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Abstract
Minimizing errors in wind resource analysis brings significant reliability gains for any wind power generation project. The 
characterization of the wind regime is one of fundamental importance, and the two parameters Weibull distribution is the 
most applied function for it. This study aims to determine the scale and shape factor in an attempt to establish acceptable 
criteria to a better utilization of wind power in the states of Pernambuco and Rio Grande do Sul, which is a national promi-
nence in the use of renewable sources for electricity generation in Brazil. The following heuristic optimization algorithms 
were applied: Harmony Search, Cuckoo Search Optimization, Particle Swarm Optimization and Ant Colony Optimization. 
The fit tests were performed with data from the Brazilian Federal Government’s SONDA (National System of Environmen-
tal Data Organization) project, referring to Triunfo, Petrolina and São Martinho da Serra, states of Pernambuco and Rio 
Grande do Sul, cities in the northeast and south regions of Brazil, during the period of 1 year. The tests were made in 2006 
and 2010, all at 50 m from ground level. The results were analyzed and compared with those obtained by the maximum 
likelihood method, moment method, empirical method and equivalent energy method, methods that presented significant 
results in regions with characteristics similar to the regions studied in this study. The performance of each method was 
evaluated by the RMSE (root mean square error), MAE (mean absolute error), R2 (coefficient of determination) and WPD 
(wind production deviation) tests . The statistical tests showed that ACO is the most efficient method for determining the 
parameters of the Weibull distribution for Triunfo and São Martinho da Serra and CSO is the most efficient for Petrolina.

Keywords  Wind energy · Weibull distribution · Heuristic · Cuckoo search optimization · Particle swarm optimization · Ant 
colony optimization

Introduction

Search for energy forms that reduce or eliminate the car-
bon dioxide emission to the atmosphere has encouraged 
the renewable energy sector development, with the wind 
energy being highlighted. According to the World Wind 
Energy Association, the installed capacity of wind power 
in the world reached 486.661 MW at the end of 2016, 
54.846 MW more than in 2015, representing a growth rate 
of 11.8%.

Wind resource analysis is a key step in the wind power 
generation projects development. Reducing errors in this 
step brings significant reliability gains for the project. One 
of the most important information in the wind resource 
analysis is the characterization of the wind regime accord-
ing to a probability distribution, which aims to transform 
the discrete data collected in a measurement campaign into 
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continuous data. In this procedure, velocities are grouped 
in intervals and a probability distribution function is fitted 
to this histogram. Depending on the wind conditions, the 
curve to be adjusted may follow the Gauss, Rayleigh or, 
more commonly, two parameters k and c Weibull distribu-
tions [35].

One of the challenges in applying the Weibull distribu-
tion to represent the region wind regime is the estimation of 
the parameters k and c, and an adjustment must be obtained 
with the smallest possible error. Dorvlo [12] used the Chi-
square method to determine the Weibull parameters in four 
locations in Oman and Saudi Arabia. Silva [32] presented 
the equivalent energy method, where the parameters are 
found from the square error minimization power. Akdag 
and Dinler [1] proposed the energy pattern factor method, 
with which it would be possible to determine the k and c 
parameters from the power density and average velocity. 
Rocha et al. [28] dealt with the analysis and comparison 
of seven numerical methods for the assessment of effec-
tiveness in determining the parameters for the Weibull 
distribution, using wind data collected for Camocim and 
Paracuru cities in the northeast region of Brazil. Also in the 
Brazilian northeastern region, Andrade et al [3] compared 
the graphical method, moment, pattern energy, maximum 
likelihood, empirical and equivalent energy and evaluated 
the efficiency through the predicted and measured power 
available.

However, in some cases, these methods cannot repre-
sent satisfactorily the wind speed distribution. Therefore, 
a favorable condition for the study of the heuristic method 
applications has been applied in more recent studies in the 
field of wind energy. Rahmani et al. [27] estimated, applying 
the Particle Swarm Optimization, the wind speed and the 
power produced in the Binaloud Wind Farm. Barbosa [6] 
estimated the Weibull curve parameters through the Har-
mony Search for two Brazilian regions. Wang et al. [36] used 
the Cuckoo Search Optimization and Ant Colony Optimiza-
tion methods to evaluate wind potential and predict wind 
speed in four locations in China. Gonzlez et al. [17] pre-
sented a new approach for optimizing the layout of offshore 
wind farms comparing the behavior of two metaheuristic 
optimization algorithms, the genetic algorithm and Parti-
cle Swarm Optimization. Hajibandeh et al. [18] used the 
multicriteria multi-objective heuristic method to propose a 
new model for wind energy and DR integration, optimizing 
supply and demand side operations by the time to use (TOU) 
or incentive with the emergency DR program (EDRP), as 
well as combining TOU and EDRP together. Salcedo-Sanz 
et al. [29] addressed a problem of representative selection 
of measurement points for long-term wind energy analysis, 
as the objective of selecting the best set of N measurement 
points, such that a measure of wind energy error recon-
struction is minimized considering a monthly average wind 

energy field, for which the metaheuristic algorithm, Coral 
Reef Optimization with Substrate Layer, was used, which is 
an evolutionary type method capable of combining different 
search procedures within a single population. Faced with the 
inconsistent relationship between China’s economy and the 
distribution of wind power potential that caused unavoidable 
difficulties in wind power transport and even network inte-
gration, Jiang et al. [19] studied, by optimization methods, 
among them the Cuckoo Search and the Particle Swarm, the 
establishment of an integrated electric energy system with 
low-speed wind energy. Marzband et al. [23] used four heu-
ristically optimized optimization algorithms to implement 
a market structure based on transactional energy, to ensure 
that market participants can obtain a higher return.

Considering the presented works, this study aims to ana-
lyze four heuristic optimization methods and compare them 
with four other deterministic numerical methods, to suggest 
which is the most efficient to determine the parameters of the 
Weibull probability distribution curve for Petrolina, Triunfo 
and São Martinho da Serra regions.

Weibull distribution

Wind speed is a random variable, and it is useful to use sta-
tistical analysis to determine the wind potential of a region 
[2, 9, 35]. Commonly, the two parameters Weibull distribu-
tion is the one that presents the best fit and is therefore the 
most used to estimate this potential. [8, 22].

The Weibull distribution for the velocity v is expressed 
by the probability density function, wind velocity frequency 
curve, shown in Eq. 1. Equation 2 expresses its cumulative 
probability function [10, 24].

where c is the scaling factor with unit m ⋅ s−1 , k is the shape 
factor (dimensionless) and F(v) denotes the probability of 
velocities smaller than or equal to v.

Among the methods already studied with the purpose of 
Weibull curves estimating parameters for the regions studied 
in this paper, or with similar characteristics, the maximum 
likelihood method, moment method, empirical method and 
the equivalent energy method were shown to be the most 
effective [3, 5, 28].
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Maximum likelihood method (MLM)

In the maximum likelihood method, numerical iterations are 
required to determine the Weibull distribution parameters 
[15]. In this method [28], the parameters k and c are deter-
mined according to the Eqs. 3 and 4.

where n is the number of observed data and vi is the wind 
speed measured in the interval i.

Moment method (MM)

The moment method may be used as an alternative to the 
maximum likelihood method and it is recommended when the 
mean and standard deviation of the elements are known and 
are initially on an appropriate scale [21]. In this case [28], the 
k and c parameters are determined by Eqs. 5 and 6.

where v̄ , � , �  are, respectively, the average wind speed, the 
standard deviation of the observed wind speed data, and the 
gamma function.

Empirical method (EM)

The empirical method [10, 28] is considered a simplified form 
of the moment method, in which the determination of the k 
parameter follows Eq. 7 and the c parameter Eq. 8.

where v̄ and � are, respectively, the mean wind speed and the 
standard deviation of the observed wind speed data.
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Equivalent energy method (EEM)

The equivalent energy method seeks the equivalence between 
the energy density of the observations and the theoretical 
Weibull curve. For this, the k parameter is estimated from 
the third moment of the velocity, by minimizing the square 
error related to the adjustment, represented by Eq. 9 and the c 
parameter is adjusted by using Eq. 10 [3, 32].

Heuristic methods

Heuristics encompasses a set of methods where, to solve 
a problem, the variables in question use the experience 
gained over the iterations. Heuristic methods combine dif-
ferent concepts intelligently to explore the search space, so 
that learning strategies are used to structure information 
and find efficient and almost optimal solutions [25]. Many 
of the heuristic approaches depend on probabilistic deci-
sions made during the algorithm run. The main difference 
against pure random search is that in heuristic algorithms, 
randomness is not used blindly but intelligently and biased 
[34]. It is valid to emphasize that every optimization pro-
cedure searches for the best result of a function for the 
desired scenario. This function is called the objective 
function. In this paper, the objective function is the one 
presented in Eq. 11, which represents the minimization of 
the square error sum applied to the frequency of occur-
rence values found by the curve adjusted by the method 
and the observed frequency of occurrence in the histogram 
of the data.

where n is the number of histogram velocity intervals and 
fadjustment and fobserved are the occurrence frequencies from 
the adjusted curve and that observed in the histogram, 
respectively.
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Harmony search (HS)

The Harmony Search is a heuristic algorithm based on the 
analogy of the artificial phenomenon of a musical group 
in search of the best harmony. This search occurs by the 
combination of existing elements and the generation of 
new elements that are combined to form possible solutions 
[16]. The search process begins with the formation of a 
harmony memory (HM), by the memorization of a series 
of possible solutions, denominated harmonies. At each 
iteration, a new harmony is formed and compared to the 
harmonies stored in the HM. The algorithm is presented 
by the following steps [4]:

1.	 initialize the HARMONY MEMORY;
2.	 improvise a new harmony from HM;
3.	 if the new harmony is better than the minimum harmony 

in HM, include the new harmony in HM and exclude the 
minimum harmony from HM. If not, the new harmony 
is excluded;

4.	 if the stopping criteria are not satisfied, go to step 2.

Figure 1 shows the flowchart of the Harmony Search algo-
rithm, summarizing all steps described previously.

Cuckoo search optimization (CSO)

Cuckoos are birds with an aggressive breeding strategy. 
Some species such as Ani and Guira cuckoos place their 
eggs in communal nests, and sometimes remove other spe-
cies’ eggs to increase the hatching probability of their own 
eggs. Other species lay their eggs in nesting host birds (often 
of other species). New World brood-parasitic Tapera species 
have evolved in such a way that the female parasitic cuckoos 
are often very specialized in the mimicry of the color and 
pattern of the eggs of a few chosen host species. This ability 
reduces the probability of their eggs being abandoned and 
thus increasing their reproductivity [26].

The CSO has its origin inspired by the behavior of the 
cuckoo in the process of finding nests, in which a nest is 
a possible solution. First, an initial population of nests is 
randomly generated. Later, new solutions are generated via 
Lévy flights. and from these the best solutions are stored in 
comparison to the current solutions. There are several ways 
to implement the distribution of Lévy distribution, the sim-
plest is the Mantegna′ s algorithm [37], and its distribution 
takes the form presented by Eq. 12 [20].

where X(t)

i
 is the previous solution from which the new solu-

tion X(t+1)
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X
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 represents the best actual solution, u and v are drawn 

from normal distributions, � is the scale factor which has an 
assigned value of 1.5 and � is calculated according to Eq. 13, 
where �  is the gamma function.

Then, the solution subset is discarded according to the 
probability of detection Pa ∈ [0,1] and new solutions are 
obtained, according to Eq. 14, with the same quantity of 
solutions abandoned [20, 30].

In Eq. 14, r is a uniformly distributed random number from 
0 to 1, and X(i,c) and X(i,k) denote the two random solutions 
of the ith generation.
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Fig. 1   Flowchart of the HS algorithm
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Figure  2 shows the flowchart of the Cuckoo Search 
Optimization algorithm, summarizing all steps described 
previously.

Particle swarm optimization (PSO)

In a PSO system, each particle “flies” through the multidimen-
sional search space, adjusting its position in space according to 
its own experience, however, also considering the experience 
of the neighboring particle. A particle uses the best position 
found by itself and the best position of its neighbors to position 
itself toward an ideal solution. The effect is that the particles 
“fly” toward a global optimum, while still investigating an area 
around the best current solution [14]. For each particle k posi-
tioned in a two-dimensional plane and for each iteration i, the 
positions and the best individual results (xbest

k
, ybest

k
) are 

recorded. Then, the best result among the k particles is recorded 
(xbest

global
, ybest

global
) . Each particle’s movement will be proportional 

to the distance between the current position of the particle and 
the resulting point of the weighted average between the best 

individual position of the particle and the best position of the 
swarm, according to Eqs. 15 and 16 [13].

where

In these, � , � , � and � are random numbers belonging to 
the set [0, 1] and � is the particle inertia term, defined by 
Eq. 19 [31].

where m is the maximum number of iterations.
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Fig. 2   Flowchart of the CSO 
algorithm
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Figure  3 shows the flowchart of the Particle Search 
Optimization algorithm, summarizing all steps described 
previously.

Ant colony optimization (ACO)

In an ant colony, the communication between individuals, 
or between the individuals and the environment, is based 
on the pheromone produced by them. The trail pheromone 
is a specific type of pheromone that some ant species use 
to mark paths on the ground. When detecting pheromone 
trails, forage ants may follow the path trodden by other 
ants to the food source. The first ants when sniffing the 
pheromone tend to choose, probabilistically, the trails 
marked with stronger concentrations of pheromone. The 
second group of ants will notice more intense the shortest 
path due to the shorter evaporation time. With the continu-
ation of this procedure by all the ants, at one point in this 

process, one of the paths stands out for being the most 
frequented, being indicated by the intensity of ants’ phero-
mone and density superior to the others. At this point, 
the best path found by the ants is defined. This behavior 
inspired the optimization method by ant colonies [11].

In the ACO method, the parameters k and c of the 
Weibull curve form a Cartesian plane that is divided into 
N equal parts. The center point of each new area will be 
an ordered pair (k, c) where the curve fit will be evaluated 
[5]. The probability of occurrence of each reticulum is 
defined by Eq. 20.

where �r is the pheromone intensity for the reticle r.
Each ant is then randomly positioned in the plane 

through a roulette draw, where each slice of the roulette 
represents a reticle and is defined by the probability of 
occurrence. The visited quadrants are indicated by the 
pheromone deposit according to Eq. 21. At each itera-
tion, the amount of the hormone is also reduced at a con-
stant rate to simulate the hormone volatility, according to 
Eq. 22.

where �i,r is the pheromone intensity for the reticle r, at itera-
tion i, errf  is the error evaluated by the ant f, � is the deposi-
tion constant and � is the evaporation constant [33].

While the iterations follow up, some reticles will be more 
attractive to ants because they have a large amount of phero-
mone, this attraction being symbolized by the larger slices of 
the roulette, until most of the ants follow the same path.

Figure 4 shows the flowchart of the Ant Colony Optimiza-
tion algorithm, summarizing all steps described previously.

Parameters applied to the heuristic methods

Each heuristic method depends on a certain number of param-
eters, with its adjustment being necessary to reduce the com-
putational time response that leads to convergence to the opti-
mal values. The parameters applied here, presented in Table 1, 
were extracted from the works whose authors used the pro-
posed methods in wind energy applications [6, 7, 27, 36].

Statistical tests

The performance evaluation of the applied methods was real-
ized by the following tests:

(20)Pr =
�r∑R

r=1
�r

,

(21)�i,r =�i−1,r +

(
�

errf

)

(22)�i,r =� ⋅ �i,r,

Fig. 3   Flowchart of the PSO algorithm
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Root mean square error (RMSE) (Eq, 23):

(23)RMSE =

�∑n

i=1
(ycalculated

i
− ymeasured)2

n
.

Mean absolute error (MAE) (Eq. 24):

(24)MAE =
1

n

n∑
i=1

|||y
calculated
i

− ymeasured
i

|||.

Fig. 4   Flowchart of the ACO 
algorithm

Table 1   Parameters applied to 
the heuristic methods

a Harmony number
b Nest number
c Probability of detection
d Particle number
e Inicial particle inertia
f  Final particle inertia
g Local learning factor
h Global learning factor
i  Ant number
j Pheromone deposit
k Evaporation constant

HS CSO PSO ACO

Nh 
a 6 Nn b 50 Np d 30 Nf  i 100

Pa 
c 0.25 wi 

e 1.8 � j 0.2
wf  f 0.2 � k 0.1
c1 g 1.0
c2 h 1.0
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Determination coefficient R2 (Eq. 25):

where n is the number of observations, ycalculated
i

 is the fre-
quency of Weibull, ȳmeasured

i
 is the mean wind speed and 

ymeasured
i

 is the frequency of observations.
The percentage value of the wind production deviation 

(WPD) between the obtained Weibull probability distribution 
curve and the data histogram was evaluated as in Eq. 26.

where � is the specific mass of the air, v is the wind speed, �  
is the gamma function and k and c are the estimated Weibull 
curve parameters.

Wind site data processing

The data of each location were separated into intervals 
with a variation of 1 m/s, and to fit the interval, the velocity 
should be higher than the lower value of the interval and 
less than or equal to the upper value, except the first interval 
where: 0 m/s ≤ V  ≤ 1 m/s. Once separated, the data size 
within each interval was evaluated, and this amount of each 
interval was divided by the data size, thus generating a rela-
tive frequency value for each interval. The data is validated 
by a SONDA project methodology, which does not change 
the databases, eliminating data considered invalid by the 
process. However, this only indicates the data considered 
as suspicious for the user to decide whether or not to use 
them. Data collected by the SONDA project for the Triunfo, 

(25)

R2 =

∑n

i=1
(ymeasured

i
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− ȳmeasured)2

,

(26)WPD =
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)
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1

2
⋅ � ⋅ v3

(28)WPDestimated =
1

2
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(
1 +

3

k

)
,

Table 2   Statistical analysis: 
Triunfo, year 2010

Method k c RMSE MAE R2 WPD

MLM 3.3337 15.2254 0.000775 0.002964 0.980183 0.080741
MM 3.3361 15.2103 0.000775 0.002973 0.980174 −0.241481

EM 3.3290 15.2119 0.000769 0.002956 0.980511 −0.140927

EEM 3.0004 15.0249 0.000843 0.003614 0.976576 2.22 ⋅ 10−14

ACO 3.1936 15.1312 0.000694 0.002821 0.984081 −0.322802

CSO 3.1930 15.1307 0.000694 0.002822 0.984081 −0.325351

HS 3.1827 15.1247 0.000695 0.002831 0.984060 −0.327501

PSO 3.3012 15.7376 0.001034 0.004310 0.964724 10.875590

Fig. 5   Weibull curve adjustment for TRI23-deterministic numerical 
methods

Fig. 6   Weibull curve adjustment for TRI23-heuristic methods
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Petrolina and São Martinho da Serra accounted for a total of 
52,560 for the three stations, although, after the processing, 
a total of 52,560, 52,514 and 52,366 data were considered, 
representing a use of 100%, 99.91% and 99.63%. (Figs. 5, 
6, 7, 8, 9, 10)

Results and discusssion

The results of the statistical tests for the TRI23 station 
located in Triunfo, PTR11 station located in Petrolina and 
SMS08 located in São Martinho da Serra are presented in 
Tables  2, 3 and 4. Figures 5, 8, 11, 6, 9 and 12 present 
the Weilbull distribution curves for deterministic numerical 
methods and heuristic methods. Figures  7 and 13compare 
the results obtained by ACO and the EM for Triunfo and 
São Martinho da Serra and Figure 10 compares the results 
obtained by CSO and the EM for Petrolina

Graphically, it was observed that the methods EM, 
MLM, MM, ACO, CSO, PSO and HS, to determine the 

Fig. 7   Weibull curve adjustment for TR23 station in Triunfo

Table 3   Statistical analysis: 
PTR11, year 2006

Method k c RMSE MAE R2 WPD

MLM 3.0258 5.4536 0.002440 0.006081 0.984086 −0.009484

MM 3.0593 5.4665 0.002283 0.005948 0.986071 0.252696
EM 3.0595 5.4665 0.002282 0.005946 0.986082 0.249015
EEM 2.8169 5.3952 0.003640 0.008796 0.964585 −5.55 ⋅ 10−14

ACO 3.2928 5.4768 0.001727 0.004985 0.992025 −1.861296
CSO 3.2924 5.4774 0.001727 0.004988 0.992025 −1.823873

HS 3.2989 5.4643 0.001732 0.004923 0.991972 −2.588528

PSO 3.2921 5.4846 0.001728 0.005007 0.992011 −1.433228

Fig. 8   Weibull curve adjustment for PTR11-deterministic numerical 
methods

Fig. 9   Weibull curve adjustment for PTR11-heuristic methods
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shape parameter k and the scale parameter c of the Weibull 
distribution, presented a better curve fit with the histogram 
of the wind speed for the cities Triunfo, Petrolina and São 
Martinho da Serra. Moreover, it was further observed 
that the heuristic methods Ant Colony Optimization and 
Cuckoo Search Optimization were completely adequate to 
estimate the Weibull parameters. This fact was clearly vali-
dated by means of the statistical tests, i.e., RMSE, MAE 
and R 2 , and by the WPD test. Tables 2, 3 and 4 show the 
statistical tests results for all deterministic and heuristic 
methods and WPD test considered in the analysis. It was 
also observed from the statistical and wind production 
deviation analysis that the values of RMSE, MAE, R2 and 
WPD have low variation magnitudes to each other for all 
the methods.

It can be concluded that the ACO method for Triunfo 
and São Martinho da Serra and the CSO method for Petro-
lina have a good performance, since the results among all 
the used methods obtained the lowest values of RMSE, 
MAE and WPD, highlighting the WPD test values less 

Fig. 10   Weibull curve adjustment for PTR11 station in Petrolina

Table 4   Statistical analysis: 
SMS08, year 2006

Method k c RMSE MAE R2 WPD

MLM 2.7188 3.6600 0.002666 0.006216 0.990161 0.059538
MM 2.7760 3.6717 0.002251 0.005308 0.992983 −0.080201

EM 2.7833 3.6713 0.002215 0.005208 0.993209 −0.244181

EEM 2.0573 3.4135 0.010163 0.021280 0.856988 −1.11 ⋅ 10−14

ACO 2.9104 3.7168 0.001692 0.003699 0.996033 1.302106
CSO 2.9102 3.7173 0.001693 0.003700 0.996033 1.347609
HS 2.9100 3.7185 0.001692 0.003701 0.996032 1.454803
PSO 2.8539 3.7561 0.001904 0.004346 0.994979 5.516611

Fig. 11   Weibull curve adjustment for SMS08—deterministic numeri-
cal methods

Fig. 12   Weibull curve adjustment for SMS08—heuristics methods
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than 2%, which was below the acceptable limit for the 
wind production deviation. It can also be concluded that 
the EEM for Triunfo, Petrolina and São Martinho da Serra 
has the worst performance, since it obtained the highest 
values of RMSE and MAE, and the lowest value of R2 
among all methods, although this method presented great 
performance of the WPD test, since it obtained negligible 
values of wind production deviation. Among the heuristic 
methods, PSO for Triunfo and São Martinho da Serra had 
the worst performance, since it obtained WPD value higher 
than 2%.

Conclusion

The following conclusions can be drawn from the preceding 
analysis:

1.	 Graphically, the EEM method was the least effective 
to fit Weibull distribution curves for wind speed data 
from the region of Pernambuco and Rio Grande do Sul, 
respectively, using the data analyzed for the cities of 
Triunfo, Petrolina and São Martinho da Serra.

2.	 Regarding the parameter k, it was observed that its val-
ues range from 2 to 3 for the cities of Triunfo, Petrolina 
and São Martinho da Serra, showing less constancy of 
the wind speed for that location. The values of c for 
Petrolina and São Martinho da Serra cities range from 
3 to 6 and for Triunfo range 13 to 16 for the mean wind 
speed occurring in those aforementioned places.

3.	 Ant Colony Optimization was an efficient method to 
determine the Weibull distribution parameters, k and 
c, for Triunfo and São Martinho da serra, and Cuckoo 
Search Optimization was an efficient method for Petro-
lina.

4.	 A suggestion for future work is to evaluate more periods 
of time and use the predicted values for k and c to calcu-
late the average wind speed and its standard deviation to 
achieve a rank for each method.
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