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Abstract
In this paper, we address a variant of the identical parallel machines scheduling problem subject to common restrictive due
windows. The performance measure adopted is the minimization of total weighted earliness and tardiness. Since the variant
under study is an NP-hard problem for two or more machines, we develop a family of constructive heuristics, which are
comprised of four phases. First, jobs are sequenced according to priority rules. Second, jobs are assigned to machines using
a greedy strategy. Third, a local search is performed to find a better distribution of jobs into machines. Fourth, two heuristics
are applied for individually sequencing jobs in each machine, namely RN-RGH and RN-SEA. In addition, we also propose
an iterated greedy algorithm to improve the solutions of the best performing heuristic. The computational experiments were
carried out to prove the ability of these heuristics to find high-quality solutions in acceptable CPU time. More specifically, the
RN-SEA family of algorithms stands out as the most efficient for the problem, however, with a higher computational effort.
We also confirm that the IG algorithm has the potential for improving existing solutions, specially for problems with two
machines and instances with up to 100 jobs in size.

Keywords Machine scheduling · Earliness and tardiness · Identical parallel machines · Common due window · Heuristics ·
Iterated greedy

1 Introduction

Industrial engineering practitioners have been devoting a
lot of attention to production scheduling problems. Usually,
the objective functions considered in this type of problem
involve nondecreasing functions of job completion times.
However, these performance measures do not recognize the
costs related to the early jobs. With the propagation of the
just-in-time (JIT)management system, the adoption of objec-
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tive functions considering both earliness and tardiness (ET)
has become a reality for production planners [1].

Commonly, due dates may be treated as decision variables
or given constraints. In the first case, they reflect production
targets that guide the progress of internal tasks. For differ-
ent models involving due date determination decisions we
refer to [2–4]. In contrast, the second case refers to frequent
situations where shop floor activities must meet customer
demands which are influenced by external factors [5].

Inmany practical contexts, if a customer order goods from
a supplier, a fixed delivery date is agreed upon. Frequently,
the customer accepts a small deviation from this delivery
date as there is an uncertainty degree on the supplier’s side.
This uncertaintymay arise in different ways, such asmachine
breakdowns, resource availability, defects in raw materials,
and other production issues [6]. With that said, it may be
suitable to negotiate a common due window (CDW).

Examples of suchproduction environments include assem-
bly lines that require multiple components to build a final
product or situations where several jobs constitute a single
customer order. These contexts often arise in JIT manufac-
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turing, chemical processing and PERT/CPM scheduling, and
information technology [7–9]. Moreover, there are applica-
tions in modern semiconductor fabrication facilities where a
large number of chips may be subject to the same due win-
dow. For more details regarding semiconductor facilities, we
refer to [10–12].

It is also important to note that production control strate-
gies based on dispatching rules are popular strategies adopted
by many manufacturing industries. However, the increasing
degree of automation attracted the attention of schedul-
ing approaches from researchers and people from industry
for the last few decades. This fact occurred due to the
intensification of automated real-time data collection as an
alternative to manual production control that often leads to
an imprecise behavior of complex manufacturing systems.
This phenomenon is one of the guides of the new paradigm
of Industry 4.0 specially because optimization is one of its
key enabling technologies [11,13].

The contributions related to the identical parallel machine
scheduling problem (IPMSP) considering a CDW are rather
limited, despite the theoretical and practical importance of
this variant. It was not possible to observe solution proce-
dures developed to solve test instances with 40 or more jobs.
[14] propose a branch-and-bound (B&B) procedure with a
column generation algorithm where the problem is formu-
lated as a set partitioning-typemodel and. Also, in each B&B
iteration, the linear relaxation of this formulation is solved
by the standard column generation procedure.With that said,
the main contributions of this paper are listed as follows:

– To the best of our knowledge, this is the first study to
provide simple and effective heuristics for the IPMSP
with a CDW. It not only fills this gap, but also provides a
practical approach to solve the problem.

– We propose a method based upon five different priority
rules. First, the initial job list is ordered according to some
predefined criteria and then the jobs are assigned to the
machines following a greedy strategy.

– Once an initial solution is constructed, a local search pro-
cedure is applied to find a better distribution of jobs into
machines.

– Afterward, we also propose two different heuristics to
solve each machine subproblem separately.

– Finally, an iterated greedy (IG) algorithm is used to
improve the solution of the best performing heuristic.

The remainder of this paper is divided as follows. Section
2 presents a literature review of parallel machine scheduling
problems with CDW considerations. We also present some
recent advances inCDWresearch. Section 3 defines the prob-
lem and its structural properties. Then, in Sect. 4, we describe
the proposed priority rules, local search, and iterated greedy
algorithm. We carry a discussion on the experimental results

in Sect. 5, and finally, Sect. 6 presents the concluding remarks
as well as directions for further research.

2 Literature Review

To the best of our knowledge, [15] were the first to provide an
extension from the single-machine environment to multiple
parallel machines when the due window is not restricted (the
left boundary of the window may be greater than the sum of
processing times) and theETweights are job independent and
asymmetric. They show that this problem isNP-hard even for
the unit weight case and provide a pseudopolynomial-time
dynamic programming algorithm for the 2-machine case as
well as a heuristic with absolute error bound. The heuristic
is extended for an arbitrary number of machines. The error
tends to decrease if the number of jobs is reasonably large.

[14] provide a branch-and-bound algorithm for the case
when the due window is restrictive and the weights are
job-dependent. Their algorithm is based on the column gen-
eration approach in which the problem is first formulated as
a set partitioning-type formulation, and then, in each branch-
and-bound iteration, the linear relaxation of this formulation
is solved by the standard column generation procedure.
Results are reported for instances with up to 40 jobs.

[16] consider the due window assignment problem with
unit processing times in identical parallel machines. They
show that this problem is solvable in O(1) time and provide
several properties of an optimal solution. In a similar prob-
lem, but with job-dependent ET weights and an additional
penalty for due window size, [17] give an efficient solution
procedure that runs in O(n4). [18] extended this problem by
adding a penalty for the left boundary of the due window and
established conditions for optimal schedules. Other special
cases that require less computational efforts are described.
[19] shows that the general problem discussed by [18] can
be solved by a lower order algorithm in O(n3) with some
improvements.

The case of uniform parallel machines with identical pro-
cessing times is reported by [20] where they show that the
two-machine environment may be solved in constant time.
[21] assume that the due window can be either restrictive or
nonrestrictive. It was also assumed that the ET weights are
job dependent and the jobs share an identical unit processing
time. With that said, they propose O(3mn3) and O(2mn3)
algorithms for restrictive and nonrestrictive settings, respec-
tively.

[22] address the problem of due window assignment and
scheduling when jobs have independent earliness and tardi-
ness costs, andpenalties are also incurred for duewindowsize
and location. They establish a number of properties of opti-
mal solutions and derive dynamic programming algorithms,
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Fig. 1 Common due window representation

which are pseudopolynomial if the number of machines is
considered to be constant.

3 Problem Statement, Definitions, and
Dominance Properties

To a certain extent, the problem under study is similar to
the one reported by [14]. This problem consists of a set
of n independent jobs, N = {1, 2, ..., n}, that need to be
processed independently on any of the m (m > 1) iden-
tical parallel machines. The objective is to determine the
sequence of all jobs so as to minimize the total weighted ear-
liness and tardiness penalties. Using the well-known three
field classification scheme introduced by [23] and adapted
by [5] for scheduling problems with common due win-
dows, the IPMSP can be expressed according to the notation
P|〈d̂l , d̂r 〉| ∑(α j E j + β j Tj ), where 〈d̂l , d̂r 〉 designates a
common restrictive due window, that is, its left boundary
must satisfy dl <

∑n
j=1 p j , E j and Tj denote the earliness

and tardiness of job j ∈ N , and α j and β j are job-dependent
weights, respectively. A graphical representation of the due
window is given in Fig. 1.

After being processed on the machine, and as a result of
scheduling decisions, job j will be assigned a completion
time denoted C j . In other terms, the earliness and tardiness
can be expressed as:

E j = max(dl − C j , 0) = (dl − C j )
+ (1)

Tj = max(C j − dr , 0) = (C j − dr )
+ (2)

It is important to notice that, in contrast with tardiness
penalties, earliness penalties are nonincreasing in C j which
makes the objective function a nonregular performance mea-
sure. For the common due window, let dl and dr be integers
indicating the earliest and the latest due dates, respectively.
Then, its size and location may be given as Eqs. 3 and 4:

dl = �hl × (

∑n
j=1 p j

m
)� (3)

dr = �hr × (

∑n
j=1 p j

m
)� (4)

Here, hl and hr are given parameters for defining dl and
dr , respectively. While the parameters hl and hr could be
specified by any value, it is important to establish their ranges

as 1 > hr > hl > 0 so that the common due window
becomes restricted by 0 < dl < dr < (

∑n
j=1 p j/m). This

configuration allows to avoid some trivial cases, for example,
when hl = 0 and hr = 1 the common due window size
would be, at least, close enough to (

∑n
j=1 p j/m); therefore,

it could be possible to fit all jobs in the common due window.
Moreover, if hl = hr , then the common duewindow could be
reduced to a time instant; hence, no tolerance interval would
exist; instead, it would be considered as a common due date.
Other important assumptions are given as follows:

– All jobs are independent and ready at time zero.
– The machines can process only one job at a time.
– Jobs are processed without any interruptions, that is,
machine breakdowns, planned or unexpected mainte-
nance, and other effects that cause disruptions are not
considered.

– The processing time of a given job is constant and cannot
be compressed or expanded.

– No preemptions are permitted.

It is important to notice that the problem under study has
some special characteristics that constitute optimal solutions.
In a simplified way, these structural properties are given as
follows:

– Property 1: There are no inserted idle times between
jobs.

– Property 2: Jobs finishing before dl are sequenced in
nonincreasing order of the ratio p j/α j .

– Property 3: Jobs starting and finishing after dr are
sequenced in nondecreasing order of the ration p j/β j .

– Property 4: Jobs starting and finishing in the window
can be sequenced in an arbitrary order.

– Property 5: In each machine, there exists an optimal
schedule in which either the processing of the first job
starts at time zero or one job is completed at dl or dr .

The proofs of these dominance rules can be found in [14].
It is clear from properties 2, 3, and 4 that an optimal schedule
follows theV-shapedproperty in eachmachine.Hereafter, the
notations that will be used throughout the paper are estab-
lished in Table 1.

It turns out that optimal schedules may have several dif-
ferent configurations. For this reason, we adopt the mapping
procedure in [6] to guide the process of constructing a heuris-
tic sequence. Despite the fact that an optimal schedule is
V-shaped in each machine, it is essential to point out that it
may contain one or two straddling jobs that are not necessar-
ily subject to this property. We define a left-straddling job sl
if it straddles dl , and right-straddling job sr if it straddles dr .
Moreover, it is possible the existence of an optimal schedule
with a double-straddling job sd . In other words, a job com-
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Table 1 Notations Notation Description

dl Left border of the common due window

dr Right border of the common due window

n Number of jobs

m Number of machines

j, k, l Index of a job

i Index of a machine

p j Processing time of job j

α j Earliness penalty of job j per time unit

β j Tardiness penalty of job j per time unit

E j Earliness of job j

Tj Tardiness of job j

s[l] Leading idle time, i.e., starting time of the first job

C j Completion time of job j

S j Starting time of job j

JE Set of no-tardy jobs scheduled to finish before or in dl , JE = { j |C j ≤ dl }
JT Set of tardy jobs scheduled to begin after or in dr , JT = { j |C j − p j ≥ dr }
JW Set of jobs that start and finish in the due window,

JW = { j |C j − p j ≥ dl ∨ C j ≤ dr }
sl Left-straddling job, Ssl < dl ∨ Csl > dl

sr Right-straddling job, Ssr < dr ∨ Csr > dr

sd Double-straddling job, Ssd < dl ∨ Csd > dr

pletely overlaps the common due window. From property 5,
it also becomes evident that an optimal schedule might exist
in which the first job does not start at time zero. We should
call the time span before the starting of the first job as leading
idle time.

4 Proposed Solution Approaches

4.1 Priority Rules and Greedy Heuristic

Any algorithmdesigned for solving the PMSPwithETpenal-
ties subject to common due windows has two main decisions
to address. The first one is how to assign jobs to machines,
while the second concerns to the sequencing aspects on each
individual machine. In this section, we establish a procedure
devoted to find an initial schedule on each machine.

Rather than assigning each job to a machine without any
predefined criteria, we decided to sort the jobs according to
five different priority rules. These rules were established by
[24] for a similar PMSP problem with common due date.
They tested several other rules; however, the following ones
presented the best results:

– Rule 1: Nonincreasing β j p j .
– Rule 2: Nonincreasing β j p j/α j .
– Rule 3: Nonincreasing p j .

– Rule 4: Nonincreasing β j .
– Rule 5: Nondecreasing p j/β j .

Once the whole list of jobs is sorted, the jobs are assigned
to each machine using a greedy heuristic. The first m − 1
jobs are distributed into the firstm−1 machines. Thereafter,
the algorithm proceeds by promoting a competition between
the next two jobs in the list. Calculations are made to deter-
mine in which machine and position the next two jobs attain
a minimum cost increase. Then, the one that produces the
minimum cost is assigned to the best position and the other
is returned to the head of the list. The algorithm stops when
the whole list is empty and the jobs are fully assigned to the
machines. Algorithm 1 shows the pseudocode of the greedy
heuristic.

4.2 Local Search

The local search (LS) procedure was designed to exchange
jobs between two machines that have different job charges.
In other words, since the initial assignment does not con-
sider the balance between earliness and tardiness penalties
as well as processing times, LS looks for a decrease in the
cost function by moving jobs from amachine to another. The
following steps summarize the underlying idea of the LS, and
Algorithm 2 presents the pseudocode.
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Algorithm 1: Greedy heuristic

1 Input: Initial job list (N )
2 Output: A schedule (π )
3 N ← {1, 2, ..., n}, M ← {M1, M2, ..., Mm}, f lag ← true
4 Sort N according to one of the priority rules
5 while N �= ∅ do
6 if f lag = true then
7 for i = 1 to m − 1 do
8 Let job in position [ j] be the first job in N
9 Assign job in position [ j] to Mi

10 [ j] ← [ j + 1]
11 end
12 f lag ← f alse
13 else
14 for i = 1 to m do
15 Insert jobs [ j] and [ j + 1] in every position of Mi
16 Save the best position in case of a minimum cost

increase
17 end
18 Assign the job that produced the minimum cost

increase to the best machine position
19 Update the first job of N
20 end
21 end

– Sort the machines in nonincreasing order of costs.
– Compute the total processing time (DT

i ), the sum of
earliness penalties (αT

i ), and the sum of tardiness (βT
i )

penalties of each machine.
– Try to move all jobs j ∈ Mi to all possible positions of

Mi+1 with a lower cost if at least one of the conditions
holds: DT

i > DT
i+1 + p j ∨ αT

i > αT
i+1 + α j ∨ βT

i >

βT
i+1 + β j .

– If an improvement in the total cost is achieved, move job
j from Mi to Mi+1.

– Repeat until all machines are tested.

4.3 Solving the Single-Machine Subproblems

Once the jobs are distributed to machines, it is necessary
to find better sequences on each machine. For this, two
strategies are adopted: the RGH heuristic and SEA. Both
deterministic methods are used to order the sequences on
each machine. This is the third phase of the solution pro-
cedure. Hereafter, the nomenclature adopted to differentiate
each solution procedure is RN-RGH and RN-SEA. Note that
the nomenclature is followed by a number from 1 to 5, which
distinguishes the 5 priority rules. The next two subsections
describe these solutions procedures in detail.

4.3.1 RN-RGH

TheRN-RGH algorithm is based on the procedure developed
by [25] for the single-machine problem with a common due

Algorithm 2: Local Search
1 Input: Initial schedule (π)

2 Output: An improved schedule (πnew)

3 M ← {M1, M2, ..., Mm}, f lag ← true
4 Sort the machines in nonincreasing order of costs
5 for i = 1 to m - 1 do
6 while flag = true do
7 Compute DT

i , αT
i , βT

i , DT
i+1, α

T
i+1, β

T
i+1

8 for all jobs j ∈ Mi do
9 if DT

i > DT
i+1 + p j ∨ αT

i > αT
i+1 + α j ∨ βT

i >

βT
i+1 + β j then

10 Try to move job j from Mi to Mi+1 by
inserting it in every possible position

11 Compute f (πnew)

12 if f (πnew) < f (π) then
13 Move job j to the best position in Mi+1
14 f lag ← true
15 else
16 Keep π unchanged
17 f lag ← f alse
18 end
19 else
20 f lag ← f alse
21 end
22 end
23 end
24 end

window.Thebasic idea is to employ the constructive heuristic
reported by these authors as an improvement method.

In a rather simplified manner, once the jobs are better
distributed into the machines, their heuristic is applied in
each machine separately. The algorithm starts by assigning
the jobs that have high earliness and tardiness weights rela-
tive to their processing times to set JW . Afterward, from the
remaining jobs, those which possess a high tardiness weight
relative to the earliness weight are assigned to set JE . Here,
we omit the details of the algorithm due to space restrictions.
For details and a numerical example we refer to [25]. Again,
their algorithm will be repeated in each machine and a new
schedule will be constructed.

4.3.2 RN-SEA

The other improvement strategy is based on a Sequential
Exchange Approach [26]. Here, a new heuristic is shown
to schedule each machine against a common due window.
Since there are three sets of jobs that constitute a solution
for the problem (JE , JW , JT ), RN-SEA swaps or moves jobs
between these sets systematically to derive a near-optimal
solution. For the sake of simplicity, only two sets are consid-
ered since jobs in JW may be sequenced in an arbitrary order.
Now, let JE ′ denote the set of no-tardy jobs including the ones
that start and finish in the due window (JE ′ = JE ∪ JW ). Pos-
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sible straddling jobs (sl , sr , and sd ) are also in JE ′ since they
start processing before the right boundary of the duewindow.

In the forward exchange step, for each available machine,
the jobs in JE ′ are chosen individually from the sequence
obtained after phases one and two. Then, this job j ∈ JE ′ is
matched with all jobs in JT in order to verify the swap which
would lead to the largest improvement of the cost function
value. Moreover, we can insert a job k ∈ JE ′ in the set JT if a
better value for the objective function can be reached. If the
swap move incurs an improvement of the objective-function
value, this movement is performed. After evaluating both
moves, the best movement is performed, and the jobs are
ordered according to the V-shaped property again.

After that, the backward exchange operator is performed.
In this step, jobs in JT are selected individually considering
the sequence found in the previous step, and jobs are swapped
with jobs in JE ′ to determine the best improvement of the
objective function value. Finally, the movement with the best
improvement is then selected, and the sequence is constructed
also considering the V-shaped property.

Since the common due windows are restricted in relation
to the total processing time, the start time of the first job to
be scheduled is set to be zero. Evidently, for instances where
the left boundary (dl ) has a larger restrictive factor (hl ), it
may be the case that possible straddling jobs should be elim-
inated to obtain better objective function values; therefore,
the procedure identifies them and produces backward-shift
solutions of right and left straddling jobs. The start time is
calculated as s[l] = dl − Ssl and s[l] = dr − Ssr . Of course,
jobs should be rearranged according to the V-shaped prop-
erty and the solution with the best objective function value
is kept.

4.4 Iterated Greedy

To put it briefly, IG generates a sequence of solutions by iter-
ating over greedy constructive heuristics using two important
phases: destruction and construction. During the destruc-
tion phase, some solution components are removed from
a previously constructed complete candidate solution. The
construction procedure then applies a greedy constructive
heuristic to reconstruct a complete candidate solution. Once
this new solution is constructed, an acceptance criterion is
used to select a new incumbent solution. The algorithm iter-
ates over these steps until a stopping condition is reached.
Note that, IG is closed related to iterated local search (ILS);
however, instead of iterating over a local search, it iterates
over construction heuristics [27]. Figure 2 depicts a hypo-
thetical iteration of the IG algorithm in one of the machines,
and Algorithm 3 outlines the step-by-step procedure.

Algorithm 3: Iterated greedy
1 Input: Initial schedule (π)

2 Output: An improved schedule (πbest )

3 while stop condition is not satisfied do
// Destruction phase

4
5 π ′ ← π

6 πbest ← π

7 for j = 1 to D do
8 π ′ ← Remove one job at random from π ′ and insert

in π ′
R

9 end
// Construction phase

10 for j = 1 to D do
11 π ′ ← best permutation obtained by inserting job

j ∈ π ′
R in all possible positions of π ′ according to the

V-shaped property
12 end

// Local search
13 π ′′ ← Local_search(π ′)
14 if f (π ′′) < f (π) then
15 π ← π ′′
16 if f (π ′′) < f (πbest ) then
17 πbest ← π

18 end
19 end

// Acceptance criterion
20 if Rand ≤ exp{− f (π ′′) − f (π)/T emp} then
21 π ← π ′′
22 end
23 end

4.4.1 Destruction and Construction

Two central procedures in any IG algorithm are the destruc-
tion and construction phases. Thedestruction phase is applied
to a permutation π of n jobs, and it chooses randomly and
without repetition D jobs. These jobs are then removed from
π in the order in which they were chosen. As a result, there
are two subsequences, the first is a partial sequence πD with
n− D jobs and another sequence of D jobs which is denoted
as πR . It is worth noting that πR contains the jobs that need
to be reinserted into πD in the order in which they were
removed from π . Here, the destruction and construction pro-
cedures are repeated in every machine to build a new feasible
solution. Once a complete feasible solution is generated, the
LS procedure described in Algorithm 2 is applied.

4.4.2 Acceptance Criterion

After the local search phase, an acceptance criterion is
applied to determinewhether the newgenerated solutionπ ′ is
accepted or not as the incumbent solution π for the next iter-
ation. The simplest way to establish an acceptance criterion
is to accept only better solutions. However, an IG algorithm
using such strategy may lead to premature convergence due
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Fig. 2 Example of one iteration
of the proposed IG heuristic

to insufficient diversification [27]. Other authors prefer to
choose afixedprobability of acceptingworst solutions,which
is a parameter to be determined [28,29]. Other authors opt for
a simulated annealing acceptance criterion where the accep-
tance probability is based on a control parameter which may
be a constant [27,30,31] or a variable temperature [32,33].
In this study, we adopt the simulated annealing acceptance
criterion described in [27] with a constant temperature. The
notation Rand of the acceptance criterion depicted in Algo-
rithm 3 refers to a random generated number taken from the
interval [0, 1].

4.4.3 Stopping Conditions

The stopping condition commonly involves a fixed number of
iterations, a depleted execution time, or the detection of algo-
rithmic stagnation. In this study, only one stopping condition
is used to force the IG algorithm to be terminated, which
consists of the depleted execution time. In other words, once
a certain amount of CPU time is reached, the IG algorithm
is stopped.

4.4.4 Parameter Settings

The proposed IG presents the following parameters:

– The number of jobs to be removed for a machine (D).
– The temperature (T emp), a control parameter presented
in the simulated annealing algorithms. The probability
to accept movements worsening the objective-function

values decreases progressively with the reduction of the
temperature.

– The stopping criterion (t).

The parameter D is given by D = �d ′ ∗ nm�, in which
0 < d ′ < 1 and nm is the number of jobs assigned to a given
machine. We define the stop condition as the maximal com-
putational time, given by t ∗ n seconds (0 < t < 1). Since
the proposed IG can be executed with distinct parameter val-
ues, we calibrate these values using an experimental design
approach.

To avoid the risks of over-fitted results, it was selected 5
out of 10 instances of each size totally at random. For this,
5 nonrepeated numbers between 0 and 10 were generated
and the respective instances were taken from the test set,
e.g., each of the 10 instances of size n = 20 were matched
with random indexes and taken as samples to determine the
parameter levels. This way a total of 5 × 3 × 5 × 5 = 375
instances were solved for different parameter configurations.
With a fixed CPU time equal to 0.10 ∗ n seconds (t = 0.10),
a full factorial experiment with d ′ and T emp was conducted
and each parameter is tested at four levels resulting in a total
of 16 different algorithms. Each configuration is reported in
Table 2.

After setting each version of the IG algorithm to solve
each instance 5 times, the quality of the solutions ismeasured
by means of the RPD, which is computed according to the
following equation:
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Table 2 Full factorial
experiment

Algorithm d ′ Temp

Alg 1 0.01 5

Alg 2 0.01 10

Alg 3 0.01 20

Alg 4 0.01 50

Alg 5 0.05 5

Alg 6 0.05 10

Alg 7 0.05 20

Alg 8 0.05 50

Alg 9 0.10 5

Alg 10 0.10 10

Alg 11 0.10 20

Alg 12 0.10 50

Alg 13 0.20 5

Alg 14 0.20 10

Alg 15 0.20 20

Alg 16 0.20 50

RPD(%) = objavg − objbest

objbest
× 100 (5)

where objavg stands for the average objective function value
of 5 runs of a specific version of the IG and objbest refers to the
minimum sum of penalties among all algorithms. The results
are then evaluated according to the average RPD values. For
better visualization, Fig. 3 represents the mean plot of aver-
age RPD values with 95% confidence interval of different
parameter levels.

In Fig. 3 it is possible to identify that smaller values of d ′
lead to better results since smaller values of RPD represent
better solutions. Note that there is a clear difference between
groups with distinct levels of d ′, e.g., algorithms 1, 2, 3,
4, which have an equivalent value of d ′ = 0.01 perform
better in terms of solution quality than the other three groups
consisting of algorithms 5, 6, 7, and 8 (d ′ = 0.05), algorithms
9, 10, 11, and 12 (d ′ = 0.10), and algorithms 13, 14, 15, and
16 (d ′ = 0.20). It is alsoworthmentioning that IG algorithms
of these groups present confidence intervals of average RPD
values that do not seem to overlap, which may be considered
as a strong evidence that the group with d ′ = 0.01 has a
more consistent performance in comparison with the others.
For this reason, d ′ was chosen to be 0.01.

To determine T emp it is fundamental to establish a range
that guarantees the convergence of the IG algorithm.At a first
moment, T emp was set following the equation suggested by
[27]:

T emp = T ×
∑m

i=1
∑n

j=1 pi j

n × m × 10
(6)

Note that T is usually a real number in the interval [0, 1]
that needs to be adjusted. The equation, however, did not
seem to produce good results after a preliminary analysis.
Taking instance sch.20.4 from the test set presented by [34]
as an example, the sum of processing times is equal to 230.
Now, supposing that m = 2 and T = 1, T emp would have a
value of approximately 0.003. After some empirical testing,
it was observed that such a small value for T emp yielded
poor results. To deal with this issue, an empirical analysis
was conducted for values of T emp starting at 3000 and then
decreased to obtain a reasonable range. This empirical anal-
ysis included different due window configurations, machine
numbers as well as instance sizes. After some testing, it was
identified that better results were achieved for values from 5
to 50.

Figure 3 shows the behavior of the different values of
T emp. It is important to notice that algorithmswith T emp =
20 presented a lower average RPD in comparison with the
other levels; however, the confidence intervals for these aver-
ages overlap, which might indicate the proximity between
the solution quality achieved by the algorithms. In addition,
when analyzing the behavior of the confidence intervals, it is
possible to observe a valley-shaped relation, that is, the aver-
age RPD starts to decrease from T emp = 5 to T emp = 20
when it starts to increase again. This fact corroborates with
the notion that an ideal value for T emp would lay between
10 and 50. For the sake of simplicity, the value of T emp was
set to 20 since it presented the lowest average RPD. Stated
in other terms, the levels for T emp and d ′ are set according
to Alg 3 (see Table 2).

After calibrating the parameters d ′ and T emp, the IG
algorithm was set to run with other CPU times as stopping
criterion. Four different values for the parameter t are com-
pared, and the CPU times are given as: 0.05 ∗ n, 0.10 ∗ n,
0.15∗n, and 0.20∗n. Figure 4 shows the mean plot for RPD
values at 95% confidence intervals. It is possible to verify
that the confidence intervals for the average RPD seem to
overlap for all possible levels of t . This fact may indicate
that the IG algorithm converges quickly. Note that the small-
est RPD value is attained for t = 0.20, therefore, this valued
is chosen in the experiments as the stop criterion.

5 Experimental Results

Since there is no heuristic reported for the problemunder con-
sideration, a numerical analysis is conducted between the 10
proposed algorithms. The experiments were conducted on a
personal computer with an Intel� Core i5 processor running
at 3.7GHz, 16GB of RAM, and implemented in C++ pro-
gramming language. The benchmark instances are available
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Fig. 3 Mean plot for
algorithmic configuration of
parameters T emp and d ′

Fig. 4 Mean plot for
algorithmic configuration of
parameter t

at the well-known OR Library 1 [35]. The short Pascal gen-
erator as well as the problem instances were proposed for the
analogous common due date single-machine problem [34].
The characteristics of the test set are seen in Table 3.We used
10 different instances from5 sizes, 3machine configurations,
and 5 restriction factors combinations. Therefore, each algo-
rithm solved a total of 10 × 5 × 3 × 5 = 750 instances.
Two central performance measures were adopted, namely,
the RPD and the computing times.

To demonstrate the performance of the heuristics, the
average RPD values are compared based on three factors
that modify the characteristics of the problem: instance size;

1 http://people.brunel.ac.uk/~mastjjb/jeb/info.html.

Table 3 Instance configuration

Factors Levels

n 20, 50, 100, 200, 500

m 2, 4, 6

(hl , hr ) (0.1, 0.2), (0.1, 0.3), (0.2, 0.5), (0.3, 0.4), (0.3, 0.5)

α j U [1, 10]
β j U [1, 15]
p j U [1, 20]

window configuration; and number of machines. Table 4
summarizes the computational results of all proposed meth-
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Table 4 Average RPD values for each size of test instances

Algorithm n = 20 n = 50 n = 100 n = 200 n = 500

RN-RGH-1 21.86 12.37 8.29 6.24 5.70

RN-RGH-2 21.08 14.69 11.87 10.08 10.75

RN-RGH-3 21.13 13.31 9.20 6.23 5.07

RN-RGH-4 17.45 12.09 8.12 6.01 5.06

RN-RGH-5 15.82 13.70 10.44 8.51 9.11

RN-SEA-1 3.87 2.98 2.10 1.51 1.76

RN-SEA-2 4.68 4.77 4.57 4.79 5.96

RN-SEA-3 4.74 4.42 3.56 1.85 1.08

RN-SEA-4 2.70 1.03 1.01 0.75 0.77

RN-SEA-5 5.69 2.58 1.65 2.00 3.05

IGSEA-4 1.03 0.17 0.10 0.12 0.24

ods in terms of the solution quality for different instance sizes
and the best results aremarked in bold. There is a clear differ-
ence in the performance measures of the 11 heuristics, which
stems from three major aspects: the initial priority rule used
to order jobs before assigning them tomachines; the sequenc-
ing strategy adopted on each machine; and the application of
the stochastic local search (IG algorithm).

Clearly, the best performance is achieved for rule 4 (non-
increasing β j ). When comparing the results for the same
sequencing strategies, that is, between the 5 rules using the
same sequencing algorithm (RN-RGH or RN-SEA), this rule
outperforms the others for almost all instance sizes, except
when combined with RN-RGH for solving instances with
n = 20. Such an effect may be explained due to the nature
of the data of the test set. Note that the individual tardiness
penalty is allowed to be greater than the earliness penalty
(refer to Table 3). In most practical contexts, contractual
penalties incurred by a tardy job are usually higher than the
cost of maintaining an early job in the inventory. Other pos-
sible explanation of the success of this rule relies on the fact
that due windows are tight in relation to the sum of process-
ing times. Following this rationale, a larger number of jobs
should be scheduled in JT ; therefore, the amount of tardiness
penalties is expected to be greater than the amount of earli-
ness penalties. In terms of the improvementsmethods applied
to sequence jobs in each machine, RN-SEA presented a con-
sistently better performance. The reason for this behavior
relates to the fact that RN-RGH might lead to poor results
if there are many jobs with β j � α j , where α j is near to
one and dl is relatively small: in this situation, probably not
all jobs with high tardiness penalties can be processed prior
to the common due window and hence accumulate higher
tardiness costs. Note that the good performance of RN-SEA
also corroborates with the results previously reported in [26],
when the application of a similar strategy to solve the anal-
ogous common due date single-machine problem presented

better results in relation to several ad hoc heuristics andmeta-
heuristics. Finally, the stochastic local search combined with
the best performing strategy (IGSEA-4) improved the average
RPD for instances of all sizes. Table 4 also confirms that RN-
SEA-4 is capable of exploring the search space in an efficient
way. Note that, despite the fact that the IG algorithm finds
better solutions in all cases, the RPD difference in relation to
RN-SEA-4 is relatively small, which support the idea that it
is possible to find good solutions with a constructive heuris-
tic that is simple and do not require any parameter setting. A
similar behavior is seen in relation to the number ofmachines
as illustrated in Fig. 5.

It is worth noting that, as the number of machines
increases, the commonduewindowbecomesmore restricted.
With this said, it is clear that RN-SEA-4 outperforms the
other constructive algorithms. Note that the IG is more bene-
ficial for a small number of machines. With a larger window,
the stochastic local search is capable of finding better solu-
tions since more jobs may be allocated to JW . In this context,
RN-SEA is proved to bemore effective in relation to solution
quality than RN-RGH.

Figure 6 also demonstrates the superiority of RN-SEA
against RN-RGH for problems with different window con-
figurations. Moreover, it is possible to observe that the good
performance is maintained for all cases, regardless of the
position where the common due window starts and its size.
From Fig. 6, instances with more restrictive due windows
(the ones that have a tighter left boundary factor hl ) show a
smaller variation of RPD values and hence combining the IG
with other heuristics may lead to smaller improvements. As
the common due windows become looser, better gains are
achieved, specially when their sizes are larger.

To understand the differences between the mean RPD val-
ues, it was conducted an analysis of variance (ANOVA).
ANOVA allows to interpret the effects between groups that
have been split on two or more independent variables on
the dependent variable. In this case, the independent vari-
ables are the number of jobs n (A), the Algorithm (B), the
Window configuration (C), and the number of machines m
(D). The dependent variable is given as the solution quality,
which is measured in terms of the RPD. The results of the
ANOVA experiment are illustrated in Table 5. Note that the
column source represents the independent variable and their
interactions, i.e., row BD of the column source shows the
interactions between Algorithm and m. The experiment was
set to have a significance level α = 5%, and two hypotheses
were tested:

– H0: themeans ofRPDare the sameacross themethods. In
otherwords, there are no significant statistical differences
between the means of the distributions of the RPD.

– H1: The means of the distributions of the RPD are dif-
ferent.
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Fig. 5 Estimated marginal
means of RPD values according
to the number of machines

Fig. 6 Estimated marginal
means of RPD values according
to window configuration

FromTable 5 it is possible to conclude that the interactions
where the significance value is less than 0.05 indicate that at
least onemeanof the distributions of theRPD is different, that
is, the null hypothesis can be rejected. It is worth noting that
all of the interactions have different means, except ABCD.
Consequently, this fact supports the idea that there are dif-
ferent means of RPD for the eleven algorithms. Moreover, it
seems that the instance size affects the performance of the
algorithms (row AB) together with the number of machines
(row BD) and the window size (row BC).

Hitherto, it was identified the effects of different factors
on the dependent variable RPD. The ANOVA experiment
showed that there are statistically significant differences
between means from various groups; however, it was not

possible to detect in which elements from the groups these
differences occur. This fact corroborates with the idea of
applying a post hoc analysis. Here, this analysis is conducted
by means of Tukey’s honestly significant difference (HSD)
test.

Table 6 shows the homogeneous subsets for the algorithms
in relation to the dependent variable RPD for a sample size
of 750, which relates to the best solution found by each algo-
rithm for all considered instances. Note that two hypotheses
being analyzed by Tukey’sHSD are the same for theANOVA
experiment. Here, for the sake of simplicity, the algorithms
are ordered in increasing order of the values of the means.
For instance, IGSEA-4 have a smaller average RPD value in
comparison with RN-SEA-4, RN-SEA-1, and so on.
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Table 5 Test of
between-subjects effects

Source Type III sum of squares df Mean square F Sig.

Corrected model 46.59 824 0.06 26.33 0.00

Intercept 35.29 1 35.29 16435.05 0.00

n (A) 4.99 4 1.25 580.41 0.00

Algorithm (B) 17.62 10 1.76 820.45 0.00

Window (C) 8.20 4 2.05 654.68 0.00

m (D) 0.24 2 0.12 54.85 0.00

AB 4.00 40 0.10 46.59 0.00

AC 1.96 16 0.12 56.95 0.00

AD 0.39 8 0.48 22.42 0.00

BC 4.05 40 0.10 47.12 0.00

BD 0.58 20 0.03 13.46 0.00

CD 0.14 8 0.17 7.98 0.00

ABC 2.43 160 0.02 7.07 0.00

ABD 0.83 80 0.10 4.84 0.00

ACD 0.21 32 0.01 3.01 0.00

BCD 0.37 80 0.01 2.12 0.00

ABCD 0.61 320 0.00 0.89 0.93

Error 15.94 7425 0.00

Total 97.82 8250

Corrected total 62.53 8249

Table 6 Homogeneous subsets

Subset for α = 5%

Algorithm 1 2 3 4 5 6 7

IGSEA-4 0.00

RN-SEA-4 0.01 0.01

RN-SEA-1 0.02 0.02

RN-SEA-5 0.03

RN-SEA-3 0.03

RN-SEA-2 0.05

RN-RGH-4 0.10

RN-RGH-1 0.11 0.11

RN-RGH-3 0.11

RN-RGH-5 0.12

RN-RGH-2 0.14

Sig. 0.36 0.07 0.78 1.00 0.09 0.86 1.00

With that said, it is evidenced that Tukey’s HSD found 7
different homogeneous subsets, that is, groups of algorithms
that share similar values of average RPD. The best perfor-
mance is clearly achieved by IGSEA-4; however, there is no
statistically significant difference between the average RPD
values found by RN-SEA-4. Observe that the last row of the
table indicates the significance value for each subset. Taking
subset 1 as an example, the significance value is 0.36, which

is greater than 0.05 demonstrating that there is not enough
evidence to reject the null hypothesis.

Table 6 also permits the interpretation that initial assign-
ment rules similarly influence the performance of sequencing
strategies. For instance, rule 4 is the best initial assignment
strategy for both RN-SEA and RN-RGH. Moreover, two
similar subsets are identified. Subsets 2 and 5 show that
RN-SEA-4 and RN-SEA-1 together with RN-RGH-4 and
RN-RGH-1 share comparable means. An analogous behav-
ior occurs with subsets 3 an 6, which shows that, despite the
fact that rules 1, 3, and 5 provide a relatively different perfor-
mance when combined with RN-SEA and RN-RGH, there
is not enough evidence indicating performance superiority
of these rules in both sequencing strategies. Ultimately, it is
possible to conclude that rule 2 has the worst performance of
all initial assignment strategies as depicted in subsets 4 and
7.

Finally, other important measure refers to the computing
efforts applied to obtain the solutions previously discussed.
Here, we evaluate only the running times of RN-RGH and
RN-SEAdue to the fact that the IG algorithmuses the elapsed
CPU time as a stop criterion.

When the heuristics are compared in terms of the sequenc-
ing strategy on each machine, it is observed that the family
of RN-RGH heuristics requires less computational effort in
relation to RN-SEA. This type of behavior occurs specially
when the number of jobs exceeds 200, i.e., comparing two
heuristics with the same initial assignment rules such as RN-

123



Arabian Journal for Science and Engineering (2022) 47:3899–3913 3911

Table 7 Average CPU times in
seconds (s)

Algorithm n m

20 50 100 200 500 2 4 6

RN-RGH-1 > 0.00 > 0.00 > 0.00 0.04 1.18 0.53 0.15 0.06

RN-RGH-2 > 0.00 > 0.00 > 0.00 0.06 1.91 0.87 0.24 0.09

RN-RGH-3 > 0.00 > 0.00 > 0.00 0.08 2.75 1.29 0.31 0.11

RN-RGH-4 > 0.00 > 0.00 > 0.00 0.04 0.75 0.33 0.10 0.05

RN-RGH-5 > 0.00 > 0.00 > 0.00 0.04 0.87 0.36 0.13 0.06

RN-SEA-1 > 0.00 > 0.00 0.03 0.73 37.57 20.63 1.90 0.47

RN-SEA-2 > 0.00 > 0.00 0.04 0.81 50.00 27.76 2.21 0.56

RN-SEA-3 > 0.00 > 0.00 0.05 1.10 79.96 45.31 2.76 0.60

RN-SEA-4 > 0.00 > 0.00 0.02 0.30 18.80 10.32 0.94 0.22

RN-SEA-5 > 0.00 > 0.00 0.01 0.09 3.41 1.72 0.28 0.11

RGH-3 and RN-SEA-3, it is seen that the average computing
time of RN-RGH-3 for instances with 500 jobs is far inferior
to the one in RN-SEA-3.

Moreover, as the number of machines increases, the com-
puting times tend to decrease. Such a counter-intuitive result
is also consistent with other studies in the same field [14,36].
The cause of this effect may relate to the smaller number of
jobs assigned to eachmachine,whichmay reduce the number
of combinations tested by the heuristics. In contrast with the
instance size and the number of machines, the window con-
figuration does not seem to alter the computing times. Table
7 summarizes the average CPU times in seconds according
to instance size and number of machines.

6 Concluding Remarks

In this paper, we have developed a family of ten heuristics for
scheduling parallel machines subject to common restrictive
due windows. Moreover, we also showed an IG algorithm,
which improved the existing solutions found by the best
performing heuristic. The results were evaluated between
the heuristics due to the fact that there is no other similar
approach for the same problem.

As a matter of fact, only [14] proposed some exact solu-
tion procedures; however, they report that only instanceswith
up to 40 jobs in size can be solved in reasonable time. They
developed a set partitioning-type formulation to the prob-
lem under study. For its resolution, a column generation
approach is addressed. An input required for this model is the
generation of several single-machine sequences in each avail-
able machine. An exhaustive enumeration of such sequences
could be prohibitive to solve large-sized or even medium-
sized test instances. On the other hand, a small number of
sequences could lead to low-quality solutions. The gener-
ation of sequences plays a key role in this method. In our
view, this issue was not clearly explained or justified by [14].

Thereby, we decided not to consider this solution approach
in our computational experiments.

This fact corroborateswith the idea of proposing heuristics
and metaheuristics to solve the problem under study, and, to
the best of our knowledge, there were no similar approaches
in the revised literature. Therefore, our objective was to
develop easy implementation algorithms capable of solving
instanceswith up to 500 jobs in size. Our computational stud-
ies demonstrate that the most time-consuming heuristic has
an average CPU time of approximately 80 seconds, which
confirms the possibility of application in practical contexts.
Furthermore, analyzing the whole set of heuristics and their
results allows us to notice some aspects in relation to the
behavior of the algorithms:

– If the number of jobs is taken into consideration, it is
possible to see clear differences in the performance of
the heuristics. For all instance sizes, IGSEA-4 was the best
performingmethod. In relation to the constructive heuris-
tics, the best performance was achieved by RN-SEA-4.
The reason for such effect may rely on the fact that the
structure of the data favors the fourth assignment rule.
Note that RN-RGH-4 is also the best performing heuristic
regarding the number of jobs if it is taken into considera-
tionheuristicswith a similar sequencingprinciple on each
machine, that is, the family of heuristics defined by RN-
RGH. It is worth noting that the earliness and tardiness
penalties are generated independently of each other and
of the processing times. Thus, this produces all kinds of
combinations in the characteristics of the jobs. Of course,
changing the way in which the instances are generated
may influence the performance of the algorithms.

– Looking at different phases of the algorithms, one can see
that there is a clear difference in performance between
RN-SEA and RN-RGH families. RN-SEA produces the
best solutions, in many cases, independently of the initial
ordering rule. In contrast, it also consumes more time to
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find the solutions in relation to RN-RGH. Note that the
initial assignment rules and the local search are the same
for both families. This behavior occurs due to the fact that
RN-RGHmight lead to poor results if there aremany jobs
with β j � α j , where α j is near to one and dl is relatively
small.

– The IG algorithm has been designed as an alternative
way for combining solutions in previous phases of the
heuristics. One advantage of our method is related to
the possibility of combining several algorithms to pro-
duce good-quality solutions while preserving reasonable
computing times.

One line of future research would be to take advantage
of designing parallel or cooperative algorithms or extending
this study by adding different restrictions, such as jobs with
distinct due windows, sequence-dependent setup times, and
batching. It is also worth noting that some efforts could be
directed to other production environments such as open shops
or flow shops. Literature gaps are disclosed in the recent sur-
vey paper of [5], where an extensive review of scheduling
problems involving common due dates and windows is con-
ducted.
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