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HYBRID MATHEURISTICS FOR THE MULTI-CAPACITATED CLUSTERING
PROBLEM

Kennedy Anderson Gumarães de Araújo1, Jedson Bernadino Guedes2

and Bruno de Athayde Prata3,*

Abstract. The capacitated clustering problem is a well-known and largely studied combinatorial
optimization problem with several industrial applications. Although a great attention has been paid
to this problem in the literature, the deeming of the problem with clusters centers with multiple types
and a unique capacity per type is quite limited. We introduce a novel variant of capacitated clustering
problems named multi-capacitated clustering problem (MCCP), a NP-hard optimization problem in
which there are clients with dierent types and units of services to oer that must be grouped into given
centers that demand with limited capacity per type the services. It is taken into account the distance
between each one of these clients and the potential clusters to which they can be allocated, aiming to
minimize the sum of such distances. It is presented an integer programming model for this problem,
which it is shown to have limited application solving large-sized instances. As solution procedures,
we present the following algorithms. We propose a greedy heuristic to generate a tentative feasible
solution within a negligible computational eort. We adapt a size-reduction (SR) matheuristic to solve
the problem under study. Furthermore, we introduce an innovative matheuristic that hybridizes the
constructive phase of the well-known GRASP metaheuristic with the SR algorithm. Also, we develop
a variable xing (VF) heuristic. Finally, we propose a hybrid matheuristic based on the SR and VF
algorithms. Computational results over a set of 100 randomly generated test instances point out the
quality of the solutions found by the proposed algorithms. Besides, the results are statistically tested,
and thus, our proposals are recommended to solve the problem under study.
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1. Introduction

The capacitated clustering problem (CPP) is a hard combinatorial optimization problem widely studied in
the last few decades. Firstly addressed by Mulvey and Beck [19], the CCP has several real-world applications in
industry and services. Some examples that can be mentioned are the grouping of clients into capacitated vehicle
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routes, partitioning of nodes in distributed networks, investment analysis, garbage collection, dengue disease
combat, and newspaper delivery [11,13,19,20].

In this paper, we consider that are clients with dierent types of demand/oer. Furthermore, it is also taken
into account in this work the fact that there might exist several possibilities of choosing a certain amount of
clusters, among the candidates. Thus, considering the situation just described here, we face a multi-capacitated
clustering problem (MCCP). MCCP is dierent from capacitated -median and capacitated cluster problems
since the capacities may be dierent between types and medians.

The utility of solving a MCCP problem is huge for theoretical and practical purposes, since it may be applied
in dierent situations in order to reduce costs and dispose of feasible solutions in reasonable time for planning
reasons.

There are many real-world situations in which we can see a multi-capacitated clustering problem. First, let us
think of the case we desire to assign people to a certain hospital among the existing options, aiming to minimize
the distance between the people and the buildings in order to get a better response time in case of a health
emergency. Each hospital has a dierent capacity for dierent types of patient. In fact, a certain hospital might
not be able to receive a specic type of patient at all, for example, a children’s hospital, or a hospital exclusive
for cancer or mental illness. A quite similar example is in the educational area.

The MCCP could also be adapted to deal with nodes partitioning in a network of distributed computing in
which each cluster has its own capacity of processing that could be dierent from the others for dierent types
of applications. In this case, the clients could be the type of service required for each node, like video rendering,
huge calculations, or simulating stochastic scenarios. Another example would be an application for oil reneries.
Each renery has dierent capacities to produce dierent types of oil derivatives in an specic quantity. It is
really useful to nd out how to best assign the oil by-products demands among the existing reneries facilities.

Figure 1 presents an example of situation one could dene as MCCP. In this example, several clients of two
dierent types must be assigned to two clusters. The cluster 1 is able to receive at most six blue clients and
four brown clients, whilst the cluster 2 has capacity for only two clients of type blue, and seven for clients of
type brown.

The main contributions of this paper are fourfold. First, we present an extended mathematical formulation for
the MCCP. Second, we investigate some properties of the problem. Third, we propose some innovative solution
procedures to solve the problem under study. We propose a greedy heuristic trying to generate a feasible solution
within a negligible computational eort. We adapt a size-reduction (SR) matheuristic to solve the problem under
study. Furthermore, we introduce an innovative matheuristic that hybridizes the well-known GRASP algorithm
with the SR algorithm. Also, we develop a variable xing heuristic (VF), which is an extension of the matheuristic
presented by [17]. Finally, we propose a hybrid matheuristic based on the SR and VFH algorithms. Fouth, we
perform extensive computational experimentation with randomly generated test instances.

The remainder of this paper is organized as follows: in Section 2, we present the literature review, in Section 3,
we present the proposed mathematical formulation as well as some problem properties, in Section 4, we pro-
pose some size-reduction algorithms for the problem under study; in Section 5, we discuss some results from
computational experiments; nally, in Section 6 we draw some conclusions and suggestions for future works.

2. Related approaches

Taking into consideration the possibility of a CCP to have clusters with capacities for each dierent type of
client leads to a problem with signicant industrial applications. Despite its practical relevance, such assumption
has not been presented. As reported by Negreiros et al. [21], Prata [23] introduced the MCCP, presenting the
description of the problem and a mixed integer programming formulation for it. Nevertheless, computational
experiments aiming to evaluate its complexity, and an also algorithm to deal with it have not been reported in
the revised literature.
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Figure 1. A feasible solution for the MCCP.

There are some studies that are closely related to the multi-capacitated clustering problem. Undoubtedly, the
one most similar to MCCP is the capacitated clustering problem (CCP), which was rstly proposed by Mulvey
and Beck [19]. With regard the CCP, several approaches have been presented in the literature.

Osman and Christodes [22] developed a hybrid simulated annealing and tabu search (SATS) algorithm to
solve the CCP. An initial solution is generated by a constructive heuristic, which is improved by the SATS pro-
cedure. Using this hybrid procedure, the solution in a given iteration is always better or equal to that produced
at any previous iteration. França et al. [11] presented a new mixed-integer linear programming formulation for
the CCP. Besides, an adaptive tabu search (TS) is proposed as a solution procedure. The adaptive TS incor-
porates special characteristics, which gave the search the ability to guide the intensication and diversication
purposes automatically. Shieh and May [25] presented a binary genetic algorithm (GA) with standard operators
and an adaptive penalty function to handle the constraints related to the clusters’ capacities. Ahmadi and
Osman [1] developed a hybrid of greedy randomized adaptive search procedure (GRASP) and adaptive memory
programming (AMP) for solving the CCP, called GRAMPS. A learning process returns information on the best
components in an elite set of GRAMPS solutions. Scheurer adn Wendolsky [24] presented a standard scatter
search metaheuristic to solve the CCP.

Geetha and Vanathi [13] developed a hybrid -means algorithm using priority as a measure that directs the
search for better solutions. This iterative procedure is used to allocate the items to the clusters. Deng and Bard
[8] presented a reactive GRASP with path relinking (PR). In the rst phase, two distinct algorithms are used to
build a feasible initial solution. The selection of elements in the restricted candidate list is based on an adaptive
procedure. In the second phase, three neighborhoods are explored in the local search procedures. Finally, a PR
algorithm is used as a post-processing phase.

Martinez-Gavara et al. [17] developed a GRASP and an iterated greedy metaheuristics to solve the CCP.
Besides, a matheuristic is proposed as a post-processing phase. Lai and Hao [15] proposed an iterated variable
neighborhood search (IVNS) algorithm to solve the CCP that combines a variable neighborhood descent method
with a randomized shake procedure. Thereby, this algorithm explores the search space eectively. Mai et al. [16],
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developed a new metaheuristic that considers statistical models for the CPP. This new algorithm hybridizes an
expectation-maximization algorithm with posterior regularization. The performance of the proposed approach
is evaluated for the deterministic and stochastic variants. Brimberg et al. [2] proposed two types of variable
neighborhood search (VNS) algorithms for the CCP. The rst one is a standard VNS and the second one is
a skewed VNS. Both algorithms outperformed all the other methods under comparison; however, the skewed
VNS presented the best results. Zhou et al. [28] presented a tabu search and a memetic algorithm for the CCP.
These algorithms presented competitive results in comparison to the existing state-of-art heuristics.

Stefanello et al. [26] proposed a matheuristic called iterated reduction matheuristic algorithm (IRMA) to solve
the capacitated -median problem, which is closely related to the CCP. This algorithm is an extension of the
size-reduction heuristic introduced by Fanjul-Peyro and Ruiz [9]. IRMA presents three stages using two distinct
size-reduction strategies, excluding iteratively decision variables of the mathematical model. The generated
subproblems, which presented fewer integer variables, are solved by CPLEX. This approach outperforms the
existing algorithms for the problem.

Yang et al. [27] introduced a new variant of the CCP in which a raw material from a set of suppliers is assigned
to a set of potential places. As a solution procedure, a Lagrangian relaxation approach is presented. Negreiros
and Palhano [20] presented a new variant for CCP named the capacitated centered clustering problem (CCCP),
in which each cluster is composed of individuals from whom we can compute a center value and hence, determine
a similarity measure. As a solution procedure, a two-phase algorithm is presented. Firstly a constructive heuristic
is performed, which is followed by a VNS metaheuristic as a renement phase. Chaves and Lorena [4] proposed a
hybrid clustering search (CS) algorithm for the CCCP. This algorithm can identify promising areas of the search
space, which are grouped into clusters and explored with local search heuristics. Chaves et al. [5] extended the
previous CS algorithm hybridizing it with a GA. Thus, this hybrid metaheuristic outperformed the standard
CS. Chaves et al. [6] proposed an adaptative biased random-key genetic algorithm (ABRKGA) for the CCCP.
An innovative mechanism to control diversication and intensication is presented.

Chagas et al. [3] introduced a new variant of the clustering editing problem in which overlapping clusters
are allowed. A hybrid heuristic to generate solutions to the proposed relaxation is proposed, as well as two
metaheuristics and a mixed-integer linear programming model. Negreiros et al. [21] introduced four new vari-
ations of the Heterogeneous Capacitated Clustering Problems (HCCP), which are variants of the (CCP). The
HCCP is applied to the layout of IT-Teams in a software factory. As a solution procedure, a hybrid multi-start
metaheuristic with tabu search and path relinking is presented. Gnägi and Baumann [14] introduced a new
matheuristic for the capacitated -median problem. This solution procedure is composed of two phases: a global
optimization phase, aiming to generate an initial feasible solution, and a local optimization phase, aiming to
improve this initial solution. This matheuristic presented competitive results for the large-sized test instances.
On the other hand, it requires seven parameters to be calibrated.

3. Problem statement

3.1. Mathematical formulation

In this section, we present a mixed-integer linear programming (MILP) formulation for the MCCP since it is
a natural way to solve the problem under study. We nd useful to present a mathematical programming model
for the problem with the aim of assessing in Section 5 the quality of the heuristics proposed for small instances
where feasible and/or optimal solutions can be found. Furthermore, the model is useful for us because we apply
several matheuristics, as described in Section 4.

In the presented model, the clients have distinct characteristics, and each candidate to cluster has a certain
capacity for each type of client. Let the following notation for the MCCP. We denote as  and  , the set of
clients to be allocated and the set of candidates to cluster, respectively, along with the following notation:

– : Cardinality of the set  , i.e., number of clients.
– : Cardinality of the set  , i.e., number of cluster candidates.
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– : Number of clusters that must be presented in the solution.
– : Number of dierent types of client.
–  : Distance between the client  and the (candidate) cluster .
– : The capacity of the (candidate) cluster j for the type of client .
– : The quantity of demand/oer of type  of client .

We also consider the following decision binary variables:

 =

{
1, if client i is assigned to cluster j ;
0, otherwise.

∀ ∈ , ∀ ∈  ,

 =

{
1, if the candidate cluster j is selected;
0, otherwise.

∀ ∈ 

Thus, in mathematical notation, the MCCP can be expressed as follows.

(MCCP)min  =
∑

=1

∑

=1

  (3.1)

And the objective function above is subject to:

∑

=1

 = , (3.2)

∑

=1

 ≥  , ∀  = 1, ,, (3.3)

∑

=1

 = 1, ∀  = 1, ,, (3.4)

∑

=1

 ≤  , ∀  = 1, ,, ∀  = 1, ,, (3.5)

 −  ≤ 0, ∀  = 1, ,, ∀  = 1, ,, (3.6)
 ∈ {0, 1}, ∀  = 1, ,, ∀  = 1, ,, (3.7)
 ∈ {0, 1}, ∀  = 1, , (3.8)

The objective function of our problem, (3.1), is to minimize the sum of the distances between the clients
and the clusters to which they might be associated. The constraint (3.2) assures the number of clusters is .
The constraint set (3.3) assures a valid solution, by avoiding that a selected cluster receives no client. The
equations (3.4) ensure that each client will be assigned to one, and only one, cluster. The set of constraints (3.5)
avoids surpassing any capacity of a cluster. The constraints (3.6) ensure that a client will not be assigned to a
non-selected cluster. The set of constraints (3.7) and (3.8) guarantee that the decision variables are binary. One
can notice that this model diers from the one presented by Prata (2015) by the presence of the constraint set
(3.3).

A  matrix row, written , is a vector that describes the percentage of types which compose the client . If
a row of the matrix  looks like the highlighted row in the Figure 2,

[
05 05 0

]
, for example, it means half of

that client is of the rst type, half of it is of the second type, and none of it is of the third type.
For the purpose of this research, we consider that a client is of only one type. For this reason, a row of the

matrix  will have only one of its entry as 1, and all the rest as zeros. The column of the unique number one in
such row will dene the type of this client. As an illustration, consider:

[
0 1 0 0

]
, which tells us that this client

is 100% of the second type, for example.



1172 K.A.G. DE ARAÚJO ET AL.

Figure 2. A portion of a  matrix.

The second parameter, , the number of candidates to become a cluster, is what determines the most the size
of an instance.The greater the , the smaller the number of possible situations. When  is equal to , it means
there is no need to choose what clusters will be in the solution. When  = 1 we face a CCP, capacitated clustering
problem. We can observe that the MCCP complexity is NP-Hard as the capacitated -Median Problem is also
NP-Hard [12].

3.2. Lower bound

If at the constraint (3.3) it is considered an inequation of the type less than or equal to, the number of
possible cases will grow to  × 

=1

(



)
 Since it doesn’t make sense to have a solution with zero

clusters, the summation starts on one. With this is mind, it is easy to see that trying to use a brute-force
algorithm to test every single solution in order to nd which one is the best is simply infeasible for large
instances. Even using integer programming techniques and good softwares to nd a solution in such scenarios
take really long, as we show in the computational experience. Next, we present a lower bound for the problem
under study.

Proposition 3.1. A lower bound for the MCCP is given by Equation (3.9):

∑

=1

min
=1,...,

  (3.9)

Proof. The solution associated with the objective function value stated in Equation (3.9), is a solution such
that each client is assigned to its closest cluster candidate, note that the number of cluster may be lower than
 and the clusters capacities may be exceeded, since it is constructed in a greedy manner without consideration
of these constraints. Directly, the minimum objective function value possible for a feasible solution is the lower
bound stated in Equation (3.9). 

We can observe that the linear relaxation might possibly lead to better lower bounds than the proposed lower
bound. However, the computational cost to solve the linear relaxation can be high. Even for the pure linear
programming model, the resolution of large-sized instances is not trivial.

4. Proposed algorithms for the MCCP

In the following subsections, we explain the three proposed matheuristics to solve the MCPP. Each matheuris-
tic does not guarantee a feasible solution at the end. However, as presented in the computational experiments,
the proposed matheuristics can return an integer solution to all instances evaluated, as reported in Section 5.

4.1. Greedy heuristic

Algorithm 1 presents the proposed constructive heuristic, which consists of the following steps: (i) selecting
 distinct clusters candidates associated to the arcs with the lowest distances; and (ii) for each selected cluster,
associating the closest client not yet selected without exceeding the cluster capacity, and repeat until all clients
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are selected. Thereby, our procedure does not always guarantee the generation of feasible solutions. Although
we could successfully nd feasible solutions within negligible computational times for the complete test-bed set
of instances used in this work. The rst loop in the lines 3–7 takes () time and the second loop takes
(2) time. The computational time complexity for the constructive heuristic is (+2).

Algorithm 1. A greedy heuristic for the MCCP.
1: input: , ,  ,  , , ,  output: feasible solution
2: set  ←  ;  ← ∅
3: while (  < ) do
4: set ,  ← argmin :  ∈ ,  ∈ 
5:  ←  ∪ 
6:  ←  ∖ 
7: end while
8: set  ← 1;  ← (,);  ←  ;  ← 1
9: while  ̸= ∅ do

10: if ( = ) then
11: set:  ← 1
12: end if
13: set:  ← −1
14:  ← argmin :  ∈  , ℎ

∑
′∈ ′′ +  ≤ , ∀ ∈ 

15: if  ̸= −1 then
16:  ← 1;  ←  + 1

17:  ←  ∖ 
18:  ← 1
19: else
20:  ← + 1
21: end if
22: if  =  then
23: return return no feasible solution found
24: end if
25: end while
26: return 

4.2. Size-reduction heuristic (SR)

Fanjul-Peyro and Ruiz [9] introduced the size-reduction (SR) heuristic for the unrelated parallel machine
scheduling problem. The SR is based on the idea that there is a small chance of a high-cost arc being included
in a competitive solution. Therefore, in order to reduce the size of the problem and speed up its solution, a
percentage of these arcs is eliminated before the beginning of the analysis.

The SR algorithm does not guarantee that the global optimal solution is found for a given instance and may
not present high-quality solutions in some cases. However, this method can oer a fast and straightforward
implementation at a low computational cost. The proposed SR heuristic consists of, given a parameter ,
with 0 <  ≤ 1, removing from the problem the arcs , such that  >  · max{ :  ∈ ,  ∈ }.
Algorithm 2 describes an overview of the proposed SR, which is an extension of the algorithm presented by
Stefanello et al. [26].

4.3. Greedy randomized size-reduction heuristic (GRSR)

Since greedy heuristics usually cannot escape from local optima, we can conclude that a greedy exclusion of
arcs, in a traditional size-reduction approach, can also present diculties for scaping from local optimal. In this
sense, we can adapt the concepts of semi-greedy algorithms, as presented by Feo and Resende [10].
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Algorithm 2. Size-reduction heuristic.
1: input: , , ,  ,  , , ,  output: feasible solution
2: set  ← ∅;  ← max :  ∈ ,  ∈ 
3: for ( ∈  ,  ∈ ) do
4: if ( ≤  · ) then
5:  ←  ∪ 
6: end if
7: end for
8: initiate the MCPP model considering only the arcs in 
9: solve the model

10: return solution obtained from solving the model

We develop a new size-reduction approach based on the concepts of the well-known greedy randomized adap-
tive search procedures (GRASP). Our proposition, named greedy randomized size-reduction (GRSR) heuristic,
works like the SR, although there is a probability of not removing the worst arcs. Algorithm 3 summarizes the
proposed GRSR algorithm. The set ARCS compose the list of candidates to be used by the solution selected by
a randomizing process indicated in line 4. In line 8, the model is solved with the selected arcs between clients
and medians.

Algorithm 3. Greedy randomized size-reduction heuristic.
1: input: , , ,  ,  , , ,  output: feasible solution
2: set  ← ∅;  ← max :  ∈ ,  ∈ 
3: for ( ∈  ,  ∈ ) do
4: if ( ≤  ·  + (0, 1) · ( −  · )) then
5:  ←  ∪ 
6: end if
7: end for
8: initiate the mathematical model considering only the arcs in 
9: solve the model

10: return solution obtained from solving the model

4.4. Variable xing heuristic (VF)

Martinez-Gavara et al. [17] presented a hybrid approach for the CCP. First, the algorithm applies a GRASP
– Iteration Greedy metaheuristic for the generation of an initial solution. Second, a matheuristic uses this initial
solution to x a subset of decision variables, improving the solution previously found. In this sense, we adapt
the concepts of the algorithm proposed by [17] for the problem under study. Algorithm 4 describes the proposed
variable xing heuristic. Firstly, we use the greedy heuristic (Algorithm 1) as an initial solution. After that,
we set as 1 in the mathematical model all the decision variables related to the arcs which the greedy heuristic
presents in its solution. Thus, we solve the reduced model, with the variables previously xed.

4.5. Hybrid size-reduction and variable xing heuristic (HSRVF)

We propose a hybrid matheuristic which consists of combining the size-reduction and the variable xing
heuristics in one algorithm. We use the greedy heuristic for setting the decision variables that are xed as 1 in
the reduced model and the size-reduction approach for setting the decision variables as 0 in the reduced model.
Algorithm 5 describes the proposed HSRVF matheuristic.

Firstly, we consider the greedy heuristic described in lines 2–7 of Algorithm 1 to create a feasible solution.
Taking this initial solution into account, we set the allocation found in the mathematical model, xing the
corresponding decision variables in 1. Subsequently, we adopt the standard size-reduction heuristic, as described
in lines 2–7 of Algorithm 2, to set as zero with the larger associated costs, considering the parameter .
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Algorithm 4. Variable xing heuristic.
1: input: , , ,  ,  , , ,  output: feasible solution
2: set  ← solution obtained via Algorithm 1;  ←  :  = 1;  ← ∅
3: while ( < ⌈⌉) do
4: set  ← argmin :  ∈ 
5:  ←  ∖ 
6:  ←  ∪ 
7: end while
8: initiate the mathematical model
9: attribute the value 1 to the decision variables  , where  ∈ 

10: solve the model
11: return solution obtained from solving the model

Algorithm 5. Hybrid size-reduction and variable xing heuristic.
1: input: , , , ,  ,  , , ,  output: feasible solution
2: set  ← solution obtained via Algorithm 1;  ←  :  = 1;  ← ∅
3: while ( < ⌈⌉) do
4: set  ← argmin :  ∈ 
5:  ←  ∖ 
6:  ←  ∪ 
7: end while
8: set  ← ∅;  ← max :  ∈ ,  ∈ 
9: for ( ∈  ,  ∈ ) do

10: if (( ≤  · ) or ( ∈ )) then
11:  ←  ∪ 
12: end if
13: end for
14: initiate the mathematical model considering only the arcs in 
15: attribute the value 1 to the decision variables  , where  ∈ 

16: solve the model
17: return solution obtained from solving the model

5. Computational results

5.1. Computational experience characteristics

Since test instances for the MCCP are not available, we generate our testbed with the following values:  ∈
{250, 500, 1000, 2000, 3000, 4000, 5000, 7000, 8000} and  ∈ {5, 310},  ≥ ⌈4⌉, and  ∈ {6, 7, 8, 9, 10}
We generate the distances and the capacities using the following uniform distribution  [1, 100]. Table 1 describes
the characteristics of the 100 randomly generated test instances. All the evaluated test instances are available
in this link. In Table 1 we use the following notation:  : number of clients,  : number of cluster candidates,
: number of dierent types of clusters, and : number of clusters.

As the indicator for evaluation measure, we use the lower bound relative deviation (LBD) as a metric,
Equation (5.1):

LBD =
− 


× 100%, (5.1)

in which  stands for the objective function lower bound value, and expressed in Equation (3.9), and  stands
for objective function value for the best solution found by some method.

We consider the following methods in our computational experiments:

– mixed integer linear programming model – MILP;
– greedy heuristic – GH;
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– greedy randomized size-reduction heuristic – GRSR ( = {010});
– hybrid size-reduction and variable xing heuristic – HSRVF ( = 02,  ∈ {010, 025, 050, 075, 090};
– size-reduction – SR ( ∈ {010, 020, 030}), an adaptation of the algorithm proposed by [26];
– variable xing heuristic – VF ( ∈ {010, 025, 050, 075, 090}, an adaptation of the algorithm proposed by

[17].

We implement all the proposed algorithms in C++ with Codeblocks IDE (http://www.codeblocks.org/). The
source code for the models and algorithms used in this experiment can be accessed in this link. For the pure
MILP model as well as the matheuristics the solver used was IBM ILOG CPLEX version 12.8. We perform the
computational experience on a PC with Intel Core i7-8700 CPU 3.20GHz and 32GB memory. The operating
system is the Ubuntu 18.04.1 LTS. For all methods under comparison, we adopt a time limit lim = 600 s. We
execute all the evaluated methods one time, except by GRSR, which we execute 5 times. For each method, we
present the average values for each class of instances.

5.2. Results for lower bound deviation

In Figures 3–6 we compare the evaluated methods taking into consideration the LBD performance indicator.
We can observe that these graphs present -axis in logarithmic scale and we use MILP and GH as reference. In
general lines, the MILP method and GH are outperformed by all the proposed matheuristics.

With respect to the summarized results for MCCP instances in Figures 3–6 we can emphasize the following
points. MILP method cannot nd feasible integer solutions for the test instances of groups 5, 6, 7, 8, 9, and 10,
given the specied time limit. In this context, the increase in the number of integer decision variables becomes
prohibitive to the resolution for the pure MILP model. GH presents the worst results in the most evaluated test
problems. However, GH produces better results than SR0.1 and GRSR for group 10 and then SR0.2 for group
9. This situation arises because the reduction of 10% and 20% in the number of integer decision variables is
insucient for the resolution of large-sized instances within the specied time limit. On the other hand, the SR0.3
fails to nd feasible integer solutions for the test instances of groups 8, 9, and 10. All the VF-based algorithms
present a similar behavior, although the VF075 has presented slightly worse results. GRASP-reduction presents
competitive results, except for the test instances of group 10. All the hybrid size-reduction and variable xing
heuristics present similar results, except HSRVF01, which cannot produce feasible solutions for the test instances

Figure 3. Lower bound deviation for variable xing heuristics.
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Figure 4. Lower bound deviation for greedy randomized size-reduction heuristic and size-
reduction heuristics.

Figure 5. Lower bound deviation for hybrid size-reduction and variable xing heuristics.

groups 9 and 10. Taking into consideration the four heuristics that found more feasible solutions (VF05, SR01,
HSRVF025, and GH), VF025 and HSRVF025 present better results.

5.3. Results for number of instances with at least one solution found

Since the MCCP is a hard combinatorial optimization problem, the methods under comparison do not always
nd feasible solutions in the stipulated time limit. In Table 2 as well as in Figures 7–9 we analyze the behavior
of all the methods under comparison in terms of the number of feasible solutions found. We can observe that
the MILP model fails for obtaining feasible solutions for the test instances of the groups 5, 6, 7, 8, 9, and 10.
Taking into consideration the variable-xing heuristics, we can highlight that the VF01 algorithm presents the
worst results. Also, the algorithms VF025, SR01, and HSRVF025 return at least a feasible solution in all of
their executions.
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Figure 6. Lower bound deviation for the four heuristics that found more feasible solutions.

Table 2. Number of instances with at least one solution found.

Group VF0.1 VF0.25 VF0.5 VF0.75 VF0.9 HSRVF0.1 HSRVF0.25 HSRVF0.5 HSRVF0.75 HSRVF0.9 GRSR SR0.3 SR0.2 SR0.1 MILP

1 10 10 10 10 10 10 10 10 10 10 10 10 10 0 10
2 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
3 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
4 10 10 10 10 10 10 10 10 10 10 10 10 10 10 6
5 5 5 10 10 10 10 10 10 10 10 10 10 10 10 0
6 0 9 10 10 10 7 10 10 10 10 10 9 10 10 0
7 0 10 10 10 10 5 10 10 10 10 10 6 10 10 0
8 0 10 10 10 10 3 10 10 10 10 10 0 5 10 0
9 0 10 10 10 10 0 10 10 10 10 5 0 2 10 0
10 0 4 10 10 10 0 10 10 10 10 5 0 0 10 0

Figure 7. Number of instances with solutions found by variable xing heuristics.
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Figure 8. Number of instances with solutions found by greedy randomized size-reduction
heuristic and size reduction heuristics.

Figure 9. Number of instances with solutions found by hybrid size reduction and variable
xing heuristics.

5.4. Analysis of variance

Aiming to evaluate if the dierence between the methods under comparison is statistically signicant, we
perform an analysis of variance – ANOVA approach [18]. We did not perform a normalization of the data. For
treating the missing data (that is, the situation in which a given method did not return a feasible solution),
we adopt a listwise exclusion approach. Tables 3 and 4 present, respectively, the average computational times
and the average LBD’s for all the evaluated methods in each set of test instances. In these tables, the symbol
* stands for infeasibility. Figures 10–12 present, respectively, the computational times for the variable xing,
greedy randomized size-reduction, and hybrid size-reduction and variable xing methods.
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Table 3. Average computational times for all methods in each set of instances.

Group VF0.1 VF0.25 VF0.5 VF0.75 VF0.9 HSRVF0.1 HSRVF0.25 HSRVF0.5 HSRVF0.75 HSRVF0.9 GRSR SR0.3 SR0.2 SR0.1 MILP

1 0.49 0.02 0.02 0.02 0.01 0.12 0.01 0.01 0.00 0.00 15.83 47.22 27.81 * 262.43
2 6.49 1.14 0.08 0.07 0.06 1.00 0.11 0.02 0.01 0.01 600.35 600.04 600.23 601.04 600.17
3 125.31 18.50 1.95 0.33 0.27 23.85 0.97 0.18 0.06 0.04 600.07 600.09 600.06 600.03 600.62
4 419.77 81.96 5.23 1.81 1.34 269.96 5.82 0.44 0.28 0.21 600.32 601.08 600.20 603.34 601.37
5 589.38 22.30 16.22 6.50 3.36 344.15 40.84 1.42 0.74 0.54 600.59 600.97 600.55 605.19 600.00
6 600.00 64.47 35.53 15.30 6.53 346.71 27.99 3.80 1.50 1.05 600.80 601.85 601.13 602.55 600.00
7 600.00 133.04 68.24 27.08 11.01 484.48 41.03 8.29 2.76 1.79 601.33 608.03 608.14 575.70 600.00
8 600.00 219.83 115.85 44.26 17.81 590.05 32.48 15.28 4.81 2.66 601.85 600.00 601.91 525.17 600.00
9 600.00 322.62 179.07 63.20 26.07 600.00 52.28 23.98 7.61 4.07 604.70 600.00 600.82 602.70 600.00
10 600.00 335.41 305.47 92.14 39.01 600.00 77.25 36.07 11.81 5.50 600.88 600.00 600.00 601.92 600.00

Figure 10. Time of variable xing heuristics.

Figure 11. Time of greedy randomized size-reduction heuristic and size reduction heuristics.
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Figure 12. Time of hybrid size reduction and variable xing heuristics.

Figure 13. Tukey condence intervals for average LDB values. 95% of condence level.
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Taking into consideration the computational times, after the ANOVA test we nd a -value equals to =
878156 − 38. Thus, there is a signicative dierence between the evaluated methods. In Figures 10–12,
this dierence is evidential. We can observe that the methods MILP, VF0.1, and HSRVF0.1 present higher
computational times. Taking into account the LBD values, after the ANOVA test, we nd a -value equals to
= 0961337485. Therefore, the dierence between the evaluated methods is not signicant. However, we can
emphasize that several methods were not able to nd feasible solutions for all the test instances. Thus, the
treatment of missing data could lead to a better evaluation of the methods under comparison.

Figure 13 illustrates the Tukey multiple comparisons of means with 95% family-wise condence level, taking
into account the instances with feasible integer solutions within the stipulated time limit. Based on the results
obtained, we can observe that the dierences among the methods under comparison are not statistically signif-
icant. Thus, our proposals have presented competitive results in comparison with the algorithms adapted from
Stefanello et al. [26] and Martinez-Gavara et al. [17].

6. Conclusions

In this paper, we investigate the multi-capacitated clustering problem (MCCP). The objective function is
to minimize the sum of the distances between the clients and the potential clusters. We develop a new integer
linear programming model, a greedy constructive heuristic, as well as four variable-xing matheuristics.

The idea of the proposed matheuristics is to reduce the number of integer decision variables using heuristic
procedures. Two procedures are extensions of the size-reduction algorithm proposed by Stefanello et al. [26]
and the variable-xing heuristic proposed by Martinez-Gavara et al. [17]. In our two innovative proposals, we
hybridize the size-reduction with the well-known GRASP metaheuristic as well as the variable-xing heuristic
proposed by Martinez-Gavara et al. [17].

This paper reports results for dierent classes of instances proposed to the MCCP found by the greedy
heuristic, MILP model, and the four presented matheuristics. The solution methods have been compared on
an extensive benchmark of randomly generated test instances, considering the lower bound deviation as the
performance measure. In most tested problem instances, the MILP model is not able to nd feasible solutions.
On the other hand, size-reduction and variable-xing heuristics present feasible solutions in the most evaluated
problems. In particular, the VF025 and HSRV025 matheuristics present a good trade-o between quality and
computational eort. The results also show that the proposed approaches are competitive for solving the MCCP
in reasonable computational times.

As extensions of this work, we recommend the use of metaheuristics in order to improve the solutions generated
by the greedy heuristic. Furthermore, the development of a machine learning approach for the improvement of
size-reduction and variable-xing heuristics [7] is another promissing research avenue.
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