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A B S T R A C T

This paper addresses the problem of scheduling jobs in a flowshop layout where the machines can operate
at different speeds and require an amount of a resource that is a non-decreasing function of its speed.
Furthermore, there is a limit in the maximum amount of the resource that can be consumed, so the problem
serves to model either a constraint on the energy or raw material employed in the process, or on the maximum
amount of pollutant that can be emitted. In contrast to the classical permutation flowshop scheduling problem,
in the variant under study the processing times are controllable, there is an specific resource consumption,
and each job has a due date. The objective function considered is the minimization of the total tardiness of the
jobs. Given the NP-hard nature of this problem, we focus onto developing approximate solution procedures
that can yield high-quality solutions with a reasonable CPU effort. More specifically, we develop a fast solution
procedure to build an initial solution and two hybrid matheuristics based on mixed-integer linear programming
formulations of the problem. The first one combines a relax-and-fix approach with the generation of heuristic
cutting planes, while the second one relaxes some decision variables in the first stage and fixes other decision
variables in the final stage. The computational experience carried out show that our proposals outperform the
mathematical models as well as an approximate procedure proposed for a related problem.
1. Introduction

Permutation flowshop scheduling is a hard combinatorial optimiza-
tion problem widely studied in the last decades. Several performance
measures have been studied for the researchers of the production
scheduling area, with an emphasis on the makespan minimization
(Fernandez-Viagas et al., 2017). However, in several real-world ap-
plications, the permutation flowshop production environment presents
additional features not considered in the classical formulation. In this
regard, we can observe the possibility of controlling the processing
times as an important characteristic since the machines can present
speed scalability. Despite the prevalence of manufacturing scenarios
where the machines can have different speeds, the explicit consid-
eration of controllable processing times for the flowshop scheduling
problem is rather scarce in the available literature (Shabtay and Steiner,
2007; Fernandez-Viagas and Framinan, 2015a).
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Furthermore, higher machine speeds can lead to a reduction of
the makespan or total tardiness. However, a fast speed consumes a
large number of resources (i.e. energy, fuel,..), possibly with a higher
emission of pollutants. Regarding such emission of pollutants or en-
ergy consumption, the term green manufacturing has been coined to
encompass approaches that consider sustainability aspects in the pro-
ductive processes (Dornfeld, 2012; Deif, 2011). In the last years, these
problems are attracting the interest of researchers due to the im-
provements in the resolution methods and computational resources.
Viewed in the context of the production scheduling domain, the terms
energy-efficient scheduling (Albers, 2010; Gahm et al., 2016) and green
scheduling (Bampis et al., 2015) have been applied to classify schedul-
ing approaches that include aspects related to energy consumption,
energy tariff, demand or power constraints, and pollutants emissions.
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In this paper we address a flowshop scheduling problem with con-
trollable processing times, a constraint imposed on a resource consump-
tion (typically power consumption) and the objective of minimizing
the total tardiness. In our study, the speeds assume a discrete set
of alternatives. Also, we consider that there is a linear relationship
between speed and consumption. This variant arises in several real-
world applications, such as paper manufacture, steel processing and
finishing, and bread making. This problem is clearly NP-hard since
the classical permutation flowshop scheduling problem with total tardi-
ness minimization (without controllable processing times or a limit in
the total resource consumption) is already NP-hard. We first present
two mixed-integer linear programming (MILP) formulations for the
problem. In addition, we develop two hybrid matheuristics (each one
based in the MILP models developed) to find high-quality solutions
within feasible computational times. Both matheuristics require an
initial feasible solution, therefore we propose a method based on a
knapsack-type linear programming model that provides such solution
with negligible computational effort. Finally, we report an extensive
computational experimentation to assess the performance of our pro-
posals, also by comparing them with an state-of-the-art method from a
related problem.

The remainder of this paper is organized as follows: in Section 2, we
present the related approaches. In Section 3, we describe the problem
under study. Besides, two MILP models for the problem are presented.
These models with provide the basis for developing the proposed algo-
rithms in Section 4. In Section 5, we explain the experimental design.
In Section 6, we discuss some results from computational experiments;
finally, in Section 7 we draw some conclusions and suggestions for
future works.

2. Background

Since, to the best of our knowledge, the flowshop scheduling prob-
lem with controllable processing times and a limit in the total resource
consumption with the objective of total tardiness minimization has
not been addressed so far, here we review some related problems.
More specifically, we have reviewed papers addressing either flowshop
scheduling with controllable processing times, or green scheduling in
the flowshop layout, where resource consumption (i.e. energy, fuel) is
usually taken into account. Note that, in the literature of controllable
processing times, one stream of research considers the machine speeds
to take a discrete set of values (as in this study). However, another
stream of research considers the speeds to take continuous values
within a range. Some studies assume a linear relationship between
machine speed and resource consumption, while others assume a non-
linear relationship. We have not addressed this second line in our
study.

Regarding the flowshop with controllable processing times, Janiak
(1987) addresses a flowshop scheduling problem where the controllable
processing times are expressed as decision variables, and the perfor-
mance measure is the minimization of makespan. For each available
machine, the processing times are resource-dependent. A branch-and-
bound algorithm that uses some dominance rule is the proposed so-
lution approach. Nowicki and Zdrzałka (1988) study a two-machine
flowshop scheduling problem with controllable job processing times.
The minimization of the total processing cost plus maximum comple-
tion time cost is considered as a performance measure. Two heuristics
are developed: the first one presents a worst-case performance bound
equal to 𝑚, and the second one yields high-quality results. Nowicki
(1993) studies the 𝑚-machine permutation flowshop variant with con-
rollable processing times. An extension of the algorithm proposed by
owicki and Zdrzałka (1988) to the 𝑚-dimensional variant is addressed.

Edwin Cheng and Shakhlevich (1999) address the proportionate flow-
shop with controllable processing times where each machine processes
2

the jobs in the same order with equal processing times. An aggregation
of makespan minimization and compression cost function is the per-
formance measure considered. The corresponding bicriteria problem is
also studied, and constructive algorithms are presented in both cases.
Mokhtari et al. (2011) consider a flowshop with controllable processing
time with a trade-off between makespan and the required amount of
resources. The original problem is decomposed into two sub-problems:
a sequencing problem and a resource allocation problem. As a solution
procedure, a Discrete Differential Evolution algorithm (DDE) is com-
bined with a Variable Neighborhood Search (VNS). Uruk et al. (2013)
consider a non-preemptive two-machine flowshop scheduling with flex-
ible operations and controllable processing times. The jobs are identical
and must be processed three times: the first operation occurs in the first
machine, the second operation occurs in the second machine, and the
third operation occurs in one of the available machines. Two bi-criteria
mixed-integer nonlinear models are presented for the minimization of
the total manufacturing cost and makespan. A heuristic is proposed for
finding high-quality solutions within admissible computational times.

Regarding the green scheduling problem in a flowshop environ-
ment, Fang et al. (2013) investigate a flowshop environment with
peak-power consumption constraints. The processing times are con-
trollable since the machines present different speeds with associated
power consumption. Besides, a maximal power consumption constraint
limits the utilization of the resources in a given production period.
Two MILP formulations are presented for the makespan minimization.
Furthermore, two fast heuristics are proposed to find feasible schedules
as well as to evaluate the trade-off between makespan and peak-power
consumption. Mansouri et al. (2016) study the problem of scheduling a
two-machine flowshop to minimize makespan and energy consumption.
A MILP formulation is proposed to find the Pareto front for both
objectives. A lower bound for both objectives are proposed, as well
as a fast heuristic that finds good approximations for the Pareto front.
Zhang et al. (2017) propose a MILP model to optimize the scheduling of
a factory for minimal energy cost under real-time pricing of electricity.
A case study is addressed taking several operational scenarios into
account. The results found point to a substantial reduction in electricity
costs. Gao et al. (2018) address the no-wait, two-machine permuta-
tion flowshop scheduling problem with learning effect, common due
dates, and controllable processing times. The objective function ag-
gregates earliness, tardiness, common due date cost, and the cost
associated with the resource allocation per time unit. They propose a
polynomial algorithm that optimally solves this problem. Ramezanian
et al. (2019) introduce a green flowshop scheduling problem with
sequence-dependent setup times. A MILP model is proposed for the
minimization of makespan and energy consumption. A constructive
heuristic is proposed to find good approximations to the Pareto front.
Computational experiments with randomly generated test instances,
as well as a real-world problem, are presented. Foumani and Smith-
Miles (2019) address a bi-objective green flowshop scheduling problem
for the minimization of makespan and total carbon emission. A MILP
formulation is proposed, using a weight aggregation approach to trans-
form the original problem into a single objective one. These authors
employ random data and real-based data in computational experiments.
Öztop et al. (2020) address an energy-efficient flowshop scheduling
problem for the minimization of total flow time and total energy
consumption. These authors present a bi-objective MILP formulation
with a speed-scaling framework. An improved version of the well-
known NEH algorithm (Nawaz et al., 1983) is proposed as an initial
solution. Furthermore, two variants of the iterated greedy metaheuris-
tic and variable block-insertion algorithm are proposed. The iterated
greedy algorithms presents better results in the computational exper-
iments carried-out with randomly generated test instances. Amiri and
Behnamian (2020) study a multi-objective green flowshop to minimize
makespan and energy consumption under uncertainty. A mathematical
formulation is proposed, as well as an estimation distribution algo-
rithm that presents high-quality approximations to the Pareto front,

within admissible computational times. Gomes et al. (2021) address



Computers and Operations Research 145 (2022) 105880B.A. Prata et al.

t
m
M
s
a
i
c
s
t
(
p
j

a no-wait flowshop that arises in the steel industry. The bi-objective
modeling considers the minimization of total tardiness and the To-
tal Energy Cost (TEC). A MILP formulation provides initial solutions
to a multi-objective variable neighborhood search algorithm into a
matheuristic framework. The multi-objective matheuristic outperforms
a metaheuristic approach in a set of 24 instances based on a real-world
problem from a heat treatment line in steel production.

As it can be seen from the background of the problem presented
above, in the previous contributions on the flowshop scheduling prob-
lem with total tardiness minimization, the processing times are not
controllable and the machines cannot operate with distinct speeds.
Furthermore, the solution procedures have been designed for multi-
objective approaches that consider the generation of approximations
to the Pareto front. In our view, the flowshop scheduling problem to
minimize total tardiness needs also to be explored with more depth
in a single-objective setting while also including power consumption
considerations so these advances can be incorporated to the evaluation
of multiple objectives. Hence, the main innovations of our work are the
following. First, to the best of our knowledge, the permutation flowshop
scheduling problem taking into account resource consumption and
total tardiness minimization has not been previously addressed in the
literature. Second, we are not aware of contributions on this problem
in a single-criterion setting where the total resource consumption is
considered a constraint. Finally, to the best of our knowledge, there are
no other works on this problem providing a mathematical formulation
that considers the possibility of distinct speeds in each position of the
sequence in each available machine.

3. Problem statement

3.1. Problem description

The production environment under consideration is characterized
by a flowshop layout where the 𝑚 machines have different speeds and
here is a resource consumption constraint, which serves to model a
aximum feasible amount of energy consumption or carbon emissions.
ore specifically, we assume a linear relationship between machine

peed and resource consumption. Furthermore, the machines can oper-
te with three modes (slow, normal, and fast). In this manner, depend-
ng on the selected mode, the processing times, as well as the resource
onsumption, are different. In this environment, 𝑛 jobs have to be
cheduled over the machines in the same order (flowshop). We assume
hat the relative order of the jobs is the same across all machines
permutation hypothesis), therefore 𝜋 a permutation of jobs plus their
rocessing speed in the available machines represents a solution. Each
ob 𝑗 requires a processing time 𝑝𝑖𝑗𝑙 to be processed on machine 𝑖 if the
latter is operated at a speed 𝑙, and consumes an amount of resource
𝑞𝑖𝑗𝑙. For a given mode 𝑠𝑖𝑙 used to process the job 𝑗 on machine 𝑖, let 𝑝𝑖𝑗
and 𝑝𝑖𝑗 be the processing times and amount of resources for the normal
mode, the processing time 𝑝𝑖𝑗𝑙 is given by 𝑝𝑖𝑗𝑙 = 𝑝𝑖𝑗∕𝑠𝑖𝑙. Similarly, the
amount of resource 𝑞𝑖,𝑗,𝑙 is given by 𝑞𝑖𝑗𝑙 = 𝑝𝑖𝑗×𝑠𝑖𝑙. Furthermore, there is a
due date 𝑑𝑗 for each job and the total resource consumption should not
exceed an amount 𝑄. In our problem, Q represents the total available
resource to be used to process all jobs on all machines, which is non-
renewable. A job scheduled in the position 𝑘 of the sequence 𝜋 has a
completion time 𝐶𝑘𝑗 on machine 𝑖 as well as a tardiness 𝑇𝑘 which is
computed using the following expression: 𝑇𝑘 = 𝑚𝑎𝑥{𝐶𝑘𝑗 − 𝑑𝑗 , 0}. Given
these definitions, the problem under study is to find a sequence that
minimizes the sum of the tardiness of the jobs.

Consider an illustrative example with six jobs and two machines
with three speeds (slow, normal and fast), adapted from Pan and Fan
(1997). In this example, considering the non-controllable problem with
machines operating on normal speed (Table 2), and with due dates
𝑑𝑖 = {9, 14, 16, 17, 21, 23}, the sequence 𝜋 = {1, 2, 3, 4, 6, 5} presents the
global optimal solution of 45 time units. Taking into account a resource
consumption constraint 𝑄 = 100, machines with different speeds (as
3

Table 1
Processing times for flowshop example (fast speed).
𝑖∖𝑗 𝐽1 𝐽2 𝐽3 𝐽4 𝐽5 𝐽6
𝑀1 2 2.5 2 3.5 4.5 3
𝑀2 2 4 1.5 1.5 4 3.5

Table 2
Processing times for flowshop example (normal speed).
𝑖∖𝑗 𝐽1 𝐽2 𝐽3 𝐽4 𝐽5 𝐽6
𝑀1 4 5 4 7 9 6
𝑀2 4 8 3 3 8 7

Table 3
Processing times for flowshop example (slow speed).
𝑖∖𝑗 𝐽1 𝐽2 𝐽3 𝐽4 𝐽5 𝐽6
𝑀1 8 10 8 14 18 12
𝑀2 8 10 6 6 16 14

Table 4
Resource consumption for flowshop example (fast speed).
𝑖∖𝑗 𝐽1 𝐽2 𝐽3 𝐽4 𝐽5 𝐽6
𝑀1 10 12 10 18 22 14
𝑀2 10 20 8 8 20 16

Table 5
Resource consumption for flowshop example (normal speed).
𝑖∖𝑗 𝐽1 𝐽2 𝐽3 𝐽4 𝐽5 𝐽6
𝑀1 5 6 5 9 11 7
𝑀2 5 10 4 4 10 8

Table 6
Resource consumption for flowshop example (slow speed).
𝑖∖𝑗 𝐽1 𝐽2 𝐽3 𝐽4 𝐽5 𝐽6
𝑀1 2.5 3 2.5 4.5 5.5 3.5
𝑀2 2.5 5 2 2 5 4

illustrated in Tables 1, 2, and 3), as well as resource consumptions
in the available machines (as illustrated in Tables 4, 5, and 6), the
sequence 𝜋 = {1, 2, 3, 4, 6, 5} presents a optimal solution of 23.5 time
units. In this solution, all operations were performed with normal
mode, except for jobs 1, 2, and 3 in machine 1, which were processed
in the fast mode.

3.2. MILP models

In this section, we present two Wilson family models (Wilson, 1989)
to the variant under study based on the existing classic mathematical
formulations (Stafford et al., 2005; Ronconi and Birgin, 2012; Fang
et al., 2013; Foumani and Smith-Miles, 2019). These models are used
to develop the approximate procedures described in Section 4. In the
proposed models, we consider binary positional decision variables to
control the sequence of the jobs. In our modeling, a job must be
processed with a given speed at each machine. Hereafter, the notation
used for the first model proposed is presented.

Indices

𝑖: index for machines {1,2, . . . , 𝑚}.
𝑗: index for jobs {1,2, . . . , 𝑛}.
𝑘: index for positions {1,2, . . . , 𝑛}.
𝑙: index for speed {1,2, . . . , 𝑠}.

Parameters

𝑝 : processing time of job 𝑗 on machine 𝑖 with speed factor 𝑙.
𝑖𝑗𝑙
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𝑞𝑖𝑗𝑙: amount of resource to process job 𝑗 on machine 𝑖 with speed
factor 𝑙.
𝑑𝑗 : due date of job 𝑗.
𝑄: maximal amount of available non-renewable resources.

ecision variables

𝑇𝑘: tardiness of job in position 𝑘.
𝑆𝑖𝑘: starting time of job in position 𝑘 on machine 𝑖.

𝑥𝑖𝑗𝑘𝑙 =

⎧

⎪

⎨

⎪

⎩

1, if job 𝑗 is scheduled on machine 𝑖
at position 𝑘 with speed 𝑙.

0, otherwise

The resulting MILP model can be stated as follows.

𝑀𝐼𝐿𝑃 1) minimize
𝑛
∑

𝑘=1
𝑇𝑘 (1)

subject to

𝑇𝑘 ≥ 𝑆𝑚𝑘 +
𝑛
∑

𝑗=1

𝑠
∑

𝑙=1
𝑝𝑚𝑗𝑙𝑥𝑚𝑗𝑘𝑙 −

𝑛
∑

𝑗=1

𝑠
∑

𝑙=1
𝑑𝑗𝑥𝑚𝑗𝑘𝑙 , ∀𝑘

(2)

𝑆𝑖,𝑘+1 ≥ 𝑆𝑖𝑘 +
𝑛
∑

𝑗=1

𝑠
∑

𝑙=1
𝑝𝑖𝑗𝑙𝑥𝑖𝑗𝑘𝑙 , ∀𝑖,𝑘∈{1,2,…,𝑛−1}

(3)

𝑆𝑖+1,𝑘 ≥ 𝑆𝑖𝑘 +
𝑛
∑

𝑗=1

𝑠
∑

𝑙=1
𝑝𝑖𝑗𝑙𝑥𝑖𝑗𝑘𝑙 , ∀𝑖∈{1,2,…,𝑚−1},𝑘

(4)
𝑛
∑

𝑗=1

𝑠
∑

𝑙=1
𝑥𝑖𝑗𝑘𝑙 = 1, ∀𝑖,𝑘

(5)
𝑛
∑

𝑘=1

𝑠
∑

𝑙=1
𝑥𝑖𝑗𝑘𝑙 = 1, ∀𝑖,𝑗

(6)
𝑠
∑

𝑙=1
𝑥𝑖𝑗𝑘𝑙 =

𝑠
∑

𝑙=1
𝑥𝑖+1,𝑗𝑘𝑙 , ∀𝑖∈{1,2,…,𝑚−1},𝑗,𝑘

(7)
𝑚
∑

𝑖=1

𝑛
∑

𝑗=1

𝑛
∑

𝑘=1

𝑠
∑

𝑙=1
𝑞𝑖𝑗𝑙𝑥𝑖𝑗𝑘𝑙 ≤ 𝑄 (8)

𝑠
∑

𝑙=1
𝑥𝑖𝑗𝑘𝑙 ≤ 1, ∀𝑖,𝑗,𝑘

(9)
𝑇𝑘 ≥ 0, ∀𝑘

(10)
𝑆𝑖𝑘 ≥ 0, ∀𝑖,𝑘

(11)
𝑥𝑖𝑗𝑘𝑙 ∈ {0, 1}, ∀𝑗,𝑘,𝑙

(12)

The objective function (1) is the total tardiness minimization. Con-
straint set (2) calculates the tardiness for each job processed in position
𝑘. Constraints (3) and (4) ensure that the completion and starting times
are consistent with a flowshop. Constraint set (5) guarantees that a
given position in the sequence is allocated only to one job. Constraint
set (6) forces that a given job is processed in a single position of
the sequence. Constraint set (7) guarantees a permutation flowshop.
Constraint (8) enforces that the amount of resource used is less than or
equal to the maximal amount of resource available. Since the jobs are
processed in each machine with one speed, we can also define the valid
inequalities (9). Finally, constraint sets (10), (11), and (12) establish
4

the domain of the decision variables.
In our second MILP formulation, we consider two types of binary
decision variables, as described below. The first decision variable 𝑧𝑖𝑗𝑙
models the speed configuration of the machines to process the jobs, and
the second decision variable 𝑦𝑗𝑘 is a standard positional variable for the
jobs.

𝑦𝑗𝑘 =

{

1, if job 𝑗 is scheduled on position 𝑘.
0, otherwise

𝑧𝑖𝑗𝑙 =

{

1, if job 𝑗 is scheduled on machine 𝑖 with speed 𝑙.
0, otherwise

Thus, the second proposed model can be stated as follows.

𝑀𝐼𝐿𝑃2) min
𝑛
∑

𝑘+1
𝑇𝑘 (13)

subject to: 𝑇𝑘 ≥ 𝑆𝑚𝑘 +
𝑠
∑

𝑙=1
𝑝𝑚𝑗𝑙 ⋅ (𝑧𝑚𝑗𝑙 + 𝑦𝑗𝑘 − 1) −

𝑛
∑

𝑗=1
𝑑𝑗𝑦𝑗𝑘, ∀𝑗, 𝑘

(14)

𝑆𝑖,𝑘+1 ≥ 𝑆𝑖𝑘 +
𝑠
∑

𝑙=1
𝑝𝑖𝑗𝑙 ⋅ (𝑧𝑖𝑗𝑙 + 𝑦𝑗𝑘 − 1), ∀𝑖, 𝑗, 𝑘 < 𝑛

(15)

𝑆𝑖+1,𝑘 ≥ 𝑆𝑖𝑘 +
𝑠
∑

𝑙=1
𝑝𝑖𝑗𝑙 ⋅ (𝑧𝑖𝑗𝑙 + 𝑦𝑗𝑘 − 1), ∀𝑖 < 𝑚, 𝑗, 𝑘

(16)
𝑛
∑

𝑗=1
𝑦𝑗𝑘 = 1, ∀𝑘

(17)
𝑛
∑

𝑘=1
𝑦𝑗𝑘 = 1, ∀𝑗

(18)
𝑠
∑

𝑙=1
𝑧𝑖𝑗𝑙 = 1, ∀𝑖, 𝑗

(19)
𝑚
∑

𝑖=1

𝑛
∑

𝑗=1

𝑠
∑

𝑙=1
𝑞𝑖𝑗𝑙𝑧𝑖𝑗𝑙 ≤ 𝑄 (20)

𝑇𝑘 ≥ 0 ∀𝑘
(21)

𝑆𝑖𝑘 ≥ 0 ∀𝑖, 𝑘
(22)

𝑧𝑖𝑗𝑙 ∈ {0, 1} ∀𝑖, 𝑗, 𝑙

(23)
𝑦𝑗𝑘 ∈ {0, 1} ∀𝑗, 𝑘

(24)

The objective function (13) is the total tardiness minimization.
Constraint set (14) calculates the tardiness for each job processed in
position 𝑘. Constraints (15) and (16) ensure that the completion and
starting times are consistent with a flowshop. Constraint set (17) forces
that a given job is processed in a single position of the sequence.
Constraint set (18) guarantees that a given position in the sequence
is allocated only to one job. Constraint set (19) imposes that the jobs
are processed in each machine with one speed. Constraint (20) enforces
that the used resources are less than or equal to the maximal amount
of available resources. Finally, constraint sets (21), (22), (23), and (24)
establish the domain of the decision variables.

4. Proposed solution approaches

Recently, a number of contributions have successfully addressed
the hybridization of mathematical programming and heuristics to solve

production scheduling problems (Della Croce et al., 2014; Lin and Ying,
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2016; Framinan and Perez-Gonzalez, 2018; Pitombeira-Neto and Prata,
2020; Prata et al., 2020). These matheuristics incorporate some knowl-
edge of the decision problem to guide the search of the solutions. Along
this line, we propose for our problem two innovative matheuristics
that explore distinct structures for fixing some variables in the model.
Both solution approaches use the information included in the linear
relaxation of the MILP models. More specifically, based on preliminary
computational experiments with the proposed MILP models, it can be
observed that, if a scheduling decision variable is zero in the linear re-
laxation, then it is likely to be zero in the integer solution. Additionally,
preliminary experiments showed that the proposed solution procedures
were not able to find feasible integer solutions for all the instances
within a reasonable time limit, so we propose a fast method to obtain
an initial feasible solution. This procedure is presented in Section 4.1.

Since we present two MILP formulations for the problem under
study, we decide to explore the characteristics of both models to pro-
vide competitive matheuristics. Concerning the first model (MILP1), we
could observe that with the utilization of positional decision variables
incurred in a decision variable with four indices. In this data structure,
we have a sparse matrix in which the vast majority of the values
are equal to zero. Thus, the consideration of heuristic cutting planes
could improve the performance of this formulation. This approach is
discussed in Section 4.2. Regarding the second formulation (MILP2),
the utilization of distinct decision variables to schedule the jobs and
allocate speeds can be used to decompose the problem into two sub-
problems. In the first subproblem, we are looking for the generation
of a permutation, and in the second subproblem, we are generating
a complete solution, taking the speeds into account. This approach is
presented in Section 4.3.

4.1. Initial Solution (IS)

The problem under study presents two main decisions: Scheduling
the jobs in the production sequence and determining the speeds in each
machine for each position of the production sequence. Thus, we face
a hard combinatorial optimization problem with an extremely large
search space. Aiming to obtain a feasible initial solution, we propose
a fast procedure – denoted Initial Solution (IS) in the following – that
combines exact and heuristic methods. In the first step, we employ a
simplified MILP model to determine the maximal feasible speed in the
available machines using a knapsack-based model. This MILP model
(denoted by Maximal Fixed Speeds — MFS) can be stated as follows:

(MFS) max
𝑚
∑

𝑖=1

𝑛
∑

𝑗=1

𝑠
∑

𝑙=1
𝑞𝑖𝑗𝑙𝑧𝑖𝑗𝑙 (25)

subject to
𝑠
∑

𝑙=1
𝑧𝑖𝑗𝑙 = 1, ∀𝑖,𝑗 (26)

𝑚
∑

𝑖=1

𝑛
∑

𝑗=1

𝑠
∑

𝑙=1
𝑞𝑖𝑗𝑙𝑧𝑖𝑗𝑙 ≤ 𝑄 (27)

𝑧𝑖𝑗𝑙 ∈ {0, 1}, ∀𝑖,𝑗,𝑙 (28)

The objective function (25) maximizes the resource consumption in
the available machines taking into account the resource consumption
as the weight of each job. Constraint set (26) forces that a given job is
processed on a machine at a single speed. Constraint set (27) imposes a
limit in the maximum consumption of the resource. Finally, constraint
set (28) defines the decision variables of the MILP model.

Since the consumption of the resource is a non-decreasing function
of the speed of the machines, the MFS model actually determines the
maximum speed of the machines to process the jobs that is compatible
with the maximum amount of resource consumption. Therefore, with
5

the speeds given by the MFS model we can compute the corresponding i
processing times for each job across the machines. Note, however,
that this does not yield a solution of the problem under study, since
this procedure does not take into account the production sequence. To
determine such sequence, we use two well-known heuristics. i.e. the
Earliest Due Date (EDD) rule and the Extensive Neighborhood Search
(ENS) algorithm. In the EDD rule (first presented by Jackson (1955)),
the jobs are sorted in a non-descending order of their due dates.
The ENS algorithm by Kim (1993) starts from an initial sequence
(usually generated by EDD), and attempts to improve it by exploring
a neighborhood given by exchanging the positions of a pair of jobs in
the current permutation. This improvement procedure is repeated until
there is no better solution than the given one. Then, the solution with
the minimum total tardiness is returned.

Using the processing times matrix given by the MFS model, we
can employ the ENS algorithm to generate an initial sequence. This
permutation can be used as a warm start 𝑥𝑖𝑛𝑖𝑡𝑖𝑗𝑘𝑙 for the MILP1 model.
More specifically, the result of the MFS model provides a configuration
of speeds to process the job 𝑗 in the machine 𝑖. On the other hand,
the ENS heuristic determines an initial allocation of each job 𝑗 in the
position 𝑘 of the sequence. With both data, an initial configuration for
he decision variables 𝑥𝑖𝑛𝑖𝑡𝑖𝑗𝑙 can be built.

.2. Relax-and-fix with heuristic cutting planes (RFHCP) matheuristic

Aiming to improve the solutions generated by the initial procedure,
e first propose a hybrid matheuristic that considers a single-iteration

elax-and-fix with heuristic cutting planes. Wolsey (1998) defined 0-1
napsack inequalities called cover inequalities. If a given amount of
esources exceeds the overall resource availability, an inequality could
e inserted.

efinition 1. In the problem under consideration, a set 𝐶 is a cover if

𝑚

𝑖=1

∑

𝑗∈𝐶

𝑛
∑

𝑘=1

𝑠
∑

𝑙=1
𝑞𝑖𝑗𝑙𝑥𝑖𝑗𝑘𝑙 > 𝑄 (29)

If 𝐶 is a cover for the decision variable 𝑥, then
𝑚

𝑖=1

∑

𝑗∈𝐶

𝑛
∑

𝑘=1

𝑠
∑

𝑙=1
𝑥𝑖𝑗𝑘𝑙 ≤ |𝐶| − 1 (30)

s valid for 𝑥.

We could add these cover inequalities in the first MILP model
MILP1), aiming to reduce the feasible solution space. Unfortunately,
he number of possible cover inequalities is extremely high, and their
nsertion in the model is not possible, as the addition of cover in-
qualities in the branch-and-cut framework can be computationally
rohibitive (Hunsaker and Tovey, 2005). Instead, we propose a heuris-
ic approach to generate cutting planes. More specifically, we add
euristically cuts using cover inequalities determined for each machine.
herefore, we have not to guarantee that these are valid inequalities,
ince these cuts are treated as heuristic cutting planes or pseudo-
uts (Lasdon et al., 2010; Glover et al., 2011). Note that, although the
nclusion of pseudo-cuts reduces the search space as compared to that
f the original model, the new search space does not necessarily lead
o the optimal solution of the original problem.

Another possible avenue to reduce the model in order to make it
aster to solve would have been the exclusion of the decision variables
s in Fanjul-Peyro and Ruiz (2011). Prata et al. (2020) proposed the
ixed Variable List Algorithm (FVLA), which incorporates the concepts
f the well-known GRASP metaheuristic into a matheuristic procedure.
irstly, a list is constructed with the decision variables taken from the
ILP model that could be set to zero as they probably would not

e selected in an optimal or near-optimal solution. Subsequently, the
ecision variables in the list are fixed as zero, and a reduced model

s solved. Nevertheless, excluding decision variables can deteriorate
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the value of the objective function if some excluded variables would
appear in high-quality solutions. Therefore, we propose a heuristic
generation of cutting planes which is a more general approach than
a variable-fixing heuristic: Since in the proposed MILP, we are working
with positional decision variables, and with a total tardiness objective,
we could generate cutting planes based on two distinct situations: (i)
the jobs with the largest due dates values should not be scheduled in
the first positions of the sequence; and (ii) the jobs with the lowest
due dates values should not be scheduled in the last positions of the
sequence. Based on these intuitive assumptions, we could establish
pseudo-cuts or heuristic cutting planes aiming to reduce the search
space.

To deal with this issue, we consider four parameters in our heuristic
cutting plane generation:

• 𝛼: control the number of positions at the beginning of the se-
quence (𝛼 ∈ [0, 1]).

• 𝛽: control the number of positions at the ending of the sequence
(𝛽 ∈ [0, 1]).

• 𝑏1 and 𝑏2: right-hand side values that control the number of
decision variables that can be selected in a given feasible integer
solution.

Sorting the jobs considering the well-known earliest due date (EDD)
ispatch rule, we can define the sets 𝐽1, 𝐽2, 𝑃1, and 𝑃2, as follows:

1 ← {𝜋𝐸𝐷𝐷
𝑗 |𝑗 ≤ ⌈𝛼𝑛⌉} (31)

2 ← {𝜋𝐸𝐷𝐷
𝑗 |𝑗 ≥ ⌈(1 − 𝛽)𝑛⌉} (32)

1 ← {𝑗|𝑗 ≤ ⌈𝛼𝑛⌉} (33)

2 ← {𝑗|𝑗 ≥ ⌈(1 − 𝛽)𝑛⌉} (34)

Thus, we can insert the following heuristic cutting planes in the
roposed matheuristic:
𝑚
∑

𝑖=1
𝑥𝑖𝑗𝑘𝑙 ≤ 𝑏1,∀𝑗∈𝐽1 ,𝑘∈𝑃1 ,𝑙 (35)

𝑚
∑

𝑖=1
𝑥𝑖𝑗𝑘𝑙 ≤ 𝑏2,∀𝑗∈𝐽2 ,𝑘∈𝑃2 ,𝑙 (36)

Taking the illustrative example described in Section 3 into account,
ssuming 𝛼 = 0.1, 𝛽 = 0.5, 𝑏1 = ⌈0.5𝑛⌉, and 𝑏2 = ⌈0.3𝑛⌉, we can calculate
he following values: 𝐽1 = {1}, 𝐽2 = {4, 5, 6}, 𝑏1 = 3, and 𝑏2 = 2.

Algorithm 1 describes the proposed matheuristic, named Relax-and-
ix with Heuristic Cutting Planes (RFHCP). Firstly, we determine the
ixed speeds using the knapsack-based formulation MFS. Using these
ixed speeds, we determine an initial solution with the ENS heuristic.
aking the fixed speeds as well as the initial sequence, we can set

nitial values of the decision variables 𝑥𝑖𝑗𝑘𝑙. After that, we perform
single iteration of the relax-and-fix algorithm (Wolsey, 1998), in
hich the integrality of the positional decision variables is relaxed. If
𝑖𝑛𝑖𝑡
𝑖𝑗𝑘𝑙 = 𝑥𝑟𝑒𝑙𝑎𝑥𝑖𝑗𝑘𝑙 = 0,∀𝑖, 𝑗, 𝑘, 𝑙, then we set 𝑥𝑖𝑗𝑘𝑙 as equal to zero. If a relaxed
ecision variable takes a zero value in the relaxed solution, there is a
igh possibility that this variable also is zero in the integer solution.
e generate the heuristic cutting planes, as described in Section 4.2.

inally, the resulting MILP model is then solved, with the fixed decision
ariables and heuristic cutting planes, as previously described.

.3. Relax-first fix-second (RFFS) matheuristic

In our second proposed solution approach, we address a heuristic
rocedure based on the relaxation and fixation of decision variable.
e consider our second MILP model (MILP2) in this strategy. Let us

onsider that the speed modes are in non-decreasing order, that is,
esource consumption 𝑞𝑖𝑗𝑙 for a fixed machine 𝑖 and job 𝑗 are non-
ecreasing for 𝑙 = 1,… , 𝑠. On the other hand, it seems reasonable to
6

ssume that the processing times 𝑝𝑖𝑗𝑙 are non-increasing with the speed.
n this case we propose a linear approximation model in which modal
inary variables 𝑧𝑖𝑗𝑙 are substituted by continuous variables 0 ≤ 𝑧𝑖𝑗𝑙 ≤ 1.

Algorithm 1: Relax-and-Fix with Heuristic Cutting Planes Algo-
rithm
Step 1: Determine initial (maximum) speeds by solv-
ing MFS.
Step 2: Determine an initial sequence of jobs using
the ENS algorithm.
Step 3: Set 𝑥𝑖𝑛𝑖𝑡𝑖𝑗𝑙 , an initial solution for MILP1 model
according to the initial speeds and initial job se-
quence determined in the previous steps.
Step 4: Determine 𝑥𝑟𝑒𝑙𝑎𝑥𝑖𝑗𝑙 by solving the linear relax-
ation of the MILP1 model.
Step 5: If 𝑥𝑖𝑛𝑖𝑡𝑖𝑗𝑙 = 𝑥𝑟𝑒𝑙𝑎𝑥𝑖𝑗𝑙 = 0∀𝑖, 𝑗, 𝑙; 𝑥𝑖𝑗𝑙 = 0.
Step 6: Generate the heuristic cutting planes using
Eqs. (35) and (36).
Step 7: Solve the resulting MILP model (i.e. MILP1
plus the heuristic cutting planes added in the
previous step).

This resulting model is a relaxation of MILP2, where instead of
forcing machines and jobs to commit to have a fixed speed, we use
a linear relaxation to let them choose any value inside an interval. This
model could be used to find the ideal ordering of jobs prior to choose
the modal values. If we consider a fixed value 𝑦∗ for the job ordering,
then MILP2 can be simplified by replacing the constraint set (14) with
the constraint set (37):

𝑇𝑘 ≥ 𝑆𝑚𝑘 +
𝑠
∑

𝑙=1
𝑝𝑚𝑗𝑙 ⋅ (𝑧𝑚𝑗𝑙 + 𝑦𝑗𝑘 − 1) −

𝑛
∑

𝑗=1
𝑑𝑗𝑦𝑗𝑘, ∀𝑗, 𝑘 ∶ 𝑦∗𝑗𝑘 = 1 (37)

The solution of Model 2 (which computes 𝑦∗) followed by Model
(resulting 𝑥∗) gives a viable, but possibly not optimal solution of
ILP2. In the relaxed model, instead of forcing machines to process

obs at a fixed speed, we use a linear value to let them choose any value
nside an interval. Thereby, we can find an initial sequence of the jobs
ithout considering discrete speeds. One possible way to strengthen

his solution is to solve Model 2 and Model 3 iteratively, with a tabu
ist that forbids repeating past solutions. However, this iterative process
equires high computational times and we would not evaluate this
trategy.

Algorithm 2 illustrates the second proposed matheuristic, named
elax-First Fix-Second (RFFS). Firstly, we determine the initial values
f 𝑧𝑖𝑗𝑙 using the knapsack-based formulation MFS. After that, we de-
ermine the initial values of 𝑦𝑗𝑘 with the ENS heuristic. We use these
alues for a warm start in the MILP2 model, relaxing the integrality of
𝑖𝑗𝑙. We run this relaxed model within a given time limit, returning the
alues of 𝑦∗𝑗𝑘. Finally, we solve the MILP2 with the fixed values of 𝑦∗𝑗𝑘

until the overall time limit is reached.

Algorithm 2: Relax-First Fix-Second Algorithm
Step 1: Solve the MFS model to determine the initial
values of 𝑧𝑖𝑗𝑙.
Step 2: Apply the ENS algorithm to determine the
initial values of 𝑦𝑗𝑘.
Step 3: Taking into account the initial values of
𝑧𝑖𝑗𝑙 and 𝑦𝑗𝑘, run the MILP2 with the integrality of
the decision variables 𝑧𝑖𝑗𝑙 relaxed during a given
partial time limit, determining 𝑦∗𝑗𝑘.
Step 4: Solve the resulting MILP2 model, with the
fixed values of 𝑦∗𝑗𝑘 until the overall time limit is
reached.

5. Experimental design

In this section we describe the experimental design. In Section 5.1,
we present the statistics used in the analysis of the computational
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Table 7
Parameters used in the test instances.

Parameter Levels Based on

Number of machines 𝑚 ∈ {5, 10, 15} Ramezanian et al. (2019)
Number of jobs 𝑛 ∈ {40, 80, 120} Mansouri et al. (2016), Zhang et al. (2019), Fernandez-Viagas and Framinan (2020)
Processing time distribution 𝑈[1,99] Taillard (1993), Mansouri et al. (2016), Foumani and Smith-Miles (2019), Öztop et al. (2020)
Resource consumption distribution 𝑈[1,99]
Processing speed 1.2,1,0.8 Mansouri et al. (2016)
Resource consumption constraint

⌊

0.9 ×
∑𝑚

𝑖=1
∑𝑛

𝑗=1 𝑞𝑖𝑗2
⌋

Pisinger (2005)
Tardiness factor 𝑇 ∈ {0.2, 0.4, 0.6} Potts and Van Wassenhove (1982), Vallada et al. (2008)
Due date ranges 𝑅 ∈ {0.2, 0.6, 1.0} Potts and Van Wassenhove (1982), Vallada et al. (2008)
experiments, while in Section 5.2 the test instances employed are
described. Finally, in Section 5.3 we show the Taguchi experimental
design used to calibrate the proposed RFHCP matheuristic.

5.1. Statistics used in the analysis of the computational experiments

We use the Relative Deviation Index (𝑅𝐷𝐼) indicator as a perfor-
mance measure, which is a standard indicator for scheduling prob-
lems with due-date objectives (see e.g. Fernandez-Viagas and Framinan
(2015b), Karabulut (2016)). Let 𝐻 be a set of methods, the 𝑅𝐷𝐼
obtained for the method 𝑠 ∈ 𝐻 when applied to instance 𝑡 is calculated
as in Eq. (38).

𝑅𝐷𝐼𝑠𝑡 =

{

0, if minℎ∈𝐻 𝑇ℎ𝑡 = maxℎ∈𝐻 𝑇ℎ𝑡,
𝑇𝑠𝑡−minℎ∈𝐻 𝑇ℎ𝑡

maxℎ∈𝐻 𝑇ℎ𝑡−minℎ∈𝐻 𝑇ℎ𝑡
⋅ 100, otherwise.

(38)

where 𝑇𝑠𝑡 is the tardiness value obtained by method 𝑠 in instance 𝑡. In
our case minℎ∈𝐻 𝑇ℎ𝑡 is the best solution found among the methods under
comparison. To summarize the computational results, we calculate the
average RDI (ARDI) for a given method by grouping the RDI obtained
across a given set of instances.

We also use the Success Rate (SR) as another performance indicator.
SR is calculated as the number of times that a given method finds the
best solution (with or without a draw) divided by the number of test
instances in a given instance set, as expressed as in Eq. (39):

SR =
𝑛BEST
𝑛INST

× 100 (39)

where 𝑛BEST is the number of instances in which a given method
achieved the best solution and 𝑛INST is the number of instances in the
given instance set.

5.2. Test instances

We use the following parameters for the computational experiments:
number of machines (𝑚), number of jobs (𝑛), tardiness factor (𝑇 ), and
due date range (𝑅). The values of these parameters are defined based
on a literature review, as presented in Table 7. The total number of
instance classes is given by 3 (𝑚) × 3(𝑛) × 3(𝑇 ) × 3 (𝑅) = 81. For each
class, we randomly generate 5 test instances aiming at reducing the
sampling error, resulting in a total of 405 test instances.

5.3. Taguchi experimental design

Since the proposed RFHCP presents distinct parameters, we evaluate
their influence on its performance using a Design Of Experiments
(DOE) approach. Since the number of test instances and parameters
to be calibrated is high, a full factorial design could be prohibitive
in terms of computational effort. Thereby, we consider a Taguchi
DOE (Antony, 2014) which is a robust method that reduces the required
number of trials. We can observe that the Taguchi method has been
7

Table 8
All experiments for L9(3∧4).
Trial 𝛼 𝛽 𝑏1 𝑏2 ARDI

1 0.1 0.1 ⌈0.1𝑛⌉ ⌈0.1𝑛⌉ 22.2
2 0.1 0.3 ⌈0.3𝑛⌉ ⌈0.3𝑛⌉ 33.1
3 0.1 0.5 ⌈0.5𝑛⌉ ⌈0.5𝑛⌉ 33.8
4 0.3 0.1 ⌈0.3𝑛⌉ ⌈0.5𝑛⌉ 32.8
5 0.3 0.3 ⌈0.5𝑛⌉ ⌈0.1𝑛⌉ 37.0
6 0.3 0.5 ⌈0.1𝑛⌉ ⌈0.3𝑛⌉ 37.4
7 0.5 0.1 ⌈0.5𝑛⌉ ⌈0.3𝑛⌉ 33.1
8 0.5 0.3 ⌈0.1𝑛⌉ ⌈0.5𝑛⌉ 33.0
9 0.5 0.5 ⌈0.3𝑛⌉ ⌈0.1𝑛⌉ 41.2

Fig. 1. Effects plots for difference levels of the controlled factors.

widely used to calibrate parameters in production scheduling solution
approaches (Gholami et al., 2009; Abreu et al., 2020).

We adopt a Taguchi experimental design with 4 factors (𝛼, 𝛽, 𝑏1,
and 𝑏2) and 9 tests. The notation is L9(3 ∧ 4), in which each factor
presents three levels. Table 8 describes each test. For the Taguchi
experiment, we select a random sample of 20%, corresponding to 81
test instances. Fig. 1 describes the main effects of the analyzed factors
using the ARDI indicator. The trials 1, 5, 6, 8, and 9 resulted in 3,
17, 17, 33, and 33 instances without a feasible integer solution in
the specified time limit, so we removed these instances to calculate
the ARDI values. The rest of the trials returned integer solutions in
all the sampled test instances. In view of the results of the Taguchi
experimental design, the best parametrization for the proposed RFHCP
matheuristic is 𝛼 = 0.1, 𝛽 = 0.1, 𝑏1 = ⌈0.1𝑛⌉, and 𝑏2 = ⌈0.1𝑛⌉.
However, this parametrization generated infeasible solutions in some
test instances. Thereby, we use the parametrization that leads to the
best results in the Taguchi experimental design: 𝛼 = 0.3, 𝛽 = 0.1,
𝑏 = ⌈0.3𝑛⌉, and 𝑏 = ⌈0.5𝑛⌉.
1 2
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Table 9
Average RDI and SR values for 𝑚 and 𝑛.

RDI SR

m n MILP1 MILP2 VNS RFHCP RFFS MILP1 MILP2 VNS RFHCP RFFS

5
40 1.0 100.0 36.7 5.9 45.6 80.0 0.0 0.0 20.0 0.0
80 7.3 89.5 43.2 0.0 27.5 2.2 0.0 0.0 100.0 0.0
120 100.0 37.0 66.0 0.0 9.2 0.0 0.0 0.0 100.0 0.0

10 40 7.4 95.8 38.4 4.1 43.7 37.8 0.0 2.2 42.2 17.8
80 100.0 30.8 61.5 0.1 5.1 0.0 0.0 0.0 88.9 11.1
120 41.5 56.5 80.2 0.4 4.1 15.6 0.0 0.0 80.0 4.4

15 40 1.7 55.8 95.6 3.9 11.8 53.3 0.0 0.0 20.0 26.7
80 100.0 30.7 65.5 1.7 3.4 0.0 0.0 0.0 37.8 62.2
120 90.0 49.6 79.8 1.9 0.6 0.0 0.0 0.0 31.1 68.9

Average 49.9 60.6 63.0 2.0 16.8 21.0 0.0 0.2 55.6 21.2

Minimum 1.0 30.7 36.7 0.0 0.6 0.0 0.0 0.0 0.2 0.0

Maximum 100.0 100.0 95.6 5.9 45.6 80.0 0.0 2.2 100.0 68.9
6. Computational results

We implemented all the methods using Julia version 1.6 (https://
julialang.org/) with Visual Studio Code IDE (https://code.visualstudio.
com/). For the mathematical programming model, we used the com-
mercial solver Gurobi (https://www.gurobi.com/) version 9.0.3 with
JuMP library (https://www.juliaopt.org/JuMP.jl/stable/) (Lubin and
Dunning, 2015). We performed the computational experience on a PC
with Intel Core i7-8700 CPU 3.20 GHz and 32 GB memory, with the
Ubuntu 20.04 LTS operating system.

In order to compare our proposals with existing related approaches,
note that, regarding the green flowshop scheduling problem, the ma-
jority of solution procedures were developed for makespan related
objectives (Mokhtari et al., 2011; Mansouri et al., 2016; Öztop et al.,
2020). In our view, since such proposed solution approaches were
not designed for the total tardiness performance measure, a compar-
ison with the proposed matheuristic would not be fair. Therefore, we
adapt the closest approach in the available literature and selected the
matheuristic proposed by Gomes et al. (2021) for the no-wait flowshop
to minimize total tardiness and total energy costs. In our adaptation,
we consider a single objective (total tardiness minimization). This
matheuristic is composed of two phases. First, an initial solution is
generated by the MILP1 model, as in Section 3.2. After that, a Variable
Neighborhood Search (VNS) improves the initial solution provided by
the MILP1 model. We consider a fixed permutation in all machines
since the computational cost for a local search procedures for each
available machine is prohibitive for large-sized test instances. The first
operator of our adaptation of the VNS is a shake procedure in the
sequence. Considering a given solution 𝜋, this permutation is modified
with two movements randomly selected: the exchange (swap) of two
jobs and the insertion of a job in a new position of the sequence.
Furthermore, we included an adaptation of this shake procedure to the
speeds, as proposed by Mokhtari et al. (2011). Next, a VNS procedure
is performed with a first improvement strategy. Two neighborhoods
are evaluated: the set of all jobs given by the exchange and insert
operations. The best total tardiness found is returned using a best
improvement policy.

Therefore, in the computational experiments we considered the
following solution approaches:

• MILP model MILP1.
• MILP model MILP2.
• An adaptation to the problem of the VNS proposed by Gomes et al.

(2021), denoted VNS in the following.
• Relax-and-Fix with Heuristic Cutting Planes (RFHCP).
• Relax-First Fix-Second (RFFS).

For all these methods, we adopt a time limit 𝑡𝑙𝑖𝑚𝑖𝑡 = 𝑚𝑛 × 500/
1,000 s. Regarding the computational times, we note the following
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issues. Concerning the hybrid VNS proposed by Gomes et al. (2021),
the original time limit used for the MILP warm start in their proposal is
3,600s, and there is no time limit for the VNS procedure. Here we adopt
a time limit of 𝑡𝑙𝑖𝑚𝑖𝑡∕2 for both the MILP and VNS steps, respectively.

Concerning the proposed RFFS matheuristic, we consider a time
limit of 80% of the total time limit in Steps 1, 2, and 3, and 20% of
the global time limit for the remainder of the search process.

Table 9 illustrates the average and standard deviation of the RDI
values for the distinct values of 𝑚 and 𝑛. Based on such results, the
following comments can be highlighted:

• The MILP1 model is the best solution approach for the test
instances with 40 jobs. Considering problems with 80 and 120
jobs, the ARDI values for the MILP model tend to increase. In
general terms, the MILP2 model returned better results than the
MILP1 for test instances with 80 and 120 jobs.

• The VNS matheuristic returned the worst ARDI values among all
the methods under comparison.

• The RFHCP matheuristic returned the best ARDI values for all the
test instances except for the test instances with 15 machines and
120 jobs, where RFFS returned the best average results.

• The RFHCP matheuristic returned the best SR values for the test
instances with 5 and 10 machines, while the RFFS matheuris-
tic returned the best SR values for the test instances with 15
machines.

• The average RDI values of the MILP1, MILP2, VNS, RFHCP,
and RFFS are 49.9%, 60.6%, 63.0%, 2.0%, and 16.8%, respec-
tively. Concerning the average SR, the above-mentioned solution
approaches returned the following values, respectively: 21.0%,
0.0%, 0.2%, 55,6%, and 21.2%. Thus, the proposed matheuristics
presented better results than all the other evaluated solution
procedures.

Table 10 describes the same results aggregated with respect to 𝑇 and
𝑅 parameters. From this table, we can highlight that the aggregation
of the results concerning 𝑇 and 𝑅 values does not provide a significant
difference in the results.

Aiming to achieve a pairwise comparison between the evaluated
solution approaches, we performed an ANOVA procedure, followed by
a Tukey’s test (Montgomery, 2017). Figs. 2 and 3 illustrate the boxplot
for the ARDI values and the Tukey multiple comparisons of means with
95% family-wise confidence level, respectively. Based on the achieved
results, the following comments can be highlighted:

• The ANOVA test returned a statistics 𝐹 = 350.6. Since this value is
much higher than the critical value of 4.39, the difference among
the solution procedures is statistically significant.

• The difference in the results returned by the MILP1 and MILP2

models is not statistically significant.

https://julialang.org/
https://julialang.org/
https://julialang.org/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://www.gurobi.com/
https://www.juliaopt.org/JuMP.jl/stable/
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Table 10
Average RDI and SR values for 𝑇 and 𝑅.

RDI SR

T R MILP1 MILP2 VNS RFHCP RFFS MILP1 MILP2 VNS RFHCP RFFS

0.2
0.2 57.7 58.0 65.5 2.4 18.9 22.2 0.0 0.0 62.2 15.6
0.6 56.0 60.2 64.9 2.3 18.8 20.0 0.0 0.0 53.3 26.7
1.0 55.4 53.4 66.7 3.0 18.6 22.2 0.0 2.2 55.6 20.0

0.4
0.2 53.3 59.3 61.8 1.6 21.4 17.8 0.0 0.0 64.4 17.8
0.6 49.0 64.7 55.6 1.4 17.7 20.0 0.0 0.0 53.3 26.7
1.0 46.7 63.5 61.3 2.0 12.8 20.0 0.0 0.0 60.0 20.0

0.6
0.2 41.9 61.8 64.7 1.9 13.9 20.0 0.0 0.0 53.3 26.7
0.6 46.7 61.7 61.6 1.7 15.1 26.7 0.0 0.0 53.3 20.0
1.0 42.2 63.2 64.8 1.8 13.9 20.0 0.0 0.0 62.2 17.8

Average 49.9 60.6 63.0 2.0 16.8 21.0 0.0 0.2 57.5 21.2

Minimum 41.9 53.4 55.6 1.4 12.8 17.8 0.0 0.0 53.3 15.6

Maximum 57.7 64.7 66.7 3.0 21.4 26.7 0.0 2.2 64.4 26.7
Fig. 2. Boxplot for ARDI values.

Fig. 3. Tukey confidence intervals for ARDI values.

• The VNS metaheuristic is outperformed by the proposed
matheuristics.

• The difference in the results returned by the proposed RFHCP and
RFFS matheuristics is not statistically significant.
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7. Conclusions

In this paper, we have investigated a new variant of the permuta-
tion flowshop scheduling problem considering controllable processing
times. The objective is to minimize the total tardiness, subject to
maximal resource consumption. We presented two mixed-integer linear
programming (MILP) formulations and two matheuristics based in the
MILP models, together with a heuristic procedure to generate a feasible
initial solution for the matheuristics. Computational experiments were
carried out in order to evaluate the performance of the proposed solu-
tion approaches. We used the relative deviation index and the success
rate as performance measures. In most tested problem instances, the
proposed matheuristics showed the best performance, outperforming
the MILP models and the hybrid VNS addressed by Gomes et al. (2021)
with statistical significance.

Considering the average RDI indicator, the difference between
RFHCP and RFFS matheuristics is not statistically significant. Neverthe-
less, considering the SR indicator, RFHCP returned better results than
RFFS. However, it is to note that RFHCP requires the calibration of four
parameters, while the RFFS presents a low dependency on parameters.
As a summary, it can be stated that the proposed matheuristics are
promising solutions approaches to solve the problem under study.

As extensions of this work, we recommend the use of metaheuristics
in order to improve the solutions generated by the initial solution
procedure. Future studies could also investigate the behavior of the
proposed solution procedures considering other objective functions,
such as in a Just-in-Time environment (Rolim and Nagano, 2020).
Finally, it is worth studying a non-permutation encoding for the vari-
ant under study since the total tardiness can be improved with this
assumption (Liao and Huang, 2010).
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