
Computers and Operations Research 113 (2020) 104793

Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

A genetic algorithm for scheduling open shops with

sequence-dependent setup times

Levi R. Abreu, Jesus O. Cunha, Bruno A. Prata

∗, Jose M. Framinan

Department of Industrial Engineering, Federal University of Ceará, Campus do Pici, Bl. 714, Fortaleza 60440554, Brazil

a r t i c l e i n f o

Article history:

Received 25 March 2019

Revised 26 August 2019

Accepted 29 August 2019

Available online 3 September 2019

Keywords:

Production scheduling

Combinatorial optimization

Taguchi method

Metaheuristics

a b s t r a c t

In the open shop scheduling problem with sequence-dependent setup times, there is no established or-

der for the processing of the jobs, which leads to a large number of possible solutions for the scheduling

problem. Furthermore, there is a setup time between two consecutive operations, which depends on the

job previously processed. In this work we propose a hybrid genetic algorithm for the OSSP with sequence-

dependent setup times and total completion time minimization as objective function. Our proposal uses

two novel constructive heuristics which are combined for the generation of the initial population. We

carry out an extensive computational experience using problem instances taken from the related litera-

ture to evaluate the performance of the proposed algorithms as compared to existing heuristics for the

problem. The quality of the solutions and the CPU time required are used as performance criteria. Among

them, the genetic algorithm with direct decoding presents a smaller value for the average relative per-

centage deviation in comparison with the electromagnetic algorithm proposed by Naderi et al. (2011).

The computational results prove the excellent performance of the proposed metaheuristic for the tested

instances, resulting in the most efficient algorithm so-far for the problem under consideration.

© 2019 Elsevier Ltd. All rights reserved.

1

o

t

s

j

t

p

i

b

a

t

s

o

c

p

s

t

w

v

S

a

e

(

b

d

d

p

i

s

r

(

s

m

i

t

m

o

(

e

h

0

. Introduction

The open shop scheduling problem (OSSP) is a combinatorial

ptimization problem widely studied in the last few decades since

he seminal paper of Gonzalez and Sahni (1976) . In the OSSP, a

et of n jobs has to be processed in a set of m machines, so each

ob must visit all the machines. However, in the open shop layout

here are no predefined routes for the jobs in the machines, so the

rocessing route for each job is to be determined in the schedul-

ng process (Framinan et al., 2014). Therefore, the number of feasi-

le solutions for this problem is larger than for other layouts, such

s, for example, parallel machines, flow shop, or job shop produc-

ion environments. However, some constraints apply in the OSSP,

uch as the fact that the processing of the jobs in the machines

ccurs in distinct moments, i.e. a given job cannot be processed

oncomitantly in more than one machine. Furthermore, in the non-

reemptive case of the OSSP, the processing of the jobs cannot be

topped until the end of the task.

The OSSP has a number of industrial applications, such as plas-

ic molding, chemical processes, oil industry, and food production,

hereas in the service sector is used to model medical care ser-

ices, vehicle maintenance, and telecommunications (Gonzalez and
∗ Corresponding author.

E-mail address: baprata@ufc.br (B.A. Prata).

l

b

t

ttps://doi.org/10.1016/j.cor.2019.104793

305-0548/© 2019 Elsevier Ltd. All rights reserved.
ahni, 1976; Lin et al., 2008; Naderi et al., 2010; 2012). For some

uthors, the open shop layout is assumed implicitly as the op-

rational scheduling discipline in Flexible Manufacturing Systems

FMS) (Kusiak, 1985; Ben-Arieh and Dror, 1991), which in turn may

e used within the smart manufacturing system envisioned by In-

ustry 4.0 (Yin et al., 2018). It is not then surprising that, nowa-

ays, the OSSP is an active and promising research topic in the

roduction scheduling area (Anand and Panneerselvam, 2016).

Traditionally, setup times are considered as a part of process-

ng times. However, this assumption leads to problems in the

cheduling process because the completion times of jobs could be

educed substantially with explicit consideration of setup times

 Allahverdi et al., 2008). Taking into consideration explicitly the

etup times, a given production sequencing problem can be solved

ore realistically.

In this paper, we focus on the OSSP with the objective of min-

mising the sum of the completion times, which is usually men-

ioned as a relevant objective for today’s manufacturing environ-

ents (see e.g. Liu and Reeves, 2001), leading to an even use

f resources, fast turnaround of jobs, and low work-in-process

 Rajendran and Ziegler, 1997). We also assume that a setup time

xists whenever a machine has to process a job, and that the

ength of the setup time depends on the previous job that has

een processed in the machine. Despite the theoretical and prac-

ical importance of the open shop with explicit setup times, the

https://doi.org/10.1016/j.cor.2019.104793
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2019.104793&domain=pdf
mailto:baprata@ufc.br
https://doi.org/10.1016/j.cor.2019.104793

2 L.R. Abreu, J.O. Cunha and B.A. Prata et al. / Computers and Operations Research 113 (2020) 104793

Table 1

Processing times for open

shop example.

i \ j 1 2 3

1 661 168 171

2 250 489 505

3 333 343 324

Table 2

Setup times for open shop example.

i \ j \ k M1 M2 M3

1 2 3 1 2 3 1 2 3

1 250 484 425 471 467 77 39 488 135

2 485 191 170 156 6 176 182 423 240

3 406 485 475 380 456 284 100 274 240

a

s

m

u

t

b

d

l

r

m

t

s

B

f

S

s

s

S

F

f

2

t

w

b

t

r

l

s

j

n

c

c

c

j

t

s

h

l

a

t

a

s

2

contributions in the literature are rather limited. This limitation

is highlighted in some recent literature reviews on the schedul-

ing problems with setup times/costs (Allahverdi, 2015) and on the

open shop scheduling problems (Anand and Panneerselvam, 2016).

Since the problem considered is NP-hard (Garey and John-

son, 1979) for most usually-considered objectives save the most

trivial cases (e.g. one-machine open shop), the main contributions

on the OSSP focus on approximate methods obtaining good solu-

tions within a reasonable computation effort. Next, we discuss the

main contributions related to OSSP with setups.

Strusevich (1993) proposes an O (n) algorithm for minimizing

the makespan for the two-machine OSSP with setup, processing

and removal times separated. Low et al. (2003) study this variant

of the problem for m machines, proposing an integer linear pro-

gramming model as well as a simulated annealing metaheuristic

to get high-quality solutions. Low and Yeh (2009) propose a hybrid

genetic algorithm for the above-mentioned variant, outperforming

a Genetic Algorithm (GA), a Simulated Annealing (SA), and a Tabu

Search (TS) in all evaluated test problems.

Roshanaei et al. (2010) present a non-preemptive open shop

scheduling problem with sequence dependent setup times to min-

imize makespan. The above-mentioned authors present the follow-

ing algorithms: two new metaheuristics called multi-neighborhood

search simulated annealing and hybrid simulated annealing,

two constructive heuristics named LTMPT and LTRMPT and

three additional metaheuristics: variable neighboorhood search,

simulated annealing, and genetic algorithm. These algorithms

are evaluated in a set of randomly generated test instances.

Cankaya et al. (2019) present a mixed-integer programming model

and a constraint programming model for the open-shop scheduling

problem with sequence-dependent post-setup times to minimize

the makespan. This problem arises in chemical tanker schedul-

ing in ports, and a case study in the Port of Houston is pre-

sented. Their computational experience shows that the integer lin-

ear programming model is better for short-term decisions, and the

constraint programming model is better for long-term decisions.

Zhang et al. (2019) address a multiprocessor open shop scheduling

environment to solve a large-scale health examination scheduling

problem. The objective function is the minimization of the total

completion time. A mixed-integer linear programming problem is

proposed, as well as three metaheuristics: a simulated annealing

algorithm, a genetic algorithm, and a hybrid particle swarm opti-

mization. A set of test instances was carefully generated for the

assessment of the proposed approaches, and the genetic algorithm

outperformed all the other evaluated methods.

Regarding other objectives than the makespan,

Naderi et al. (2011) present an integer linear programming

model for the open shop scheduling problem with sequence-

dependent setup times to minimize total completion time. In view

of the complexity of the variant under study, the above-mentioned

authors propose an electromagnetism-like algorithm denoted

EH in the following. Their computational experience shows that

the proposed model and EH were more effective than the other

algorithms tested.

Noori-Darvish et al. (2012) present an open shop scheduling

problem with sequence-dependent setup times, fuzzy processing

times and fuzzy due dates. A bi-objective possibilistic mixed-

integer linear programming model is presented. To obtain the

Pareto front approximations for small-sized instances, these au-

thors present an interactive fuzzy multi-objective decision-making

approach. To solve medium-sized and large-sized instances, a

multi-objective particle swarm optimization (MOPSO) algorithm is

proposed.

Despite the existing contributions –namely the EH algorithm by

Naderi et al. (2011) –, we believe that there is room for develop-

ing more efficient solution procedures for the problem. Our paper
ims at presenting a hybrid genetic algorithm for the OSSP with

equence-dependent setup times and total completion time mini-

ization as objective. For an efficient generation of the initial pop-

lation, the GA is hybridized with two new constructive heuris-

ics proposed in this paper, which yield good solutions in negligi-

le computation times. We also evaluate the performance of three

ecoding schemes, thus investigating the efficiency of different so-

ution encoding policies. In order to determine the best configu-

ation of the algorithms, we perform a Taguchi design of experi-

ents (see e.g. Phadke, 1995). We carry out an extensive compu-

ational experimentation using the well-known open shop test in-

tances proposed by Guéret and Prins (1998) , Taillard (1993) and

ruckner et al. (1997) . The results shows that our proposal outper-

orms the existing procedures for the problem.

The remainder of this paper is organized as follows: in

ection 2 , the scheduling problem treated in this paper is de-

cribed; in Section 3 , the proposed genetic algorithm is pre-

ented; in Section 4 , we explain the experimental design, while in

ection 5 we discuss the results of the computational experiments.

inally, in Section 6 we draw some conclusions and suggestions for

uture works.

. Problem description

Since in the open shop environment there is no fixed route for

he jobs, the number of feasible solutions increases substantially

ith the instance size. An additional difficulty resides in the num-

er of possible redundant solutions that can occur with the permu-

ation encoding. In this representation, distinct permutations could

epresent the same solution. Thus, how to filter the redundant so-

utions plays a key role in a given algorithm. Also, the explicit con-

ideration of setup times is another additional problem, once the

ob previously processed impacts in the machine setup time for the

ext operations.

Let us consider n jobs that must be processed in m ma-

hines, in which each job operation has a processing time asso-

iated without route constraints, i.e. the jobs can visit the ma-

hines in any order. We present an illustrative example with three

obs and three machines, with the processing times taken from

he test problem GP03-01 by Guéret and Prins (1999) and pre-

ented in Table 1 , while the setup times –presented in Table 2 –

ave been genereted randomly. The usual encoding for the prob-

em is a vector representing the order in which the operations

re performed (Khuri and Miryala, 1999). In Table 3 , the opera-

ions to be performed in an instance with 3 jobs and 3 machines

re presented. Considering the instance in Table 1 , the sequence

 = (6 , 1 , 8 , 4 , 7 , 3 , 9 , 5 , 2) returns a solution with a makespan of

040 time units, as shown in Fig. 1 .

L.R. Abreu, J.O. Cunha and B.A. Prata et al. / Computers and Operations Research 113 (2020) 104793 3

Table 3

Operations for the presented instance.

Operation 1 2 3 4 5 6 7 8 9

Machine 1 1 1 2 2 2 3 3 3

Job 1 2 3 1 2 3 1 2 3

Fig. 1. Gantt chart for the presented solution.

v

r

a

d

g

L

h

u

s

h

m

e

o

3

n

a

p

t

c

T

a

m

N

t

g

r

t

i

p

i

m

Data : p, setup, popsize , MaxGen , selection(.), crossover(.),

mutation(.), pmut , restart(.), 2-optLocalSearch(.)

Result : A sequence Π := (π11 , π12 , ..., πmn)

1 pop ← CreatePopulation (popsize) ;

2 f itness ← CalculateFitness (pop, p, setup) ;

3 while k ≤ MaxGen do

4 parent1 , parent2 ← selection(pop, f itness);

5 of f spring ← crossover(par ent1 , par ent2);

6 if random() ≤ pmut then

7 of f spring ← mutation(of f spring);

8 end

9 if the criterion for performing the restart is satisfied then

10 pop, f itness ← restart(pop, f itness);

11 end

12 pop, f itness ← replacement(of f spring);

13 k ← k + 1 ;

14 end

15 Π ← the best solution ∈ pop;

16 Π ← 2-optLocalSearch (Π) ;

Algorithm 1: Pseudo-code of the proposed GA.

3

a

o

m

p

D

q

a

I

s

d

I

t

t

n

s
In our problem, the setup time of a job depends on the pre-

iously processed job. Thereby, the setup times for each job are

epresented by an element of matrix s ijk so that the setup times

re variable for each job and each machine, as well as sequence-

ependent. For this problem, we propose the lower bound (LB)

iven by Eq. (1) :

B =

M ∑

i =1

N ∑

j=1

(
p i j + min

k =1 ,..N
{ s i jk }

)
(1)

This lower bound would be used as an ingredient for the

euristics proposed in Section 3.2 for the initialisation of the pop-

lation of the Genetic Algorithm, and to measure the quality of the

olutions in Section 5 .

As mentioned earlier, the problem under consideration is NP-

ard, therefore it is of interest to develop efficient approximate

ethods providing good solutions with a reasonable computational

ffort. In the next section, we propose a new metaheuristic based

n Genetic Algorithms to address this issue.

. A new genetic algorithm

For the resolution of the problem under study, we propose a

ew genetic algorithm with knowledge of the problem domain,

iming at presenting high-quality solutions within admissible com-

utation times. Some specific constructive heuristics are proposed

o generate the initial population. Several genetic operators are

onsidered and the selection of the best algorithm is based on a

aguchi experimental design, as detailed in the next section. In

ddition, we present some filters for redundant solutions in the

utation operator as well as in the local search, as presented by

aderi et al. (2010) .

The proposed genetic algorithm presents the following opera-

ors: generation of the initial population, fitness evaluation of the

enerated solutions, parent selection, crossover, and mutation. A

estart procedure is applied to avoid the premature convergence of

he population. After all generations, a 2-opt local search algorithm

s applied in the best-generated offspring. The pseudocode of the

roposed genetic algorithm is described in Algorithm 1 , whereas

n Fig. 2 we present a flowchart of the algorithm. Their main ele-

ents are discussed in the next subsections.
.1. Encoding and decoding schemes

For the fitness evaluation, we consider a permutation encoding,

s described in Section 2 . A permutation list is a linear order list

f all the operations. With this encoding, the operators developed

ust use some filters in order to avoid redundant solutions. We

resent three forms of decoding a given solution:

irect decoding (D) : In this decoding, the permutation is se-

uenced from the beginning to the end of the list and the jobs

re allocated in the machines, as presented by Naderi et al. (2011) .

ndirect decoding (I) : In this decoding, the next operation to be

equenced is always the operations with the shortest start time, as

escribed by Naderi et al. (2010) .

ndirect decoding with setups (IS) : In this new decoding scheme,

he next operation to be sequenced is always the operations with

he shortest start time. The start time considers the setup time

ecessary for each operation, taking into account the last job

chedule in a given machine. Algorithm 2 describes the algorithm

Data : Π
Result : A sequence S := (π11 , π12 , ..., πmn) with encoding

scheme

1 S ← ∅ ;
2 U ← Π ;

3 M ← list with time accumulated in each machine;

4 J ← list with time accumulated in each job;

5 s i j ← start time for processing of operation πi j while ‖ U ‖ > 0

do

6 y ← min

(i, j) ∈ U

{
max

{
M i , J j

}
+ setup i jk

}
; // k is the index

of the last job allocated to machine i
7 R = { πi j | s i j = y, πi j ∈ U} ;
8 πzd ← operation in earliest relative position ∈ R ;

9 U ← U − { πzd } ;
10 S ← S + { πzd } ;
11 update J and M with time of πzd operation;

12 update s i j based on J and M times, ∀ i ∈ M, j ∈ N;

13 end

Algorithm 2: Indirect decoding with setups (IS) scheme pro-

cedure.

4 L.R. Abreu, J.O. Cunha and B.A. Prata et al. / Computers and Operations Research 113 (2020) 104793

Generate initial
population

Fitness
evaluation

Selection

Crossover

Mutation

Begin

RestartIs the restart
required?

Replacement

Stop
criterion?

2-opt
local search

End

Fig. 2. Flowchart of the proposed hybrid genetic algorithm.

V

c

o

d

t

p

t

h

b

o

Π

t

fi

q

i

v

t

l

t

b

o

B

c

b

for this decoding. As it can be seen, the new decoding scheme al-

ways allocates the operation with the shortest start time, consid-

ering the accumulated times in the machines and the job to be

sequenced. In addition, the scheme considers the cost of setup in-

volved in the machine in relation to the last job allocated and the

next one to be sequenced.

3.2. Generation of the initial population

The method for generating the initial population is described

as follows: 25 % of the solutions are generated with a new con-

structive heuristic proposed for the problem, which is denoted as

BICH-MIH, which is the result of combining two heuristics specif-

ically designed for the problem. The remainder of the initial pop-

ulation is randomly generated. Next, we describe the constructive

heuristics employed.

3.2.1. Bounded Insertion Constructive Heuristic (BICH)

The BICH type of heuristic was first proposed by Fernandez-

iagas and Framinan (2015) for the permutation flowshop schedul-

ing problem with makespan minimisation subject to a maximum

tardiness. Basically, this type of heuristic iteratively constructs a

solution by appending an unscheduled job at the end of a partial

sequence of unscheduled jobs. The key is to obtain a suitable indi-
ator to select the proper unscheduled job to be appended. Obvi-

usly, in order to obtain good solutions using this heuristic, the in-

icator has to be problem-specific, so we cannot adapt the heuris-

ic in a straightforward manner. Furthermore, the sequence for our

roblem consists of operations and not jobs. However, BICH seems

o be an interesting technique for the OSSP because the idea of the

euristic is to use a mechanism to limit the number of solutions to

e explored, so it could be very useful for the OSSP as the number

f feasible solutions is very large.

BICH obtains a sequence Π := (π11 , π13 , ..., πmn) starting with

as an empty sequence and adding one operation in each itera-

ion o (o = 1 , . . . , n · m) as follows. We select the machine k which

nishes first the processing of the operations in the partial se-

uence Π . Then, among the unscheduled operations correspond-

ng to machine k , we pick the operation π kj yielding the minimum

alue of the sum of the two following terms: the (partial) sum of

he completion times of Π after the appending of π kj plus the

ower bound of the remaining unscheduled operations, according

o Eq. (1) . The idea is to pick an indicator that weighs the contri-

ution of selecting a specific operation and also the contribution

f the non-selected operations. The pseudo code of the proposed

ICH is presented in Algorithm 3 . In this figure, TCT is the total

ompletion time, LB is a function that computes the (partial) lower

ound, and p is a sample instance.

L.R. Abreu, J.O. Cunha and B.A. Prata et al. / Computers and Operations Research 113 (2020) 104793 5

Data : TCT(.), LB(.), p

Result : A sequence Π := (π11 , π12 , ..., πmn)

1 Π ← {} ;
2 P ← copy(p);

3 M ← list with time cumulative in each machine;

4 J ← list with time cumulative in each job;

5 �k ← list with the jobs allocated to machine k ,

∀ k ∈ { 1 , ..., m } ;
6 while ‖ Π‖ < n × m do

7 machine k ← argmin

i ∈{ 1 ,...,m }
M i job j ← argmin

j ∈{ 1 ,...,n } , j / ∈ �k

T CT (Π ∪ { πki } , p) + LB(πki , P) Π ← Π ∪ { πk j } ;
8 �k ← �k ∪ { j} ;
9 P k j ← 0 ;

10 update J and M with time of πk j operation;

11 end

Algorithm 3: Pseudo-code of the BICH.

3

t

t

c

p

c

m

c

n

s

c

t

t

f

g

fi

c

c

c

e

t

c

n

M

�

3

t

c

f

d

t

d

s

c

t

a

f

m

c

Data : p

Result : A sequence Π := (π11 , π12 , ..., πmn)

1 Π ← ∅ ;
2 M ← list with time cumulative in each machine;

3 J ← list with time cumulative in each job;

4 �k ← list with the jobs allocated to machine k ,

∀ k ∈ { 1 , ..., m } ;
5 while ‖ Π‖ < n × m do

6 machine k ← argmin

i ∈{ 1 ,...,m }
M i ; // index from machine

finishing first
7 .job j ← argmin

j ∈{ 1 ,...,n } , j / ∈ �k

�k j ; // the best job not

allocated in machine k, through the MIH rule.
8 Π ← Π ∪ { πk j } ;
9 �k ← �k ∪ { j} ;

10 update J and M with time of πk j operation;

11 end

Algorithm 4: Pseudo-code of the MIH.

g

g

s

t

t

j

t

s

a

�

3

b
.2.2. Minimal Idleness Heuristic (MIH)

Priority rules for the OSSP are usually based on LPT algorithms

hat sort operations in decreasing order. Taking into account that

he open shop presents certain similarities with the parallel ma-

hine scheduling environment, allocating the jobs with the longest

rocessing times is an interesting strategy. However, this strategy

an lead to a high idleness of the machines. While in the parallel

achines environment, this idleness is zero, in the open shop it

an increase the completion times of a given solution.

Along these lines, we propose a new constructive procedure,

ot considered previously in the literature, that takes into con-

ideration the idleness minimization. Solutions with low values of

umulative processing times will usually present low completion

imes. A measure for idleness can be the accumulated processing

imes for the jobs and machines. If the cumulative processing time

or a given job is greater than the cumulative processing time for a

iven machine, it means that the machine will wait until the job is

nished, and consequently, it can be allocated to the current ma-

hine. If the situation is the opposite, this job was already pro-

essed in another machine and its processing in the current ma-

hine will not result in idleness. �ij represents the idleness gen-

rated by the allocation of job j to machine i , taking into account

hat it is allocated after job l in machine i , therefore inducing the

orresponding setup s ijl . Eq. (2) presents how to compute the idle-

ess indicator �ij , while Algorithm 4 shows the pseudocode of

IH.

i j =

{
J j − M i + s i jl , if J j > M i

s i jl , otherwise
(2)

.2.3. Constructive heuristic BICH-MIH

For the customer order scheduling problem with total comple-

ion time objective, Framinan and Perez-Gonzalez (2017) present a

onstructive heuristic in which there is a look-ahead mechanism

or evaluating not only the potential contribution of the candi-

ate orders to the objective function, but also an estimation of

he contribution to the objective function of the non-scheduled or-

ers. This look-ahead mechanism has been also applied to other

cheduling problems. On the basis of such reasoning, we propose a

onstructive algorithm for our problem that takes into considera-

ion the contribution of an operation for the total completion time

s well as to the idleness. We adopt a weight aggregation function

or combining the two objectives, i.e. total completion time mini-

ization and idleness minimization. Aiming at weighing these two

riteria, an α value is selected, in which a value close to 1 indicates
reater importance for the idleness and a value close to 0 indicates

reater importance for the completion time.

More specifically, let � ij be a performance indicator for the in-

ertion of the operation π ij in the permutation, α the weight of

he expected contribution for the idleness minimization and �ij

he expected contribution for the idleness minimization. The ob-

ective function is the total completion time (TCT), LB is a func-

ion that calculates the (partial) lower bound, and p and setup is a

ample instance. The performance indicator � ij can be computed

s follows:

i j = (1 − α) × (TCT (Π ∪ { πi j } , p, setup) + LB (πi j , P, Setup))

+ α × �i j (3)

The BICH-MIH heuristic is detailed in Algorithm 5 .

Data : TCT(.), LB(.), p, setup, α
Result : A sequence Π := (π11 , π12 , ..., πmn)

1 Π ← ∅ ;
2 P ← copy(p);

3 Setup ← copy(setup);

4 M ← list with time cumulative in each machine;

5 J ← list with time cumulative in each job;

6 �k ← list with the jobs allocated to machine k ,

∀ k ∈ { 1 , ..., m } ;
7 while ‖ Π‖ < n × m do

8 machine k ← argmin

i ∈{ 1 ,...,m }
M i ; // index from machine

finishing first.
9 job j ← argmin

j ∈{ 1 ,...,n } , j / ∈ �k

�k j ; // the best job not allocated

in machine k, through the combined approach rule
with α.

10 Π ← Π ∪ { πk j } ;
11 �k ← �k ∪ { j} ;
12 P k j ← 0 ;

13 update J and M with time of πk j operation;

14 end

Algorithm 5: Pseudo-code of the BICH-MIH heuristic

.3. Selection procedures

We present three selection operators taking into consideration

oth the randomness and the quality of the solution. In all the pre-

6 L.R. Abreu, J.O. Cunha and B.A. Prata et al. / Computers and Operations Research 113 (2020) 104793

Fig. 3. Example of OX crossover.

Fig. 4. Example of PMX crossover.

Fig. 5. Example of CX crossover.

3

m

b

p

r

3

s

r

T

w

t

3

t

o

o

3

p

t

d

a

3

t

b

e

p

h

e

d

C

i

t

�

p

t
sented selection procedures, the genetic operator aims at selecting

two parents, called parent 1 and parent 2 , for subsequent crossover

operation.

3.3.1. Tournament

The selection based on the binary tournament randomly se-

lects four individuals in the current population, performing a pair-

wise comparison. Let parent 1 be the best of two first solutions and

parent 2 the best of the two last solutions. Thus, the selection pro-

cedure combines randomness and selective pressure.

3.3.2. Roulette

For each individual we compute the inverse of the objective

function F i =

1
T CT i

. After that, we calculate the selection probabil-

ity for each solution in the current population, which is its fitness

in relation to the total, i.e. the probability of selecting individual i

is given by prob i =

F i ∑

F i
.

3.3.3. Rank

This operator is quite similar to the roulette operator, differing

by the consideration of normalized probabilities. The best solution

in the current population takes a value equals to the population

size, the second best solution takes the value of the best solution

minus one, and so on.

3.4. Crossover operators

The crossover operators were selected in view of the encoding

using a permutation list, i.e. all the operators apply to a permuta-

tion of coded operations. The proposed crossover operators present

a scheme for generating only feasible solutions. We consider three

types of crossover: CX, PMX, and OX, which are described below.

3.4.1. Order crossover – OX

The OX crossover randomly selects two cutoff points from

parent 1 and adds this information in the generated offspring . The

remaining operations are added in the order in which they appear

in parent 2 , thus always generating a feasible offspring. Fig. 3 illus-

trates an example for OX crossover.

3.4.2. Partially Matched Crossover – PMX

PMX crossover randomly selects two cutoff point from parent 1
and the offspring integrally inherits the generated partial sequence.

Finally, each remaining operation is obtained from parent 2 . How-

ever, when an unfeasible sequence is generated, some exchanges

are performed for the correction of the solution. More specifically,

the operations from parent 2 that would generate an infeasible so-

lution (operations already inserted in the offspring from parent 1)

are inserted in the remaining positions of the offspring, taking into

consideration the sequence of parent 2 . Fig. 4 illustrates an example.

3.4.3. Cycle Crossover – CX

CX crossover generates an offspring based on the cycle of the

operations from its parents, building solutions that preserve their

absolute positions. With the generated cycle, offspring receives op-

erations from parent 1 and the remaining operations from parent 2 .

Fig. 5 illustrates an example for this crossover.
.5. Mutation operator

The mutation of a generated offspring is based on a swap

ovement. We generate a random number, uniformly distributed

etween 0 and 1. If this number is less than or equal to a given

robability pmut , which is a parameter of the genetic algorithm, a

andom exchange between two operations is performed.

.6. Replacement of parents by offspring

The population update may be based on three criteria: the clas-

ic genetic algorithm with elitism (simple), the hill climbing crite-

ion (HC), and Metropolis criterion from simulated annealing (SA).

hese criteria adopt elitism: the algorithm preserves the solution

ith the best value of the objective function in the next genera-

ion.

.6.1. Simple replacement

In a standard GA, the generated offspring is usually inserted in

he current population replacing the solution with the worst value

f the objective function. This strategy can lead the search for local

ptima (Gendreau and Potvin, 2010).

.6.2. HC replacement

In this strategy the generated offspring is inserted in the current

opulation only if this solution is better than its parents, such as in

he well-known hill climbing algorithm. In this way, the population

iversity is maintained since the offspring updates solutions with

 significative similarity.

.6.3. Simulated annealing replacement

In this strategy, we insert the generated offspring according to

he well-known Metropolis criterion. If the generated offspring is

etter than its parents, we insert it in the current population. Oth-

rwise, we insert the offspring on the basis of a given acceptance

robability which depends on temperature. This temperature is

igh at the beginning of the search, being reduced over the gen-

rations. The offspring acceptance probability follows a Boltzmann

istribution, such as in a simulated annealing algorithm:

r iter ion = e −�/t (4)

n which � means the total completion time (TCT) difference be-

ween the generated offspring and the best parent, i.e.:

= T CT (of f spring) − T CT (parent best) (5)

It is important to highlight that, in the first generations, the

robability of accepting solutions with worse values of the objec-

ive function is greater, ensuring the diversity of the population. In

L.R. Abreu, J.O. Cunha and B.A. Prata et al. / Computers and Operations Research 113 (2020) 104793 7

t

i

n

a

c

r

a

t

3

i

r

i

g

m

t

o

u

t

s

s

3

c

N

a

a

e

t

s

b

4

r

S

t

t

4

m

b

s

a

l

R

4

b

a

G

b

T

p

s

Table 4

Factors and levels for Taguchi experimental design.

Factors Levels

1 2 3

MaxGen 150 300 500

popsize 20 50 100

pmut 0.01 0.02 0.05

Selection Tournament Roulette Rank

Crossover OX PMX CX

Replacement Simple HC SA

Do restart True False –

i

p

a

2

f

g

B

d

j

P

p

s

f

U

4

a

a

c

l

p

a

s

L

t

t

a

t

t

w

w

a

i

b

t

p

a

c

s

5

I

r

a
he last generations, this probability is substantially reduced, lead-

ng to the intensification of the search.

Hence, we guarantee a replacement mechanism with random-

ess and selective pressure, combining strategies of diversification

nd intensification and preventing that the search is stuck in lo-

al optima (Gendreau and Potvin, 2010). Initial temperature (T 0)

eceives a high value (T 0 = 100) which is reduced over the gener-

tions, with a geometric decay rate (the decay rate is set to 0.95 in

he experiments.).

.7. Restart

According to Prata (2015) , the restart operator aims at prevent-

ng the premature convergence of the search and leads to better

esults. This operator is controlled by a parameter MaxGen , which

s a percentage of the maximum number of generations. The al-

orithm restarts the current population if there is no improve-

ent after 0.3 × MaxGen generations. The algorithm also restarts

he temperature, in the case of simulated annealing replacement

perator. In both cases, the algorithm preserves the best individ-

al in the current population (elitism assumption). In this way,

he best solution will distribute good genetic material for the new

olutions, leading the algorithm to promising areas of the search

pace.

.8. Local search

The local search adopted in this proposal is a 2-opt lo-

al search with the best improvement strategy, as presented in

aderi et al. (2011) . The improvement procedure presents a mech-

nism for the search space reduction by means of a filter that

voids the generation of redundant solutions. The local search is

xecuted in the best offspring generated by the proposed GA. On

he basis of preliminary computational experiments, we have ob-

erved that the inclusion of the local search has led to substantially

etter solutions.

. Experimental design

In this section we describe the design of the experiments car-

ied out to select the best parameters of the algorithm proposed in

ection 3 . In the next sections, we present the indicators used for

he evaluations, describe the test instances, and discuss the selec-

ion of the parameters of the algorithm.

.1. Indicator for the evaluation

The statistic used in the analysis of the computational experi-

ents is the gap for instance i between the solution sol ik obtained

y method k and the lower bound of the instance (LB i), as pre-

ented in the Eq. (6) . Thus, for each instance we calculate the rel-

tive percentage deviation (RPD) as the relative distance to the

ower bound.

P D ik =

sol ik − LB i

LB i

· 100 (6)

.2. Description of test instances

In the open shop scheduling literature, test instances have

een published by Guéret and Prins (1998) , Taillard (1993) ,

nd Bruckner et al. (1997) . For the test problems proposed by

uéret and Prins (1998) , the processing time matrices are squared,

ecause the number of jobs is equal to the number of machines.

he sets of instances are divided in m ∈ [3, 4, 5, 6, 7, 8, 9, 10]. The

rocessing times are uniformly distributed with U [1,999]. For each

et of instances there are 10 different test problems, totalyzing 80
nstances. For the test problems proposed by Taillard (1993) , the

rocessing time matrices are similar to Guéret and Prins (1998) ,

nd the sets of instances are divided in n, m ∈ {4, 5, 7, 10, 15,

0} with random values uniformly distributed between 1 and 100

or the processing times. For each size, 10 instances are randomly

enerated, totalyzing 60 instances. Finally, the test problems by

ruckner et al. (1997) are generated in a similar way, with ran-

om values uniformly distributed between 1 and 500 and 6 sets of

obs n, m ∈ {3, 4, 5, 6, 7, 8}, totalyzing 60 instances.

Regarding the setup times, the instances of Guéret and

rins (1998) , Taillard (1993) , and Bruckner et al. (1997) do not

rovide this information. Therefore, as in Naderi et al. (2011) , the

etup times are randomly generated, with a distribution U [1,499]

or the first five test problems of each set of instances and

 [500,999] for the last five test problems of each set of instances.

.3. Taguchi experimental design

Since the proposed GA presents different parameters and oper-

tors, we evaluate their influence of its performance by means of

n experimental design approach. In our design of experiments, we

onsider the parameters presented in Table 4 .

Since we analyse seven factors (each one with two or three

evels) and we evaluate three distinct decoding schemes, a com-

lete evaluation of the different parameters and operators of the

lgorithms is prohibitive. We adopt a Taguchi experimental de-

ign (Phadke, 1995) with 7 factors and 18 tests. The notation is

18(2 ∧ 1 3 ∧ 6), in which one factor presents two levels and six fac-

ors present 3 levels. Table 5 describes each test.

For the Taguchi experimental design, we consider a subset of

he test intances. We randomly select a sample of 30 test problems

mong the 192 available test problems, taking into consideration

he sizes n ∈ {3, 4, 5, 6, 7, 8}.

Fig. 6 describes the main effects of the analyzed factors using

he Average Relative Percentage Deviation (ARPD). The GA variants

ere run 10 times for each test instance, and the average results

ere tallied. It is possible to check that the restart operator, as well

s the CX crossover operator, result in a significative improvement

n the quality of the solutions.

In view of the results of the Taguchi experimental design, the

est parametrization for the GA is considering tournament selec-

ion, CX crossover, pmut = 0.05, hill climbing replacement, restart

rocedure and MaxGen = 100. Table 6 presents the analysis of vari-

nce (ANOVA) (see e.g. Montgomery, 2017) for the ARPD. In this

ase, it can be seen that only restart and crossover operators are

tatistically significant.

. Results and discussion

The above mentioned algorithms were implemented in the

ntel®Distribution for Python

∗ integrated development envi-

onment (https://software.intel.com/en- us/distribution- for- python)

nd were run in C with Cyton library (http://cython.org/)

https://software.intel.com/en-us/distribution-for-python
http://cython.org/

8 L.R. Abreu, J.O. Cunha and B.A. Prata et al. / Computers and Operations Research 113 (2020) 104793

Table 5

All experiments for L18(2 ∧ 1 3 ∧ 6).

Trial Do restart Popsize Selection Crossover pmut Replacement MaxGen

1 True 20 Tournament OX 0.01 Simple 150

2 True 20 Roulette PMX 0.02 HC 300

3 True 20 Rank CX 0.05 SA 500

4 True 50 Tournament OX 0.02 HC 500

5 True 50 Roulette PMX 0.05 SA 150

6 True 50 Rank CX 0.01 Simple 300

7 True 100 Tournament PMX 0.01 SA 500

8 True 100 Roulette CX 0.02 Simple 150

9 True 100 Rank OX 0.05 HC 300

10 False 20 Tournament CX 0.05 HC 150

11 False 20 Roulette OX 0.01 SA 300

12 False 20 Rank PMX 0.02 Simple 500

13 False 50 Tournament PMX 0.05 Simple 300

14 False 50 Roulette CX 0.01 HC 500

15 False 50 Rank OX 0.02 SA 150

16 False 100 Tournament CX 0.02 SA 300

17 False 100 Roulette OX 0.05 Simple 500

18 False 100 Rank PMX 0.01 HC 150

Fig. 6. Efectcs plots for diference levels of the crontrolled factors.

M

N

p

3

r
(Behnel et al., 2011). The computational experience was performed

on a PC with Intel Core i7-4771 CPU 3.50 GHz and 8GB memory.

The algorithms implemented are the following:

• Bounded Insertion Constructive Heuristic (BICH);
• Minimal Insertion Heuristic (MIH);
• GA(D): proposed genetic algorithm with direct decoding;
• GA(I): proposed genetic algorithm with indirect decoding;
• GA(IS): proposed genetic algorithm with indirect decoding with

setups;
• Electromagnetic Heuristic (EH) proposed by Naderi et al. (2011) ,

the state-of-art algorithm for OSSP with setup times.

For comparison purposes, we also consider the results of the

ixed Integer Linear Programming (MILP) model presented by

aderi et al. (2011) , which was modeled and run in the same com-

uter using IBM ILOG CPLEX version 12.8, with a time limit of

600s. Regarding the metaheuristics under comparison, each algo-

ithm is run 10 times for each instance, and the average results

L.R. Abreu, J.O. Cunha and B.A. Prata et al. / Computers and Operations Research 113 (2020) 104793 9

Table 6

Variance test for ARPD in parameters of GA (α = 0 . 05).

Font GL SQ Seq SQ (Aj.) QM (Aj.) F p − v alue

Do restart 1 9719.9 9719.9 9719.90 9.61 0.036

Popsize 2 141.2 141.2 70.60 0.07 0.934

Selection 2 1037.8 1037.8 518.90 0.51 0.633

Crossover 2 11725.1 11725.1 5862.55 5.80 0.046

pmut 2 661.0 661.0 330.48 0.33 0.739

Replacement 2 947.4 947.4 473.69 0.47 0.656

MaxGen 2 100.9 100.9 50.47 0.05 0.952

Errors 4 4043.8 4043.8 1010.94

Total 17 28377.0

a

s

h

s

w

o

a

p

p

W

b

M

i

t

E

t

t

f

l

r

Fig. 7. 95 % confidence interval for ARPD in all methods.

a

s

h

m

a

t

t

t

b

l

G

p

q

t

t
re tallied. Table 7 illustrates the ARPD values for each class of in-

tances, divided into low and high setup times.

In view of the results obtained, it can be seen that the meta-

euristics outperform the constructive heuristics for all the in-

tances. With respect to setup times it is clear that the instances

ith high setup distributions present solutions with smaller values

f ARPD.

In order to verify wether the previous differences in RPD values

re statistically significant, we apply an ANOVA. The so-obtained

 -values are very close to zero, and in Fig. 7 we show the means

lot with confidence intervals (α = 0.05) for all methods proposed.

e can clearly see that there are statistically significant differences

etween the average RPD values among all the methods.

With respect to the MILP model, it is clearly outperformed by

IH, GA(D), GA(IS), and EH even if the CPU effort of the former

s much higher. Regarding constructive heuristics, BICH presents

he worst results. Although MIH is outperformed by GA(D) and

H, the quality of the solutions obtained by MIH is similar to

hose yielded by the metaheuristics, with much smaller computa-

ion times. Therefore, this algorithm can be an interesting approach

or solving real-world problems in an industrial environment if so-

utions are required within negligible computational effort. With

espect to the metaheuristics tested, GA(D) presents the best over-
Table 7

ARPD values for all methods in each set of instance and setup type.

Method MILP BICH MIH

Setup Low High Low High Low High

Guéret and Prins

GP03 21.51 13.81 52.56 44.03 34.90 24.93

GP04 32.49 16.76 69.34 59.02 51.00 25.31

GP05 31.91 19.85 106.84 72.35 53.09 27.56

GP06 46.98 29.03 158.78 92.11 65.44 33.49

GP07 57.68 33.28 175.76 110.75 65.78 30.99

GP08 65.93 56.19 193.52 130.50 78.07 33.84

GP09 97.12 51.76 255.96 129.64 85.15 32.68

GP10 146.96 109.66 304.98 152.38 90.89 33.97

Taillard

tai_4x4 43.29 16.38 99.34 52.14 72.59 23.38

tai_5x5 51.27 18.82 156.01 77.61 96.77 34.81

tai_7x7 80.93 37.52 234.90 101.52 103.68 34.37

tai_10x10 274.96 108.45 325.42 138.91 120.58 36.83

tai_15x15 566.93 3.27 506.75 211.46 128.43 34.59

tai_20x20 127.59 3.14 707.71 261.01 124.05 32.08

Brucker

j3 59.17 68.02 64.74 89.70 39.27 48.87

j4 50.24 62.65 99.22 104.21 57.60 67.75

j5 64.61 56.94 122.93 160.35 85.85 90.36

j6 62.57 61.40 183.98 157.52 93.01 90.27

j7 83.19 79.30 220.70 221.43 105.68 103.34

j8 113.00 99.05 234.95 267.89 108.99 104.08

Min 21.51 3.14 52.56 44.03 34.90 23.38

Avg 103.92 47.26 213.72 131.73 83.04 47.18

Max 566.93 109.66 707.71 267.89 128.43 104.08
ll results. More specifically, it outperforms EH, which is the best

o-far method for the problem under study.

In order to further ascertain the results obtained by the meta-

euristics, we checked whether the previous differences in the

ean of RPD values are statistically significant. We apply ANOVA

nd present HSD Tukey intervals (α = 0.05) for all the combina-

ions of methods in Fig. 8 . In this figure, if the difference between

he means of the RPD of the methods crosses the vertical line, then

his difference cannot be considered significant in statistical terms.

As it can be seen, there are statistically significant differences

etween the average RPD values among all the algorithms ana-

yzed. Considering GA (D) and EH, the diference is significant and

A(D) presents better results than EH. Thereby, the method pro-

osed by Naderi et al. (2011) is outperformed in terms of the

uality of solutions. Comparing the quality of the solutions of the

hree different decoding schemes, it can be seen that GA(D) ob-

ains the best results, and that the results obtained by GA(IS) are
GA (D) GA (I) GA (IS) EH

Low High Low High Low High Low High

21.51 13.81 31.41 29.36 35.61 26.95 21.51 13.81

26.51 8.29 49.21 19.73 54.79 16.51 32.49 16.76

29.77 9.01 50.69 24.55 53.24 20.50 34.42 21.05

39.78 13.26 61.91 26.65 62.95 23.21 53.80 28.35

41.13 15.20 69.01 28.38 71.69 24.07 56.44 28.58

48.69 15.13 84.58 30.06 64.04 24.65 67.07 30.13

57.99 13.02 102.85 31.83 76.56 25.88 77.14 29.70

64.10 12.62 121.15 34.44 83.15 23.90 82.24 31.08

35.59 8.76 73.20 20.23 60.25 19.72 43.63 16.38

59.87 10.84 84.50 30.05 83.99 23.77 60.66 24.84

67.89 17.53 118.03 31.37 104.04 24.56 82.67 31.02

83.22 15.36 174.00 34.90 108.18 24.88 105.13 32.47

91.82 17.43 231.21 39.89 120.76 22.12 111.34 32.83

95.31 13.04 280.47 42.11 133.01 21.37 119.95 30.31

26.51 26.93 36.73 43.19 44.21 70.31 26.51 26.93

31.27 36.10 69.08 66.27 49.71 64.87 37.01 38.66

48.70 47.21 77.96 82.01 66.55 70.46 54.37 52.33

62.03 52.76 92.73 96.88 77.39 93.27 72.62 64.95

64.79 68.11 110.16 111.88 100.47 99.41 82.66 82.52

71.98 72.22 135.80 138.88 107.15 102.72 91.48 95.39

21.51 8.29 31.41 19.73 35.61 16.51 21.51 13.81

53.42 24.33 102.74 48.13 77.89 41.16 65.66 36.40

95.31 72.22 280.47 138.88 133.01 102.72 119.95 95.39

10 L.R. Abreu, J.O. Cunha and B.A. Prata et al. / Computers and Operations Research 113 (2020) 104793

Fig. 8. Tukey HSD intervals at the 95% confidence level for the analyzed methods.

s

t

s

t

a

m

C

A

t

e

w

c

f

o

i

p

m

t

i

e

i

s

o

p

i

6

l

f

h

h

t

t

t
better than those obtained by GA(I). This means that the IS pro-

posed decoding scheme outperforms the classic indirect decoding

by Naderi et al. (2011) , even if both are outperformed by GA(D).

Regarding the computational effort required by the different

methods, Table 8 shows the average computational times (in sec-

onds) for all considered methods for each instance size and setup

type. As the computational times for the constructive heuristics are

negligible (less than 1 second), we did not report them. In view

of the results, the following points can be highlighted: The MILP

model and the GA(IS) present the largest computational times,

while GA(D) outperforms all the other metaheuristics. Aiming at

comparing the effect of the instance size in the computational ef-

fort, Fig. 9 illustrates the average computational times for each

instance size and setup type. EH performs similarly to GA(D) for

the large-sized instances, and shows a worse performance for the
Table 8

Average computational times for all methods in each set of instance an

Method MILP GA (D) GA

Setup Low High Low High Low

Guéret and Prins

GP03 0.04 0.05 0.13 0.13 0.1

GP04 1.77 8.29 0.30 0.30 0.5

GP05 319.57 4306.29 0.67 0.67 1.3

GP06 3602.16 3600.93 1.42 1.43 3.2

GP07 3600.42 3600.64 2.87 2.86 6.9

GP08 3600.30 3600.62 5.48 5.36 15

GP09 3600.23 3600.23 9.79 9.66 26

GP10 3600.71 3600.14 16.94 16.47 55

Taillard

tai_4x4 0.92 6.33 0.30 0.30 0.5

tai_5x5 271.31 3601.25 0.67 0.67 1.3

tai_7x7 3600.20 3601.14 2.91 2.84 5.5

tai_10x10 3600.08 3600.09 16.85 16.43 40

tai_15x15 3600.16 3600.08 28.68 40.48 44

tai_20x20 3600.13 3600.16 615.96 605.27 38

Brucker

j3 0.02 0.02 0.11 0.12 0.1

j4 0.11 0.09 0.27 0.28 0.4

j5 10.75 10.09 0.63 0.62 1.1

j6 3044.00 2055.83 1.38 1.40 2.4

j7 3600.48 3600.32 2.78 2.81 5.6

j8 1250.81 3600.22 5.48 5.52 11

Min 0.02 0.02 0.11 0.12 0.1

Avg 1947.82 2361.56 35.68 35.68 22

Max 3602.16 4306.29 615.96 605.27 38
mall-sized ones. For the latter instances, the difference between

he low and high setup types is not relevant, while for the large-

ized ones it is statistically significant.

Finally, the trade-off between the quality of the solutions ob-

ained by each method and its computational requirements can be

ssessed by presenting in Fig. 10 a Pareto front of the different

ethods with respect to their Average RPD (ARPD) and Average

omputational Times (ARCT) to compare their relative efficiency.

s it can be seen, the three algorithms proposed in this paper (the

wo constructive heuristics BICH and MIH, and the GA) constitute

fficient methods for the problem under consideration. It is also

orth noting the efficiency of GA(D) as compared to the other de-

oding methods. We believe that the reason for the excellent per-

ormance of the direct decoding method lies in the fact that the

bjective function is computed using exactly the same sequence

n which the operations appear in the solution, therefore the im-

rovement obtained by the GA is a consequence of an improve-

ent in the objective function, since there is no need to change

he sequence of the orders (in other words, to perform a decod-

ng). In contrast, when a solution is decoded using an indirect op-

rator – as in GA(I) or GA(IS) – the sequence of the operations

s changed, and the setup values are modified because they are

equence-dependent. This alteration deteriorates the performance

f the GA. Furthermore, the need to perform a coding-decoding

rocess also increases the cpu time requirements, as it can be seen

n Table 8 .

. Conclusions and future research

In this paper, we address the open shop shop scheduling prob-

em with sequence dependent setup times and with the objective

unction of minimizing the total completion time. We develop a

ybrid genetic algorithm that incorporates two new constructive

euristics as well as three different decoding schemes.

A series of computational experiments are carried out in order

o evaluate the performance of the proposed algorithms. We use

he relative deviation percentage as an indicator of the quality of

he solutions, and the average computation time as an indicator
d setup type.

 (I) GA (IS) EH

 High Low High Low High

9 0.19 0.24 0.24 8.07 8.09

4 0.53 0.67 0.68 12.86 12.98

9 1.36 1.85 1.82 16.47 16.67

2 3.27 4.64 4.58 23.48 23.80

4 6.95 10.89 10.91 30.44 30.60

.18 14.23 23.75 23.64 37.71 36.94

.49 29.87 49.14 48.22 46.75 45.45

.49 50.85 93.75 92.35 54.00 53.95

4 0.54 0.68 0.66 11.13 11.31

3 1.34 1.83 1.83 17.07 16.75

7 5.42 10.88 10.81 30.26 30.20

.02 38.50 93.56 92.52 55.94 55.43

9.46 401.94 1170.39 1165.56 117.63 113.60

63.24 3647.43 8418.71 8686.47 214.09 209.99

7 0.17 0.21 0.23 8.25 8.13

3 0.45 0.60 0.62 12.18 12.51

4 1.12 1.77 1.75 17.34 16.34

0 2.60 4.59 4.60 22.97 21.84

3 5.70 10.89 10.91 28.68 31.26

.62 11.25 24.51 24.60 35.89 37.08

7 0.17 0.21 0.23 8.07 8.09

4.55 211.19 496.18 509.15 40.06 39.65

63.24 3647.43 8418.71 8686.47 214.09 209.99

L.R. Abreu, J.O. Cunha and B.A. Prata et al. / Computers and Operations Research 113 (2020) 104793 11

Fig. 9. 95 % confidence interval for Computational time in best methods in each size of instance.

Fig. 10. ARCT x ARPD in heuristics and metaheuristics methods.

o

t

m

t

q

t

c

p

c

p

s

r

m

s

p

t

a

A

m

t

(

M

w

a

R

A
f the computational effort. Regarding the quality of the solutions,

he hybrid genetic algorithm GA(D) clearly outperforms the MILP

odel, the two other variants of the genetic algorithm, as well as

he electromagnetic heuristic proposed by Naderi et al. (2011) , re-

uiring less time than these methods. Regarding the trade-off be-

ween the quality of the solutions obtained by each method and its

omputational requirements, the three algorithms proposed in this

aper (the two constructive heuristics BICH and MIH, and the GA)

onstitute efficient methods for the problem under consideration.

As extensions of this work, matheuristics could be used to im-

rove the solutions generated by the presented methods. Future

tudies could also investigate the behavior of the proposed algo-

ithms considering other objective functions, such as makespan

inimization or total tardiness minimization. Finally, it is worth

tudying multi-objective variants of the open shop scheduling

roblems with sequence-dependent setup times due to the fact
hat, in many real industrial settings, the scheduling problems have

 multi-objective nature.

cknowledgments

The authors wish to thank the referees for their insightful com-

ents on the earlier versions of the manuscript. The support of

he National Council for Scientific and Technological Development

 CNPq) grants 404232/2016-7 and 303594/2018-7 and the Spanish

inistry of Science and Innovation under the project “PROMISE”

ith reference DPI2016-80750-P are acknowledged and appreci-

ted.

eferences

llahverdi, A. , 2015. The third comprehensive survey on scheduling problems with

setup times/costs. Eur. J. Oper. Res. 246 (2), 345–378 .

https://doi.org/10.13039/501100003593
https://doi.org/10.13039/501100004837
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0001
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0001

12 L.R. Abreu, J.O. Cunha and B.A. Prata et al. / Computers and Operations Research 113 (2020) 104793

L

M
N

N

N

P

S

Y

Z

Allahverdi, A., Ng, C., Cheng, T., Kovalyov, M.Y., 2008. A survey of scheduling prob-
lems with setup times or costs. Eur. J. Oper. Res. 187 (3), 985–1032. doi: 10.1016/

j.ejor.2006.06.060 .
Anand, E. , Panneerselvam, R. , 2016. Literature review of open shop scheduling prob-

lems. Intell. Inf. Manag. 7 (1), 32–52 .
Behnel, S. , Bradshaw, R. , Citro, C. , Dalcin, L. , Seljebotn, D.S. , Smith, K. , 2011. Cython:

the best of both worlds. Comput. Sci. Eng. 13 (2), 31–39 .
Ben-Arieh, David , Dror, Moshe , 1991. Intelligent heuristic for FMS scheduling using

grouping. Journal of Intelligent Manufacturing 2 (6), 387–395 .

Bruckner, P. , Hurink, J. , Jurish, B. , Wostmann, B. , 1997. A branch and bound algorithm
for the open-shop problem. Discret. Appl. Math. 76 (1), 43–59 .

Cankaya, B., Wari, E., Eren Tokgoz, B., 2019. Practical approaches to chemical tanker
scheduling in ports: a case study on the port of houston. Marit. Econ. Logist.

doi: 10.1057/s41278- 019- 00122- w .
Fernandez-Viagas, V. , Framinan, J.M. , 2015. Efficient non-population-based algo-

rithms for the permutation flowshop scheduling problem with makespan min-

imisation subject to a maximum tardiness. Comput. Oper. Res. 64, 86–96 .
Framinan, J. , Leisten, R. , Ruiz, R. , 2014. Manufacturing Scheduling Systems: An Inte-

grated View of Models, Methods, and Tools. Springer .
Framinan, J.M., Perez-Gonzalez, P., 2017. New approximate algorithms for the cus-

tomer order scheduling problem with total completion time objective. Comput.
Oper. Res. 78, 181–192. doi: 10.1016/j.cor.2016.09.010 .

Garey, M. , Johnson, D. , 1979. Computers and Intractability: A Guide to the Theory of

NP-Completeness. Freeman, Norwell .
Gendreau, M. , Potvin, J.-Y. , 2010. Handbook of Metaheuristics, 2. Springer .

Gonzalez, T. , Sahni, S. , 1976. Open-shop scheduling to minimize finish time. J. Assoc.
Comput. Mach. 23 (4), 665–679 .

Guéret, C. , Prins, C. , 1998. Classical and new heuristics for the open-shop problem.
Eur. J. Oper. Res. 107 (2), 306–314 .

Guéret, C. , Prins, C. , 1999. A new lower bound for the open shop problem. Ann.

Oper. Res. 92 (0), 165–183 .
Kusiak, Andrew , 1985. Flexible manufacturing systems: methods and studies 12 .

Khuri, S. , Miryala, S. , 1999. Genetic algorithms for solving open shop scheduling
problems. Prog. Artif. Intell. 849 .

Lin, H.-T., Lee, H.-T., Pan, W.-J., 2008. Heuristics for scheduling in a no-wait open
shop with movable dedicated machines. Int. J. Prod. Econ. 111 (2), 368–377.

doi: 10.1016/j.ijpe.2007.01.005 . Special Section on Sustainable Supply Chain.

Liu, J. , Reeves, C. , 2001. Constructive and composite heuristic solutions to the P || 	c i
scheduling problem. Eur. J. Oper. Res. 132, 439–452 .
ow, C., Yeh, J.-Y., Low, F.-W., 2003. Solution models construction for open shop
scheduling problem with setup, processing, and removal times separated. J.

Chin. Inst. Ind.Eng. 20 (6), 565–574. doi: 10.1080/10170660309509261 .
Low, C. , Yeh, Y. , 2009. Genetic algorithm-based heuristics for an open shop schedul-

ing problem with setup, processing, and removal times separated. Robot. Com-
put.-Integr. Manuf. 25 (2), 314–322 .

ontgomery, D.C. , 2017. Design and Analysis of Experiments. John wiley & sons .
aderi, B. , Ghomi, S.F. , Aminnayeri, M. , Zandieh, M. , 2010. A contribution and

new heuristics for open shop scheduling. Comput. Oper. Res. 37 (1), 213–

221 .
aderi, B., Ghomi, S.M.T.F., Aminnayeri, M., Zandieh, M., 2011. Modeling and

scheduling open shops with sequence-dependent setup times to minimize to-
tal completion time. Int. J. Adv. Manuf.Technol. 53 (5), 751–760. doi: 10.1007/

s00170-010-2853-6 .
aderi, B. , Najafi, E. , Yazdani, M. , 2012. An electromagnetism-like metaheuristic for

open-shop problems with no buffer. J. Ind. Eng. Int. 8 (1), 29 .

Noori-Darvish, S. , Mahdavi, I. , Mahdavi-Amiri, N. , 2012. A bi-objective possibilistic
programming model for open shop scheduling problems with sequence-depen-

dent setup times, fuzzy processing times, and fuzzy due dates. Appl. Soft Com-
put. 12 (4), 1399–1416 .

hadke, M.S. , 1995. Quality Engineering Using Robust Design. Prentice Hall PTR .
Prata, B.A. , 2015. A hybrid genetic algorithm for the vehicle and crew scheduling in

mass transit systems. IEEE Latin Am. Trans. 13 (9), 3020–3025 .

Rajendran, C. , Ziegler, H. , 1997. An efficient heuristic for scheduling in a flowshop to
minimize total weighted flowtime of jobs. Eur. J. Oper. Res. 103, 129–138 .

Roshanaei, V. , Esfehani, M.S. , Zandieh, M. , 2010. Integrating non-preemptive open
shops scheduling with sequence-dependent setup times using advanced meta-

heuristics. Expert Syst. Appl. 37 (1), 259–266 .
trusevich, V.A. , 1993. Two machine open shop scheduling problem with setup,

processing and removal times separated. Comput. Oper. Res. 20 (6), 597–

611 .
Taillard, E. , 1993. Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 64

(2), 278–285 .
in, Yong , Stecke, Kathryn E. , Li, Dongni , 2018. The evolution of production systems

from Industry 2.0 through Industry 4.0. International Journal of Production Re-
search 56 (1-2), 848–861 .

hang, J., Wang, L., Xing, L., 2019. Large-scale medical examination scheduling tech-

nology based on intelligent optimization. J. Combinatorial Optimization 37 (1),
385–404. doi: 10.1007/s10878- 017- 0246- 6 .

https://doi.org/10.1016/j.ejor.2006.06.060
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0003
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0003
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0003
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0004
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0004
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0004
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0004
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0004
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0004
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0004
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref1002
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref1002
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref1002
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0005
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0005
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0005
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0005
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0005
https://doi.org/10.1057/s41278-019-00122-w
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0007
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0007
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0007
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0008
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0008
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0008
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0008
https://doi.org/10.1016/j.cor.2016.09.010
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0010
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0010
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0010
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0011
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0011
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0011
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0012
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0012
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0012
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0013
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0013
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0013
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0014
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0014
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0014
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref1001
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref1001
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0015
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0015
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0015
https://doi.org/10.1016/j.ijpe.2007.01.005
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0017
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0017
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0017
https://doi.org/10.1080/10170660309509261
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0019
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0019
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0019
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0020
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0020
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0021
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0021
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0021
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0021
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0021
https://doi.org/10.1007/s00170-010-2853-6
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0023
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0023
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0023
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0023
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0024
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0024
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0024
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0024
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0025
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0025
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0026
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0026
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0027
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0027
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0027
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0028
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0028
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0028
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0028
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0029
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0029
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0030
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref0030
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref1003
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref1003
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref1003
http://refhub.elsevier.com/S0305-0548(19)30235-7/sbref1003
https://doi.org/10.1007/s10878-017-0246-6

	A genetic algorithm for scheduling open shops with sequence-dependent setup times
	1 Introduction
	2 Problem description
	3 A new genetic algorithm
	3.1 Encoding and decoding schemes
	3.2 Generation of the initial population
	3.2.1 Bounded Insertion Constructive Heuristic (BICH)
	3.2.2 Minimal Idleness Heuristic (MIH)
	3.2.3 Constructive heuristic BICH-MIH

	3.3 Selection procedures
	3.3.1 Tournament
	3.3.2 Roulette
	3.3.3 Rank

	3.4 Crossover operators
	3.4.1 Order crossover - OX
	3.4.2 Partially Matched Crossover - PMX
	3.4.3 Cycle Crossover - CX

	3.5 Mutation operator
	3.6 Replacement of parents by offspring
	3.6.1 Simple replacement
	3.6.2 HC replacement
	3.6.3 Simulated annealing replacement

	3.7 Restart
	3.8 Local search

	4 Experimental design
	4.1 Indicator for the evaluation
	4.2 Description of test instances
	4.3 Taguchi experimental design

	5 Results and discussion
	6 Conclusions and future research
	Acknowledgments
	References

