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• The occurrence of four endocrine disrupting chemicals was evaluated.
• The removal efficiency of four hormones in low-cost plants was examined.
• Estrogen occurrence showed a wide variation in influent and effluent samples.
• Estrone showed the highest occurrence in the influent and the effluent samples.
• WSP treatment was observed to be less effective for removing estrogens.
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This paper evaluated the occurrence and removal efficiency of four estrogenic hormones in five biological
wastewater treatment plants (WWTPs), located in the State of Ceará, Brazil. ThefiveWWTPs comprised: two sys-
tems consisted of one facultative pond followed by two maturation ponds, one facultative pond, one activated
sludge (AS) system followed by a chlorination step, and one upflow anaerobic sludge blanket (UASB) reactor
followed by a chlorination step. Estrogen occurrence showed a wide variation among the analyzed influent
and effluent samples. Estrone (E1) showed the highest occurrence in the influent (76%), whereas both 17β-
estradiol (E2) and 17α-ethynylestradiol (EE2) presented a 52% occurrence, and the compound 17β-estradiol
17-acetate (E2-17A), a 32% one. The occurrence in the effluent samples was 48% for E1, 28% for E2, 12% for E2-
17A, and 40% for EE2. The highest concentrations of E1 and EE2 hormones in the influent were 3050 and
3180 ng L−1, respectively, whereas E2 and E2-17A had maximum concentrations of 776 and 2300 ng L−1,
respectively. The lowest efficiencies for the removal of estrogenic hormones were found in WWTP consisted of
waste stabilization ponds, ranging from 54 to 79.9%. The high-rate systems (AS and UASB), which have
chlorination as post-treatment, presented removal efficiencies of approximately 95%.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Endocrine disrupting chemicals (EDCs) are a heterogeneous group
of substances characterized by their potential to interfere with endo-
crine system functions in wildlife and humans (Sanfilippo et al., 2010).
The presence of these contaminants in aquatic environment and their
potential effects on living organisms have become a growing concern
in recent years, which requires identification, analysis and characteriza-
tion of risks in different environmental matrices (Dolar et al., 2012).

Estrogenic hormones excreted by humans are emerging contami-
nants which can reach the aquatic environment via wastewaters
release. The presence of such micropollutants in surface waters poses
various questions concerning their degradation and their potential
adverse effects on the sexual and reproductive systems in wildlife, fish
and humans (Chang et al., 2011; Gabet-Giraud et al., 2010; Jobling
et al., 1998; Purdom et al., 1994).

The occurrence of estrogens in wastewaters and surface waters has
been investigated in numerous studies (Chang et al., 2011; Coleman
et al., 2010; Gabet-Giraud et al., 2010; Lundstrom et al., 2010;
Radjenovic et al., 2009), in which both natural (estrone and 17β-
estradiol) and synthetic (17α-ethynylestradiol) varieties were identi-
fied as the main compounds responsible for estrogenic activities in
wastewater treatment plants (WWTPs). Many studies have also report-
ed that the elimination of some EDCs in WWTP can be ineffective
(Carballa et al., 2004; Dolar et al., 2012; Moon et al., 2008), as a result,
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they are found in surface water, groundwater, and even drinking water
(Al-Odaini et al., 2010; Rahman et al., 2009). Therefore, it is important to
develop reliablewastewater treatment technologieswhich can efficient-
ly remove these emerging contaminants at trace level concentrations.

Estrogen removal inWWTPs is a very complex procedure since it de-
pends on numerous design aspects (sludge age, hydraulic retention time
(HRT), organic loading rate (OLR), etc.), environmental conditions (sun-
light, temperature, pH, toxic compounds, etc.), type of sludge and opera-
tional conditions (Clara et al., 2005). There are several studiesworldwide
which have assessed the behavior ofmicropollutants inWWTPs. Howev-
er, most of them refer to activated sludge systems, which are most com-
monly used in development countries (Andersen et al., 2003; Baronti
et al., 2000; Carballa et al., 2004; Fernandez-Fontaina et al., 2012; Joss
et al., 2006; Kanda and Churchley, 2008). In contrast, there are only a
few published reports on the concentrations or removal of EDCs in
Brazilian WWTPs (Brandt et al., 2013; Froehner et al., 2010; Queiroz
et al., 2012; Ternes et al., 1999b), especially those which uses waste sta-
bilization ponds (WSP) technology.

In the state of Ceará, biological processes are widely used, being 62%
of these wastewater treatment systems consisted of stabilization ponds
(Brandão, 2000). Because of the great applicability, low capital and op-
erational costs of WSP in hot-climate developing countries, such as
Brazil, it is important to evaluate themicropollutants removal efficiency
of these systems (Coleman et al., 2010) and compare themwith the sys-
tems commonly used in other countries, such as activated sludge sys-
tems and anaerobic reactors (Carballa et al., 2007; Czajka and Londry,
2006; Paterakis et al., 2012).

It is also important to determine the concentrations and fate of es-
trogenic compounds in BrazilianWWTPs since there are limited studies
on these compounds in wastewater systems, receiving bodies (water
and sediments) and drinking water (Jardim (Jardim et al., 2012;
Montagner and Jardim, 2011; Moreira et al., 2009, 2011; Sodré et al.,
2010a, 2010b). Despite the significant increase in research on the sub-
ject, the occurrence of several micropollutants in environmental matri-
ces has not been established yet for many countries, mainly due to the
difficulties and costs associated with the chemical analyses (Virkutyte
et al., 2010). In fact, in Brazil, there are only a small number of studies
reporting the occurrence of a few compounds.

Therefore, the main objective of this paper was to determine the oc-
currence and removal of four EDCs in five Brazilian real scale WWTPs
(specially low costs treatment technologies), i.e. three waste stabiliza-
tion ponds systems, an activated sludge system followed by a chlorina-
tion step and a UASB reactor also followed by a chlorination step. This
would provide important insights into the technology which can most
effectively remove these compounds and, therefore, help to guide cur-
rent environmental legislations. The paper does not focus on either re-
moval mechanisms, which are well reported in literature and depend
on the treatment technology, or estrogenic activity, which was out of
the scope of the present investigation.
2. Materials and methods

2.1. Reagents and material

Solid-phase extraction (SPE) was carried out by using 200 mg
Oasis® HLB cartridges (Waters, Milford, MA, USA) and HPLC-grade
methanol purchased from Sigma-Aldrich (St. Louis, MO, USA). HPLC-
grade water was produced using a Milli-Q purification system
(Millipore, Bedford, MA, USA). Standards for estrone (E1, 99% purity),
17β-estradiol (E2, 98% purity), 17α-ethynylestradiol (EE2, 99.4% puri-
ty) and 17β-estradiol 17-acetate (E2-17A, 98.8% purity) were pur-
chased from Sigma-Aldrich (St. Louis, MO, USA). The stock EDC
standard solutions, at a concentration of 1000 ng mL−1, and the appro-
priate working standard solutions were prepared in methanol and
stored in amber glass bottles at 4 °C.
2.2. Sample preparation

The first step of sample preparation involved performing wastewa-
ter filtrations under vacuum through 0.45 μm glass-fiber filters to re-
move suspended particulate matter and avoid SPE cartridge clogging.
The pH of each sample was then adjusted to 3.0 by addition of 50%
(v/v) HCl, after which the analytes were extracted with a Speed
Mate 12-port SPE vacuum manifold (Applied Separations, Allen-
town, PA, USA).

The SPE cartridgeswere initially preconditionedwith 10mL ofmeth-
anol, and subsequently with 10 mL of Milli-Q water. The samples, typi-
cally 500 mL, were then loaded onto the cartridges at a flow rate lower
than 2 mLmin−1. The cartridges were then dried for 30 min under vac-
uumand elutedwith 4mLofmethanol. Extracts collected in amber glass
flasks were dried in an oven at 45 °C. The dry residues were derivatized
by the addition of N,O-Bis(trimethylsilyl)trifluoroacetamide (BSTFA) for
30 min at 60 °C. The derivatives were cooled to room temperature and
resuspended in 500 μL of methanol. The solutionswere then transferred
to sealed cap vials and analyzed by gas chromatography–mass spec-
trometry (GC/MS).

2.3. GC/MS analysis

EDC determinations were performed on a Focus GC instrument
interfaced to a DSQ II mass spectrometer and controlled by the software
XCalibur (Thermo Electron SA, Madrid, Spain). The GC instrument was
equipped with a Supelco SLB™-5MS capillary column (silphenylene
polymer, which is virtually equivalent in polarity to 5% diphenyl/95%
methyl siloxane; 30 mm × 0.25 mm I.D. × 0.25 μm film thickness),
and helium (N99.999% purity) was used as the carrier gas at a flow
rate of 1.2 mL min−1.

The injection port temperature was maintained at 250 °C, and the
oven temperature program varied as follows: ramp up to 150 °C from
50 °C (at a rate of 40 °C min−1), ramp up to 270 °C at a rate of
40 °C min−1 (held for 1 min), ramp up to 280 °C at a rate of
10 °C min−1 (held for 5 min), and ramp up to 290 °C at a rate of
10 °C min−1 (held for 1 min). Sample injection was performed in
splitlessmode using an injection volume of 1 μL. Themass spectrometer
was operated in electron positive impact ionizationmode at 70 eV,with
a full scanning range of 50–650 m/z, and ion source and transfer line
temperatures of 290 °C. This method was developed from previous
studies (Liu et al., 2004; Mol et al., 2000; Shimada et al., 2001; Tan
et al., 2007; Ternes et al., 1999b).

2.4. Quality assurance and quality control

The validation of the optimized method, as well as the determina-
tion of recoveries and occurrences in thewastewater samples, was con-
ducted according to Brazilian standard DOQ-CGCRE-008 (INMETRO,
2006). Linearity (L), limits of detection (LOD) and quantification
(LOQ), recovery, and repeatability (R) were investigated. LOQ and LOD
were calculated from the calibration curve and the spiked recoveries,
whereas repeatability was determined from the relative standard devi-
ation (RSD) of 10 replicated samples. Analysis of eachwastewater sam-
ple was performed in triplicate andwas accompanied by the analysis of
one blank laboratory reagent. Recoveries were determined by the ex-
traction, derivatization and analysis of two replicated spikes at an esti-
mated detection limit (500 ng L−1) for each target analyte.

2.5. Sample collection

Duplicate grab wastewater samples were collected between April
2010 and April 2012 from five full-scale WWTPs located in the State
of Ceará, a semi-arid zone in Brazil. Additional details regarding these
WWTPs are given in Table 1. For eachWWTP, five influent and effluent
samples were analyzed in order to determine the estrogens removal.



Table 1
Details of the wastewater treatment plants studied.

WWTP Treatment technology Resident
inhabitants

Additional informationa

A Waste stabilization pond (WSP)
(1 facultative + 2 maturation)

23,870 Working depth (facultative) = 1.8 m; HRT (facultative) = 11 days; working depth (maturation) = 1.5 m;
HRT (maturation) = 5 days (each pond); total HRT = 21 days; mean flow rate = 59.4 L s−1

B Waste stabilization pond (WSP)
(1 facultative + 2 maturation)

3,000 Working depth (facultative) = 1.5 m; HRT (facultative) = 10 days; working depth (maturation) = 1.5 m;
HRT (maturation) = 4.2 days (each pond); total HRT = 18.4 days; mean flow rate = 7.6 L s−1

C Waste stabilization pond (WSP)
(1 facultative)

12,705 Working depth = 2 m; HRT = 26,4 days; mean flow rate = 49,6 L s−1

D Activated sludge (AS) with post-chlorination
disinfection

2880 Mean flow rate = 2.7 L s−1; solid retention time = 30 days

E Upflowanaerobic sludge blanket (UASB)with
post-chlorination disinfection

1100 Working height = 4.5 m; HRT = 7 h; mean flow rate = 91.7 L s−1

a Design values.
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However, to calculate the occurrence of estrogens in influent and efflu-
entwastewater, all the 25 sampleswere considered. The design value of
the hydraulic retention time (HRT) of each plantwas not considered be-
cause most of the systems are old and the real HRT is unknown but
shorter due to sludge accumulation. Especially in ponds, the accurate
determination of real HRT demands tracer studies, which was outside
of the scope of this study. Data details of temperature and total precip-
itation are given in Table 2.

The samples were collected in glass flasks, transferred to 1 L amber
glass bottles and preserved by the addition of 10 mL L−1 formaldehyde
(Cavalcante et al., 2010). Then, the sampleswere transported to the lab-
oratory in cooling boxes and were prepared for analysis within 48 h.
Formaldehyde was also used in the method validation, and no interfer-
ence was observed.

3. Results and discussion

3.1. Validation of proposed method

Table 3 presents validation data and determined recovery rates for
the four target analytes, with LOQ and LOD in the ranges of 37–121
and 11–60 ng L−1, respectively. Recoveries were calculated for
Table 2
Mean temperature and total precipitation for the 5 days prior to the sampling dates at the
Fortaleza sewage treatment plants.

WWTP Date Mean temperature
(°C)

Total precipitation
(mm)

A May 05/10 27 5.4
Dec 06/10 29.7 0
Oct 10/11 27.92 0.04
Dec13/11 28.1 0
Dec 20/11 28.14 1

B Apr 28/10 28.4 2.3
Jul 29/11 26.83 0
Mar 07/12 27.86 0.16
Mar 28/12 26.6 23.3
Apr 19/12 25 6

C May 19/10 28.6 0
Jul 14/11 26.2 8.1
Dec 13/11 28.1 0
Dec 20/11 28.14 1
Jan 24/12 27.64 4.38

D Jun 10/10 27.7 1.3
Jul 17/11 25.6 11.2
Nov 22/11 28 0
Mar 07/12 27.8 0.16
Mar 28/12 23.3 26.64

E Nov 22/11 28 0
Mar 07/12 27.8 0.16
Mar 28/12 26.6 23.3
Apr 19/12 25 6
May 19/12 27 4.6
wastewater influent and effluent samples after correcting for back-
ground concentrations of target analytes, as determined from analyses
of unspiked samples. Recoveries were above 60% for three of the four
analytes under optimized SPE conditions, and standard deviations
were generally within 0.04%–0.58% of the measured recoveries on
these analytes, even in wastewater influent. The small variation in re-
covery among analytes demonstrates the reliability of the method
used, and the range of repeatability was below 0.30% (RSD).

Andrási et al. (2011) found LOQ values similar to those obtained in
the present work, ranging from 1.88 to 37.5 ng L−1. Additionally, the
LOQ obtained for E1, E2 and EE2 determined by this method were
lower than those found by Quintana et al. (2004) (10–17 mg L−1),
who also used GC/MS for identification. On the other hand, the recover-
ies of the analytes with the Oasis® HLB cartridge were smaller than
those presented by other authors who used the same cartridge in
their recovery assays, in which sanitary effluent added with low estro-
gens concentrations was used as matrix (Benijts et al., 2003; Laganà
et al., 2004; Salvador et al., 2007; Trenholm et al., 2006). Nevertheless,
despite the low recoveries achieved in the current work, the values
were acceptable since they showed a good repeatability in all samples,
indicating the consistency of the method.

Vega-Morales et al. (2012) reported a recovery ranging from 88 to
98% for analytes at 500 ng L−1. However, Abegglen et al. (2009) report-
ed a recovery of 77% for EE2, a value close to the obtained in this study
(69%) with the polymeric cartridge. Pedrouzo et al. (2009) also found
recoveries similar to those of the present study. These authors used
sewage as matrix, Oasis® HLB cartridge and estrogens at a concentra-
tion of 300 ng L−1, and obtained recovery efficiencies of 51% (E1), 61%
(E2), 26% (E2-17A) and 52% (EE2).

3.2. Occurrence of estrogens in influent and effluent samples

The distribution of estrogen concentrationswhichweremeasured in
raw and treated wastewater from all five WWTP (n = 25) is shown in
Fig. 1. In addition, Table 4 shows the occurrence and concentration of es-
trogens in influent and effluent samples, with these data having an ele-
vated variation. The highest estrogen occurrence in the influent was
recorded by E1 (at 76%). Johnson and Sumpter (2001) reported that
Table 3
Validation of the proposed method.

Compound L R
(RSD%)

LOD
(ng L−1)

LOQ
(ng L−1)

Recoverya

(%)

E1 0.9937 0.10 35.38 117.92 76 (±0.04)
E2 0.9928 0.13 11.28 37.58 66 (±0.11)
E2-17A 0.9930 0.10 18.90 62.99 42 (±0.50)
EE2 0.9970 0.28 60.43 121.44 69 (±0.58)

a Calculated from samples spiked at 500 ng L−1 (wastewater influent and effluent),
numbers in parentheses represent the standard deviation for the analysis of two replicate
samples.



Fig. 1. Influent and effluent estrogens concentrations.
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the origin of E1 in influent sewage is unclear; it may be a byproduct of
E2 biodegradation or, alternatively, largely due to E1 sulfonide or glucu-
ronide deconjugation in the sewer system, especially in treatment
plants which are located a large distance away from households.
These authors suggest that E1 is the most environmentally important
estrogen when compared to E2 since it is more frequently detected in
higher concentrations than E2.

E2 and EE2 both recorded a 52% occurrence, and E2-17A presented a
32% occurrence. The relatively low occurrence of estradiol-based com-
pounds may be the result of their fast degradation to estrone (Servos
et al., 2005). Miège et al. (2009) reported EE2 to be present in 91% of
raw wastewater at ng L−1 concentration level. Thus, although EE2 was
expected to be found in more influent samples, it was only present in
half of the samples in the current work.

In this work, the influent samples showed higher estrogens concen-
trations when compared to other works (Gabet-Giraud et al., 2010;
Lishman et al., 2006), possibly caused by the low precipitation
(b27 mm) and high temperatures (25–29 ° C), resulting in low dilu-
tions of estrogens. The highest concentrations of E1 and EE2 in the influ-
ent were 3050 and 3180 ng L−1, respectively, whereas the
concentrations of E2 and E2-17Awere 776 and 2300 ng L−1, respective-
ly (Table 4). In all cases, the lowest concentrations were below the LOD.

The occurrences of each hormone in the effluent samples were 48%
for E1, 28% for E2, 12% for E2-17A, and 40% for EE2 (Table 4). In terms
of effluent concentration, Ternes et al. (1999b) found estrone (E1) to
be the highest of all measured estrogens, whereas E2 was near the
Table 4
Occurrence of estrogens in influent and effluent samples.

Estrogen Influent concentration Occurrence (%)

Mean
(ng L−1)

RSD
(%)

Min
(ng L−1)

Max
(ng L−1)

n

E1 566 125 bLOD 3050 25 76
E2 143 139 bLOD 776 25 52
E2-17A 268 2 bLOD 2300 25 32
EE2 421 166 bLOD 3180 25 52

Estrogen Effluent concentration Occurrence (%)

Mean
(ng L−1)

RSD
(%)

Min
(ng L−1)

Max
(ng L−1)

n

E1 242 193 bLOD 2080 25 48
E2 48 177 bLOD 397 25 28
E2-17A 87 291 bLOD 1250 25 12
EE2 124 176 bLOD 176 25 40

LOD = limit of detection and RSD is the relative standard deviations.
detection limit of 1 ng L−1. The relatively high concentration of E1 in
the present investigation (a mean value of 242 ng L−1) is interpreted
to have been caused by the conversion of E2 and EE2 into E1 before it
could be transformed further (Carballa et al., 2004; Czajka and Londry,
2006; Shi et al., 2004; Ternes et al., 1999a).
3.3. Removal of estrogens from the aqueous phase

Themain goal of this workwas to provide important insight into the
technology that can most effectively remove EDCs. The paper does not
deal with mechanisms, which are very difficult to establish in real
scale systems and depend on the technology applied. However, some
discussion about the known published mechanisms was made in
order to explain the occurrence and efficiency of WWTPs. Estrogen re-
moval efficiencies in each of thefiveWWTPswere individually analyzed
and calculated in this study (Table 5), as described below.
3.3.1. Removal of E1
Themean E1 removal inWWTPA,which utilized one facultative and

two maturation ponds, was approximately 65% (Fig. 2). On the other
hand, WWTP B (which operates with the same technology) had an av-
erage removal efficiency of only 41.4%, suggesting that the operational
and design conditions might have directly affected the treatment per-
formance (Table 1).

WWTP C operated only one facultative pond and was less efficient
when compared to systems A and B, with a mean removal efficiency
of only 31%. This result suggests thatmaturation pondsmight be impor-
tant for estrogen removal.

WSPs arewell known for their UV-disinfection capacity and have re-
cently been reported to be effective photo-oxidizers of EDC. In fact,
Coleman et al. (2010) found that E1 was completely degraded by UV
light. The photo-oxidative potential in ponds can be increased by both
the presence of humic substances and high oxygen concentrations,
with the latter contributing to the formation of reactive oxygen species
(Davies-Colley et al., 1999). Thus, as the oxygen concentration in matu-
ration ponds is higher than in facultative ponds, it is expected that the
photo-oxidative potential will also be higher. WWTPs with a polishing
step may also theoretically improve their performance by estrogen vol-
atilization. However, compared to volatile organic pollutants (e.g. chlo-
rinated hydrocarbons, aromatics) with a Henry's law constant (H) of
approximately 103, estrogenic hormones have a small H (approximately
10−7–10−11), which makes these compounds less susceptible to vola-
tilization under normal pressure and temperature conditions (Hamid
and Eskicioglu, 2012). Coleman et al. (2010) found E1 removal efficien-
cies which ranged from 100 to 82% after secondary treatment in two
WSPs located in Australia, which each system with two ponds.

WWTP D employed an AS treatment and a chlorination step, and
was effective in removing E1, with a mean efficiency of ~84%. The chlo-
rine dose added to disinfect the effluent was 2.5 mg L−1. The AS treat-
ment process is known to be effective in removing estrogenic
hormones and other lipophilic contaminants from the wastewater
aqueous phase (Baronti et al., 2000; Leusch et al., 2006). Consequently,
E1 was only found in one effluent sample at a concentration of
261 ng L−1. Elsewhere, E1 has been detected at a maximum concentra-
tion of 350 ng L−1 after AS treatment and seasonal chlorine disinfection
(Atkinson et al., 2012).

WWTP E, which uses a UASB followed by chlorination post-
treatment, showed a 100% removal of E1 from wastewater. Similar re-
sults were also found by Salgado et al. (2010), who investigated the re-
moval of E1 in UASB reactors. de Mes et al. (2008) assigned adsorption
as the responsible for a 32–35% loss of E1 and E2 from the liquid phase.
In both WWTPs D and E, the complementary abiotic removal of E1 by
chlorine must also be considered (Deborde et al., 2004; Hu et al.,
2003; Lee et al., 2004).



Table 5
Average removal of estrogens in WWTPs.

Compound Average removal (%)a Removal for each compoundb

A B C D E

E1 62 41 31 84 100 63.6
E2 81 81 62 96 87 81.4
E2-17A 100 100 26 100 100 85.2
EE2 30 99 58 100 94 75.8
Global Removalc 68.25 79.75 44.25 95 95.25 –

a Removal was considered 100% when the concentration was bLOD or bLOQ.
b Removal considered for each compound in all treatments.
c Average for all estrogens.
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3.3.2. Removal of E2
The mean E2 removal efficiencies in WWTPs A, B and C were 95%,

100% and 81%, respectively (Fig. 3). This behavior was expected, given
that ponds are generally very effective at removing E2, with apparent
removals ranging from 80% to 98% (Lishman et al., 2006; Servos et al.,
2005). However, as observed previously, systems B and C only removed
low percentages of E1. One possible explanation for this would be the
conversion of E2 into E1, with systems B and C being unable to degrade
E1 efficiently.

WWTP Dwas 100% effective in degrading estrogen E2. Themost like-
ly hormone removal pathways for this techniquemight include biological
degradation, abiotic removal (chlorination) and adsorption onto solids.
Sorption and biodegradation are the two major removal mechanisms
for 17β-estradiol in AS systems (Estrada-Arriaga and Mijaylova, 2010;
Fang et al., 2003; Ren et al., 2007; Shi et al., 2004; Stevens-Garmon
et al., 2011; Vader et al., 2000).

Several studies have pointed out the ability of some bacteria isolated
from AS systems to convert these molecules (Ren et al., 2007; Shi et al.,
2004; Vader et al., 2000; Yoshimoto et al., 2004). Joss et al. (2004) and
Lee and Liu (2002) proposed a mechanism for aerobic or anaerobic es-
trogen degradation in WWTPs. According to them, 17β-estradiol was
initially oxidized to estrone, which was then further oxidized to un-
known metabolites, and finally converted (mineralized) to CO2 and
water.

WWTP E, which uses a UASB followed by chlorination post-
treatment, showed an 87% removal of E2. Paterakis et al. (2012) report-
ed E2 biodegradation under anaerobic conditions, although the comple-
mentary abiotic E2 removal by chlorine must also be considered as a
viable mechanism (Hu et al., 2003). In the latter study, it was reported
that E2 rapidly reacted with HOCl, with almost 100% of E2 removed
after a 10 min reaction.

3.3.3. Removal of E2-17A
Regardless of the wastewater treatment evaluated in this investiga-

tion, the compound E2-17A was removed with 100% efficiency (Fig. 4).
Probably, the adsorption of the E2-17Amolecule onto the sludge might
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Fig. 2. Estrone (E1) removal in 5 WWTPs.
have played a key role, since its log Kow is very high (4.95) when com-
pared to those for the E1 (3.13), E2 (4.01) and EE2 (3.67) molecules.
However, Ren et al. (2007) described the sorption of E1, E2, estriol
(E3) and EE2 onto sewage sludge as being deactivated by heat treat-
ment. Although batch experiment data fitted well to a Freundlich iso-
therm, in contrast to previous studies, they observed sorption
behavior to be independent of the Kow values of each compound.
Nieto et al. (2008) studied the presence of E2-17A in sludge from sew-
age treatment plants and found values of 175–375 μg kg−1. The only
system that removed a low proportion of E2-17A (26%, Fig. 4) was
WWTP C. The reason for this system behavior still remains unclear.
3.3.4. Removal of EE2
The removal of EE2 in WWTP A, which utilized one facultative and

two maturation ponds, was only 29.7% (Fig. 5). This result is in agree-
ment with Ying et al. (2008), who noted a similar EE2 removal of 25%
and concluded thatWSP do not effectively remove particular endocrine
disrupters. Contrary to the above-mentioned results for WWTP A, the
system B (involving same configuration— one facultative and twomat-
uration ponds) removed 100% of EE2, which is close to the 90–95%
range reported by Gomez et al. (2007). The difference in terms of EE2
removal between A and B might be attributed to the EDCs load. The in-
fluence of influent concentration on removal of EDCs for each type of
process was also tested (removal vs. influent concentration). Thus, a
tendency of higher influent concentrations values with lower removal
was observed although the p-value was greater than 0.05 (Table 6). In
this specific case, the average EE2 influent concentration was 358.8
and b121.44 ng L−1, for A and B, respectively. In addition, some design
and operational parameters might have also played a role.

WWTP C removed 58.4% of EE2 using only one facultative pond. The
absence of a maturation pond in this case suggests that it is an impor-
tant factor.Williams et al. (2007) reported a 25% EE2 removal efficiency
inWSP containing only a primary facultative pond, although they donot
provide flow or population information.
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Fig. 3. 17β-Estradiol (E2) removal in 5 WWTPs.
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Fig. 4. 17β-Estradiol 17-acetate (E2-17A) removal in 5 WWTPs.

Table 6
Correlation analysis of influent concentration on EDCs removal.

Estrogen E1 E2 E2-17A EE2

Removal (%) Pearson correlation 0.231 −0.365 −0.320 −0.225
Sig. (2-tailed) 0.278 0.079 0.127 0.291
N 25 25 25 25
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AS treatment in WWTP D exhibited a 100% efficiency in removing
EE2 (Fig. 5), which is consistent with the high removal rates (N90%) in
AS plants reported by Muller et al. (2008) and Joss et al. (2004). Yi
et al. (2006) suggested that EE2 degradation may involve ammonium
monooxygenase, the key enzyme that catalyzes nitrification. They
showed that EE2 underwent mineralization in conventional bioreactors
and produced unidentified metabolites. In contrast, Kanda and
Churchley (2008) only measured a 3.2% removal efficiency of EE2 in a
modern nitrifying AS, with this persistence to biodegradation also ob-
served by Weber et al. (2005).

The removal of EE2 in WTTP E, which employed a UASB reactor
followed by chlorination post-treatment, measured a mean efficiency
of 94% (Fig. 5). Although EDCs can persist through the anaerobic sludge
digestion process, with removals ranging from 10% to 48% (Ifelebuegu,
2011), Carballa et al. (2007) reported a 90% EE2 removal efficiency dur-
ing the anaerobic digestion of sewage sludge. No EE2 was detected in
the UASB effluent by de Mes et al. (2008).
3.3.5. Overall removal capacity of the WWTPs
Three different sewage treatment techniques (stabilization ponds,

UASB, and AS followed by chlorination post-treatment) employed in
five WWTPs in Brazil have been analyzed for their capacity to remove
hormones from wastewater. Overall removal efficiencies (Fig. 6 and
Table 5) showed that AS followed by chlorination post-treatment had
an average estrogen removed of 95%, and UASB followed by chlorina-
tionpost-treatment averaged a 95.25% removal. In contrast, the removal
efficiency observed in stabilization ponds was approximately 64%.
These data clearly indicate that AS and UASB followed by chlorination
post-treatment are more effective to remove estrogens, with a low var-
iability as denoted by a ~7% inter-quartile. Conversely, a larger differ-
ence of 29–31% was found between the first and third quartiles for
WSP techniques.
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Fig. 5. 17α-Ethynylestradiol (EE2) removal in 5 WWTPs.
These results for AS systems are in agreement with Miège et al.
(2009), who reported mean removal rates from the dissolved aqueous
phase of around 80% for E1,αE2, and βE2. These authors created a data-
base from scientific publications, in order to quantitatively assess the re-
moval efficiency of EDCs inWWTPs. In their database, two types of ASP
were considered: those which perform carbon removal (sludge age
b10 days), and others that perform nitrogen removal (sludge age
N10 days). In the current study, the system has a sludge age N10 days
(Table 1).

Verlicchi et al. (2012) reported global removal efficiencies of
micropollutants in 244 conventional AS systems (242 full-scale plants
and 2 pilot ones) in the world (located in European countries, the
Americas including Brazil, Asia and Australia). Conventional AS usually
operates at an HRT ranging from 2 to 24 h and at an SRT generally of
2–20 days. The estrogen removals were between 67% and 80%.
Froehner et al. (2011) reported hormone removal efficiencies of 73.1%
in AS systems, 66.5% in UASB systems, and 56.5% for stabilization
ponds. These researches presented the same pattern of removal effi-
ciency (%) obtained for wastewater treatment plants in the present
investigation.

In Table 6, it is possible to observe the removal for each compound in
all treatments. E1 presented a 63.6% removal, whereas the other estro-
gens showed a better removal, ranging from 75 to 85%.

4. Conclusions

Some patterns of occurrence and removal of estrogens in 5wastewa-
ter treatment systems in the State of Ceará, Brazil, were found. E1
showed the highest occurrence in the influent and the effluent. The sam-
pling results suggest that this estrogen is excreted in major concentra-
tion by humans or others sources, and the compound was more
persistent than the others since its global removal considering all treat-
ments were smaller.

Systems using chlorination as post-treatment presented a better re-
moval efficiency of compounds when compared to waste stabilization
pond treatment.WSP treatmentwas observed to be less effective for re-
moving steroid estrogens, particularly estrone. In some cases, it led to an
increased concentration of estrone in the effluent.

Continuedmonitoring of these estrogens is necessary in order to im-
provewastewater treatment processes and to ensure the safety of drink-
ing water. Monitoring should also be expanded to include conjugates
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and other matrices, such as sludge present in the systems analyzed. Be-
sides, the effect of the air temperature and precipitation should also be
assessed in WSP systems, although the operational conditions such as
flow, sludge accumulation etc. cannot be fully controlled.

Finally, more specific study seems to be necessary to understand
more about the mechanisms (biotic and abiotic) and microorganisms
involved in the micropollutants removal, especially in low-cost waste-
water technologies, in which experiments under controlled conditions
are necessary.
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