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Abstract
Cutting stock and bin packing problems are common in several industrial sectors,
such as paper, glass, furniture, steel industry, construction, transportation, among oth-
ers. The classical cutting stock problem (CSP) ignores the production planning and
scheduling of multiple customer orders. Nevertheless, in real industrial settings cus-
tomer orders have to be planned and scheduled over time so as to meet demand and
required due dates. We propose an integer linear programming model for the one-
dimensional cutting stock and scheduling problem with heterogeneous orders. As
this problem is a generalization of the classical single-period one-dimensional CSP,
which is known to be NP-hard, it is difficult to solve real-sized instances to optimality.
Thus, we propose a novel matheuristic algorithm based on a fix-and-optimize strategy
hybridized with a random local search. The proposed matheuristic was tested on a set
of 160 synthetic problem instances based on a real-world problem and compared with
CPLEX solver. In larger instances, the proposed matheuristic performed better than
CPLEX, with average relative percentage deviation (RPD) regarding objective values
as high as 72%. On the other hand, in small instances CPLEX showed a marginal
advantage, with best average RPD of 18% with relation to the matheuristic. We also
performed a paired t-testwith significance level 0.05 and null hypothesis: no difference
between the proposed matheuristic and CPLEX. In small test instances, the perfor-
mance of the proposed matheuristic was statistically indistinguishable from CPLEX,
while in larger instances the matheuristic outperformed CPLEX in most cases with
p value < 0.05.
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1 Introduction

Cutting stock and bin packing problems are common in several industrial sectors, such
as paper, glass, furniture, steel industry, construction, transportation, among others.
They belong to the class of combinatorial optimization problems and have received
a lot of attention from researchers in the last few decades, mainly due to them being
NP-hard. Therefore, obtaining optimal solutions in acceptable computational times is
a difficult task when solving large real-world problem instances. Dyckhoff (1990) and
Wäscher et al. (2007) present comprehensive classifications of cutting and packing
problems.

The classical cutting stock problem (CSP) ignores the production planning and
scheduling of multiple customer orders. Nevertheless, in real industrial settings cus-
tomer orders have to be planned and scheduled over time so as to meet demand and
required due dates. This gives rise to combined cutting stock and production plan-
ning problems, whose objective is to solve the CSP over multiple time periods. While
the literature on classical CSP is abundant, interest in combined cutting stock and
production planning problems is more recent.

The integration of the CSP and production planning has been taking two directions
in the literature. In the first one, the CSP is extended to a multiperiod setting in which
at a given time period a set of customer orders is fulfilled and inventory is hold to next
time periods. The objective is the minimization of a weighed sum of production, trim
loss and inventory costs. This is often referred to as the combined cutting stock and
lot sizing problem, which is more common in make-to-stock production environments
and has been studied in Nonås and Thorstenson (2000), Gramani and França (2006),
Nonås and Thorstenson (2008), Trkman and Gradisar (2007), Poldi and de Araujo
(2016), Melega et al. (2018). In contrast, in the second direction the CSP is extended
to a multiperiod setting in which customer orders are fulfilled in a make-to-order
fashion. An order may take several time periods to be completed, so that scheduling of
multiple orders is relevant. The objective in this case is the minimization of trim loss
from the cutting process and minimization of a criterion related to order scheduling
such as the makespan or total tardiness. In this paper, we are interested in this second
class of problems, known as cutting stock and scheduling problems (CSSP).

One of the first approaches addressing the integration of cutting stock and schedul-
ing problems was presented by Yuen (1991), who proposed a heuristic for sequencing
cutting patterns. Li (1996) presented a model for a multistage two-dimensional CSP
considering due dates and release dates, in which the orders are scheduled before
starting the cutting process. Arbib and Marinelli (2005) proposed an integer linear
programming model that integrates the cutting process in a first production stage and
the assembly of parts in a second stage. Yanasse (1997); Yanasse and Lamosa (2007)
developed an integer programmingmodel for pattern sequencing considering themini-
mization of the number of open stacks. Reinertsen andVossen (2010) proposed amodel
for scheduling patterns in the one-dimensional CSP with due dates, whose solution
method was further improved by Arbib and Marinelli (2014); Braga et al. (2016a, b)
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proposed models for the scheduling of customer orders in the one-dimensional CSP
with due dates.

Most models proposed so far approach the CSSP with homogeneous orders, i.e.,
they assume that all demanded items in an order are of the same type. For example,
if an item type is defined by a width, all items in an order have the same width.
However, motivated by the problem of precast beam production considered in Prata
et al. (2015), we noticed that inmany industrial settings this assumption is not realistic,
since a customer order may include items of multiple types. We then approach in this
paper the one-dimensional CSSP with heterogeneous orders. In this problem, a set
of heterogeneous orders demanded by customers has to be met in a make-to-order
fashion. Each order takes many time periods to be completed and orders may be
processed concurrently. The objective is to minimize total tardiness while minimizing
trim loss from the cutting process.

Themain contributions of this paper are twofold. First, we introduce an extension to
Braga et al. (2016a)’s one-dimensional CSSP compact model, which assumes homo-
geneous orders, for the case with heterogeneous orders. Second, as this problem is a
generalization of the classical single-period one-dimensional CSP, which is known to
be NP-hard (Martello 1990), it is difficult to solve real-sized instances to optimality.
Thus, we propose a novel matheuristic algorithm based on a fix-and-optimize strategy
hybridized with a random local search. Matheuristic algorithms blend mathematical
programming-basedmethodswith (meta)heuristics in order to obtain good solutions to
hard optimization problems. It has recently attracted attention from many researchers
in the field, see for example Ozer and Sarac (2018), Archetti and Speranza (2014),
Kramer et al. (2015), Della Croce and Salassa (2014), Melo et al. (2014), Lin and Ying
(2016), Miranda et al. (2018). The proposed matheuristic algorithm is tested on a set
of synthetic instances and compared with CPLEX solver.

The remainder of this paper is organized as follows: in Sect. 2, we formulate the
proposed integer linear programming; inSect. 3,wedescribe the proposedmatheuristic
algorithm; in Sect. 4, we describe the computational experiment design and discuss
the results; finally, in Sect. 5, we present some conclusions and suggestions for future
work.

2 Problem formulation

In this section, we propose a compact model based on the one described in Braga et al.
(2016a, 2015). Our model is a generalization of the one we proposed for a scheduling
problem in the precast beams industry, which is described in the paper Prata et al.
(2015).

Let K = {1, 2, . . . , K } be a set of customer orders with K = |K | and I =
{1, 2, . . . , I } a set of item types with lengths l1, l2, . . . , lI and I = |I |. For each order
k ∈ K , there is a vector nk = (n1k, n2k, . . . , nIk) ∈ Z

I≥0, where nik is the demand
for item type i in order k. In addition, each order k has a due date dk , which is a future
time period past which the order is late. These orders have all to be completed within
a discrete planning horizon of T time periods. At each time period t = 1, 2, . . . , T ,
there are J objects of size L available in stock from which the demanded items may
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be cut. In contrast to Braga et al.’s model, we do not assume that only one object is cut
in a time period, but that J objects are available to be cut. In addition, while in Braga
et al.’s model, it is assumed that each order is composed of items of the same type; in
our model, we relax this assumption and allow an order to include items of different
types, hence the term heterogeneous orders.

We then define the following decision variables: xik j t ∈ Z≥0 is the number of
items of type i from order k cut from object j at time t , where Z≥0 denotes the set of
non-negative integers; w j t ∈ {0, 1} in which 1 indicates whether object j is used at
time t , 0 otherwise; and zkt ∈ {0, 1} in which 1 indicates whether order k has items
produced at time t and 0 otherwise, for t = dk +1, . . . , T . The latter variables are used
to compute the tardiness of the corresponding orders. For convenience, we organize
below the notation used:

Indices and sets

i : index for item types in I = {1, 2, . . . , I };
k: index for customer orders inK = {1, 2, . . . , K };
j : index for objects, j ∈ {1, 2, . . . , J };
t : index for time periods, t ∈ {1, 2, . . . , T };
Parameters

nik : demand for item type i in order k;
li : length of item i ;
dk : due date of the order k;
L: size of available objects in stock;

Decision variables

xik j t ∈ Z≥0: number of items of type i from order k cut from object j at time t ;

w j t =
{
1, if object j is used at time t;
0, otherwise;

zkt =
{
1, if the order k has items produced at time t;
0, otherwise.

The proposed integer linear programming model (hereafter called model M) is for-
mulated as follows:

min
K∑

k=1

T∑
t=dk+1

zkt +
J∑

j=1

T∑
t=1

w j t (1)

s.t.
J∑

j=1

T∑
t=1

xik j t = nik i = 1, . . . , I , k = 1, . . . , K , (2)

I∑
i=1

K∑
k=1

li xik j t ≤ Lw j t j = 1, . . . , J , t = 1, . . . , T , (3)

123



182 A. R. Pitombeira-Neto, B. de A. Prata

J∑
j=1

xik j t+zk(t+1) ≤Mikzkt i=1, . . . , I , k = 1, . . . , K , t = dk + 1, . . . , T ,

(4)

xik j t ∈ Z≥0 i = 1, . . . , I , j = 1, . . . , J , t = 1, . . . , T , (5)

zkt ∈ {0, 1} k = 1, . . . , K , t = dk + 1, . . . , T , (6)

w j t ∈ {0, 1} j = 1, . . . , J , t = 1, . . . , T . (7)

The objective function (1) includes a first term that represents the total tardiness of the
orders and a second term that corresponds to the number of objects in stock needed
to meet the demand; constraints (2) require that all items demanded by all orders are
produced; constraints (3) enforce that the total size of the items cut from an object is
not greater than its size; constraints (4) assure that if an item demanded by an order is
produced at time t ≥ dk +1, then that time period is added to its tardiness. [We define
zk(T+1) = 0 for k = 1, . . . , K to maintain consistency of constraints (4)]. Finally,
constraints (5), (6) and (7) define the domain of the decision variables. The constants
Mik may be set as upper bounds on the left-hand side of constraints (4) according to

Mik = min(nik + 1, J�L/li� + 1) i = 1, . . . , I , k = 1, . . . , K . (8)

In our model, we assume that all J objects available at a time period are used and
no objects are kept in inventory for future use. Proposition 1 shows that, if the model
has an optimal solution, it is possible to obtain an optimal solution in which no inven-
tory is kept. In this way, we can constrain our feasible set to include only solutions
with no inventory. This property stems from the fact the our objective function involves
minimizing the total tardiness, and keeping inventory contributes to delaying the com-
pletion of orders.

Proposition 1 If model M has an optimal solution, it is possible to obtain an optimal
solution in which no inventory is kept.

Proof Let s1 be an optimal solution and v1 its objective value given by equation (1)
in the model. In addition, let tmax = maxk=1,...,K {∑T

t=1 zkt } be the makespan of all
orders in s1, so that zkt = 0 for t = tmax + 1, k = 1, . . . , K . Further assume that at
a given time t ′ < tmax there is some unused object p for which wpt ′ = 0, i.e., this
object was kept in inventory. As the completion of all orders finish at tmax, there is
at least an object q for which wqtmax = 1. Let s2 be a solution obtained from s1 by
making wpt ′ = 1, wqtmax = 0 and keeping unchanged all other variables. In s2, the
object p is used and not kept in inventory. We use superscripts (1) and (2) to denote
values in solutions s1 and s2, respectively. In the new solution s2, constraint (3) for
object q at time tmax is modified so that

I∑
i=1

K∑
k=1

li x
(2)
ikqtmax ≤ 0, (9)
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which implies x (2)
ikqtmax = 0 for i = 1, . . . , I , k = 1, . . . , K . In contrast, for object p

at time t ′ we have
I∑

i=1

K∑
k=1

li x
(2)
ikpt ′ ≤ L. (10)

Feasibility in constraint (2) can be maintained by making x (2)
ikpt ′ = x (1)

ikqtmax for i =
1, . . . , I , k = 1, . . . , K . In addition, we notice that feasibility in constraint (4) at time
tmax is maintained, since from constraint (9)

J∑
j=1

x (2)
ikqtmax ≤

J∑
j=1

x (1)
ikqtmax , (11)

so that

J∑
j=1

x (2)
ikqtmax + z(2)k(tmax+1) ≤ Mikz

(2)
ktmax . (12)

Also at time t ′ feasibility in constraint (4) is maintained, since

J∑
j=1

x (2)
ikpt ′ + z(2)k(t ′+1) ≤ Mikz

(2)
kt ′ , (13)

as t ′ < tmax and z(2)kt ′ = 1 for at least some order k. We then notice that
objective value v2 = v1, since the only change was wpt ′ = 1, wqtmax =
0, so that

∑K
k=1

∑T
t=dk+1 z

(2)
kt = ∑K

k=1
∑T

t=dk+1 z
(1)
kt and

∑J
j=1

∑T
t=1 w

(2)
j t =∑J

j=1
∑T

t=1 w
(1)
j t .

Finally, we have an optimal solution s2 so that object p at time t ′ which was kept in
inventory is now used. In case this was the only object kept in inventory, now s2 is an
optimal solution with no inventory. Otherwise, we can repeat the above process and
obtain successive optimal solutions s3, s4 . . . sN , in which N is the number of objects
held in inventory until no object is kept in inventory anymore. �	
The number of variables and constraints in the model, as a function of the set sizes
is shown in Table 1. In some preliminary experiments, we have observed that the
performance of solvers greatly decreases as the number of variables increases. In
particular, scalars J and T have the largest impact on the size of the model. Set size J
is a feature of the problem instance which one intends to solve. On the other hand, the

Table 1 Number of variables
and constraints in the model as a
function of set sizes

Parameter Value

#Variables I K JT + JT + ∑K
k=1(T − dk − 1)

#Constraints I K + JT + ∑I
i=1

∑K
k=1(T − dk − 1)
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planning horizon T must be specified by themodeler. The greater the horizon, themore
variables there are in the model. Given a set of orders, we should specify T as small as
possible in order to not have too much variables. On the other hand, if T is too small
there may be no feasible solution. Proposition 2 below gives an upper bound on T .

Proposition 2 An upper bound on T is given by

TUB =
⌈ ∑I

i=1
∑K

k=1 li nik
J (L − max{l1, l2, . . . , lI })

⌉
. (14)

Proof Without loss of generality, assume for a given feasible solution that the total
time to finish all orders is T and that all objects J at time t = 1, 2, . . . , T are used. In
addition, assume that the maximum trim loss at any used object is max{l1, l2, . . . , lI },
otherwise we could just use the trim loss to cut an item with this maximum length.
The total length of objects used to fulfill the demand is

I∑
i=1

K∑
k=1

li nik =
T∑
t=1

J∑
j=1

(L − e jt ), (15)

in which e jt is the trim loss of object j at time t . Dividing by T J , we have

1

T J

I∑
i=1

K∑
k=1

li nik = L − 1

T J

T∑
t=1

J∑
j=1

e jt . (16)

Let

ē = 1

T J

T∑
t=1

J∑
j=1

e jt , (17)

be the average trim loss. Then, from (16) and (17) we have

T ≤
⌈∑I

i=1
∑K

k=1 li nik
J (L − ē)

⌉
, (18)

and as ē ≤ max{l1, l2, . . . , lI }, then

T ≤
⌈ ∑I

i=1
∑K

k=1 li nik
J (L − max{l1, l2, . . . , lI })

⌉
.� (19)

2.1 An illustrative example

In this section, we solve a small problem instance to illustrate the application of
our proposed model and to validate it. Consider that a manufacturer offers seven
different types of items with lengths I = {1.22, 1.45, 2.35, 2.50, 2.65, 2.95, 3.30}.
At each time period, there are J = 5 objects available in stock, with L = 11.95.

123



Amatheuristic algorithm for the one-dimensional... 185

At a certain moment, the manufacturer receives k = 3 orders from three differ-
ent customers, with the following demands: order 1 = (4, 10, 9, 17, 1, 7, 2), order
2 = (4, 10, 12, 14, 5, 5, 0), order 3 = (4, 16, 7, 15, 3, 4, 1), and due dates 6, 6 and 7,
respectively. From Eq. (14), a upper bound on the total time to finish all three orders
is TUB = 19. In an Intel Core i5 machine with 2.3GHz and 8 GB RAM, CPLEX 12.8
solves this small instance to optimality in less than 20 seconds. In the optimal solution,
28 objects are used to satisfy the three orders in 7 time periods with no tardy order.

3 Proposed solution algorithm

We propose a matheuristic algorithm in which model M is iteratively solved in search
for better integer solutions in which a subset of variables have fixed values. We notice
that zkt are complicating variables in M. If we fix these variables, the resulting model
is easier than the full model. Our idea is to predetermine the completion times of the
orders and fix the corresponding zkt variables. We then solve the resulting model in
which we try to fit all demanded items within the available objects limited by the
predetermined completion times. We repeat this process with different completion
times determined by a heuristic procedure.

LetC = {c1, c2, . . . , cK }be a set of completion timesof the orders inK .Wedenote
by MC the model M in which the variables zkt are fixed at values according to the
completion times in C . We note that, following constraint (4) in M, for t = dk, . . . , T
and k = 1, . . . K , zkt = 1 if t ≤ ck and zkt = 0 otherwise. For given C , we solve MC
with a probing time limit τ , with the purpose of finding a feasible solution. In general,
the solver finds a feasible solution very fast or identifies that MC is infeasible, but in
some cases it may spend too much time to reach one of these two states. The probing
time τ is then a parameter set by the analyst corresponding to the maximum time she
is willing to assign to the solver in order check feasibility.

If MC turns out to be feasible, we denote respectively by s(MC ; τ) and v(MC ; τ)

the best integer solution and its corresponding objective value under probing time
τ . We then sample an order o from the discrete uniform distribution with support
in {1, 2, . . . , K }, i.e. o ∼ DiscUnif(1, K ), and decrease its completion time by
δ ∼ DiscUnif(δmin, δmax). Otherwise, if MC turns out to be infeasible or feasibil-
ity could not be checked before time τ , we sample o ∼ DiscUnif(1, K ) and increase
its completion time by δ ∼ DiscUnif(δmin, δmax). We repeat this process for a prede-
fined number of iterations N , with τ , δmin and δmax as specified parameters. Algorithm
1 details our proposed matheuristic.

4 Computational results

4.1 Problem instances

Synthetic problem instances were generated based on real data from Prata et al.
(2015), in which the authors tackle the problem of multiperiod production plan-
ning of precast beams. In the following paragraphs, we will refer to these as PPS
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Algorithm 1
1: procedure Matheuristic

2: Set starting C (0) ← {c(0)1 , c(0)2 , . . . , c(0)K } � Initial set of completion times
3: vbest ← +∞
4: sbest ← ∅
5: for i ← 1 . . . N do
6: for k ← 1 . . . K do � Fix variables zkt
7: for t ← dk . . . T do
8: if t ≤ c(i−1)

k then
9: zkt ← 1
10: else
11: zkt ← 0
12: end if
13: end for
14: end for
15: Solve model MC (i−1) with probing time limit τ
16: if MC (i−1) is feasible then
17: if v(MC (i−1) ; τ) < vbest then
18: vbest ← v(MC (i−1) ; τ)

19: sbest ← s(MC (i−1) ; τ)

20: end if
21: Sample o ∼ DiscUnif(1, K )

22: Sample δ(i) ∼ DiscUnif(δmin, δmax)

23: c(i)o ← c(i−1)
o − δ(i) � Decrease completion time of order o

24: else � M is infeasible or undefined
25: Sample o ∼ DiscUnif(1, K )

26: Sample δ(i) ∼ DiscUnif(δmin, δmax)

27: c(i)o ← c(i−1)
o + δ(i) � Increase completion time of order o

28: end if
29: for k ← 1 . . . K do
30: if k �= o then
31: c(i)k ← c(i−1)

k
32: end if
33: end for
34: C (i) ← {c(i)1 , c(i)2 , . . . , c(i)K } � Update set of completion times
35: end for
36: end procedure

data (from Prata, Pitombeira-Neto and Sales, the authors from which the data were
taken.) In the PPS data, there is only one order with I = 7 item types, corresponding
lengths given by the set I = {1.22, 1.45, 2.35, 2.50, 2.65, 2.95, 3.30} and demands
nPPS = (24, 60, 56, 72, 16, 17, 12), respectively, with a total of NPPS = 257 items
demanded. The items must be packed into objects of size L = 11.95.

In the real problem from which these data originated, the demands for each item
type vary a lot among orders, while the item types and object sizes are kept constant by
engineering design. We then generated 8 instance sets in which we varied two factors:
the number of orders K ∈ {5, 10, 20, 30} and the number of objects J ∈ {5, 10}.
These levels correspond to values which are likely to occur in reality. For each level
of K and J , we generated 20 instances in which we sampled the demands in the
following manner: for each order k ∈ {1, 2, . . . , K }, we first sampled the total order
demand Nk ∼ DiscUnif(100, 500) from a discrete uniform distribution. We then
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shared the total demand among the item types i ∈ I according to a multinomial
distribution, i.e., nik ∼ Multi(Nk,p) in which p = (p1, p2, . . . , pI ) and pi is the
probability that an item of type i is demanded by a customer order. We estimated pi
by p̂i = nPPSi /NPPS. The due dates for each order k ∈ 1, 2, . . . , K were sampled
according to dk ∼ DiscUnif(�T /4�, T ) with T given by (14).

4.2 Experimental parameters

For each of the 160 generated instances, we applied both IBM ILOG CPLEX solver
version 12.8 and the proposed matheuristic given by Algorithm 1. We used an Intel
Core i7-7700K machine with 4.2 GHz clock and 8GB RAM. We set a time limit of
3600s for CPLEX.

In early experiments, we noticed that the CPLEX branch-and-cut (B&C) tree filled
up the whole RAM before reaching the time limit. To overcome this hurdle, we set the
CPLEX nodefile parameter to 3, so that the B&C tree could be stored in the solid-state
drive when it reached a critical size. In some instances, CPLEX filled up the RAM still
before starting the B&C tree. We then had to disable multithreading in these instances
and ran only one thread.

Regarding our proposed matheuristic, we adopted parameters δmin = 1, δmax = 10,
τ = 60s and N = 50 iterations. Notice that this gives a total time of N × τ = 3000s.
After that, we started warm CPLEX with the best found solution by the matheuristic
and ran it with a time limit of 600s to possibly obtain a better solution and compute its
gap, which gives a total running time of 3000+600 = 3600s. Initial completion times
of all orders are arbitrarily set to be equal to the midpoint of the planning horizon T
of the particular problem instance, i.e c(0)

1 = c(0)
2 =, . . . ,= c(0)

K = T /2. Notice that
this implies no use of prior information on feasible values for the completion times
of orders. Alternatively, one could first apply a constructive heuristic to find initial
feasible completion times.

4.3 Performancemeasures

We used as performance measures the relative percentage deviation (RPD), the linear
relaxation gap (LRG) and the percentage of instances (WINS) in which the matheuris-
tic obtained a solution better than the one obtained by CPLEX. RPD is defined as

RPD = vM − vC

vC
× 100,

where vM denotes the best objective function value obtained by thematheuristic, while
vC denotes the best objective function value obtained by CPLEX. LRG is defined as

LRG = UB − LB

U B
× 100,

where UB is the upper bound from CPLEX after running for the specified time and
not finding the optimal solution, corresponding to the objective value of the incumbent
solution, and LB is the lower bound corresponding to the objective value of a linear
relaxation of a subproblem in the B&C tree. WINS is defined as

123



188 A. R. Pitombeira-Neto, B. de A. Prata

WINS = nM
n

× 100,

where nM is the number of instances in which the matheuristic achieved a better
solution than CPLEX and n is the number of instances in the given instance set.

In addition, to evaluate if there is in fact a statistically significant difference between
the proposed matheuristic and CPLEX, we applied a paired t test on each instance
set with a null hypothesis that there is no difference between mean values from the
solutions obtained by the proposed matheuristic and CPLEX in each instance set. The
paired t test compares two samples resulting from two experiments applied to the
same units. Montgomery (2013) Typically, the two samples refer to responses of the
applications of two different so-called “treatments” in the nomenclature of statistical
testing. In our case, the units are the problem instances, the responses are the objective
values of the instances, and the two treatments are the tested algorithms, namely: our
proposedmatheuristic and the branch-and-cut algorithm implemented in CPLEX. The
null hypothesis is that there is no difference between the means of the two treatments,
while the alternative hypothesis is that there is such a difference. The application of
the t-test gives us statistical evidence if there is in fact a difference between the two
algorithms or if the observed difference is due to randomness in the experiments.

4.4 Results and discussion

Tables 2 and 3 show the results for both CPLEX and the proposed matheuristic for
each instance set, while Figs. 1 and 2 show results for each of the 160 instances. (Test
instances and results may be obtained from the authors upon request.) It is worth
noticing that neither CPLEX nor the matheuristic was able to find an optimal solution
to any instance in less than the specified time of 3600s, which is an empirical evidence
of the computational difficulty of the problem. In fact, in preliminary experiments, the
largest instance we could solved to optimality within a time limit of 3600 s, and which
involved a nontrivial number of demanded items, had only 1 bin and 2 orders.

From Table 2, it can be seen that the proposed matheuristic obtained on average
better solutions than CPLEX. In instance sets 3, 4, 7 and 8, the matheuristic generated

Table 2 Comparison results between CPLEX and the proposed matheuristic (20 instances per set)

Instance set #Bins #Orders Avg. RPD (%) Std. Dev. RPD (%) WINS (%)

1 5 5 0.39 1.02 30

2 5 10 18.04 39.72 15

3 5 20 − 54.68 55.54 95

4 5 30 − 71.97 2.55 100

5 10 5 0.02 0.44 40

6 10 10 4.34 17.45 15

7 10 20 − 63.20 16.68 100

8 10 30 − 67.43 5.02 100
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Table 3 Solution gaps obtained from CPLEX and the proposed matheuristic (20 instances per set)

Instance set #Bins #Orders Avg. Gap Math (%) Avg. Gap CPLEX (%)

1 5 5 2.23 1.86

2 5 10 24.23 13.75

3 5 20 65.77 84.35

4 5 30 76.03 93.28

5 10 5 1.84 1.83

6 10 10 11.18 7.31

7 10 20 46.55 80.36

8 10 30 60.91 87.27

Fig. 1 Logarithm of objective values of best solutions obtained by the proposed matheuristic (blue line)
and CPLEX (red line) for all 160 instances (color figure online)

Fig. 2 Logarithm of LRG of best solutions obtained by the proposed matheuristic (blue line) and CPLEX
(red line) for all 160 instances (color figure online)
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Table 4 Results from paired t test (H0: no difference between the proposed matheuristic and CPLEX)

Instance set #Bins #Orders t-statistic p value Reject? (p < 0.05)

1 5 5 1.5304 1.4224 × 10−1 No

2 5 10 − 0.5421 5.9378 × 10−1 No

3 5 20 − 8.3503 5.9748 × 10−8 Yes

4 5 30 − 29.472 5.9385 × 10−18 Yes

5 10 5 − 0.9999 3.2930 × 10−1 No

6 10 10 − 0.3152 7.5586 × 10−1 No

7 10 20 − 8.6602 3.3518 × 10−8 Yes

8 10 30 − 15.84 8.7285 × 10−13 Yes

significantly better solutions than CPLEX. These are sets with 20 and 30 orders,
which include the hardest instances. In instance sets 1, 5 and 6, its performance was
comparable with CPLEX. The noteworthy exception was instance set 2, in which
the performance of the matheuristic was significantly worse. In addition, it can be
seen that instance sets 2, 3, 6 and 7 have considerably higher standard deviations. We
identified that instance set 2 has really dispersed results, while instance sets 3, 6 and
7 each present outlier instances which inflated the standard deviation. Removing the
one outlier instance in instance sets 3, 6 and 7, we obtained the values 8.08%, 7.45%
and 9.20% for the standard deviations, respectively.

To evaluate if there is in fact a statistically significant difference between the pro-
posed matheuristic and CPLEX, we applied a paired t-test on each instance set with
a null hypothesis that there is no difference between mean values from the solutions
obtained by the proposed matheuristic and CPLEX. Assuming a significance level of
0.05, the corresponding p values indicate that there is a statistically significant dif-
ference in instance sets 3, 4, 7 and 8. (See Table 4) In all these 4 instance sets, the
proposed matheuristic achieved better average result than CPLEX, according to both
average RPD and WINS (See Table 2). In contrast, there is no statistically significant
difference in instance sets 1, 2, 5 and 6, so that we do not have evidence to state there
is any performance difference between the proposed matheuristic and CPLEX in these
instance sets.

Finally, as a comparison basis, we also obtained a lower bound for each instance
by solving model M (Eqs. (1)–(7)) in CPLEX with only variables xi jkt relaxed, i.e.,
these variables were allowed to assume fractional values. The resulting model is now
a mixed integer programming model, which could be solved to optimality in most
instances within a time limit of 3600 s. We call this lower bound LB∗. Table 5 shows
the relative deviation of the objective value fobj obtained from CPLEX and from the
proposed matheuristic to LB∗ computed as ( fobj − LB∗)/LB∗.

5 Final remarks

In this paper, we addressed the one-dimensional cutting stock and scheduling problem
with heterogeneous orders in which we have customer orders composed of heteroge-
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Table 5 Relative deviations to LB∗ (averages over instances solved to optimality)

Instance set #Bins #Orders Matheuristics CPLEX #Instances solved

1 5 5 0.0211 0.0172 20

2 5 10 0.3689 0.5042 20

3 5 20 1.9238 8.0257 20

4 5 30 3.0202 13.496 19

5 10 5 0.0174 0.0172 20

6 10 10 0.1277 0.1540 20

7 10 20 0.8750 4.7851 13

8 10 30 1.5356 7.0068 9

neous types of items. The objective function to be minimized is a linear combination
of total tardiness and the number of objects in stock needed to meet the demand. For
this NP-hard problem, we proposed an integer linear programming model and a novel
matheuristic algorithm based on a fix-and-optimize strategy hybridized with a random
local search.

Extensive computational experiments were carried out in which we compared
the performance of the proposed matheuristic with IBM CPLEX. In small-scale test
instances, the performance of the proposedmatheuristicwas statistically indistinguish-
able from CPLEX, while in larger instances the matheuristic outperformed CPLEX in
most cases with statistically significant results. (p < 0.05)

As future studies, we recommend the use of size-reduction heuristics, as proposed
by Fanjul-Peyro and Ruiz (2011), to improve the solutions generated by the proposed
matheuristic. Furthermore, other objective functions may be considered, such as min-
imization of the total completion time or the makespan.
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