biomass & Bioenergy; 

they are from England, Netherlands, and England, respectively. However, the most productive 

countries were China, USA, and Canada, not being the country of any of the first three 

journals. The most productive authors also cooperated well with peers, showing that this 

theme has been produced globally.  

The analysis of the 12 most cited keywords identified the formation of 4 large clusters: 

hydrothermal liquefaction, pyrolysis, supercritical water, and hydrothermal carbonization. 

These showed a possible direction in which the research has been heading. From future 

perspectives, it is possible to identify that the studies are focused on bioeconomics with 

subtopics related to biorefinery processes, hydrothermal processes, gasification, and pyrolysis. 

Thus, applying bibliometric techniques proved to be an instigating tool to identify the 

main characteristics of articles on biofuel production using HTG. 
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FIGURE LEGENDS 

Figure 1 – Distribution of publications on biofuel production from hydrothermal gasification 

between 2006 and 2022. 

Figure 2 – Struture representing the search and analysis criteria. 

Figure 3 – Geocoding of the organizations responsible for the publication of the 311 articles 

analyzed. 

Figure 4 – National collaboration network of articles regarding HTG-produced biofuels 

published between 2006 and 2022 on WoS. The thickness of a line connecting two countries 

indicates the frequency of co-authorships (thicker lines mean more published articles), and the 

color clusters indicate groups of countries with a high level of collaboration. 

Figure 5 – Map of collaboration among institutions. The thickness of a line connecting two 

organizations indicates the frequency of co-authorships (thicker lines mean more joint 

published articles), and the color clusters highlight groups of institutions with a high level of 

collaboration. 

Figure 6 – Map of collaboration among authors. The thickness of a line connecting two 

authors indicates the frequency of co-authorships (thicker lines mean more published articles), 

and the color clusters illustrate groups of authors with a high level of collaboration. 

Figure 7 – Map of the relationship between citations on biofuel production through HTG 

between 2006 and 2022. 

 

TABLE LEGENDS 

Table 1 – Ranking of the 12 journals that have published the most on biofuel production by 

HTG between 2006 and 2022. 

Table 2 – The 12 most productive countries in terms of HTG-produced biodiesel between 

2006 and 2022. 

Table 3 – Main publications on biofuel production by HTG between 2006 and 2022. 

Table 4 – Frequency analysis of the 12 most used keywords in research on biofuel production 

by HTG between 2006 and 2022. 

Table 5 – Frequency analysis of the 12 categories with the most articles in research on biofuel 

production by HGT between 2006 and 2022. 
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