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Introduction

The vehicle-routing problem (VRP) is a hard and widely studied
combinatorial optimization problem. In the last decades, several
variants of the classical problem have been proposed.

A particular variant has received some attention over the last
years: the school bus routing problem (SBRP) (Park and Kim 2010).
In the SBRP, the process of route generation must consider bus stop
locations (boarding and arrival points for students), the timewindow
for the transport, and student allocation for the stops. Because of
these characteristics, the SBRP introduces additional difficulties to
a problem that is already notoriously difficult.

For the resolution of the SBRP, Table 1 summarizes several
approaches proposed in the literature. On the basis of a literature
review, one can observe that the considered premises of the model-
ing lead to a different variant of the SBRP. As Li and Fu (2002)
pointed out, the SBRP seems to be problem dependent because of
its many peculiarities; therefore, there is no approach that dominates
the others in solving it. For example, whereas Dulac et al. (1980),
Chapleau et al. (1985), Bowerman et al. (1995), Fügenschuh (2009),

Riera-Ledesma and González (2012, 2013), and Schittekat et al.
(2013), along with this study, consider he walking distance as an
upper bound in the model, Bowerman et al. (1995) considered it
not only an upper bound but also one of the objectives of their multi-
objective optimization heuristic, which aims to minimize total stu-
dent walking distance.

Most of the literature proposes heuristic approaches to solve
the SBRP. The seminal paper by Newton and Thomas (1969) pro-
posed the first heuristic for the SBRP, which consisted of a two-step
procedure: first, the problem is solved as a traveling-salesman prob-
lem with a heuristic, generating a single route that visits all stops.
Second, using two simple algorithms, this single route is partitioned
to provide individual bus routes and schedules that satisfy all re-
straints. This method was improved by Newton and Thomas (1974)
by considering multiple schools.

Bennett and Gazis (1972) proposed a method similar to the
Clarke and Wright (1964) method, differing with it by considering
asymmetries in the matrix of shortest distances between stops, dif-
ferences in the origin and destination of buses, and requirements
pertaining to the comfort and safety of students. Verderber (1974)
also used the Clarke and Wright method to cluster stops to form the
route structure. However, they also noted the practical utility of the
method, which requires tools that a layperson can use to generate
reports and modify and update machine-produced results. Gavish
and Shlifer (1979) proposed a binary programming model for the
SBRP, basing it on the Clarke and Wright method but changing the
objective functions and some restrictions. They also applied their
method to the delivery problem, the school bus problem, the assign-
ment of buses to schedules, the combining truck trip problem, and
the traveling salesman problem. Dulac et al. (1980) evaluated sev-
eral techniques employed in SBRP, such as the Clarke and Wright
method, the Yellow (1970), insertion (Rosenkrantz et al. 1974), and
the Gillet and Miller (1974) methods, and compared results. They
concluded that each instance should be solved several times with
these different routing techniques, following with branch exchange
procedures, to ensure reliable solutions.

Chapleau et al. (1985) noted that the Clarke and Wright
method uses more buses than required because it minimizes the
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total distance traveled by a bus rather than the number of routes.
Therefore, they developed a heuristic that uses the “group first,
route second” routing strategy as in the sweep method proposed
by Gillet and Miller (1974). They reported results that indicate im-
provement in the overall design of the bus routes generated with
this approach, as shown by a decrease in the number of routes with-
out an increase in either the average walking distance or the average
route length per student.

Bowerman et al. (1995) took a very different approach com-
pared with earlier SBRP studies and proposed a multiobjective
heuristic that minimized number of routes, bus travel length, stu-
dent walking distance, varying number of students, and bus travel
length. The algorithm first clusters students into groups using a dis-
tricting algorithm and then generates a school bus route and bus
stops for each cluster by combining a set covering and a traveling
salesman algorithm.

Fügenschuh (2009) noted that earlier proposed methods did not
consider the possibility of changing school start times in order to
reduce the number of buses employed; nor did they consider stu-
dents changing buses. Therefore, he developed an integer program-
ming problem based on the vehicle-routing problem with time
windows to consider these issues. With this approach, it is possible
to reduce the number of deployed buses by 10–25%.

Riera-Ledesma and González (2012) addressed a family of
school bus routing problems involving simultaneously assigning
students to and designing bus routes for a set of bus stops. They
employed the Clarke and Wright method to generate initial solu-
tions and improved their model in Riera-Ledesma and González

(2013) by considering more constraints on bus routes, such as
maximum walking distance, maximum length a bus can travel, and
minimum number of students that a vehicle has to pick up.

Schittekat et al. (2013) presented a mathematical formulation
that integrates the student allocation and school bus routing prob-
lems in developing a quite robust approach for solving the SBRP.
However, they did not take into account an important characteristic
of the real-world problem: a fleet composed of different types of
buses (heterogeneous fleet).

Souza Lima et al. (2016) proposed five heuristics to address
the capacitated rural school bus routing problem featuring mixed
loads, a heterogeneous fleet, and the same school starting time.
However, they did not employ or compare their algorithms with
exact methods. In contrast the study discussed in this paper focused
on students living in high-density areas. In urban areas, the mixed-
load problem is not usual, so we did not study it. However, the
restraint employed in Souza Lima et al. (2016) of visiting a bus
stop exactly once would clearly detract from solutions obtained for
high-density areas. Therefore, we allowed a bus stop to be visited
by more than one bus. Furthermore, an alternative for considering
mixed loads is the mixed-load improvement algorithm proposed
by Park et al. (2012), which can be applied to a single-load plan
generated by traditional algorithms and converted into a mixed-
load plan using a simple relocation operator.

Caceres et al. (2017) found that most earlier studies focused on
deterministic routing problems that considered a known student
demand and a fixed travel time. Thus, they considered these param-
eters stochastic and then overbooked the buses to decrease the

Table 1. Approaches from the literature

References Strategy Objective function
Heterogeneous

fleet
Fleet
cost

Route
cost

Time
windows

Multiple
schools

Stop
multiple
buses

Maximum
walking
distance

Newton and Thomas (1969) Heuristic Minimize total bus travel time — — — X — X —
Bennett and Gazis (1972) Heuristic Minimize total bus and student

travel time
X — — — — X —

Verderber (1974) Heuristic Minimize total bus travel time X — — X — X —
Newton and Thomas (1974) Heuristic Minimize total bus travel time

and number of routes
X — — X X X —

Gavish and Shlifer (1979) Integer
programming

Minimize fleet and routing costs — X X X — — —

Dulac et al. (1980) Heuristic Minimize total bus travel length
and number of routes

X — — X — X X

Chapleau et al. (1985) Heuristic Minimize number of routes X — — — — — X
Bowerman et al. (1995) Heuristic Minimize number of routes, total

bus travel length, total student
walking distance, variation in
number of students, and variation
in total bus travel length

— — — — — — X

Fügenschuh (2009) Linear
programming

Minimize number of buses and
deadhead trips

— — — X — — X

Park et al. (2012) Mixed-integer
programming

Minimize number of buses X — — X X — —

Riera-Ledesma and
González (2012)

Mixed-integer
programming

Minimize number of routes, total
bus travel length, and variation in
total bus travel length

— — X — — — X

Riera-Ledesma and
González (2013)

Mixed-integer
programming

Minimize number of routes, total
bus travel length, and total
student walking distance

— — X — — — X

Schittekat et al. (2013) Matheuristic Minimize total bus travel length — — — — — — X
Souza Lima et al. (2016) Heuristic Minimize fleet and routing costs X X X X — —
Caceres et al. (2017) Dynamic

programming
Minimize number of buses and
total bus travel length

— X X X — X

This study Memetic
algorithm

Minimize fleet and routing costs X X X — — X X
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number of buses needed. They developed a dynamic programming
model to apply overbooking policies in a real-world school district.
To consider the uncertainty of the buses’ total travel time, they in-
cluded a constraint limiting the probability of being late to school.
Their results indicate desirable cost savings in terms of total num-
ber of buses used.

In order for public transport operators to generate optimal bus
headways, perfect-competition and imperfect-competition models
were formulated by Feng et al. (2016) for two bus routes to maxi-
mize every route’s operating profit. A mixed-integer linear pro-
gramming (MILP) model was developed by Pan et al. (2015) to
optimize service area and transit route planning concurrently for
a flexible feeder transit system serving irregularly shaped and gated
communities. Khakbaz et al. (2016) studied a new bus routing
problem formulation for the park-and-ride system. To determine
high-quality routes in acceptable computational times, they devel-
oped an efficient hybrid genetic algorithm and an ant colony opti-
mization algorithm. This study raised questions about whether
employing metaheuristics such as a genetic algorithm to solve the
SBRP could also return interesting results.

In this paper, we describe a new variant of the SBRP that takes
these issues into consideration, which we refer as the hetero-
geneous fleet school bus routing problem, or simply the HFSBRP.
To the best of the authors’ knowledge, there is no variant of the
HFSBRP in the literature that is similar to the one we have devel-
oped. The paper presents a memetic algorithm for the HFSBRP.
Regarding the problem under study, an innovative integer program-
ming formulation is described. By way of comparison with the
developed memetic algorithm, both a lower-bound technique and
a heuristic algorithm are presented. We carried out a series of com-
putational experiments, solving the proposed model using a state-
of-the-art integer programming solver. We used linear relaxation
to obtain the lower bounds on the bigger instances, where integer
programming had the worst performance. The computational evi-
dence suggests the need for heuristic algorithms to solve the prob-
lem within acceptable computational times. We evaluated three
algorithms with distinctive characteristics: greedy, genetic, and
memetic. Our proposed memetic algorithm accomplishes this goal
while producing near-optimal solutions.

The remainder of this paper is structured as follows. First, we
discuss a novel integer programming formulation for the HFSBRP.
Next, we present our memetic algorithm and its computational re-
sults. Finally, we offer conclusions and recommendations for future
research.

Mathematical Formulation

The proposed mathematical model for the HFSBRP variant
presents an objective function that corresponds to the global cost
to be minimized, which can be divided into variable and fixed costs.
The variable costs represent the total distance traveled by all buses
selected in a given solution, taking into account both the capacity
of each vehicle and the heterogeneity of the fleet. The number of
buses used in a given solution reflects the fixed costs. In the fol-
lowing paragraphs, notation is introduced before the proposed
model for the HFSBRP is introduced.

The sets are as follows:
• V = set of potential stops;
• V 0 = set of schools;
• S = set of students; and
• M = set of buses.

The parameters are as follows:
• cij = cost associated with arc (i, j);

• Sil = indicator variable that equals 1 if the lth student can walk to
the ith stop, and 0 otherwise;

• Ck = capacity of the kth bus; and
• Fk = fixed cost for the kth bus.

The binary decision variables are as follows:
• xijk ¼ 1 if the kth bus traverses the arc (i, j), and 0 otherwise;
• yik ¼ 1 if the kth bus visits the ith stop, and 0 otherwise; and
• zilk ¼ 1 if the lth student embarks at ith stop, and 0 otherwise.

The proposed variant can be formulated as follows:
[HFSBRP]
Minimize Z =

X

i∈V

Xj≠i

j∈V
cij

X

k∈M
xkij þ

X

k∈M
Fk

X

j∈V 0
xk0j ð1Þ

Subject to
X

j∈V
xkij ¼

X

j∈V
xkji ¼ yik ∀ i ∈ V; ∀ k ∈ M ð2Þ

Xi≠j

i;j∈Q
xkij ≤ jQj − 1 ∀ Q ⊆ V 0; ∀ k ∈ M ð3Þ

X

k∈M
zilk ≤ Sil ∀ l ∈ S; ∀ i ∈ V ð4Þ

X

l∈S

XSil¼1

i∈V
zilkCk ∀ k ∈ M ð5Þ

zilk ≤ yik ∀ i ∈ V; ∀ l ∈ S; ∀ k ∈ M ð6Þ
P
i∈V

P
k∈M

zilk ¼ 1 ∀ l ∈ S ð7Þ

yij ∈ f0; 1g ∀ i; j ∈ V; i ≠ j ð8Þ

xkij ∈ f0; 1g ∀ i; j ∈ V; i ≠ j; ∀ k ∈ M ð9Þ

zilk ∈ f0; 1g ∀ i ∈ V; ∀ l ∈ S; ∀ k ∈ M ð10Þ

The objective function [Eq. (1)] minimizes the sum of variable
costs (total distance traveled) and fixed costs (buses used). The set
of constraints [Eq. (2)] imposes that, if stop i is visited by bus k, the
arc (i, j) is traversed by bus k. The set of constraints in Eq. (3)
imposes the route connectivity of the kth bus. This set of constraints
also guarantees the elimination of subroutes. The set of constraints
in Eq. (4) guarantees that each student embarks only at the selected
stops. The set of constraints in Eq. (5) guarantees that the capacity
of the kth bus is not exceeded. The set of constraints in Eq. (6)
requires that student l does not embark at stop i and in bus k if
bus k does not visit stop i. The set of constraints in Eq. (7) guar-
antees that each student is picked up at most once by a bus. Finally,
the constraints in Eqs. (8–10) define the domain of the decision
variables.

Proposed Memetic Algorithm

The HFSBRP can be divided into three subproblems: student allo-
cation to stops, bus-routing generation and bus selection, consid-
ering a heterogeneous fleet of buses (different capacities). Based on
the proposed mathematical formulation, preliminary computational
experiments with the ILOG CPLEX solver (version 12.6.1) showed

© ASCE 04018018-3 J. Urban Plann. Dev.
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the necessity of heuristic algorithms for the solution of the problem.
Those experiments are described in a later section.

Evolutionary algorithms have been used with broad success
in numerous domains of combinatorial optimization. Several ap-
proaches have been reported in the literature, highlighting that
the hybridization of such algorithms with specific heuristics can be
beneficial for the solution of a given optimization problem. A form
of hybridization of an evolutionary algorithm, such as a genetic
algorithm (GA), is the inclusion of local search procedures. These
algorithms are referred to as memetic algorithms (MAs) (Moscato
1989; Moscato and Cotta 2003, 2010).

For the resolution of the VRP variants, memetic algorithms were
presented by Prins et al. (2006), Fallahi et al. (2008), Prins (2009),
Mendoza et al. (2010), Nagata et al. (2010), Ngueveu et al. (2010),
Ke and Feng (2013), Cattaruzza et al. (2014), Karaoglan and
Altiparmak (2015), Matei et al. (2015), Qi et al. (2015), and Wang
et al. (2015). In addition to the wide use of memetic algorithms in
routing problems, we justify their use in the SBRP based on the
building blocks hypothesis (Goldberg 1989), which appears to be
very promising for the SBRP because this problem can benefit from
obtaining better school bus routes based on routes suggested earlier.

The proposed genetic and memetic algorithm for the new vari-
ant under study was based on the memetic algorithm proposed by
Lima et al. (2004) for the heterogeneous fleet vehicle routing prob-
lem. Next, we describe our proposed MA for the HFSBRP.

Student Allocation

Each student is allocated to the stop that is nearest to the school and
that does not exceed the maximum walking distance. Each student
has at least one available stop; therefore, each student is allocated to
a stop. After the allocation of all students, the number of students
allocated to each stop is calculated and a list of stops with at least
one student is created.

Chromosome Encoding

The chromosome is encoded as a sequence of all stops with at least
one student [e.g., for the set of stops with students (1, 2, 4, 5, 6), a
valid chromosome would be (6, 2, 4, 5, 1)], as illustrated in Fig. 1.

Initial Population Generation

Adapting the Lima et al. (2004) procedure to the HFSBRP, in the
construction phase of a given solution (chromosome), the first stop
is randomly selected from the list of stops with at least one student.
Therefore, the ith stop is randomly selected from a restricted list

containing the three closest stops to the (i − 1)th stop that receives
students. If there are ties during selection, the first stop in the list is
selected. From this point on, the steps consist of selecting buses and
generating a complete route.

Bus Selection

Bus selection is performed by the function define_bus in the
order in which the stops appear in the chromosome. Let us con-
sider q buses with capacities C1;C2;C3; : : : ;Cq and fixed costs
F1;F2;F3; : : : ;Fq, respectively. The bus with the lower value
of ðCk −DkÞ × Fk is selected, where Dk is the number of students
picked up by the kth bus (Ochi et al. 1998). The procedure keeps
selecting buses until there are no more students at the stop, and the
procedure ends when there are no more students left to be picked
up. An example solution of the bus selection procedure is shown in
Fig. 1. The first bus attends Stops 4, 5, and 1 (in this order), and the
second bus attends Stops 6 and 2 (in this order).

The fitness of each chromosome is calculated in define_ fitness,
which sums the cost of the buses used and the cost of each route.

Parent Selection

Similar to Lima et al. (2004), two parents are selected through the
binary tournament method, in which two distinct pools are created,
with two chromosomes in each pool, and the parent with the higher
fitness is selected for the crossover phase (Beasley and Chu 1996).

Crossover

The edge recombination operator (ERX) is applied to the best
parents selected in the binary tournament, aiming generation of
the stop scheduling toward the generated chromosome (Whitley
et al. 1991). In the ERX crossover, a list is created containing both
selected chromosomes, indicating which stops are connected, and
the stops of the offspring are scheduled considering this list.

The first stop is randomly selected from the parents’ stops.
Subsequently, the next stop of the generated offspring is selected
considering the list of stops connected with the current stop. The
next stop is the one having the lowest number of connections with
other stops. If two or more stops have the same minimum number
of possible connections, one of those stops is randomly selected.

In case the current stop does not have more connections that can
be used, the next stop is randomly selected from the stops that are
not connected. The consequence of this random selection is that a
limited amount of mutation is likely to occur. After all stops of both
parents are connected sequentially, the crossover is finished and an
offspring is generated. Then the function define_bus is applied to
define the buses and routes for the generated offspring. A crossover
example for six stops is shown in Fig. 2.

We did not include a mutation operator in our proposed MA.

Local Search

The adopted local search procedure is the lambda Interchange al-
gorithm (Wassan and Osman 2002). It is run until a better chromo-
some is found or until a maximum number of attempts, which is a
parameter of the proposed MA, is reached. A route is defined as a
sequence of stops visited by the kth bus. Let the coding of a given
solution be expressed by a set of routes fR1;R2;R3;Rk; : : : ;Rlg, in
which l is the number of buses used.

Let (Rp, Rq) be a pair that belongs to the solution. This operator
swaps a subset Sp of size jSpj ≤ λ from Rp with another subset Sq
of size jSqj ≤ λ from Rq. Thus, two new routes—ðRp − SpÞ ∪ Sq
and ðRq − SqÞ ∪ Sp—are generated. The neighborhood size isFig. 1. Bus-routing example.

© ASCE 04018018-4 J. Urban Plann. Dev.
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randomly selected from the interval [0, λ], where λ = integer
parameter.

The elements from Sp and Sq are randomly selected and placed
at the end of the route that receives the set. If one of the sets Sp or Sq
is empty, a transfer is executed. If both sets are empty, an exchange
is performed between the two routes. After this operation, the num-
ber of students in each selected bus is calculated, and if a bus has
its capacity constraint violated, this solution is discarded. If the
new route configuration is feasible and a better chromosome is
generated, it replaces the incumbent solution. This is the mecha-
nism by which neighboring solutions are explored. Fig. 3 shows
a lambda interchange example with n ¼ 7 stops, p ¼ 1, q ¼ 2,
jSpj ¼ 1, jSqj ¼ 2.

Population Replacement

If the offspring has a higher fitness (i.e., a better value in the ob-
jective function) than one of the parents, it replaces the worst pa-
rent. Elitism is adopted; that is, the better solution in the current
generation is maintained in the next generation.

To escape local optima, a mechanism for the acceptance of
worst solutions was designed. There is a probability p for the
acceptance of an offspring that is worse than one of the parents, in
which p is a parameter of the proposed MA.

Restart

According to the authors’ experience, a problem that might happen
with evolutionary algorithms is the premature convergence of the
population. Aiming to reduce this loss of diversity, a procedure for
population restart was designed. Every time that r generations are
completed without improvement, the best solution in the current
population is stored and all the other solutions are replaced by
new chromosomes, generated as previously described. This pro-
cedure plays a key role in the exploration of several regions in the
search space.

In Algorithm 1, the pseudocode version of the MA developed
for the HFSBRP is presented.

Algorithm 1. Memetic Algorithm for the HFSBRP
FOR STUDENT I TO N DO:

ALLOCATE_STUDENT(I);
FOR CHROMOSOME I TO MAX_GEN DO:

GENERATE_CROMOSOME(I);
DEFINE_BUS(I);
DEFINE_FITNESS(I);

FOR GENERATION I TO K DO:
BINARY_TOURNAMENT(P1, P2, P3, P4);
ERX_CROSSOVER(P1, P2);
DEFINE_BUS(OFFSPRING);
FITNESS_OFFSPRING≔DEFINE_FITNESS(OFFSPRING);
FOR GENERATION I TO P DO:
LAMBDA_INTERCHANGE(OFFSPRING);
FITNESS_OFFSPRING_LAMBDA≔DEFINE_FITNESS
(OFFSPRING);
IF FITNESS_OFFSPRING > FITNESS_OFFSPRING_LAMBDA

FITNESS_OFFSPRING≔FITNESS_OFFSPRING_LAMBDA;
OFFSPRING≔OFFSPRING_LAMBDA;
BREAK;

IF FITNESS_OFFSPRING < FITNESS_WORST_PARENT
OFFSPRING ENTERS IN POPULATION.

Computational Experiments

For evaluating the proposed HFSBRP mathematical formulation,
computational experiments were conducted involving the developed
exact methods (integer programming and its linear relaxation) and
the heuristics (greedy, genetic, and memetic algorithms). Because
there were no other methods known to the authors for solving this
problem, we restricted our comparisons to the algorithms proposed
in this paper.

Bearing in mind that no benchmark instances exist for the pro-
posed variant, we randomly generated a set of instances using our

Fig. 2. ERX crossover example.

Fig. 3. Lambda interchange procedure.

© ASCE 04018018-5 J. Urban Plann. Dev.

 J. Urban Plann. Dev., 2018, 144(2): 04018018 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
FC

 -
 U

ni
ve

rs
id

ad
e 

Fe
de

ra
l d

o 
C

ea
ra

 o
n 

04
/2

7/
23

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



own instance generator. The input parameters for the instance gen-
erator are the number of stops, the number of students at a stop, and
the maximum distance that a student can walk.

The position of stops is chosen randomly along the predefined
region, and the position of students is calculated by means of two
random variables. The first variable is the distance between the stu-
dent and the stop, which can be no greater than the maximum walk-
ing distance established, thereby guaranteeing that each student has
at least one stop for walking to. The second variable is the direction
of the student around the stop. This is the process used for gener-
ating stop and student positions reported by Schittekat et al. (2013).

Adapting the instance generation of Schittekat et al. (2013) for
the HFSBRP, a bus fleet is added to the instance. From a finite
number of bus varieties, buses of random types are added to the
fleet until the fleet size is 50% bigger than needed, allowing the
algorithm to make a nonbiased bus choice.

The integer programming mathematical formulation, presented
in Eqs. (1)–(10), was implemented using the commercial software
ILOG CPLEX, as previously noted. As seen in the original formu-
lation, the set of constraints in Eq. (3) involves an exponential
number of subroute elimination inequalities (Oð2nÞ). This set of
constraints was replaced by Miller et al.’s (1960) constraints in
the actual implementation, so

ui þ uj þ nxij ≤ n − 1 ∀ i; j ¼ 2; : : : ; ni ≠ j ð11Þ

u1 ¼ 1 ð12Þ
Initially, we generated a set of 10 small instances (5–10 stops),

aiming at validation of the proposed algorithm. Then the MA solved
each instance 10 times. We also registered the optimal solution ob-
tained by CPLEX in these instances, thus supporting the validity of
the proposed metaheuristic. Given that this initial set of instances
does not have practical significance (there are no real problems
of this dimension), we opted for not reporting those experiments.

A set of 100 instances was generated according to authors’ ex-
perience in observations of real problems. The size of each instance
varied from 25 stops and 500 students to 250 stops and 5,250 stu-
dents, with the maximum walking distance varying from 5 to 25
distance units. The maximum walking distance defines indirectly
the amount of stops to which the student can go. The generated
instances used here were presented in Sales et al. (2015).

To evaluate the proposed mathematical formulation and the com-
plexity of the generated instances, we opted to define the lower
bound obtained by linear relaxation (zLP) and the value of the op-
timal solution for the problem (zIP). Linear relaxation was sug-
gested by Beasley (1993) as a technique for obtaining lower bounds
in combinatorial optimization problems. The solution obtained in
this way is usually infeasible for the whole problem. Nevertheless,
it allows the establishment of a distance measure between the lower
and upper bounds (in this case, the values obtained by heuristic
techniques).

Next, we opted for relaxation of the integrality of Type-xijk
decision variables, considering them continuous in the interval
[0, 1]. Computational experiments realized with the CPLEX solver
showed that, even for instances of small size, memory error made it
impossible to obtain the lower bounds. For example, in Instance 1
(25 stops and 500 students), there was a memory error after two
hours of processing the relaxed problem. Therefore, we concluded
that adopting heuristic techniques to solve the HFSBRP was jus-
tified, given the need for computing high-quality solutions within
acceptable computational times.

According to Barr et al. (1995), when no results from a more
general method are available, such as linear or integer programming,
a greedy algorithm can be used to find a reference solution. Hence,

a greedy algorithm was developed, which initially selects the far-
thest stop from school that has at least one student and then always
chooses the closest stop to the last visited stop that has at least
one student. This procedure simulates how routes can be gen-
erated in practical situations by planners or even by bus drivers. In
Algorithm 2, the pseudocode of the greedy algorithm developed for
the HFSBRP is presented.

Algorithm 2. Greedy Algorithm for the HFSBRP
FOR STUDENT I TO N DO:

ALLOCATE_STUDENT(I);

SELECT_FARTHEST_STOP(CHROMOSOME);

FOR STOP I TO N − 1 DO:
SELECT_CLOSEST_STOP(LAST_STOP, CHROMOSOME);

DEFINE_BUS(CHROMOSOME);
DEFINE_FITNESS(CHROMOSOME);

Along with comparing the MAwith the aforementioned greedy
algorithm, the authors opted for comparing the proposed metaheur-
istic with a GA that consists of the MA without the local search
procedure (lambda interchange). In this manner, we could evaluate
how the local search affects both solution quality and computational
times. Fig. 4 shows a solution returned by the proposed MA for
Instance 12.

The parameters employed in the computational experiments
were tuned and presented as follows:
• Population: 100 chromosomes;
• Maximum number of iterations: 5,000 generations;
• Maximum number of tries in the lambda interchange proce-

dure: 50;
• λ parameter: 2;
• Probability of acceptance of a worse solution: 2%; and
• Number of generations without improvement for restart: 9,000

generations.
Each instance was solved 10 times with the MA, 10 times with

the GA, and just once with the greedy algorithm. All tests were
done on a computer with an Intel i7-3770S processor and 8GB
RAM, with the algorithms implemented in C on Windows 8.1,
using the compiler TDM-GCC, version 4.8.1 (32 bits).

Table 2 provides the results from the computational experiments.
The first column shows the identification of the instance (ID); the
succeeding columns show the number of stops (sto), the number of
students (stu), the maximum walking distance (MWD), and the fleet
size available (fs). We then had the average result on the test run
(GAaverage) and the average computational time required (GA CTR).
The MA results are presented in the same order. The results for the
greedy algorithm and its computational time are then presented.
The last three columns respectively show the relative gap between
the results from the GA and the greedy algorithm (ΔGA), the relative
gap between the results from the MA and the greedy algorithm
(ΔMA), and the difference in the gaps (ΔMA −ΔGA).

The relative gapsΔGA and ΔMA are calculated as the difference
between the average result obtained with the algorithm (GA or
MA) and the result obtained with the greedy algorithm, divided
by the result obtained with the greedy algorithm. The last row
of Table 2 shows the average value of the last three columns.

The results presented in Table 2 indicate that it is possible to
determine which instance variables deeply influence the difficulty
of the problem. The higher the maximum walking distance, main-
taining the other parameters constant, the lower the sum of the
bus routes. This is because, with the higher student mobility, the
algorithm can concentrate students at stops closer to the school.

© ASCE 04018018-6 J. Urban Plann. Dev.
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The higher the number of students, keeping other parameters con-
stant, the larger the sum of the routes, because more buses and stops
are required to satisfy demand.

We observe in Table 2 that the results obtained by the greedy
algorithm are always worse than those obtained by the GA and the
MA. Because the greedy algorithm is similar to procedures

commonly used by planners or even bus drivers, this shows the
necessity of more advanced heuristics such as the evolutionary
algorithms presented in this paper.

The proposed MA can be interpreted as a sampling process
in which the solution obtained is a random variable. In this
context, evaluating the stability of the solutions obtained by the

Fig. 4. Solution obtained for Instance 12. Square = school; large circles = bus stops; small circles = students; and lines = proposed route for each bus.

Table 2. Computational results

Identifier Stops Students MWD fs GAaverage

GA CTR
(s) MAaverage

MA CTR
(s)

Greedy
solution

Greedy
CTR (s)

ΔGA
(%)

ΔMA
(%)

ΔMA −ΔGA
(%)

1 25 500 5 21 4,751 0.1 4,745 1.3 6,135 0.000 29.1 29.3 0.2
2 10 21 4,446 0.1 4,442 2.0 5,651 0.000 27.1 27.2 0.1
3 15 18 4,180 0.1 4,176 1.0 5,130 0.000 22.7 22.8 0.1
4 20 21 4,015 0.1 4,012 3.3 4,671 0.000 16.3 16.4 0.1
5 25 18 3,837 0.1 3,831 4.3 4,397 0.000 14.6 14.8 0.2
6 750 5 29 6,629 0.1 6,630 1.5 7,566 0.000 14.2 14.1 0.0
7 10 30 6,589 0.1 6,392 0.9 7,586 0.000 15.1 18.7 3.6
8 15 29 6,018 0.1 6,017 5.5 7,028 0.000 16.8 16.8 0.0
9 20 26 5,730 0.1 5,726 5.8 6,552 0.000 14.4 14.4 0.1
10 25 30 5,452 0.1 5,446 7.4 5,973 0.000 9.6 9.7 0.1
11 50 1,000 5 38 8,925 0.3 8,806 3.0 11,349 0.000 27.2 28.9 1.7
12 10 36 8,786 0.3 8,788 7.5 11,095 0.000 26.3 26.2 0.0
13 15 38 8,251 0.3 8,127 5.3 10,213 0.000 23.8 25.7 1.9
14 20 39 7,692 0.3 7,698 12.2 9,094 0.000 18.2 18.1 0.1
15 25 38 7,456 0.3 7,279 5.0 8,601 0.000 15.4 18.2 2.8
16 1,250 5 45 10,836 0.3 10,823 13.6 13,459 0.000 24.2 24.3 0.2
17 10 48 10,853 0.3 10,737 6.3 13,278 0.000 22.3 23.7 1.3
18 15 48 10,071 0.3 10,078 13.1 11,953 0.000 18.7 18.6 −0.1
19 20 48 9,573 0.3 9,563 15.9 11,098 0.015 15.9 16.0 0.1
20 25 47 9,082 0.3 8,925 12.2 10,081 0.015 11.0 13.0 2.0

© ASCE 04018018-7 J. Urban Plann. Dev.
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Table 2. (Continued.)

Identifier Stops Students MWD fs GAaverage

GA CTR
(s) MAaverage

MA CTR
(s)

Greedy
solution

Greedy
CTR (s)

ΔGA
(%)

ΔMA
(%)

ΔMA −ΔGA
(%)

21 75 1,500 5 59 13,492 0.6 13,492 29.6 17,800 0.000 31.9 31.9 0.0
22 10 54 12,778 0.6 12,767 19.9 16,273 0.000 27.4 27.5 0.1
23 15 59 12,071 0.6 12,066 50.1 15,073 0.015 24.9 24.9 0.0
24 20 57 11,115 0.6 11,114 58.5 13,166 0.000 18.5 18.5 0.0
25 25 57 10,658 0.5 10,662 204.0 12,098 0.015 13.5 13.5 0.0
26 1,725 5 68 15,527 0.7 15,418 14.2 19,428 0.000 25.1 26.0 0.9
27 10 66 14,737 0.7 14,573 11.3 18,113 0.000 22.9 24.3 1.4
28 15 65 13,543 0.6 13,545 42.8 16,136 0.000 19.1 19.1 0.0
29 20 63 12,907 0.6 12,899 41.6 15,346 0.016 18.9 19.0 0.1
30 25 62 12,372 0.5 12,184 17.2 13,957 0.000 12.8 14.6 1.7
31 100 2,000 5 72 17,500 1.0 17,496 106.3 22,916 0.015 30.9 31.0 0.0
32 10 75 16,970 1.0 16,960 49.4 21,681 0.000 27.8 27.8 0.1
33 15 77 15,902 1.1 15,761 22.2 19,787 0.000 24.4 25.5 1.1
34 20 75 14,825 0.9 14,825 62.9 17,882 0.016 20.6 20.6 0.0
35 25 77 14,452 0.8 14,278 28.8 16,533 0.016 14.4 15.8 1.4
36 2,300 5 87 20,711 1.2 20,565 21.6 26,490 0.000 27.9 28.8 0.9
37 10 86 18,958 1.2 18,966 87.4 23,707 0.000 25.0 25.0 0.0
38 15 84 17,949 1.1 17,932 99.2 21,716 0.016 21.0 21.1 0.1
39 20 89 17,182 1.1 17,188 77.4 20,206 0.000 17.6 17.6 0.0
40 25 87 16,775 1.0 16,559 36.3 19,056 0.016 13.6 15.1 1.5
41 125 2,500 5 90 22,215 1.6 22,199 111.9 29,300 0.016 31.9 32.0 0.1
42 10 92 20,503 1.5 20,502 116.6 25,664 0.016 25.2 25.2 0.0
43 15 96 19,880 1.6 19,725 44.5 24,792 0.031 24.7 25.7 1.0
44 20 90 18,336 1.3 18,326 211.2 21,543 0.016 17.5 17.6 0.1
45 25 93 17,913 1.2 17,699 46.3 20,399 0.016 13.9 15.2 1.4
46 2,750 5 102 24,498 1.7 24,498 147.0 31,675 0.016 29.3 29.3 0.0
47 10 101 22,897 1.7 22,911 112.8 29,034 0.016 26.8 26.7 −0.1
48 15 105 21,816 1.7 21,643 50.3 26,860 0.016 23.1 24.1 1.0
49 20 105 20,532 1.6 20,544 278.2 24,167 0.016 17.7 17.6 −0.1
50 25 101 19,429 1.3 19,429 193.6 21,930 0.016 12.9 12.9 0.0
51 150 3,000 5 111 26,294 2.4 26,191 80.0 34,583 0.015 31.5 32.0 0.5
52 10 113 25,163 2.3 25,195 163.7 32,394 0.016 28.7 28.6 −0.2
53 15 110 23,516 2.2 23,364 68.4 29,424 0.016 25.1 25.9 0.8
54 20 113 22,064 2.0 22,056 238.5 26,253 0.016 19.0 19.0 0.0
55 25 110 21,301 1.7 21,293 259.1 23,983 0.015 12.6 12.6 0.0
56 3,300 5 122 28,742 2.6 28,763 199.3 37,372 0.016 30.0 29.9 −0.1
57 10 125 27,295 2.5 27,293 158.3 34,151 0.015 25.1 25.1 0.0
58 15 122 25,775 2.4 25,614 79.0 31,479 0.016 22.1 22.9 0.8
59 20 128 24,398 2.2 24,407 255.8 29,032 0.016 19.0 19.0 0.0
60 25 122 23,247 2.0 23,244 574.8 26,415 0.016 13.6 13.6 0.0
61 175 3,500 5 132 30,596 3.2 30,482 87.5 39,528 0.016 29.2 29.7 0.5
62 10 132 28,361 3.3 28,368 266.3 36,430 0.016 28.5 28.4 0.0
63 15 129 26,745 3.0 26,737 377.4 33,133 0.015 23.9 23.9 0.0
64 20 132 25,810 2.8 25,812 403.3 30,729 0.016 19.1 19.0 0.0
65 25 128 24,868 2.5 24,674 133.1 28,391 0.015 14.2 15.1 0.9
66 3,675 5 143 32,201 3.4 32,212 342.5 42,180 0.015 31.0 30.9 0.0
67 10 138 30,205 3.5 30,103 94.0 38,936 0.016 28.9 29.3 0.4
68 15 137 28,316 3.1 28,326 250.5 34,783 0.016 22.8 22.8 0.0
69 20 137 26,880 3.0 26,892 423.3 32,041 0.031 19.2 19.1 −0.1
70 25 140 25,835 2.6 25,840 497.0 29,378 0.031 13.7 13.7 0.0
71 200 4,000 5 149 35,183 4.5 35,201 300.3 47,431 0.031 34.8 34.7 −0.1
72 10 150 33,158 4.4 33,024 180.3 42,818 0.016 29.1 29.7 0.5
73 15 158 31,075 4.1 31,072 390.2 38,298 0.015 23.2 23.3 0.0
74 20 146 29,033 3.8 29,030 578.9 34,773 0.031 19.8 19.8 0.0
75 25 149 28,228 3.0 28,218 942.5 31,981 0.031 13.3 13.3 0.0
76 4,200 5 156 36,333 4.6 36,358 379.7 47,510 0.031 30.8 30.7 −0.1
77 10 158 34,733 4.4 34,607 160.6 44,023 0.031 26.7 27.2 0.46
78 15 156 32,243 4.1 32,220 379.4 40,000 0.016 24.1 24.1 0.09
79 20 158 30,839 3.7 30,831 377.6 36,457 0.031 18.2 18.2 0.03
80 25 155 29,557 3.4 29,538 898.1 33,780 0.031 14.3 14.4 0.07
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metaheuristics is of paramount importance in applying the algo-
rithms to real-life problems.

To study the behavior of the MA, boxplots were generated
for the solutions obtained in each instance. Each boxplot is based
on the solution samples obtained in the 10 executions of the algo-
rithm for each instance. Fig. 5 shows the boxplots for all 100
instances.

Based on the results, we concluded that the MA exhibits high
consistency in its solutions, with a low standard deviation and a
small number of outliers (only 34 in the 1,000 tests carried out).
Even on the bigger instances, where we might have concluded that
the variability in MA results would be greater, the number of out-
liers did not show any meaningful difference.

Regarding the quality of the MA results, we can emphasize
the following observations. Table 3 shows a pattern between

the gaps obtained for the memetic and genetic algorithm compared
with the greedy algorithm for different maximum walking distances.
With the increase in maximum walking distance from 5 to 25 dis-
tance units, the gaps between the memetic and greedy algorithms
decrease from an average of 29.8% to an average of 13.9%.

Table 2. (Continued.)

Identifier Stops Students MWD fs GAaverage

GA CTR
(s) MAaverage

MA CTR
(s)

Greedy
solution

Greedy
CTR (s)

ΔGA
(%)

ΔMA
(%)

ΔMA −ΔGA
(%)

81 225 4,500 5 165 39,111 5.9 39,110 602.6 52,625 0.015 34.6 34.6 0.00
82 10 176 36,521 5.9 36,542 548.3 46,785 0.015 28.1 28.0 −0.07
83 15 167 34,756 5.4 34,771 517.0 44,105 0.031 26.9 26.8 −0.06
84 20 168 32,830 4.9 32,735 314.3 39,330 0.047 19.8 20.1 0.35
85 25 171 31,799 4.4 31,810 903.8 36,403 0.047 14.5 14.4 −0.04
86 4,725 5 177 41,110 6.1 41,065 606.3 54,443 0.031 32.4 32.6 0.14
87 10 179 38,899 6.0 38,897 500.4 50,128 0.047 28.9 28.9 0.01
88 15 180 36,546 5.2 36,466 269.0 45,123 0.031 23.5 23.7 0.27
89 20 183 34,364 4.9 34,391 661.1 40,602 0.046 18.2 18.1 −0.09
90 25 174 33,147 4.3 33,148 856.4 37,443 0.062 13.0 13.0 0.00
91 250 5,000 5 188 43,300 7.4 43,289 583.5 57,693 0.031 33.2 33.3 0.04
92 10 191 40,829 7.3 40,833 555.2 52,484 0.046 28.5 28.5 −0.01
93 15 192 38,009 6.7 37,990 635.6 46,871 0.046 23.3 23.4 0.06
94 20 191 36,542 5.9 36,543 702.8 43,388 0.031 18.7 18.7 0.00
95 25 189 34,834 5.2 34,850 1451.0 39,276 0.047 12.8 12.7 −0.05
96 5,250 5 201 46,362 7.5 46,289 254.6 60,714 0.047 31.0 31.2 0.21
97 10 197 42,670 7.4 42,676 597.9 55,129 0.031 29.2 29.2 −0.02
98 15 197 40,095 6.7 40,083 657.5 49,440 0.031 23.3 23.3 0.04
99 20 198 38,162 6.5 38,037 307.6 45,522 0.046 19.3 19.7 0.39
100 25 191 36,873 5.5 36,751 549.6 41,738 0.046 13.2 13.6 0.37
Average 22.1 22.4 0.3

Fig. 5. MA boxplots generated for every instance. Circles = outliers.

Table 3. Average GA and MA gaps compared with greedy algorithm gaps
for MWD categories

MWD GA (%) MA (%)

5 29.5 29.8
10 26.4 26.8
15 22.9 23.2
20 18.3 18.3
25 13.3 13.9

© ASCE 04018018-9 J. Urban Plann. Dev.
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This downward trend also occurs with the GA. It happens because
the maximum walking distance increases the inherent complexity of
all subproblems by increasing the possibilities for student allocation,
routing, and bus allocation, but decreases solution quality. We ob-
serve in Table 3 that the MA compares favorably with the GA and
the genetic and greedy algorithms because it obtains greater or equal
average gaps in every maximum walking distance (MWD) category
shown.

An analysis of the gaps obtained by the GA and the MA is
shown in Fig. 6. On the y-axis, the percentage of instances in which
the genetic/memetic algorithm won over the memetic/genetic algo-
rithm presents a gap greater than the value of the x-axis. For exam-
ple, the MAwon 12.00% of the instances over the GA, with a gap
greater than 1.00%. The GA does not show a gap greater than
0.15% in relation to the MA for any tested instances. Besides, the
GA curve plummets near the origin point, indicating that the instan-
ces that GAwon were with a very thin gap. It was expected that the
MA would produce better solutions than the GA because it incor-
porates the GA plus the lambda interchange local search procedure.
As seen in Fig. 6, this neighborhood search incurs in an increase of
the solution quality at the expense of an increase of the computa-
tional time required.

In Fig. 7, the average computational times required (on logarith-
mic scale) are shown on the y-axis. Identification of the instance is

shown on the x-axis. As expected, computational time increases
with increased instance size, which is reflected in the growing num-
ber of stops and students. After Instance 81 (225 stops and 4,500
students), there is a decrease in the influence of instance size versus
computational time required.

In a clear way, maximum walking distance influences the com-
putational time required by the GA and the MA, because, with the
increase in MWD, the algorithms tend to use fewer stops, lowering
computational effort when routing. In the MA, we do not observe
as well-defined a pattern of computational time required as that
in the GA because the MA can explore the neighborhood deeply
(or not). The lambda interchange procedure, after the parent’s
crossover, has 50 tries for exploring the neighborhood and finding
a better solution than the current one; it stops exploring when it
finds one.

Based on the results, it is possible to determine that the GA
tends to be quicker than the MA. There is a trade-off between sol-
ution quality and computational time required, as is typically ob-
served in experiments with similar algorithms. Although the GA’s
computational time was lower in all instances, the MA was capa-
ble of obtaining solutions for all instances in acceptable computa-
tional times.

Discussion and Conclusions

An optimized management of school transport systems can produce
appreciable gains in terms of cost reduction along with improved
quality of the service provided. In this paper we presented different
algorithms for solving the integrated subproblems of bus stop se-
lection, student allocation, and bus routing, considering a hetero-
geneous fleet.

In experiments conducted with small instances (up to 10 stops),
the exact model solved to optimality with the CPLEX solver in
acceptable computational time. However, in larger-sized instances
(more than 25 stops), it was not possible to find optimal solutions to
the exact model and lower bounds originated from linear relaxation.
A memetic algorithm was proposed for the HFSBRP, which was
validated in experiments with small-sized instances (up to 10
stops), returning the optimal solution for every instance.

Nevertheless, these algorithms do not deal with other subpro-
blems of the HFSBRP, such as time windows, roadway capacities

Fig. 6. Percentage of instances versus percentage of gaps won by memetic/genetic algorithm.

Fig. 7. Mean computational time for all instances executed.

© ASCE 04018018-10 J. Urban Plann. Dev.
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during peak periods, toll road use, or the requirement to balance
riding times for both drivers and students. These subproblems are
time-dependent and can deeply affect the solutions obtained.

The memetic algorithm exhibited consistent behavior, outper-
forming, in terms of quality, the genetic algorithm and a greedy
algorithm developed for the HFSBRP. However, the computational
time required for the MA is multiple times larger than that required
for the genetic and greedy algorithms. We suggest the study of
other local search techniques that may give good solutions with less
computational effort. Also, because these algorithms were tested
only in a randomly generated urban scenario, there is no assurance
of relevant solutions in other scenarios, such as widely spaced rural
bus stops and limitations in the road network.

As a natural development of the research reported in this article,
the authors are working on the integration the proposed variant with
the student nucleation problem (Rocha Kloeckner 2015), the incor-
poration of time windows constraints, and the solution of real-
world HFSBRP instances.
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