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Résumé: Une coloration des sommets de G s’appelle une b-coloration si
chaque classe de couleur contient au moins un sommet qui a un voisin dans
toutes les autres classes de couleur. Le nombre b-chromatique χb(G) de G est
le plus grand entier k pour lequel G a une b-coloration avec k couleurs. Ces
notions ont été introduites par Irving et Manlove en 1999. Elles permettent
d’évaluer les performances de certains algorithmes de coloration.

Irving et Manlove ont montré que le calcul du nombre b-chromatique
d’un graphe est un problème NP-difficile et qu’il peut être résolu en temps
polynomial pour les arbres. Une question qui se pose naturellement est donc
d’enquêter sur les graphes qui ont une structure proche des arbres: cactus,
graphes triangulés, graphes série-parallèles, “block” graphes, etc.

Dans cette thèse, nous généralisons le résultat d’Irving et Manlove pour
les cactus dont le “m-degré” est au moins 7 et pour les graphes planaires
extérieurs dont la maille est au moins 8. (Le m-degré m(G) est le plus
grand entier d tel que G a au moins d sommets de degré au moins d −
1.) Nous démontrons un résultat semblable pour le produit cartésien d’un
arbre par une châıne, un cycle ou une étoile. Pour ce qui concerne les
graphes dont les blocs sont des cliques, nous montrons que le problème avec
un nombre de couleurs fixé peut être résolu en temps polynomial et nous
présentons des cas où le problème de décision peut être résolu. Toutefois,
nous avons constaté que la différence m(G)−χb(G) peut être arbitrairement
grande pour les graphes blocs, ce qui montre qu’avoir une structure arbores-
cence n’est pas suffisant pour que le graphe satisfasse χb(G) ≥ m(G) − 1.

Mots clés: nombre b-chromatique, m-degré, arbres, cactus, graphe
planaire exterieure, graph bloc, produit cartésien.





The b-chromatic number of some tree-like graphs

Abstract: A vertex colouring of a graph G is called a b-colouring if each
colour class contains at least one vertex that has a neighbour in all other
colour classes. The b-chromatic number χb(G) of G is the largest integer
k for which G has a b-colouring with k colours. These concepts have been
introduced by Irving and Manlove in 1999. They allow the analisys of the
performance of some algorithms for colouring.

Irving and Manlove showed that finding the b-chromatic number is NP-
hard for general graphs, while it can be found in polynomial time for trees.
A question that naturally arises is to investigate the graphs that have a “tree
structure”, for instance: cactus, chordal graphs, series-parallel graphs, block
graphs, etc.

In this thesis, we generalize the result of Irving and Manlove for cacti
with “m-degree” at least 7 and for outerplanar graphs with girth at least
8. (The m-degree m(G) is the largest integer d such that G has at least d
vertices of degree at least d− 1.) We prove a similar result for the cartesian
product of a tree by a path, a cycle or a star. Regarding graphs whose blocks
are cliques, we show that the fixed-parameter problem can be solved in poly-
nomial time and we present cases where the decision problem can be solved.
However, we found that the difference m(G)−χb(G) can be arbitrarily large
for block graphs, which shows that the tree structure is not sufficient for
having χb(G) ≥ m(G)− 1.

Keywords: b-chromatic number, m-degree, tree, cactus, outerplanar
graph, block graph, cartesian product.
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merveilleux monde de la théorie des graphes et de m’avoir appris les premiers
pas. Muito obrigada por tudo Cláudia!
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je remercie ceux qui ont contribué à la réalisation de cette thèse avec leur
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Résumé

Les problèmes de coloration de graphes sont parmi les sujets les plus
étudiés dans la théorie des graphes. En fait, il existe une grande variété de
problèmes de coloration (nous renvoyons le lecteur à [24] pour un panorama
sur le sujet), les plus traditionnels d’entre eux étant le problème de colorier
proprement un graphe avec le nombre minimum de couleurs. Relatif au
problème cité on a le paramètre χ(G) appelé nombre chromatique de G. Il
est connu que trouver χ(G) est NP-difficile, pour un graphe G générale.
Ainsi, on peut essayer d’appliquer des heuristiques pour trouver une bonne
coloration de G.

Une heuristique bien connue est l’heuristique gloutonne, où les sommets
sont parcourus dans un ordre quelconque, v1, · · · , vn, et, à la i-ème itération,
le sommet vi est coloré avec la couleur minimum qui ne figure pas sur les
sommets de N(vi) ∩ {v1, · · · , vi−1}. Évidemment, comme trouver le nom-
bre chromatique d’un graphe est NP-difficile, cette heuristique ne produit
pas toujours une coloration optimale: par exemple, si P = 〈v1, v2, v3, v4〉
est une châıne induite et nous colorons P en utilisant l’heuristique glou-
tonne dans l’ordre v1, v4, v2, v3, on obtient une coloration avec 3 couleurs,
cependant que le nombre chromatic de P est 2. Ceci a motivé Christen
et Selkow d’introduire la définition de nombre de Grundy [8], qui est intu-
itivement le pire nombre de couleurs d’une coloration qui peut être produite
par l’heuristique gloutonne. Plus formellement, le nombre de Grundy est le
nombre maximum de couleurs pour lequel il existe une coloration propre où
chaque sommet de couleur i est adjacent à au moins un sommet de couleur
j, pour chaque couleur j ≤ i− 1.

Une autre approche pourrait consister à essayer de diminuer le nombre
de couleurs utilisées par une coloration existante. Une façon d’y parvenir
consiste à fusionner deux couleurs qui n’ont pas d’arêtes entre elles. Comme
pour l’heuristique gloutonne, on ne peut pas espérer obtenir une coloration
optimale avec cette heuristique, c’est à dire, étant donné une coloration Ψ de
G, il n’est pas toujours possible de diminuer le nombre de couleurs utilisées
par Ψ avec l’heuristique décrite. Ainsi, Harary et Hedetniemi ont introduit la
notion de nombre achromatique [16], qui mesure le pire des colorations exis-
tantes qui ne peuvent pas être améliorées par la fusion de deux couleurs. Plus
formellement, le nombre achromatique est le nombre maximum de couleurs
pour lequel il existe une coloration propre telle que n’importe quelles deux



couleurs ont une arête entre elles.
Une autre idée pour essayer d’améliorer une coloration existante peut être,

au lieu de recolorer tous les sommets dans une certaine classe de couleur
avec la même couleur, de simplement essayer de recolorer chaque sommet
séparement. Autrement dit, si nous avons une coloration propre de G et il
existe une classe de couleur c telle que tous les sommets de la couleur c est
non adjacent à au moins une autre couleur, nous pouvons alors séparément
changer la couleur de chaque sommet de c, obtenant une coloration propre
qui utilise moins de couleurs. Relatif à cette heuristique on a le paramètre
appelé nombre b-chromatique de G, introduit par Irving et Manlove en [20],
qui fait l’objet de cette thèse: une b-coloration de G est une coloration propre
de G tel que chaque classe de couleur contient au moins un sommet qui est
adjacent a chaque autre couleur. Le nombre b-chromatique de G est le plus
grand entier χb(G) pour lequel il existe une b-coloration de G avec χb(G)
couleurs.

Observez qu’une b-coloration, ainsi qu’une coloration obtenue avec l’heu-
ristique gloutonne, ne peut pas être améliorée par la fusion de deux couleurs.
En conséquence, le nombre achromatique est une borne supérieure pour le
nombre de Grundy et le nombre b-chromatique. Toutefois, le nombre de
Grundy n’a aucun rapport avec le nombre b-chromatique. Par exemple, si
G est l’union de n + 1 étoiles K1,n, alors χb(G) = n + 1, cependant que le
nombre de Grundy de G est 2.

Dans leur article séminal, Irving et Manlove ont prouvé que le problème de
trouver le nombre b-chromatique d’un graphe est NP-difficile. Naturellement,
une coloration propre de G avec χ(G) couleurs est une b-coloration de G, car
ça ne peut pas être améliorée; donc, χ(G) ≤ χb(G). Pour trouver une borne
supérieure, notez que si G a une b-coloration avec k couleurs, alors G a au
moins k sommets de degré au moins k − 1. Donc, si m(G) est le plus grand
entier m tel que G a au moins m sommets de degré au moins m− 1, on sait
que G ne peut pas avoir une b-coloration avec plus de m(G) couleurs, i.e.,
χb(G) ≤ m(G). Nous appelons ce paramètre le m-degré de G et nous disons
qu’un sommet ayant un degré au moins m(G) − 1 est dense. Cette borne
supérieure a été donnée par Irving et Manlove en [20], où ils ont montré que
la différence entre χb(G) et m(G) peut être arbitrairement grande pour un
graphe en général. En outre, Kratochv́ıl, Tuza et Voigt [28] ont prouvé que
décider si χb(G) est égal à m(G) est NP-complet, même si G est un graphe
biparti ayant exactement m(G) sommets denses, chacun de degré m(G)− 1.
Toutefois, la différence m(G)− χb(G) est au plus un pour les arbres [20], ce



qui nous a fait nous demander quel genre de graphes ont la même propriété.
Une approche naturelle est d’étudier les graphes en forme d’arbre, c’est à dire
des graphes qui ont une structure arborescente, comme, par exemple, des
cactus, des graphes bloc, des k-arbres, etc. Dans cette thèse, nous étudions
le nombre b-chromatique des cactus, des graphes outerplanar, des graphes
bloc et des produits cartésiens des arbres par certaines autres classes de
graphes. Heureusement, nous avons pu trouver des réponses positives pour
les cactus et les outerplanar. Toutefois, nous avons également constaté que la
différence entre χb(G) et m(G) peut être arbitrairement grande pour certains
graphes “en forme d’arbre”, comme nous le verrons dans le Chapitre 5. Ainsi,
la structure arborescente n’est pas suffisant pour avoir χb(G) ≥ m(G) − 1.
Notez que, trivialement, ce n’est pas non plus nécessaire, puisque tout graphe
complet Kn a nombre b-nombre chromatique n.

Bien que l’approche de cette thèse soit purement théorique, on mentionne
que la b-coloration peut être utilisée la classification des données [13] et dans
la reconnaissance automatique des documents [15].

Dans le Chapitre 2, nous présentons les notations et donnons les définitions
nécessaires. Nous présentons aussi l’algorithme de Irving et Manlove pour
trouver le nombre b-chromatique d’un arbre. L’idée générale de cet algo-
rithme, ainsi que certains de ses lemmes de base, sera important dans cer-
taines de nos épreuves, spécialement dans le chapitre 6. Nous discutons aussi
plus profondément l’état de l’art.

Dans le Chapitre 3, nous montrons que la différence entre χb(G) et m(G)
est au plus un pour les cactus dont le m-degré est au moins 7. Notre preuve
fournit aussi un algorithme polynomial pour trouver une b-coloration opti-
male de ces graphes.

Dans le Chapitre 4, nous montrons le même résultat pour les graphes
planaires extérieurs dont la maille est au moins 8. L’algorithme présenté
permet également de trouver une b-coloration optimale du graphe en temps
polynomial.

Dans le Chapitre 5, nous analysons le problème restreint au graphes blocs.
Nous construisons un graphe bloc pour lequel la différence entre χb(G) et
m(G) est arbitrairement grande. Puis, nous prouvons que le problème avec
un nombre de couleurs fixé peut être résolu en temps polynomial et nous
présentons certains cas où le problème de décision peut aussi être résolu
polynomialement.

Dans le Chapitre 6, nous montrons que χb(H) ≥ m(H)−1, lorsque H est
le produit cartésien d’un arbre par une châıne, ou d’un arbre par un cycle, ou



d’un arbre par une étoile. La preuve donne également un algorithme optimal
pour trouver une b-coloration optimale de H .

Dans le Chapitre 7, nous analysons les résultats de cette thèse.
Dans l’Annexe A, nous montrons un résultat sur les cactus minimaux qui

ne peuvent pas être colorés avecm(G) couleurs. Ce résultat peut ultérieument
aider a généraliser notre résultat sur les cactus pour les autres valeurs de
m(G).

Dans l’Annexe B, nous donnons les résumés en français de chacun des
chapitres de cette thèse.
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Chapter 1

Introduction

The graph colouring problems are amongst the most researched topics in
graph theory. In fact, there is a great variety of colouring problems (we
direct the reader to [24] for a survey on the subject), the most traditional
amongst them being the problem of properly colouring a graph with the
minimum number of colours, which is called chromatic number of G and
represented by χ(G). It is known that finding χ(G) is NP-hard, for a general
graph G. Thus, one may try to apply heuristics to find a good colouring of
G.

A well known heuristic is the greedy heuristic, where the vertices are iter-
ated in some order, v1, · · · , vn, and, at the i-th iteration, vertex vi is coloured
with the minimum colour that does not appear in N(vi) ∩ {v1, · · · , vi−1}.
Trivially, as finding the chromatic number of a graph is NP-hard, this heuris-
tic does not always produce an optimal colouring: for example, if P =
〈v1, v2, v3, v4〉 is an induced path and we colour P using the greedy heuristic in
the order v1, v4, v2, v3 we obtain a colouring with 3 colours. This motivated
Christen and Selkow to introduce the definition of Grundy number in [8],
which intuitively is the worst colouring that can be produced by the greedy
heuristic. More formally, the Grundy number is the maximum number of
colours for which there exists a proper colouring where each vertex coloured
with colour i is adjacent to at least one vertex coloured with colour j, for
every colour j ≤ i− 1.

Another approach could be to try to decrease the number of colours used
by an existing colouring. One way of doing this is to merge two colours that
have no edge between them. As with the greedy heuristic, one cannot expect
to obtain an optimal colouring with this heuristic, i.e., given a colouring Ψ

19



20 CHAPTER 1. INTRODUCTION

of G, it is not always possible to decrease the number of colours used in
Ψ with the described heuristic. Thus, Harary and Hedetniemi introduced
the notion of achromatic number in [16], which measures the worst existing
colouring that cannot be improved by merging two colours. More formally,
the achromatic number is the maximum number of colours for which there
exists a proper colouring where any two colours “see” each other (have an
edge between them).

Another idea is to try to improve an existing colouring by, instead of
trying to recolour all the vertices in a given colour class with the same colour,
just trying to recolour each vertex separately. That is, if we have a proper
colouring of G and there exists a colour c such that every vertex coloured
with c is non-adjacent to at least one other colour, we can then separately
change the colour of each vertex coloured with colour c, obtaining a proper
colouring that uses less colours than before. Related to this heuristic is
the parameter called b-chromatic number, introduced by Irving and Manlove
in [20], which is the subject of this thesis: a b-colouring of G is a proper
colouring of G such that every colour class contains at least one vertex that
sees every other colour (called a b-vertex ); the b-chromatic number χb(G)
of G is the maximum integer for which there exists a b-colouring of G with
χb(G) colours. Given a b-colouring ψ of G, a subset of V (G) containing
exactly one b-vertex of each colour is called a basis of ψ.

Observe that a b-colouring, as well as a colouring obtained with the greedy
heuristic, cannot be improved by merging two colours; thus the achromatic
number is an upper bound for both the Grundy number and the b-chromatic
number. However, the Grundy number has no relation with the b-chromatic
number; observe Figure 1.1 (the Grundy number is denoted by Γ(G) - this
figure appears in [20]).

G H

Figure 1.1: Γ(G) = 4 while χb(G) = 5, and Γ(H) = 3 while χb(H) = 2.

Naturally, a proper colouring of G with χ(G) colours is a b-colouring of
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G, since it cannot be improved; so, χ(G) ≤ χb(G). For an upper bound, note
that if G has a b-colouring with k colours, then G has at least k vertices with
degree at least k − 1 (the b-vertices). So, if m(G) is the largest integer such
that G has at least m(G) vertices with degree at least m(G) − 1, we know
that G cannot have a b-colouring with more than m(G) colours, i.e., χb(G) ≤
m(G); we call this parameter the m-degree of G and we say that a vertex
having degree at least m(G)−1 is dense. This upper bound is given by Irving
and Manlove in [20], where they showed that the difference between χb(G)
and m(G) can be arbitrarily large. As an example, consider the complete
bipartite graph Kn,n with parts A,B. Observe that m(Kn,n) = n + 1 and
suppose that χb(Kn,n) > 2. Then, there must exist at least two b-vertices
of different colour classes in a part of Kn,n, say u, v ∈ A are b-vertices of
colour classes c, c′, respectively, c 6= c′. We get a contradiction as u cannot
have a neighbour in the colour class c′ since all the neighbours of u are also
adjacent to v (hence, cannot be coloured with the same colour as v). So, we
have m(Kn,n) = n+ 1 and χb(Kn,n) = 2.

In their seminal paper, Irving and Manlove prove that the problem of
finding the b-chromatic number of a graph is NP-hard. Also, deciding if
χb(G) equals m(G) is NP-complete, even if G is either a bipartite graph
[28] or a distance-hereditary chordal graph [17] having exactly m(G) dense
vertices, each with degree m(G) − 1. However, Irving and Manlove show
that if T is a tree then the difference m(T ) − χb(T ) is at most one [20].
More precisely, they characterize the trees with χb(T ) < m(T ), calling them
“pivoted trees”, and prove that a pivoted tree T can be b-coloured with
m(T ) − 1 colours. Furthermore, they show that if T is a non-pivoted tree,
then T has a special set of dense vertices, called “good set”, that can play
the role of the basis of a b-colouring of T with m(T ) colours. Their proof
yields a polynomial algorithm that finds an optimal b-colouring of a tree.

Irving and Manlove’s result for trees made us wonder what kind of graphs
have the same property. A natural way of course is to investigate “tree-like”
graphs, i.e., graphs that have a tree structure, as, for example, cacti, block
graphs, k-trees, etc. In this thesis, we investigate the b-chromatic number
of cacti, outerplanar graphs, block graphs and the cartesian product of trees
and some other graph classes. Fortunately, we were able to find positive
answers for cacti and outerplanar graphs. However, we also found that the
difference between χb(G) and m(G) can be arbitrarily large for some “tree-
like” graphs, as we will see in Chapter 5; thus, the tree structure is not
sufficient for having χb(G) ≥ m(G) − 1. Note that, trivially, it is also not
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necessary, as any complete graph Kn has b-chromatic number n.
Although the focus of this thesis is purely theoretical, we mention that the

b-colouring can be used for clustering data sets [13] and automatic recognition
of documents [15].

In Chapter 2, we give the necessary definitions and notation and discuss
the state of art. We also discuss about the existence of pivots in the graph
classes studied in this thesis, present some existing results on the b-chromatic
number of graphs with no K2,3 as subgraph and state a conjecture about the
b-chromatic number of graphs with noK2,3 as subgraph. We then present the
algorithm of Irving and Manlove for finding the b-chromatic number of a tree.
The general idea of this algorithm, as well as some of its basic lemmas, will
be important in some of our proofs, specially in Chapter 6. We also remark
that Irving and Manlove’s algorithm actually works on any graph with girth
at least 11 (this is presented in the form of Corollary 2.18). Finally, we prove
that if G has girth at least 8 and has no good set, then χb(G) ≥ m(G)− 1.

In Chapter 3, we generalize the result on trees by Irving and Manlove
for the cacti with m-degree at least 7. We also give an algorithm that finds
an optimum b-colouring of such a cactus. In fact, we characterize the cacti
that do not have a good set and show some graphs that, although having a
good set, cannot be b-coloured with m(G) colours (we call them anomalous).
Then, we prove that if G does not have a good set or is anomalous, then
χb(G) = m(G) − 1. And finally we prove that if G has a good set and
m(G) ≥ 7 (thus G is not anomalous), then χb(G) = m(G). We conjecture
that if G has a good set and G is not anomalous, then χb(G) = m(G). It
remains to prove this for m(G) ≤ 6. Observe that, if this is true, then
χb(G) ≥ m(G) − 1, for all cactus G. In Appendix A, we prove that if
G is a minimal counter-example for this conjecture, then |D(G)| = m(G),
d(v) = m(G) − 1, for all v ∈ D(G), G ⊆ D(G) ∪ N(D(G)) and, for all
(u, v) ∈ E(G), at least one between u and v is a dense vertex.

In Chapter 4, we show that if G is an outerplanar graph with girth at
least 8, then χb(G) ≥ m(G) − 1 and we also give a polynomial-time algo-
rithm to find an optimal b-colouring of G. Note that every cactus is also an
outerplanar graph; thus, this result generalizes the result presented in Chap-
ter 3, but only to cacti with girth at least 8. The complexity of the proof
presented in Chapter 3 shows us that it might require a much higher effort to
generalize the result presented in Chapter 4 for general outerplanar graphs.
Furthermore, as pointed out in Section 5.1, this result cannot be generalized
for series-parallel graphs, which is a superclass of outerplanar graphs.
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In Chapter 5, we show an example of a block graph G for which the
difference m(G) − χb(G) is unbounded. Our construction can alternatively
yield a claw-free block graph or a series-parallel graph. Then, we prove that
the fixed parameter decision problem is polynomially solvable. Also, given a
subsetW of cardinality k such that d(u) ≥ k−1, for all k ∈ W , we prove that
the difficulty in obtaining a b-colouring with basis W lies on the existence
of a special type of vertex, called side vertex. Finally, we show a special
case where we can decide if χb(G) ≥ k, k given as the input and G being a
claw-free block graph (i.e., the line graph of a tree).

Let T @ G denote the cartesian product of graphs T and G. In Chapter
6, we prove that if T is a tree and G is a path of length greater than 4, or a
cycle of length greater than 3 or a star, then χb(G@ T ) ≥ m(G@ T )− 1. We
also give polynomial-time algorithms to find optimal b-colourings of those
graphs.

In Chapter 7, we present the cases left open in this thesis and discuss our
perspectives.
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Chapter 2

Definitions, notation and basic
results

Consider G to be an undirected simple graph and denote by V (G), E(G)
the sets of vertices and edges of G, respectively (or simply V and E, if there
is no ambiguity). We denote the neighbourhood of u ∈ V by N(u), the set
N(u) ∪ {u} by N [u] and the value |N(u)| by d(u) ; also, if X ⊆ V , then
NX(u) represents the set N(u)∩X . The minimum degree of a vertex of G is
denoted by δ(G), while the maximum degree is denoted by ∆(G). A subgraph
of G is a graph H such that V (H) ⊆ V (G) and E(H) ⊆ E(G); and, given
X ⊆ V (G), the subgraph of G induced by X is the graph G[X ] = (X,EX),
where (u, v) ∈ EX if and only if u, v ∈ X and (u, v) ∈ E(G). Let v1, vq ∈
V (G), v1 6= vq; a path between v1 and vq in G (also called a v1, vq-path) is a
sequence of vertices 〈v1, · · · , vq〉 where (vi, vi+1) ∈ E(G), for i = 1, · · · , q−1,
and vi 6= vj , for all 1 ≤ i 6= j ≤ q; this path is a cycle of G if (v1, vq) ∈ E(G).
The length of a path or cycle equals the number of edges in the path or cycle.
The girth of a graph G is the length of a shortest cycle in G. A graph is
connected if there exists a path between every pair of vertices of G; otherwise,
it is disconnected. A graph with no cycles is called a forest and a connected
forest is called a tree. A connected component of a graph G is a maximal
connected subgraph of G. A path or cycle is called induced if there are no
other edges apart from the ones that define the path or cycle; if it is not
the case, these additional edges are called chords . The induced path with k
vertices is denoted by Pk , while the induced cycle with k vertices is denoted
by Ck. The distance between u and v is the length of a minimum induced
path with extremities u and v; we denote this value by dist(u, v) and if there

25
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is no such path (u and v are in different connected components), we write
dist(u, v) =∞.

A graph G is complete if it has an edge between all pair of vertices. A
subset C ⊆ V (G) is called a clique of G if G[C] is complete. The complete
graph with n vertices is denoted by Kn. A subset S ⊆ V (G) is a stable set if
there is no edge between any two vertices of S. A bipartite graph is a graph
G with vertex set U ∪ V where U and V are stable sets. A bipartite graph
G = (U ∪ V,E) is said to be complete bipartite graph if it has an edge (u, v)
for all pair u ∈ U, v ∈ V ; if p = |U | and q = |V |, we denote G by Kp,q. A
star is the complete bipartite graph K1,q, q ≥ 2.

Let X ⊆ V (G); we denote by G−X the graph G[V \X ] (if X = {x}, we
write G−x). A cut-vertex is a vertex of G such that G−x is not connected.

A (proper) colouring of G is an assignment of colours to the vertices of
G such that no two adjacent vertices have the same colour. The chromatic
number of G is the minimum integer χ(G) such that G has a proper colouring
with χ(G) colours. In a proper colouring, the colour class of a colour c is the
set of vertices of G coloured with colour c.

A vertex u in colour class C of a proper colouring ψ is said to be a b-
vertex of C in ψ if u has at least one neighbour in each colour class other
than C. A proper colouring ψ with k colours is a b-colouring of G if each
colour class contains at least one b-vertex. The b-chromatic number of G is
the largest integer χb(G) such that G has a b-colouring with χb(G) colours.
Given a (partial) colouring ψ of G, we denote the colour of a vertex u ∈ V
in this colouring by ψ(u) ; if u is not coloured, we write ψ(u) = ∅. Also, if
X ⊆ V , we denote by ψ(X) the set of colours {ψ(x) : x ∈ X}.

If ψ is a b-colouring of G = (V,E) with k colours and W ⊆ V contains
exactly one b-vertex of each colour class of ψ, then W is said to be a basis
of ψ; conversely, if W is the basis of some b-colouring of G, then we say that
W is a |W |-basis. We recall that χ(G) ≤ χb(G) ≤ m(G), where m(G) is
the m-degree of G; that is the largest integer such that G has at least m(G)
vertices with degree at least m(G)− 1. A vertex u ∈ V is said to be a dense
vertex of G if d(u) ≥ m(G)− 1 and the set of dense vertices of G is denoted
by D(G). Also, more generally, if k is a positive integer, we say that u is
k-dense if d(u) ≥ k − 1 and denote by Dk(G) the set of all k-dense vertices
of G.

Let G be any graph. A block of G is a maximal 2-connected component
of G (i.e., a maximal subgraph not containing a cut-vertex). In this thesis,
we study the b-colouring of three graph classes that can be described by the
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types of their blocks: the cacti , where each block is either an edge or an
induced cycle; the outerplanar graphs, where each block is a planar graph
where all the vertices are in the external face; and the block graphs , where
each block defines a clique.

Given two graphs F,G, the cartesian product of F and G, denoted by
F @ G, is the graph H = (V ∗, E∗), where uv ∈ V ∗, for every u ∈ V (F ) and
v ∈ V (G), and (uv, xy) ∈ E∗ if and only if either (u = x and (v, y) ∈ E(G)),
or (v = y and (u, x) ∈ E(F )).

In Section 2.1, we give an overview of the existing results on b-colouring.
In Section 2.2, we present the concept of pivot used to colour a tree and
discuss the existence of pivots in other tree-like graphs. In Section 2.3, we
present some existing results on the b-chromatic number of graphs with no
K2,3 as subgraph and state a conjecture on those graphs. In Section 2.4, we
explain how to extend a certain partial colouring of G to a b-colouring of
G. In Section 2.5, we present the algorithm from [20] for trees and remark
that it also work for graphs with girth at least 11. Finally, in Section 2.6,
we prove that if G is a graph with girth at least 8, then a good set of G can
be found in polynomial time, if one exists; otherwise (i.e. G does not have a
good set), we prove that χb(G) = m(G)− 1.

2.1 State of Art

The concepts of b-colouring and b-chromatic number were introduced by Irv-
ing and Manlove in [20], where they also proved that finding the b-chromatic
number of a graph is NP-hard. Also, Kratochv́ıl, Tuza and Voigt [28] show
that deciding if χb(G) = m(G) is NP-complete, even if G is a bipartite graph
with exactly m(G) dense vertices, each with degree m(G) − 1. A similar
result is proven by Havet, Linhares and Sampaio [17] for distance-hereditary
chordal graphs. Concerning the approximation variant of the problem, Cor-
teel, Valencia-Pabon and Vera [9] proved that there is no constant ǫ > 0
for which the b-chromatic number can be approximated within a factor of
(120/113)− ǫ in polynomial time, unless P=NP.

The b-chromatic number restricted to some graph classes has then been
studied. Exact values were done for power graphs of complete caterpillars
[10], power graphs of paths [12], power graphs of complete k-ary trees [11],
Kneser graphs K(n, k) for some values of n and k [22], hypercubes [26] and
cubic graphs [25]. In [3], Bonomo et al. give a polynomial-time algorithm



28 CHAPTER 2. DEFINITIONS, NOTATION AND BASIC RESULTS

to find the b-chromatic number of cographs and P4-sparse graphs. Recently,
Campos et al. [6] generalized this result for (q, q − 4) graphs [1], for fixed
q. Lower and/or upper bounds for the b-chromatic number can be found
for power graphs of cycles [12], cartesian product of complete graphs [7, 23],
vertex deleted subgraphs [32], d-regular graphs [4, 2, 33], K1,s-free graphs
and bipartite graphs [27]. Also, Kouider and Zaker give upper bounds for
the b-chromatic number of general graphs depending on the clique number
and clique partition number [27].

The b-chromatic number of cartesian products has been investigated for
complete graphs [7, 23] and stars, paths and cycles [14, 26]. In [26], Kouider
and Mahéo prove that χb(G @ H) ≥ χb(G) + χb(H) − 1 when both G and
H have optimal b-colourings for which the basis are stable sets. Also, the
b-chromatic number of the strong product, lexicographic product and direct
product of two graphs is considered in [21].

Given a graph G, it is known that there does not necessarily exist a
b-colouring of G with k colours for all value k ∈ {χ(G), · · · , χb(G)}. For
example, the cube can be b-coloured with 2 and 4 colours, but not with
3 colours. In his thesis, Faik [14] introduced the concept of b-continuous
graphs: a graphG is b-continuous if G can be b-coloured with k colours for all
k ∈ {χ(G), · · · , χb(G)}. He proves that deciding if a graph G is b-continuous
is NP-complete, even if G is a bipartite graph and both its chromatic and b-
chromatic numbers are known. He also investigates the b-continuity of some
graph classes. In particular, he proves that chordal graphs are b-continuous.
Other graph classes known to be b-continuous are the Kneser graphs K(n, 2)
with n ≥ 17 [22] and the P4-sparse graphs [3].

Hoáng and Kouider [18] introduced and studied the b-perfect graphs (a
graph G is b-perfect if χb(H) = χ(H) for all induced subgraph H of G) and
recently Hoáng, Maffray and Mechebbek [19] characterized all the b-perfect
graphs by forbidden induced subgraphs.

The b-colouring and b-chromatic notions have also been used in data
clustering [13] and in the automatic recognition of documents [15].

2.2 Pivots

Irving and Manlove proved that χb(T ) ≥ m(T ) − 1, where T is a tree [20].
Actually, they show that χb(T ) = m(T )−1 if and only if there exists a special
vertex that they called pivot. In this section, we give their definition of pivot
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(here we use the term encircled vertex), present some properties that will be
used later in the text and discuss the existence of pivots in the graph classes
studied in this thesis. We generalize the definitions and some results in [20]
to apply for any positive integer k, not only for m(G). This will be useful in
some of our proofs, especially in Chapters 5 and 6.

Let W ⊆ Dk(G) with cardinality k and let u ∈ V (G) \ W . If either
v ∈ W is a neighbour of u or there exists some w ∈ NW (u) ∩ NW (v) such
that d(w) = k − 1, then we say that v is reachable from u within W and
that w, if it exists, is a (u, v)-bridge in W . We say that W encircles vertex
u ∈ V \W if every v ∈ W is reachable from u.

Proposition 2.1. Let W ⊆ Dk(G) with cardinality k and suppose W en-
circles a vertex u ∈ V \W of degree less than k. Then, |NW (u)| ≥ 2 and
|W \N(u)| ≥ 1.

Proof: Since d(u) < k = |W |, there is a vertex v in W \ N(u). As v must
be reachable from u within W , there exists a vertex w ∈ NW (v) ∩ N(u)W

with degree k − 1. If w is the only neighbour of u in W , then, since W
encircles u, all vertices of W \ w must be adjacent to w; but then d(w) ≥ k,
a contradiction. So u has at least two neighbours in W . �

Proposition 2.2. Let T = (V,E) be a tree and W ⊆ V be a subset with
cardinality at least 2. Then, there exists at most one vertex u ∈ V \W such
that |NW (u)| ≥ 2 and W ⊆ N(u) ∪N(NW (u)). �

The propositions above gives us that W encircles at most one vertex if
the graph being treated is a tree. We say that W is a good set if W does not
encircle any vertex and every v ∈ V \W with degree at least |W | is adjacent
to some w ∈ W with degree |W | − 1. If G does not have any good set of
cardinality m(G), then G is called a pivoted . In [20], Irving and Manlove
proved the following:

Lemma 2.3. Let T be a tree. Then T is pivoted if and only |D(T )| = m(T )
and D(T ) encircles a vertex u ∈ V (T ) \D(T ).

Lemma 2.4. Let G be a graph, and let W ⊆ Dk(G) be a set of cardinality k
that encircles some vertex u ∈ V \W of degree less than k. Then W is not
a k-basis of G.
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Proof: Suppose on the contrary that W is the basis of a b-colouring of G
with k colours. Let W = {v1, . . . , vk} and assume that vi has colour i, for
each i = 1, . . . , k. If a vertex vi ∈ W is adjacent to u, then clearly u is
not coloured i. On the other hand if vi is not adjacent to u, then, since u
is encircled by W , there is a vertex w ∈ W with d(w) = k − 1 that is a
neighbour of u and vi. Since w itself must be a b-vertex, and its degree is
exactly k− 1, its neighbours must all have distinct colours, so u cannot have
colour i. In summary, u cannot have any colour, a contradiction. �

Theorem 2.5. Let T be a tree. If T has a good set, then χb(T ) = m(T );
otherwise, χb(T ) = m(T )− 1.

In Chapters 4 and 6, we prove that the theorem above also holds for
outerplanar graphs with girth at least 8 and the cartesian product of trees
by paths, cycles or stars. However, if G is outerplanar and we allow cycles
of length less than 8, even if the blocks are either edges or induced cycles
(hence, G is a cacti), the existence of a good set is not sufficient for having
χb(G) = m(G). As an example, observe Figure 2.1. Note that m(G) =
|D(G)| = 5 and that D(G) does not encircle any vertex (the neighbours of
v in D(G) are not reachable from neither x nor y as d(v) = 5 > m(G)− 1).
If we colour the dense vertices with the represented colours, vertex v cannot
be a b-vertex as none of its uncoloured neighbours (vertices x and y) can be
coloured with 1.

1 2

3

5

4

y

x

v

Figure 2.1: Example of a cacti G that has a good set of cardinality m(G)
but cannot be b-coloured with m(G) colours.
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Nevertheless, we characterize all cacti with m-degree at least 7 that can-
not be b-coloured with m(G) colours and show that they have at most two
“pivots” and those are symmetric. We already knew that the analogue of
Theorem 2.5 for block graphs is not valid. However, the known construc-
tion of block graphs with large difference m(G)−χb(G), mentioned to me by
Frédéric Maffray, had the property that the “pivots” were all within the same
clique. We then asked ourselves if this was always the case and arrived to
the conclusion that it is not. The construction presented in Chapter 5 gives
us block graphs with large difference m(G) − χb(G) and with a number of
disjoint cliques containing “pivots” as large as that difference. Nevertheless,
in Chapter 5 we solve the decision problem for some special cases and these
cases also show the existence of a somewhat local structure (that can be
seen as pivots) that makes it difficult to b-colour the graph with the desired
number of colours. This suggests that these pivots may exist for the general
case and could be characterized. However, even if we can characterize the
existence of these pivots in the graph, it may be hard to recognize them.
We note that deciding if χb(G) = m(G) is NP-complete for chordal distance-
hereditary graphs (which is a super class of block graphs), even if the graph
G has exactly m(G) dense vertices, each with degree m(G)− 1 [17].

2.3 Graphs with no K2,3 as subgraph

As mentioned in the previous section, in Chapter 5 we will construct a block
graph G for which the difference m(G) − χb(G) is arbitrarily large. This
construction requires G to have a big complete bipartite subgraph. Other
known constructions also require this. For example, the complete bipartite
graph G = Kp,q itself is such that m(G) = min{p, q}+1 and χb(G) = 2; also,
Faik [14] gave a construction of an interval graph G where χb(G) ≤ m(G)−p
and G has a subgraph K2p−1,3p−4, p ≥ 2. When we first observed this,
we conjectured that graphs with no K2,3 as subgraph would have χb(G) ≥
m(G)− 1 (observe that trees, cacti and outerplanar graphs are contained in
this class). However, it does not hold for C3 @ C3 as shown in the following
proposition (this is shown as a remark in [23]).

Proposition 2.6. χb(C3 @ C3) = 3.

Proof: Denote C3 @C3 by H and the vertex on the i-th row and j-th column
by vi,j. Suppose that χb(H) ≥ m(H)− 1 = 4. We can suppose that v1,1 and
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v1,2 are b-vertices (there must be two in the same row) and are coloured 1 and
2, respectively. If χb(H) = 5, as d(v1,1) = 4, we can assume that v1,3, v2,1, v3,1
are coloured 3, 4 and 5, respectively (observe Figure 2.2.(a)). But then, as
v1,2 is also a b-vertex, we must have v2,2, v3,2 coloured 5 and 4, respectively.
We get a contradiction as there is no b-vertex of colour 4: v2,1 and v3,2 cannot
be b-vertices (colour 5 is repeated in their neighbourhood) and neither v2,3
nor v3,3 can be coloured with 4. Now, consider χb(H) = 4. Assume, without
loss of generality, that v1,3, v2,1 are coloured 3 and 4, respectively (observe
Figure 2.2.(b)). Then, v3,2 must be coloured 4 and, as no other vertex can
be coloured 4, then v1,3 cannot be a b-vertex. If v2,2 is a b-vertex of colour
3, then v2,3 is coloured 1 and, as neither v3,1 nor v3,3 can be coloured 1, we
get v3,2 cannot be a b-vertex. Hence, v2,1 must be a b-vertex of colour 4 and,
consequently, v3,1 is coloured 2. We then have situation in Figure 2.2.(b),
where there is no colour with which we can colour v3,3, a contradiction. In
the case where v3,1 is a b-vertex of colour 3, one can verify that we get an
analogous situation. Finally, as χb(H) ≥ ω(H) = 3, the result follows. �

(a) (b)
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Figure 2.2: Cartesian product H = C3 @C3 is such that χb(H) < m(H)− 1.

Thus, χb(C3 @ C3) < m(C3 @ C3) − 1 and the conjecture does not hold.
Nevertheless, the conjecture seems to work in a great number of cases, such
as for trees, the ones presented in this thesis and the ones cited below.

Theorem 2.7 (Faik[14]). Let H = Pn1
@ Pn2

@ · · · @ Pnk
, ni ≥ 6, for every

i = 1, · · · , k. Then χb(H) = m(H). The same is valid for the cartesian
product of k cycles of length at least 6.

Let H = Pn1
@Pn2

@· · ·@Pnk
as in the theorem above. It is actually proven

that χb(H) = 2k+1. However, as ∆(H) = 2k and 2k+1 = χb(G) ≤ m(H) ≤
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∆ + 1, we have that m(H) = 2k + 1. One can also verify that the values
in the theorem below are at least m(G) − 1, where G is the corresponding
graph.

Theorem 2.8 (Kouider, Mahéo[26]). The following are valid:

• χb(K1,n @K1,n) = n+ 2, if n ≥ 2;

• χb(K1,n @ Pk) = min{k, n + 3}, n ≥ 3, k ≥ 4, except when k = n + 3
or k = n+ 4, when χb(K1,n @ Pk) = n+ 2;

• χb(Q1) = χb(Q2) = 2 and χb(Qn) = n + 1, for n ≥ 3, where Qn is the
hypercube with dimension n;

• χb(Cn @Cn′) = χb(Cn@Pk) = χb(Pk @Pk′) = 5, n, n′ ≥ 6 and k, k′ ≥ 7.

Theorem 2.9 (Kouider, Mahéo[26]). Let G and H be graphs such that G has
a χb(G)-basis WG and H has χb(H)-basis WH where WG and WH are stable
sets. Then χb(G@H) ≥ χb(G)+χb(H)−1 and G@H has a χb(G@H)-basis
that is a stable set.

The following corollary extends the result of Theorem 2.7 to the cartesian
product of some paths of size smaller than 6.

Corollary 2.10. Let H = Pp @ Pq @ Pk. If k ≥ 7 and either p ≥ q ≥ 5 or
p = 4 and q ≥ 7 or p = 3 and q ≥ 11, then χb(H) = m(H).

Proof: Let Pk = {a1, a2, · · · , ak}, k ≥ 7. Trivially, χb(Pk) = m(Pk) = 3 and
if we give the colours 1, 2, 3, 1, 2, 3, · · · to a1, a2, a3, · · · , ak in this order, we
obtain a b-colouring with 3 colours with basis {v2, v4, v6}, which is also a
stable set. Now, consider H ′ = Pp@Pq and denote the vertex on the i-th row
and j-th column of H ′ by vi,j. As ∆(H ′) = 4, we have m(H ′) = 5. If p, q ≥ 5,
observe that the colouring presented in Figure 2.3 can be easily extended to
a b-colouring of H ′ with 5 colours (every remaining uncoloured vertex has
degree at most 4 and we already have the b-vertices needed). Also, the stable
{v2,2, v2,4, v3,3, v4,2, v4,4} is a basis of this b-colouring. Analogously, if p = 3
and q ≥ 11, the precolouring presented in Figure 2.5 can be extended to
a b-colouring with basis {v2,2, v2,4, v2,6, v2,8, v2,10}, and if p = 4 and q ≥ 7,
the precolouring in Figure 2.4 can be extended to a b-colouring with basis
{v2,2, v2,4, v2,6, v3,3, v3,5}. Finally, note that m(H) = 7 (as ∆(H) = 6 and



34 CHAPTER 2. DEFINITIONS, NOTATION AND BASIC RESULTS

1 2

54

1

2

5

4

1

3

3

4

3

3

5

2

3

Figure 2.3: Partial colouring of P5 @ P5 with m(P5 @ P5) = 5 colours; the
grey vertices are b-vertices.

1

2

3

4

5

2

3

45

5

2

1

2

3

4

1 3

Figure 2.4: Partial colouring of P4 @ P7 with m(P4 @ P7) = 5 colours; the
grey vertices are b-vertices.
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Figure 2.5: Partial colouring of P3 @ P11 with m(P3 @ P11) = 5 colours; the
grey vertices are b-vertices.
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there are more than 6 vertices with degree 6) and, by Theorem 2.9, χb(H) =
7. �

In [33], Sahili and Kouider pose the question: Is it true that every d-
regular graph with girth at least 5 satisfies χb(G) = d + 1? Observe that
this question has the same general form as our conjecture: a d-regular graph
G with girth at least 5 has no K2,3 as subgraph and m(G) = d + 1. Un-
fortunately, the Petersen graph gives the answer no to the question. This
counter-example was shown by Blidia, Maffray and Zemir in [2], where they
also conjecture that:

Conjecture 2.11 ([2]). If G is a d-regular graph with girth at least 5 and G
is not the Petersen graph, then χb(G) = d+ 1.

Some partial positive answers to this conjecture can be found in [4], [2]
and [33]. All these results on graphs with no K2,3’s as subgraphs, as well as
the results presentend in this thesis, indicate that there may be still some
hope for our initial guess. We then make the following conjecture. (We
remark that the Petersen graph is not a counter-example to our conjecture,
as it can be b-coloured with 3 colours and has m-degree 4.)

Conjecture 2.12. If G is a graph that does not have a K2,3 as subgraph, not
necessarily induced, and G 6= C3 @ C3, then χb(G) ≥ m(G)− 1.

Observe that ifG andH have noK2,3 subgraphs (not necessarily induced),
then so does G @H . This motivated us to investigate the cartesian product
of trees by other graphs with no K2,3 subgraphs. We found that if T is a tree
and G is either the path Pk, k ≥ 5, or the cycle Cq, q ≥ 4, or the star K1,r,
r ≥ 2, then χb(T @ G) ≥ m(T @ G)− 1. The proofs of these results are the
subject of Chapter 6.

Finally, we mention, and disproove, a conjecture proposed by Havet, Lin-
hares and Sampaio in [17]. A graph G is a tight graph if |D(G)| = m(G) and
d(v) = m(G)− 1, for all v ∈ D(G).

Conjecture 2.13. Let G be a tight graph such that:

• For every edge (u, v) ∈ E(G), one of its endpoints is dense, and the
other is non-dense, and

• |N(u) ∩N(v)| ≤ 1, for all pair of vertices u, v ∈ D(G), u 6= v.
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Then, χb(G) = m(G).

We construct a class of graphs that violate the above conjecture. Let m
be any positive integer greater than 3. We construct Gm as follows: let W =
{w1, · · · , wm}, X = {x2, · · · , xm}, Y = {y3, · · · , ym} and S3

m−4, · · · , S
m
m−4 be

a collection of m − 2 disjoint stable sets of size m − 4. Gm has vertex set
equal to

⋃m

i=3 S
i
m−4 ∪W ∪X ∪ Y ∪ {x} and edge set such that:

N(wi) = Sim−4 ∪ {x, xi, yi}, ∀i ∈ [3, m]

N(w1) = {x2, · · · , xm}

N(w2) = {x2, y3, · · · , ym}

We have that d(x) = m − 2, d(xi) = 2, for i = 2, · · · , m, d(yi) = 2,
for i = 3, · · · , m, d(y) = 1, for all y ∈

⋃m

i=3 S
i
m−4, and d(wi) = m − 1, for

i = 1, · · · , m. Thus, Gm is a tight graph with m(Gm) = m. Also, it is easy to
verify that W and V (Gm) \W are stable sets and that |N(wi)∩N(wj)| = 1,
for all pair of vertices wi, wj ∈ W , i 6= j. So, Gm satisfies the constraints of
Conjecture 2.13. Suppose that the conjecture holds and let ψ be an optimal
b-colouring of Gm. As Gm is tight, we know that W is a basis of ψ and
that there is no b-vertex in V (Gm) \ W (i.e., W is the only basis of ψ).
Assume, without loss of generality, that ψ(wi) = i, for all i ∈ {1, · · · , m}.
As ψ is proper and W \ {w1, w2} ⊆ N(x), we have that ψ(x) ∈ {1, 2};
without loss of generality, suppose that ψ(x) = 1. As d(wi) = m− 1, for all
i ∈ {3, · · · , m}, we have that x is the only neighbour of wi coloured with 1.
Thus, as ψ(x2) 6= 1 and ψ(yi) 6= 1, for all i ∈ {3, · · · , m}, we have that w2

has no neighbour coloured with colour 1, a contradiction. We remark that
χb(Gm) = m − 1. It suffices to b-colour Gm \ N [w1] with m − 1 colours,
obtaining ψ, then give colour ψ(w2) to w1, ψ(w3) to x2 and ψ(yi) to xi, for
i ∈ {3, · · · , m}. Observe the example in Figure 2.6, where m = 5 (the stable
sets Sim−4’s are not represented as they can be coloured separatedly so that
vertices w3, w4 and w5 are b-vertices). So, Gm does not violate Conjecture
2.12.

2.4 Extending a precolouring

Let W ⊆ V . We say that a path P between u, v ∈ W is a link of W if P has
length at most three and every internal vertex of P is not in W . If x /∈ W is
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Figure 2.6: Precolouring G5 with 4 colours.

in a link, we say that x is a link vertex of W (this definition is the same as
inner vertex given in [20]) and if there exists a link between u, v ∈ W , we say
that u and v are linked . We denote the set of link vertices of W by LW and
the set of extremities of links passing through x ∈ LW by LW (x). If there
is no ambiguity, we use only L and L(x). Note that |L(x)| ≥ 2 and observe
also that if u ∈ NW (x) and w ∈ L(x) \ {u}, then there is a link between u
and w containing x (and hence NW (x) ⊆ LW (x)).

Let G = (V,E) be any graph and W ⊆ Dk(G) of cardinality k. Let
ψ be a proper partial colouring of G with k colours where every vertex of
W has a different colour in {1, · · · , k} and consider w ∈ W ; we say that
a colour c is repeated in N(w) if there is more than one vertex in N(w)
coloured with c; the redundancy of ψ in N(w) is the value rψ(w) = |{u ∈
N(w) : ψ(u) 6= ∅}| − |ψ(N(w))| (number of coloured neighbours of w minus
number of different colours appearing in the neighbourhood of w); and the
missing colours of w in ψ are colours in the setMψ(w) = {1, · · · , k}\ψ(N [w])
(sometimes we may use only r(w) and M(w), if there is no ambiguity). A
proper partial colouring ψ of G is called an unsaturated precolouring of G
with candidate set W if:
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• Each vertex of W is coloured with a different colour; and

• r(w) ≤ d(w) + 1− |W |, for all w ∈ W .

The following lemma will be of use in the construction of an unsaturated
precolouring in the next chapters.

Lemma 2.14. Let ψ be an unsaturated precolouring with candidate set W .
Then, u has at least Mψ(u) uncoloured neighbours, for all u ∈ W .

Proof: Suppose that ψ is such a precolouring and consider an ordering of W ,
v1, · · · , vk, where vi is coloured with colour i. For each vi ∈ W , let Ui be the
set of uncoloured neighbours of vi. We want to prove that |Ui| ≥ |M(vi)|, for
all vi ∈ W . So, consider any vi ∈ W and denote by s the value |ψ(N(vi))|. As
ψ is unsaturated, we have: r(vi) ≤ d(vi)+ 1− k; so, (I) k− 1 ≤ d(vi)− r(vi).
In addition: (II)|M(vi)| = k − s − 1 (number of missing colours equals
number of colours, minus number of colours present in N(vi), minus colour
i) and (III) |Ui| = d(vi) − (s + r(vi)) (number of uncoloured neighbours
equals number of neighbours minus number of coloured neighbours). So:
|Ui| =(III) d(vi)− r(vi)− s ≥(I) k − 1− s =(II) |M(vi)|. �

Note that if all the vertices are coloured in an unsaturated b-precolouring
with candidate setW , then this is also a b-colouring of G with basisW . This
is true because there are no uncoloured vertices in the neighbourhood of a
vertex u ∈ W and, by Lemma 2.14, Mψ(u) = ∅, for all u ∈ W .

Now, let ψ be an unsaturated precolouring with candidate set W . We
show how to obtain a b-colouring of G from ψ, when W and ψ satisfy some
constraints.

Lemma 2.15. Let W be such that |W | = k and every vertex not in W with
degree at least k is a link vertex of W or is adjacent to a vertex in W with
degree k − 1. Also, let ψ be an unsaturated precolouring of G with candidate
set W such that all link vertices of W are coloured. Then we can extend ψ
to a b-colouring of G with basis W .

Proof: Start by “uncolouring” every vertex which is not in W ∪ N(W ).
Define an ordering v1, · · · , vk of W such that ψ(vi) = i and let Ui be the set
of uncoloured neighbours of vi, i = 1, · · · , k. Now, let u ∈ Ui. As all link
vertices are coloured, the only vertex in W adjacent to u is vi. In addition,



2.5. TREE STRATEGY 39

note that if u′ ∈ V \W is in a link between vj , vl ∈ W , then u′ is adjacent
to at least one between vj and vl. Suppose, without loss of generality, that
it is adjacent to vj . So, if u ∈ N(u′), then j = i, otherwise u is in the link
〈vi, u, u′, vj〉, a contradiction as u is uncoloured. Thus, the only coloured
neighbours of u is vi and possibly some u′ ∈ N(vi); then, u can be coloured
with a missing colour in N(vi). So, we colour |M(vi)| arbitrary uncoloured
neighbours of vi, for every vi ∈ W (we know that |Ui| ≥ |M(vi)|, by Lemma
2.14). After taking this step for every vi, we have that each vi is already
a b-vertex. Obviously, every vertex in W with degree k − 1 has all of its
neighbours already coloured. Thus, if u is still uncoloured, then d(u) ≤ k−1
and there exists some colour that does not appear in the neighbourhood of
u, with which we can colour u. So, we can colour the uncoloured vertices
recursively until we obtain a proper colouring with k colours where each vi
is a b-vertex. This proves the lemma. �

Note that if W is a good set, then the constraint over W in the lemma
above is satisfied.

2.5 Tree Strategy

In this section, we explain how to colour a tree using the algorithm presented
in [20]. Actually, we present the algorithm in a more general form in order
to be able to use it as a procedure in some of our proofs. As a result, we can
see that it actually works for any graph with large girth. We also point out
some properties that can be ensured by the algorithm.

Let T = (V,E) be a forest and consider W ⊆ Dk(G) of cardinality
k. Number the vertices of W , v1, · · · , vk, and colour vi with colour i, i =
1, · · · , k; let ψ be the obtained partial colouring. First, we want to colour
the link neighbours of vi, for all vi ∈ W such that |NL(vi)| ≥ 2. So, consider
vi and let NL(vi) = {x1, · · · , xs}, s ≥ 2. Suppose, without loss of generality,
that x1, · · · , xp are uncoloured, while xp+1, · · · , xs are already coloured, 1 ≤
p ≤ s. If p ≥ 2, let vij ∈ L(xj) \ {vi}, for 1 ≤ j ≤ p; permute the colours
〈i1, · · · , ip〉 on the vertices x1, · · · , xp in such a way that, at the end, ψ(xj) 6=
ij , for j = 1, · · · , p. Otherwise (i.e., p = 1), give colour j to x1, for any
vj ∈ L(x2) \ {vi}. Note that the following property holds:

Link Property (LP): if x ∈ L is coloured with i, then there exists
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vj ∈ NW (x) such that vi and vj are linked.

Note that the only constraints imposed over T andW are that T is acyclic
and W has cardinality k. It is easy to see that if T has girth greater than 10,
the procedure above can still be applied. At the end, we obtain a precolouring
satisfying (LP) where r(vi) = 0, for all vi ∈ W , and NL(vi) is coloured, for
all vi ∈ W such that |NL(vi)| ≥ 2. Now, let x ∈ L be still uncoloured; we
know that NL(vi) = {x}, for all vi ∈ NW (x). If x has a link neighbour y,
then let vi ∈ N

W (y); trivially, ψ(y) 6= i and, as we will see, we can suppose
that (1) no other link neighbour of x is coloured with colour i. Also, as T
is acyclic and vj has no other link neighbours, for all vj ∈ NW (x), we have
that colour i does not appear in N(vj). Thus, we give colour i to x; note
that assumption (1) can be made if we colour every uncoloured link vertex
having some link neighbour in this way. Also, note that (LP) still holds and
that, again, if T has girth greater than 10, the procedure still produces an
unsaturated precolouring of T with k colours.

Finally, we want to colour any vertex x ∈ L such that x has no neighbour
in L and is the only link neighbour of vi, for every vi ∈ NW (x). We need to
make an assumption about the set W ; we suppose that it does not encircle
any vertex. Thus, we know that there must exist a vertex vi ∈ W not
reachable from x and we can colour x with i. Since NL(x) = ∅ and vi /∈ N(x),
the colouring is still proper; also, if there exists vj ∈ N(x)∩N(vi)∩W , as vi
is not reached by x, we must have d(vj) > k−1 and 1 = r(vj) ≤ d(vj)−k+1.
So, the following lemma holds:

Lemma 2.16. Let T = (V,E) be a forest andW ⊆ Dk(G) be such that |W | =
k and W does not encircle any vertex. Then, there exists an unsaturated
precolouring with candidate set W such that LW is coloured. In addition, if
ψ(x) = i, for x ∈ L, then either (LP) holds, or NL(x) = ∅ and NL(v) = {x},
for all v ∈ NW (x).

The following remark will be used in Chapter 6.

Remark 2.17. In Lemma 2.16, ifW * N(u)∪N(NW (u)), for all u ∈ V \W ,
we can also ensure that no colour is repeated in N(v), for all v ∈ W .

Observe that, although the obtained precolouring is an unsaturated pre-
colouring of T with candidate setW , it cannot always be extended by Lemma
2.15 as there may exist vertices with degree greater than or equal to |W | that
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are not link vertices and are not adjacent to any vertex of W with degree
|W | − 1. However, we know the lemma can be applied when W is a good
set. In the next section, we prove that if G has girth at least 8, then a good
set of G can be found in polynomial time, if one exists; otherwise, we prove
that χb(G) = m(G)− 1. As a consequence, we have the following.

Corollary 2.18. Let G be a graph with girth at least 11. If G does not have
a good set, then χb(G) = m(G)− 1; otherwise, χb(G) = m(G). Furthermore,
an optimal b-colouring of G can be found in polynomial time.

2.6 Graphs with no good set and large girth

The main result of this section is the following.

Theorem 2.19. Let G be a graph with girth at least 8. Suppose that G has
no good set. Then χb(G) = m(G)− 1.

It is easy to check in polynomial time if a given set W encircles any
vertex x. On the other hand, D(G) may in general contain exponentially
many subsets of size m(G). In the following lemma, we show that we can
determine whether a good set exists by testing only a few subsets of D(G).

Lemma 2.20. Let G be a graph with girth at least 8. Then G does not
have a good set if and only if |D(G)| = m(G) and D(G) encircles a vertex
of V \ D(G). Moreover, a good set of G (if any exists) can be found in
polynomial time.

Proof: Here is a polynomial time algorithm that determines a good set in G,
if any exists.

First suppose that |D(G)| = m(G). Then the only subset W of D(G) of
size m(G) is D(G) itself. If D(G) encircles a vertex, then D(G) is not a good
set, and the algorithm returns the answer that G has no good set. Else, the
algorithm returns the good set D(G).

Now suppose that |D(G)| > m(G). Let W be a subset of D(G) of size
m(G) that contains all vertices with degree at leastm(G) (we know that there
are at most m(G) such vertices, by the definition of m(G)). If W does not
encircle any vertex, then it is a good set and the algorithm returns it. Else,
let u be any vertex that is encircled byW . Consider the sets N1 = N(u)∩W
and N2 = W \ N1. By Proposition 2.1, we have |N1| ≥ 2, |N2| ≥ 1, and
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every vertex of N2 has a neighbour in N1. Since G contains no C3, C4 or
C5, the sets N1 and N2 are stable sets and every vertex of N2 has only one
neighbour in N1. Pick any v2 ∈ N2 and let v1 be the unique neighbour of v2
in N1; also, let v

3 ∈ N1 \ {v1} (recall that |N1| ≥ 2). Since u is encircled by
W , we know that d(v1) = m(G)− 1. Pick any w ∈ D(G) \W and consider
the subset W ′ = (W \ {v1}) ∪ {w}. If W ′ does not encircle any vertex, then
W ′ is a good set, and the algorithm returns it. Else, let u′ be a vertex of
V \W ′ that is encircled by W ′.

Suppose that w 6= u. Note that u does not reach v2 within W ′, since
any path between u and v2 different from 〈u, v1, v2〉 must have length at
least 6; hence, W ′ does not encircle u. Also, v1 does not reach v3, because
N1 is a stable set and every vertex in N2 has exactly one neighbour in N1;
hence, W ′ also does not encircle v1. Thus u′ 6= u, v1. Since v1 is the only
neighbour of v2 in W , and v1 /∈ W ′, it follows that either u′ is adjacent to
v2 or w ∈ N(u′) ∩ N(v2). Also, since u′ must reach v3, there exists a path
of length at most two between u′ and v3. In any case, we obtain a cycle of
length at most 7, a contradiction.

Therefore we must have w = u. If there exists any x ∈ N2 \N(v1), then
W ′ does not encircle any vertex (because any vertex that reaches v2 and x
within W ′ would lie in a cycle of length less than 8 in G). So, suppose that
W ′ ⊆ N(v1) ∪ N(u) ∪ {u}. Then the set W ′′ = (W \ {v2}) ∪ {u} also does
not encircle any vertex and, since v2 ∈ N(v1) and d(v1) = m(G) − 1, W ′′ is
a good set, and the algorithm returns this set. �

Proof of Theorem 2.19. By Lemma 2.20, we know that D(G) = m(G) and
D(G) encircles some vertex u ∈ V \D(G). By Lemma 2.4, G does not have
a b-colouring with m(G) colours. Let us show that it has a b-colouring with
m(G)− 1 colours. Let p = m(G)− 1. As in the proof of Lemma 2.20, define
N1 = N(u)∩W and N2 = W \N1. We know that N1 and N2 are stable sets,
that every vertex of N2 has a unique neighbour in N1, and that N2 6= ∅. Call
v1, . . . , vp, w the vertices of D(G), such that v1 ∈ N2 and w ∈ N(v1) ∩ N1.
Assign colour i to vi for all i = 1, . . . , p, colour 1 to u, and colour h to w,
for some h such that vh ∈ W \ N(w) (such an h exists, because d(w) = p
and u ∈ N(w)). This partial colouring is proper and, for all i = 1, . . . , p,
vertex vi does not have two coloured neighbours of the same colour. Let
S = N(D(G)) \ {u}. Then S is a stable set, for otherwise G would contain
a cycle of length at most 7. So we can, for each i = 1, . . . , p, colour the
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uncoloured neighbours of vi in such a way that all colours different from i
appear in N(vi) (because all uncoloured neighbours are in the stable set L).
Finally, the vertices that are still uncoloured have degree strictly less that
p, so the colouring can be extended to them greedily. Thus we obtain a
b-colouring of G with m(G)− 1 colours, where {v1, . . . , vp} is a basis. �
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Chapter 3

Cacti

The results presented in this chapter were obtained in colaboration with
Victor Campos, Cláudia Linhares Sales and Frédéric Maffray. They were
presented in the V Latin-American Algorithms, Graphs and Optimization
Symposium (LAGOS’09) [5].

In this chapter, we consider G to be a cactus, which is a graph that does
not contain two cycles that share an edge. As an example, observe Figure
3.1. In this chapter, we prove that if G is a cactus and m(G) ≥ 7, then the
difference between χb(G) and m(G) is at most one. The proof resembles the
one for trees. First, we present a family of cacti that cannot be b-coloured
with m(G) colours. These cacti are characterized either by the existence of
some “pivots” or by being isomorphic to some “anomalous” configurations.
This is done in Section 3.1, where we also prove that the number of “pivots”
in G is small. Then, in Section 3.2, we define a quasi-good set (which is
basically a subset of the dense vertices that has no pivots, with some further
properties) and show how to find such a set, if one exists. Next, in Section
3.3, we show how to obtain a b-colouring with m(G)− 1 colours of a graph
in the family presented in Section 3.1, thus proving that the b-chromatic
number of those graphs is actually equal to m(G)−1. Finally, in Section 3.4
we show how to construct a b-colouring of G with m(G) colours when G has
a good set and is such that m(G) ≥ 7. The following trivial lemma will be
useful in some of the proofs.

Lemma 3.1. Let G be a cactus and U and U ′ be two disjoint subsets of
V (G). If G[U ] and G[U ′] are connected, then U has at most two neighbours
in U ′.

45
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Figure 3.1: Example of a cactus.

3.1 Pivots and anomalous graphs

In this section, we present a family of cacti for which the difference between
the b-chromatic number and the m-degree is at least 1. We already know,
by Lemma 2.4, that if G is a cactus such that every subset of D(G) with
cardinality m(G) encircles a vertex not in D(G), then χb(G) < m(G). But
also we define the following:

Let G be a cactus and W be a subset of m(G) dense vertices of G. We
say that W encircles the pair x, y ∈ V if x, y /∈ W , W does not encircle x or
y and one of the following occurs:

E1. There areW ′ ⊂W and u, v ∈ W ′ such that |W ′| = m(G)−1, 〈x, u, y, v〉
is a cycle and:

(a) d(u) = d(v) = m(G) − 1, NW ′

(u) 6= ∅, NW ′

(v) 6= ∅ and every
w ∈ W ′ \ {u, v} is adjacent to u or v; or

(b) d(u) = m(G)− 1 and every w ∈ W ′ \ {u, v} is adjacent to u; or

(c) d(u) = m(G), d(v) = m(G) − 1, NW ′

(u) 6= ∅, NW ′

(v) 6= ∅ and
every w ∈ W \ {u, v} is adjacent to u or v; or

(d) d(u) = m(G) and every w ∈ W \ {u, v} is adjacent to u.
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E2. There are W ′ ⊆ W and u, v, w ∈ W ′ such that |W ′| ≥ m(G) − 1,
〈x, u, v, y, w〉 is a cycle, d(u) = d(v) = m(G) − 1, every w′ ∈ W ′ \
{u, v, w} is adjacent to w, and either

(a) W ′ ⊂W and d(w) = m(G)− 1; or

(b) W ′ = W and d(w) = m(G).

Lemma 3.2. Let G be a cactus and W ⊆ D(G) be of cardinality m(G). If
W encircles a pair of vertices x, y, then W is not the basis of a b-colouring
of G with m(G) colours.

Proof: Suppose on the contrary and let ψ be a b-colouring of G with W as
basis. Consider that {1, · · · , m(G)} are the colours used in ψ and denote
the vertex of W coloured with i by vi, i ∈ {1, · · · , m(G)}. Suppose first
that E1 occurs and consider, without loss of generality, that 〈v1, x, v2, y〉 is
a cycle in G. Suppose E1a or E1b occurs and let W ′ = NW [v1] ∪ NW [v2].
If ψ(x) = ψ(y), as at least one between v1, v2 has degree m(G) − 1, say v1,
we have that v1 cannot be a b-vertex, a contradiction. So, consider that
ψ(x) = j, for some vj ∈ W ′ (recall that |W \W ′| = 1). Obviously, j /∈ {1, 2}
and, hence, vj is adjacent to either v1 or v2, say v1. Observe that, in this case,
d(v1) = m(G)−1 and we get a contradiction as the colour j appears twice in
N(v1). Now, consider that E1c or E1d occurs and let ψ(x) = i and ψ(y) = j.
We know that i, j /∈ {1, 2} and vi is either adjacent to v1 or to v2, the same
being valid for vj. Suppose, without loss of generality, that d(v1) = m(G). If
E1c occurs, as d(v2) = m(G)−1 (i.e., we cannot repeat colours in N(v2)), we
have vi, vj ∈ N(v1); this also trivially holds when E1d occurs. We then get
a contradiction as r(v1) ≥ 2 > d(v1) −m(G) + 1. Finally, consider that E2
occurs and suppose, without loss of generality, that 〈v1, x, v2, v3, y〉 is a cycle
in G. One can verify, by analogous arguments, that v1 cannot be a b-vertex
in ψ as there are too many colours repeated in N(v1). �

So, we know that if G is such that every subset of D(G) with cardinality
m(G) either encircles a vertex or a pair of vertices, then χb(G) < m(G).
Unfortunately, these definitions are not sufficient to describe all the cacti
with χb(G) < m(G). Observe, for example, the graph G of Figure 3.2. We
have m(G) = 4, the big vertices represent the dense vertices; if we colour
D(G) with {1, 2, 3, 4} from left to right, we get that both u and v must be
coloured 1 in order to turn the dense vertices of the cycle into b-vertices.
Thus, G cannot be b-coloured with m(G) = 4 colours. Now, consider G to
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be any graph in Figure 3.3 and let H = G− {(u, v)} (remove only the edge
(u, v)). We have m(H) = m(G) and it is not hard to verify that any b-
colouring of H with m(H) colours is such that u and v have the same colour.
Thus, G cannot be b-coloured with m(G) colours. Actually, even if the black
vertices in Figures 3.2 and 3.3 have degree bigger than m(G)− 1, the graph
still cannot be b-coloured with m(G) colours. We then say that a cactus
G is anomalous if there exists H ⊆ G[D(G) ∪ N(D(G))] isomorphic to the
graph in Figure 3.2 or to some graph in Figure 3.3 such that m(H) = m(G),
|D(G)| = m(G) and d(v) = m(G)− 1, for every grey vertex in the figures.

u v

Figure 3.2: Anomalous graph with m(G) = 4.

We now analyse the possible number of encircled vertices and pairs of
vertices of a subset W . The following proposition will be useful:

Proposition 3.3. LetW be any set of m(G) dense vertices and let u ∈ V \W
be encircled by W , or be one of the vertices of a pair encircled by W . Then,
there are at least two vertices in W adjacent to u.

Lemma 3.4. Let G be a cactus and W be a subset of m(G) dense vertices
of G. If W encircles two vertices, x and y, then one of the following occurs:

F1. There are u, v ∈ W such that 〈x, u, y, v〉 is a cycle, d(u) = d(v) =
m(G)− 1 and every w ∈ W \ {u, v} is adjacent to u or v; or

F2. There are u, v, w ∈ W such that 〈x, u, v, y, w〉 is a cycle, d(u) = d(v) =
d(w) = m(G)− 1 and every w′ ∈ W \ {u, v, w} is adjacent to w.

F3. W = {v1, v2, v3, v4}, 〈x, v1, v2, y, v3, v4〉 is a cycle in G and d(vi) = 3,
i = 1, · · · , 4.

Proof: Note that |NW (x)| ≤ 2, otherwise, by Lemma 3.1 applied to x and
y∪NW (y), some neighbour of x would not be reached by y. So, by Proposition
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u v

(a)

u v

(b)

u v

(c)

u v

(d)

u v

(e)

u v

(f)

u v

(g)

u v

(h)

Figure 3.3: Anomalous graphs with m(G) = 5.
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3.3, we have |NW (x)| = 2. Analogously, we have |NW (y)| = 2. First,
suppose x and y have at least one common neighbour in W , say w, and
let wx ∈ NW (x) \ {w} and wy ∈ NW (y) \ {w}. Clearly, if wx = wy, we
have situation F1, and if wy is a (y, wx)-bridge, then we have situation F2.
So, suppose that wx 6= wy and (wx, wy) /∈ E(G). Since NW (y) = {w,wy}, w
must be the (y, wx)-bridge; analogously, w is also the (x, wy)-bridge. Observe
Figure 3.4 and note that, in this case, w must also be a (x, w′)-bridge, for
all w′ ∈ W \ {wx}, otherwise, w′ is not reached by y. However, in this case,
(W \ {w}) ∪ {x, y} ⊆ N(w), i.e., d(w) ≥ m(G) + 1, a contradiction. Now,
suppose x, y have no common neighbours in W and let NW (x) = {ux, vx}
and NW (y) = {uy, vy}. Note that, if both ux and vx have the same bridge to
y, say uy, then x does not reach vy, a contradiction. So, they have different
bridges and must be bridges themselves, i.e., F3 occurs for x, y.

x y

w
wx wy

Figure 3.4: Vertices x, y are encircled by W and have exactly one common
neighbour in W .

�

Given W ⊆ D(G) and x ∈ V (G) \ W , we denote by Wx the set W ∩
(N(x) ∪N(NW (x))). The following remarks are trivially valid.

Remark 3.5. If x, y is an encircled pair, then Wx =Wy and |W \Wx| ≤ 1.

Lemma 3.6. Let W be any set of m(G) dense vertices, m(G) ≥ 4. If W
encircles at least one vertex or a pair of vertices, then either W encircles
at most two vertices, or it encircles a pair, or it encircles two pairs and its
structure is as represented in Figure 3.5.

Proof: By Lemma 3.4, it is easy to see that W encircles at most two vertices.
So, we analyse the cases where it encircles a pair of vertices.

Let x, y be an encircled pair. Note that, because of the existence of the
cycle containing x,y and some vertices of W , there is no encircled vertex
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x

y

vu

m(G) = 4

m(G) = 5

x

y

vu

u′

y′

v′

x′

u′

y′

v′

x′

Figure 3.5: Cacti with two pairs encircled by W . The big vertices are in W
and d(v) = d(u′) = m(G)− 1.

x′ /∈ {x, y}. So, we analyse the existence of another encircled pair. Let x′ be
one of the vertices of such a pair, x′ 6= x, y. First, suppose that E2 occurs
for x, y and let u, v, w ∈ W be such that 〈x, w, y, v, u〉 is a cycle in G. By
Proposition 3.3 and Remark 3.5, x′ must be adjacent to u or v. Suppose,
without loss of generality, that x′ ∈ N(u) and let y′ be the vertex encircled
together with x′. As G is a cactus and x′, y′ must be within a cycle of G,
we have y′ /∈ {x, y}. By E2 and Remark 3.5, there exists at most one vertex
in W \ {u, v, w} non-adjacent to w; so, we must have the situation in Figure
3.6. Certainly, W = {u, v, w, w′}, otherwise there would be at least two
different vertices in W \ Z, for Z = Wx or Z = Wx′ , contradicting Remark
3.5. However, in this case, d(u) = 4 = m(G), contradicting E2.

Now, suppose that E1 occurs for x, y and let u, v ∈ W be such that
C = 〈x, u, y, v〉 is a cycle in G. Let x′, y′ be an encircled pair different from
x, y. By the paragraph above, we can suppose that E2 does not occur for
x′, y′. Furthermore, since two cycles may intersect in at most one vertex
and by Remark 3.5 applied to the pairs x, y and x′, y′, we have x′ /∈ {x, y}
and y′ /∈ {x, y}. Let C ′ = 〈x′, u′, y′, v′〉 be the cycle containing x′, y′, where
u′, v′ ∈ W . Note that C and C ′ either intersect in one of the vertices u, v, u′, v′

or are connected through an edge between {u, v} and {u′, v′}. So, we can
suppose that (1)W \ (N [u′]∪N [v′]) = {u} and (2) W \ (N [u]∪N [v]) = {v′}.
Suppose C and C ′ intersect in vertex v = u′. Then, W \ {u, v, v′} ⊆ N(v)
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y′

x′

w′

x

y

v

u

w

Figure 3.6: The pair x, y is encircled by W . Situation where E2 occurs for x
and y and there exists another encircled pair x′, y,′.

and d(v) ≥ m(G) + 1, contradicting E1. Now, consider that the cycles
are connected through the edge (v, u′). Note that every vertex w in W ∗ =
W \{u, v, u′, v′} must be adjacent to v and u′. So, |W ∗| ≤ 1 and the possible
cases are the ones represented in Figure 3.5. Note that, by (1) and (2), we
have that E1c and E1d do not occur; thus, d(v) = d(u′) = m(G)− 1. �

3.2 Quasi-Good Set

Consider a cactus G. In this section, we want to obtain a subset of the dense
vertices of G that can play the role of a basis of a b-colouring of G with m(G)
colours. As we will see afterwards, we do not always know how to recognize
such a subset. However, a good start is to pick a subset that does not encircle
any vertex or pair of vertices. We say thatW ⊆ D(G) with cardinality m(G)
is a quasi-good set if (this definition is slightly different from the definition
of “good set” in [20]):

- W does not encircle any vertex or pair of vertices; and

- Every u ∈ V \W with degree greater than m(G)− 1 is either adjacent
to some vertex in W with degree m(G)− 1 or is an link vertex of W .

In Section 3.4, we will use this quasi-good set to obtain a b-colouring of
G with m(G) colours, when m(G) ≥ 7. Trivially, if |D(G)| = m(G), then:
if D(G) encircles a vertex or pair of vertices, then G does not have a quasi-
good set; and if D(G) does not encircle any vertex or pair of vertices, then
D(G) is a quasi-good set itself. So, it remains to analyse the existence of a
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quasi-good set in a cactus G that has more than m(G) dense vertices. The
main result of this section is the following:

Theorem 3.7. Let G be a cactus with |D(G)| > m(G), and let W be a
subset of m(G) + 1 dense vertices of G containing all vertices with degree
greater than m(G) − 1. Then, G does not have a quasi-good set if and only
if |D(G)| = m(G) + 1 and either:

(I) W induces a cycle of length 5 and d(v) = 3, for all v ∈ W , or W is as
represented in Figure 3.7; or

(II) there exist vertices u, v ∈ W , with degree m(G) − 1, and w /∈ W such
that 〈u, v, w〉 is a cycle and every vertex in W is adjacent to u or to v.

y′

x′ m(G) = 4
x

y

v1

v2 v3
v4

v5

Figure 3.7: In this graph, m(G) = 4, W is represented by the bigger vertices
and d(v2) = d(v4) = 3.

First, we prove the following part of the theorem.

Lemma 3.8. Let G be a cactus with |D(G)| = m(G)+1. If (I) or (II) occurs
for D(G), then G has no quasi-good set.

Proof: Let D(G) = {v1, · · · , vm(G)+1}. We prove that D(G) \ {vi} is not a
quasi-good set, for all vi ∈ D(G), thus proving the lemma. First, suppose
thatD(G) induces a cycle of length 5 and d(vi) = m(G)−1, for all vi ∈ D(G).
Trivially, W ′ = D(G)\{vi} encircles vi (and, consequently, W

′ is not a quasi-
good set) for all vi ∈ D(G). Now, suppose that D(G) is as represented in
Figure 3.7. Trivially, E1b occurs for W ′ = D(G) \ {vi} for all i ∈ {1, 2, 4, 5}
(hence, W ′ is not a quasi-good set). As for W ′ = D(G) \ {v3}, observe that
v3 ∈ D(G) \W ′ has degree m(G) but v3 is neither adjacent to some vi ∈ W ′

of degree m(G)− 1 nor is within a link of W ′. Thus, W ′ is not a quasi-good
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set and the lemma follows. Finally, suppose, without loss of generality, that
〈w, v1, v2〉 is a cycle in G such that w /∈ D(G), d(v1) = d(v2) = m(G) − 1
and D(G) ⊆ N(v1) ∪ N(v2) (i.e., (II) occurs for D(G)). Then, D(G) \ {vi}
encircles w, for all i ∈ {3, · · · , m(G) + 1}, D(G) \ {v1} encircles v1 and
D(G) \ {v2} encircles v2. �

Now, we need to prove the other way of the equivalence, i.e., that if G
does not have a quasi-good set, then |D(G)| = m(G) + 1 and (I) or (II)
occurs. Actually, we prove that if one of the situations below occurs, then G
has a quasi-good set (consider W to be defined as in the theorem):

1. |D(G)| > m(G) + 1 and (I) or (II) occurs for W ; or

2. Neither (I) nor (II) occurs for W and some W ′ ⊆ W with cardinality
m(G) encircles two vertices or a pair of vertices; or

3. Neither (I) nor (II) occurs for W and every W ′ ⊆ W with cardinality
m(G) encircles at most one vertex and no pair of vertices.

Let W ′ be a set of m(G) dense vertices containing all vertices with degree
at least m(G). If G does not have a quasi-good set, then W ′ encircles at
least one vertex or a pair of vertices. Now, from 2 and 3, we get that (I) or
(II) occurs and, from 1, we get that |D(G)| = m(G)+ 1. The theorem, then,
follows. Now, we present lemmas that cover each described situation.

Recall that Wx = W ∩ (N(x) ∪ N(NW (x))). If |W \Wx| ≥ 2, we know
that x is not encircled by W and, by Remark 3.5, that x is not part of a pair
encircled by W . Also, obviously, if x is encircled by W , then Wx =W .

Lemma 3.9. Let W ⊆ D(G) of cardinality m(G) + 1 containing all vertices
with degree at least m(G). If |D(G)| > m(G) + 1 and (I) or (II) occurs for
W , then G has a quasi-good set.

Proof: It is easy to see that, if the structure of W is as represented in Figure
3.7, then (W \ {v2, v4}) ∪ {w} is a quasi-good set, for any w ∈ D(G) \W .
Let us now prove that if W induces a cycle of length 5 or (II) occurs for W ,
then we can construct a quasi-good set.

Suppose that W induces a cycle of length 5 and d(v) = 3 = m(G) − 1,
for all v ∈ W . Thus, d(v) = 3, for all v ∈ D(G) and if we get a subset
W ′ ⊆ D(G) of cardinality m(G) that does not encircle any vertex or pair of
vertices, then W ′ is a quasi-good set. Let v be any dense vertex not in W
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and let u ∈ W be the vertex which separates v from the W \ {u} (if v is
in another connected component, just consider any u ∈ W ). Remove u and
one of the vertices adjacent to u in W and add v, obtaining W ′. Note that
situations E1 and E2 cannot occur, since three of the vertices in W ′ form an
induced path embedded in a cycle and u /∈ W ′ separates v from W ′ \ {v}.
Furthermore, any vertex w ∈ V \W ′ does not reach v or at least one vertex
of W ′ \ {v}. Thus, W ′ is a quasi-good set.

Now, suppose that (II) occurs and let v1, v2 be such that d(vi) = m(G)−1,
i = 1, 2, W ⊆ N(v1) ∪ N(v2) and 〈x, v1, v2〉 is a cycle, for x /∈ W . Let W ′

be obtained from W by removing v1, v2 and adding any dense vertex in
D(G) \ W . Since d(v1) = d(v2) = m(G) − 1 and W contains all vertices
with degree greater than m(G)−1, we have that, if W ′ does not encircle any
vertex, or pair of vertices, then W ′ is a quasi-good set. As d(v1) = m(G)− 1
and (W \ {v1})∪{x} has cardinality m(G)+ 1, there must exist at least two
vertices in W \ N [v1], say v3, v4; hence, v3, v4 are adjacent to v2. The same
is valid for v2; so, let v5, v6 be vertices of W ∩ (N(v1) \ {v2}). Note that
v3, v4 ∈ W ′ are separated from v5, v6 ∈ W ′ by v1, v2, where v1, v2, x /∈ W ′.
So, |W \Ww′| ≥ 2, for all w′ ∈ V \W ′, and W ′ does not encircle any vertex
or pair of vertices. �

Lemma 3.10. Let W ⊆ D(G) of cardinality m(G)+1 containing all vertices
with degree at least m(G). If neither (I) nor (II) occurs for W and some
W ′ ⊆ W with cardinality m(G) encircles two vertices or at least one pair of
vertices, then G has a quasi-good set.

Proof: Let W = {v1, · · · , vm(G)+1} and denote by W i the set W \ {vi}.
Suppose, without loss of generality, that W 1 encircles two vertices or at
least one pair of vertices. First, consider the case where W 1 encircles more
than one pair, i.e., the structure of G is as represented in Figure 3.5 (the
big vertices represent W 1). Denote by S the set W 1 ∪ {x, y, x′, y′}. As
d(v) = d(u′) = m(G) − 1, we know that N(v), N(u′) ⊆ S. If v1 is in
the cycle Cl = 〈x, u, y, v〉 or is separated from W 1 by a vertex in Cl or is
in another connected component, replace v by v1, obtaining W

′. Trivially,
|W ′\W ′

t | ≥ 1, for all t ∈ V \W ′; thus, W ′ does not encircle any vertex. Also,
as W ′ intersects Cl in one vertex or one edge and v1 cannot connect through
v, one can verify thatW ′ does not encircle any pair of vertices. Consequently,
as d(v) = m(G)−1, W ′ is a quasi-good set. If v1 is in Cr = 〈u′, x′, v′, y′〉 or is
separated fromW 1 by a vertex in Cr, we have an analogous situation. Finally,



56 CHAPTER 3. CACTI

if m(G) = 5 and v1 is separated from W 1 by z, where z ∈ N(v) ∩ N(u′),
replace z by v1, obtaining W

′. Note that |W ′ \W ′
t | ≥ 2, for all t ∈ V \W ′,

and, as z is adjacent to v of degree m(G)−1, we have thatW ′ is a quasi-good
set.

Now, we may assume that W 1 encircles at most one pair of vertices. We
analyse the possible cases, according to the definition of encircled pairs and
to Lemma 3.4:

• E1 or F1 occurs for W 1: let x, y be two distinct vertices encircled by
W 1 or a pair encircled by W 1 and suppose, without loss of generality,
that v2, v3 are such that C = 〈x, v2, y, v3〉 is a cycle in G. Let W ′

represent W 1
x , if E1a or E1b occurs, or W 1, otherwise. By E1 and F1,

we can suppose that NW ′

(v3) 6= ∅ and, if E1a or E1c occurs, as both
v2 and v3 have some neighbour in W ′, we can suppose that v2 is the
vertex with degree m(G)− 1.

Now, without loss of generality, suppose that v4 ∈ N(v3) and, if E1a
or E1b occurs, let vt be the vertex in W 1 \W ′. Trivially, W 3 cannot
encircle any vertex different from v3 itself and, as v3 is within the path
〈v2, z, v3, v4〉, where z ∈ {x, y}, we have that if v3 is not encircled byW 3

and W 3 does not encircle any pair of vertices, then W 3 is a quasi-good
set. Observe that (1) if v1 /∈ {x, y} or N

W (v2) \ {x, y} 6= ∅, then v3 is
not encircled by W 3.

First, assume v1 = x. Suppose that E1a, F1 or E1c occurs for W 1 and
let vi ∈ N

W 1

(v2). By (1), v3 is not encircled byW 3. Suppose that x′, y′

is a pair encircled by W 3. By Remark 3.5, the pair x′, y′ is separated
from C by v2 and N

W (v3) \ {v1, v4} = ∅. So, (W 3∪{y}) \ {v2, v4, vt} ⊆
N(v2) and, as d(v2) = m(G) − 1, at most one of x′, y′ is adjacent to
v2 and one can verify that x′, y′ cannot be encircled. Now, suppose
that E1b or E1d occurs. Note that, because of the degree of v3, either
N(v3) = (W \ {v2, v3, vt}) ∪ {y} or N(v3) = (W \ {v2, v3}) ∪ {y}, i.e.,
y is the only neighbour of v3 not in W . Also, as either both x and y
are encircled by W 1 or none of x and y is encircled (as, in this case,
x, y is an encircled pair), we have that vt /∈ N(x) ∪ N(y). Thus, one
can verify that W 2 does not encircle any vertex or pair of vertices and,
since v2 is in a link between v1 and v3, we have that W

2 is a quasi-good
set.

Now, assume v1 6= x, y. By (1), W 3 does not encircle v3. So, suppose
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that W 3 encircles the pair x′, y′. By Remark 3.5, we know that x′, y′ 6=
x, y and v1 is separated from C by same vertex as x′, y′. Also, if v1 is
separated from C by v3, then N

W (v2) = ∅; otherwise, v2 separates v1
from C and NW (v3) = {v4}. We analyse the following possibilities:

– v3 separates v1 from C: so, E1b or E1d occurs for W 1 and x, y.
Note that, as d(v3) ≤ m(G), (i) N(v3) ⊆ (W 1 \ {v2, v3}) ∪ {x, y};
also, (ii) W \ N [v3] ⊆ {v1, v2, vt}. Suppose, first, that x′ = v3.
By (ii) and Proposition 3.3, we have that one of the situations in
Figure 3.8 occurs. Note that W 4 does not encircle any vertex or
pair of vertices and that v4 is within a link, i.e., W 4 is a quasi-
good set. Now, suppose that x′, y′ 6= v3. By (i), we know that
x′, y′ /∈ N(v3). If (N(x′) ∪ N(y′)) ∩ N(v3) = ∅, then we have the
situation represented in Figure 3.9.(a) and one can easily verify
thatW 4 is a quasi-good set. Otherwise, suppose that vi ∈ N(v3)∩
(N(x′)∪N(y′)). As x′, y′ /∈ N(v3), (x

′, y′) /∈ E(G), E1 or E2 occurs
forW 3, x′, y′ and by (ii), one can verify that the possible situations
are illustrated in Figure 3.9.b,c,d and W i is a quasi-good set.

(a)
(b)

(c)

x

y

v2 v3
y′

v2
v3

y′

x

y
v4

x

y

v2 v3
y′

v4

v4

Figure 3.8: W 3 encircles a pair when v3 separates v1 from C. The dotted
edges and vertices may not exist.

– v2 separates v1 from C: so, NW (v3) = {v4} and (i) W 3
x′ = W 3

y′ =
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(a)

(b)

(c)

(d)

v3 v2
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y′
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x

yy′

x′

v3

x

y
y′

v2v3

x′

vi

vi

vi

vi

Figure 3.9: W 3 encircles a pair when v3 separates v1 from C. The dotted
edges and vertices may not exist, except for (b) where at least one of the
dotted vertices must exist.
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W 3 \ {v4}. By (i), we have that vi is also separated from C by v2,
for all vi ∈ W 3 \ {v2, v4}. Note that, if NW 2

(v2) 6= ∅, then W 2 is a
quasi-good set. So, suppose that NW 2

(v2) = ∅. As |W \W 1
x | ≤ 1,

we have that x′, y′ ∈ N(v2) and m(G) = 4. Also, note that E2
does not occur for x′, y′, by the existence of v4 ∈ W 3 and the fact
that d(v2) > m(G)− 1. Thus, the structure of W is as in Figure
3.7, i.e., (I) occurs for W , a contradiction.

• E2 or F2 occurs for W 1: let x, y be two distinct vertices encircled by
W 1 or a pair encircled by W 1. Suppose, without loss of generality,
that C = 〈x, v2, v3, y, v4〉 is a cycle. By E2 and F2, we know that (i)
W 1 \ (N [v4] ∪ {v2, v3}) has at most one vertex; if it is the case, let v5
be such vertex. First, suppose that NW 1

(v4) 6= ∅. It is easy to see that
W 4 does not encircle any vertex and, if W 4 does not encircle any pair,
as v4 is within a link of W 4, we have that W 4 is a quasi-good set. So,
suppose that W 4 encircles the pair x′, y′. Note that x′, y′ are separated
from C by either v2 or v3, say v2. One can verify that |W \W 2

z | ≥ 2,
for all z ∈ V \W 2; thus, W 2 does not encircle any vertex or pair of
vertices and, as d(v2) = m(G)−1 by E2, W 2 is a quasi-good set. Now,
consider that NW 1

(v4) = ∅. Consequently, as m(G) ≥ 4, E2b must
occur. Thus, d(v4) = m(G)− 1 and if W 4 does not encircle any vertex
or pair of vertices, then W 4 is a quasi-good set. Also, by (i), we have
that m(G) = 4. First, suppose that W 4 encircles a vertex z ∈ V \W 4.
Note that if z ∈ {x, y}, then, as W 1 does not encircle z, we must have
d(v1) = m(G) − 1 and v1 ∈ N(v5) ∩ N(z). It is easy to verify that, in
this case, either W 2 is a quasi-good set, if z = x, or W 3 is a quasi-good
set, if z = y. Now, consider that z 6= x, y; then, z must be adjacent
either to v2 or v3, say v2. As N(v2) = {x, y, z} and W 4 = W 4

z (i.e., z
separates C from v1 and v5), it is easy to see that W 2 is a quasi-good
set. Now, suppose thatW 4 encircles a pair x′, y′. As d(v2) = d(v3) = 3,
neither v2 nor v3 are within the cycle containing x′, y′; thus, the cycle
containing x′, y′ contains v1 and v5. Also, by Remark 3.5, we have that
|W \W 4

x′| ≤ 1. Observe that either v2 or v3 is in W \W 4
x′; thus, either

E1a or E1b occurs for W 4 and any between v1, v5 having a neighbour
in W 4 must have degree m(G) − 1. So, v1 6= x, y and one can verify
that the only possible situation is the one illustrated in Figure 3.10 (up
to symmetry), in which case W 3 is a quasi-good set.
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v1 v5

y′

x′

x

v4

v3

y

Figure 3.10: E2 occurs for W 1, x, y, W 4 encircles x′, y′ and m(G) = 4.

• F3 occurs for W 1: let 〈x, v2, v3, y, v4, v5〉 be the cycle, where x and y
are encircled by W 1. Observe that if x = v1, then W 3 trivially does
not encircle any vertex or pair of vertices and, as d(v3) = m(G) − 1,
we have that W 3 is a quasi-good set. If v1 = y, we have an analogous
situation. So, suppose that v1 is not in the cycle. If v1 is separated
from the cycle by vi, i ∈ {2, 3, 4, 5}, let W ′ = W i; otherwise, if v1 is
separated from the cycle by x, let W ′ = W 2; finally, if v1 is in another
connected component of G or is separated from the cycle by y, let
W ′ = W 3. Obviously, situations E1 and E2 cannot occur because of
the disposition of three vertices of W ′ in the cycle of length six. Also,
any vertex not inW ′ does not reach at least one vertex inW ′ and, since
d(vj) = m(G)−1, for all vj ∈ W 1, we have that W ′ is a quasi-good set.

�

Lemma 3.11. Let W ⊆ D(G) of cardinality m(G)+1 containing all vertices
with degree at least m(G). If neither (I) nor (II) occurs and every W ′ ⊆ W
with cardinality m(G) encircles at most one vertex and no pair of vertices,
then G has a quasi-good set.

Proof: Consider the same notation as in the proof of the previous lemma.
Suppose, without loss of generality, that d(v1) = m(G) − 1 (note that there
are at most m(G) vertices with degree greater than m(G) − 1). Obviously,
if W 1 does not encircle any vertex, then it is a quasi-good set. So, let u be
encircled by W 1 and suppose, without loss of generality, that N(u) ∩W 1 =
{v2, · · · , vp−1}. By Proposition 2.1 and the fact that W 1 contains all vertices
with degree greater than m(G)−1, we know that p > 3 and p−1 < m(G)+1.
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We may also suppose that v2 is a (u, vp)-bridge; hence, d(v2) = m(G) − 1.
We analyse the following cases:

• u = v1: since vp ∈ N(v2) and d(v2) = m(G)−1, ifW p does not encircle
any vertex, then W p is a quasi-good set. So, suppose that W p encircles
v ∈ V \ W p. First, we analyse the case where v is adjacent to v1.
As vp /∈ N(v1), we have that v 6= vp and, consequently, v /∈ W . By
Proposition 2.1, there exists vi ∈ W p adjacent to v, i 6= 1. We have
that NW p

(v) = {v1, vi}, otherwise v1 does not reach some vj ∈ NW 1

(v).
So, we know that every vj ∈ W p \ {v1, vi} is either adjacent to v1 or to
vi. Observe that, if i = 2, as W ⊆ N(v1) ∪N(v2) and d(v1) = d(v2) =
m(G)−1, we have that (II) occurs for W , a contradiction; so, consider
i 6= 2. Since v1 is encircled by W 1 and vi ∈ W 1, then either vi ∈ N(v1)
or there exists a (v1, vi)-bridge, vj. Observe Figure 3.11. In (a), if
NW p

(vi)\{v1} = ∅, then (W p \{v1})∪{v} ⊆ N(v1), a contradiction to
the fact that d(v1) = m(G)− 1. So, let vk ∈ NW p

(vi) \ {v1}. Note that
any vertex in V \W i does not reach vp or vk and, since vi must be the
(v, vk)-bridge (i.e., d(vi) = m(G)−1), we have that W i is a quasi-good
set. In (b) and (c), there is no vk ∈ NW p

(vi) \ {vj}, otherwise v1 would
not reach vk within W

1. So, N(v1) = (W p \ {v1, vi})∪{v} and one can
verify that if z ∈ V \W i has two neighbours in W i, then z does not
reach vj or some vk ∈ NW i

(v1) \ {vj}, i.e., z is not encircled by W i. As
vi is adjacent to vj ∈ W i with degree m(G)− 1, we have that W i is a
quasi-good set.

(a) (b) (c)

v2

vp vp

vp

vi vi vi
v2 v1

v1

v1

vj

v

v2 = vj

v v

Figure 3.11: Situation of the proof of Lemma 3.11, where W 1 encircles v1
and W p encircles v, where v ∈ N(v1) \N(v2).

Now, suppose that v is not adjacent to v1. Let vi be a (v, v1)-bridge
(thus d(vi) = m(G) − 1). By Proposition 2.1, there exists vj ∈ W p

adjacent to v, j 6= 1, i. Also, vj is reachable from v1 within W 1; so,
vj ∈ N(v1) or there exists a (v1, vj)-bridge, say vk. If k = i, note that
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(W p \ {vi}) ∪ {v} ⊆ N(vi), a contradiction since d(vi) = m(G) − 1.
So, k 6= i and C = 〈v1, vk, vj, v, vi, v1〉 is a cycle in G, k = j or not.
Trivially, NW (v) \ C = ∅, since v1 is encircled by W 1. Also, if there
exists vl ∈ W p \ C, then W l is a quasi-good set: since vl must be
reached by v within W p and NW p

(v) \ C = ∅, vl must be adjacent to
vh ∈ NC(v) such that d(vh) = m(G) − 1. So, W = (C \ {v}) ∪ {vp}.
Since |W | = m(G) + 1 and m(G) ≥ 4, we have that k 6= j. Consider,
first, that v 6= vp. Note that k = 2, otherwise W 1 encircles v and v1. It
is easy to verify that W i = N [v2] (recall that d(v2) = m(G) − 1 = 3)
and, as vi is within the link 〈v1, vi, v, vj〉, W i is a quasi-good set. Now,
consider that v = vp; thus, i = 2. As (I) does not occur for W and
d(v1) = d(v2) = d(vk) = d(vj) = 3, we must have that d(vp) > m(G)−1.
It is easy to see that W 2 is a quasi-good set.

• u 6= v1: trivially, u /∈ W . So, if p > 4, then v2 is separated from at least
one vertex vi ∈ W by u and, in this case, we can verify that W 2 does
not encircle any vertex and, as d(v2) = m(G)− 1, W 2 is a quasi-good
set. Now, suppose p = 4. We claim that, if there is no quasi-good
set, then W 2 encircles v2 and W 3 encircles v3 (Claim 3.12). Suppose
(v2, v3) /∈ E. So, there must exist a (v2, v3)-bridge, vi. By Proposition
3.3, there exists vk ∈ NW 2

(v2)\{vi}, a contradiction to the fact that v3
is encircled by W 3. So, (v2, v3) ∈ E. Since u 6= v1 is encircled by W 1

and NW 1

(u) = {v2, v3}, we know that every vertex in W 1 \ {v2, v3} is
either adjacent to v2 or to v3. In addition, since v1 must be reachable
from v2 within W 2 and from v3 within W 3 and by the existence of the
cycle 〈u, v2, v3〉, we know that v1 must be adjacent either to v2 or to
v3. Finally, as d(v2) = m(G) − 1 and by Proposition 2.1, there exists
vi ∈ W 2 \ N(v2). This vertex must be adjacent to v3 and, as G is a
cactus, v3 is the only common neighbour of vi and v2, i.e., v3 is a bridge
and, hence, has degree m(G)−1. So, (II) occurs forW , a contradiction.
Now, we prove the claim.

Claim 3.12. Let u be encircled by W 1, u 6= v1. If G has no quasi-good
set, then W 2 encircles v2 and W 3 encircles v3.

Proof of the claim: By contradiction, suppose that G has no quasi-
good set and W 2 encircles v, v 6= v2. First, consider v = u. Since
NW 1

(u) = {v2, v3} and by Proposition 2.1, we know that v1 must be
adjacent to u. Note that, if |NW (v2)| > 1, then u does not reach some
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vi ∈ W 2, a contradiction. So, NW (v2) = vp and, as m(G) ≥ 4 and
N(u) ∩ W 1 = {v2, v3}, there must exist vi ∈ N(v3) ∩ V1. Also, v3
must be the (u, vi)-bridge in W 1; so, d(v3) = m(G) − 1. It is easy to
verify that any vertex in V \W 3 does not reach at least one between
{v1, v2, vp, vi} and, consequently, W 3 is a quasi-good set.

Now, suppose that v 6= u. If v2 is reachable from v, we have that W 1

encircles two vertices, u and v, a contradiction. So, v /∈ N(v2) and, if
vi is adjacent to both v and v2, then d(vi) ≥ m(G). We analyse the
following cases:

(a) vp ∈ N(v): so, d(vp) ≥ m(G) and, since v is encircled by W 2 and
v3 ∈ W 2, we have the cycle C = 〈u, v2, vp, v, vi, v3〉, where vi is
either v3 or has degree m(G) − 1 (and, thus, vi 6= vp). If i 6= 3,
note that any w ∈ V \W 3 does not reach at least one between
v2, vp, vi ∈ W 3, so W 3 does not encircle any vertex. Also, as v3
is in the link 〈v2, u, v3, vi〉, we have that W 3 is a quasi-good set,
a contradiction. So, consider i = 3. As m(G) ≥ 4, there must
exist vi ∈ W 2 \ {v1, v3, vp} and, since vi is also in W 1, v3 must be
a (u, vi)-bridge and a (v, vi)-bridge (thus, d(v3) = m(G) − 1). It
is easy to see that any vertex w ∈ V \W 3 does not reach at least
one between v2, vp, vi and W

3 is a quasi-good set, a contradiction.

(b) vp /∈ N(v): since vp ∈ W
2 and v is encircled by W 2, there must

exist a (v, vp)-bridge, vi. First, we analyse the case where vi = v3
or is a (v, v3)-bridge; thus, there exists a cycle 〈u, v3, vi, vp, v2〉. By
Proposition 2.1, there exists vk ∈ N(v)\{vi}. Observe Figure 3.12.
If i 6= 3, note that k = 1 and there is no vl ∈ W \{v1, v2, v3, vi, vp},
otherwise vl would not reach either u within W 1 or v within W 2.
So, m(G) = 4 and, since d(vi) = m(G)− 1, we have that N(vi) =
{v, v3, vp}. However, in this case, any w ∈ V \W i does not reach
at least one between v1, v2, v3, vp and, consequently, W

i is a quasi-
good set, a contradiction. So, consider i = 3. Note that, there is
no vl ∈ NW 1

(v2) \ {vp}, otherwise vl is distant from v within W 2.
Since NW 1

(u) = {v2, v3}, we have that all vertices in W 1 \{v2, v3}
must be adjacent to v3. However, in this case, we have that N(v3)
contains the set (W 1 \ {v2, v3}) ∪ {u, v} with cardinality m(G),
contradicting the fact that v3 is a (v, vp)-bridge.

Now, suppose that the (v, vp)-bridge, vi, is not in N [v3]. Since v2
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u

v3

vp

v2 v

vi

vk

v

u

v2

vp

v3

vk

Figure 3.12: Situation of case (b) of the proof of Claim 3.12, where the
(v, vp)-bridge is within a cycle containing u, but not v.

is not reachable from v, we have that vi cannot be adjacent to
v2 and, hence, vi is not reachable from u within W 1, i.e., i = 1
(recall that NW 1

(u) = {v2, v3}). Also, as v3 is reachable from v,
we have that 〈u, v2, vp, v1, v, vj, v3〉 is a cycle in G, where j = 3 or
vj is a (v, v3)-bridge. Observe Figure 3.13. Note that any vertex
w ∈ V \ W p is distant from at least one between v1, v2, v3, i.e.,
W p does not encircle any vertex and, as vp is adjacent to v2 ∈ W

p

with degree m(G) − 1, we have that W p is a quasi-good set, a
contradiction.

u

v3v2

v

vp

v1

vj

v

vp

v1

v3

u
v2

Figure 3.13: Situation of case (b) of the proof of Claim 3.12, where the
(v, vp)-bridge is within a cycle containing u and v.

This completes the proof that W 2 encircles v2. Now, observe that if
d(v3) = m(G) − 1 and NW 1

(v3) 6= ∅, then we can prove that v3 is
encircled by W 3 analogously. So, suppose otherwise. As NW 1

(u) =
{v2, v3}, v2 must be a (u, vi)-bridge, for all vi ∈ W 1 \ {v2, v3}. In fact,
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N(v2) = (W 1 \ {v2, v3}) ∪ {u}, i.e., v3 /∈ N(v2). So, as v2 is encircled
by W 2, there exists vi ∈ NW 2

(v2)∩N(v3) such that d(vi) = m(G)− 1.
Also, as m(G) ≥ 4, there exists vj ∈ W 1 \ {v2, v3, vi} and it is easy to
see that W 3 does not encircle any vertex. Then, as v3 is adjacent to
vi ∈ W 3 with degree m(G)− 1, we have that W 3 is a quasi-good set, a
contradiction.

⋄

�

3.3 b-Colouring cacti with χb(G) < m(G)

In this section, we b-colour G with m(G) − 1 colours, where G is a given
anomalous cactus or a cactus that has no quasi-good set. To do this, we
choose a subset W ⊆ D(G) with cardinality m(G) − 1 that satisfies the
hypothesis of Lemma 2.15. Then, we construct an unsaturated precolouring
ψ with candidate set W . Thus, by Lemma 2.15, we know that ψ can be
extended to a b-colouring of G with m(G)−1 colours. Observe first that, for
anomalous cacti, the precolourings presented in Figure 3.14 are as desired.
So, it remains to colour pivoted cacti. The following proposition will be
useful in some of the upcoming subsections:

Proposition 3.13. Let W ⊆ D(G) with cardinality m(G) and let v ∈ W be
such that d(v) = m(G)− 1. Then, |W \N [v]| = |N(v) \W |.

Proof: Denote by q the value |N(v) \W |. We have that |N(v)| = |N(v) \
W | + |NW (v)| ⇒ m(G) − 1 = q + |NW (v)|. So, q = m(G) − |NW (v)| − 1.
Also, we know that |W \N [v]| = |W | − |NW (v)| − 1 and the result follows.

�

By Lemma 3.6 and Theorem 3.7, we know that the situations where G
is pivoted are: when G has exactly m(G) dense vertices that encircles two
pairs of vertices, or one pair of vertices, or one or two vertices; or when G
has m(G) + 1 dense vertices and one of situations described in Theorem 3.7
occurs. We analyse each possible case in the following subsections.



66 CHAPTER 3. CACTI

1 2

3

4

1

3

4

1 2

2

(a)

1 2

3 4

1

21

3

4

(b)

1 2 3

4

3

4
1

4

1 2

(c)

1 2

3

4

1

3

4

4

12

1 2

(d)

1 2 313

1 2

(e)

Figure 3.14: Unsaturated precolouring of anomalous cacti.
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3.3.1 |D(G)| = m(G) and D(G) encircles two pairs of

vertices

Suppose that |D(G)| = m(G) and D(G) encircles two pairs of vertices. By
Lemma 3.6, G is as represented in Figure 3.5. As |D(G)| = m(G), it is easy
to verify that the precolouring ψ presented in Figure 3.15 is unsaturated with
candidate set W , where W is formed by the grey vertices, and that ψ and
W satisfy Lemma 2.15.

m(G) = 4

m(G) = 5

u(1) v(3)

(3)

(3)

(2)

(2)

(2)

(1)

u(1)

w(3)

v(4)

(1)(2)

(2)(3)

(3)(4)

Figure 3.15: Partial colouring of a graph with structure as represented in
Figure 3.5. The grey vertices can play the role of b-vertices.

3.3.2 |D(G)| = m(G) and D(G) encircles a pair of ver-
tices

Suppose that |D(G)| = m(G) and D(G) encircles exactly one pair of vertices.
In each possible situation where this happens, we choose a subset W ⊂ D(G)
of cardinality m(G)− 1 to be the basis of the b-colouring to be constructed.
Recall the definition of redundancy of v ∈ W , denoted by r(v), introduced
in Section 2.4. As a dense vertex has degree at least m(G)− 1, if we ensure
that r(v) is at most one, for each v ∈ W , then the obtained precolouring is
unsaturated. We need the following remark:

Remark 3.14. Let a, b ∈ W . There are at most three links between a and b,
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not necessarily disjoint, and at most two neighbours of a and two neighbours
of b lie in these paths (observe Figure 3.16).

a bx

y y′

Figure 3.16: Situation when there are three links between a, b ∈ W : 〈a, x, b〉,
〈a, y, x, b〉 and 〈a, x, y′, b〉.

Suppose thatD(G) encircles the pair, x, y and letD(G) = {v1, · · · , vm(G)}.
By definition, we have one of the following cases:

• E1 occurs: suppose, without loss of generality, that 〈x, v1, y, v2〉 is a
cycle in G. As there is no encircled vertices, we can also suppose that
vm(G) is not reachable from x and from y. Let W ′ = D(G) \ {vm(G)},
if E1a or E1b occurs, or W ′ = D(G), otherwise. We can suppose that
NW ′

(v1) 6= ∅ and that, if E1a or E1c occurs, then d(v2) = m(G)− 1.

Now, letW = D(G)\{v1} and suppose, without loss of generality, that
v3 ∈ N(v1). Thus, v1 is within the link 〈v3, v1, x, v2〉 and, as d(z) <
m(G)−1, for all z ∈ V \D(G), we have that W satisfies the constraint
in Lemma 2.15. Assign colour i to vi, for all 1 < i < m(G), colour 1 to
y, vm(G), colour 3 to x and colour 2 to v1. Since the edges (v1, v2), (x, v3)
and (y, vm(G)) are not in the graph, we have a proper precolouring.
Furthermore, note that there is no vertex in W , other than possibly v2,
simultaneously adjacent to more than one vertex coloured with colour
i, for i = 1, 2, 3; so r(vj) = 0, for 2 < j ≤ m(G), and r(v2) ≤ 1. Now,
we need to colour the remaining link vertices. Remark 3.15 follows
directly from Remark 3.14 and the fact that x, y is a pair encircled by
D(G).

Remark 3.15. Vertex vm(G) has at most two link neighbours and, if
vm(G) ∈ N(vk), for some vk ∈ D(G), then vm(G) has at most one link
neighbour different from v1.
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Note that, by Remark 3.15, no matter which colour we assign to the link
neighbours of vm(G), as long as the partial colouring remains proper,
we will always have r(vm(G)) ≤ 1. So, from now on, we will only be
concerned about the values r(vi), for 1 < i < m(G). We analyse the
existence of the following types of links (they are coloured in the order
presented below):

– Links with extremity in v2: let x1, · · · , xq be all the link neighbours
of v2 and denote by vij the other extremity of the link passing
through xj, j = 1, · · · , q. First, suppose that d(v2) = m(G) − 1.
Thus, as {x1, · · · , xq, x, y} ⊆ N(v2) \D(G), by Proposition 3.13,
we have that |D(G) \N [v2]| ≥ q+ 2. Consequently, there exist at
least q vertices in D(G) \ {v1, v2, vm(G)} non-adjacent to v2 (and,
hence, adjacent to v1) and we can give the colours of these vertices
to x1, · · · , xq. Now, suppose that d(v2) ≥ m(G); then, we know
that E1a and E1c do not occur and, consequently, W ′ \ {v1, v2} ⊆
N(v1). Also, observe that q ≤ 2 and ij = m(G), for j ∈ [1, q]. So,
we can colour x1, xq with colours fromM(v2) (if there are no such
colours, just repeat colour 3 in x1, xq). After this, give colour 2
to the uncoloured vertices on those links. Note that, at the end,
r(v2) ≤ 1 and r(vij) ≤ 1, for j = 1, · · · , q. Also, it is easy to verify
that no two adjacent vertices are coloured in the last step with
colour 2, as this would generate cycles intersecting in more than
one vertex.

– Links between vi and vj, i, j 6= 2, m(G): let 〈vi, x′, y′, vj〉 be such
a link. If x′ 6= y′, give colour j to x′ and colour i to y′ (if x′ or y′

is already coloured, do not change their colours); otherwise, give
colour 3 to x′. Note that if some vk ∈ N(v2) is the extremity of
a link of this type, then there is no link between v2 and vk (i.e.,
v2 is the only coloured neigbour of vk until now). So, at the end,
r(vk) ≤ 1, for 2 < k ≤ m(G), and r(v2) does not increase.

– Links between vi and vm(G), i 6= 2: let z, z′ be all the uncoloured
link neighbours of vi within a link with extremity in vm(G) (z = z′

or not). Note that vi has at most two coloured neighbours different
from vm(G), namely vj, j = 1 or j = 2, and some eventual x′ in
a path between vi and some vk, k 6= 1, m(G). So, if m(G) ≥ 6,
then there exist at least two colours different from 1, i that do not
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appear in the neighbourhood of vi; then, colour z with c and z′

with c′. Now, consider m(G) ≤ 5. Suppose, first, that vi ∈ N(v1)
and that vi has another coloured neighbour x′ 6= v1, vm(G). Since
v1 /∈ W , we know that there exists a path of length at most
three 〈vi, x′, y′, vj〉, where vj ∈ N(v1). If x′ 6= vj, give colour 1
to x′ and colour j to z and z′. Otherwise, suppose that N(vi) =
{v1, vj, z, z

′} and z, z′ ∈ N(vm(G)). It is easy to verify that, in this
case, D(G) encircles two pairs, z, z′ and x, y, a contradiction. So,
there must exist a neighbour of vi non-adjacent to vm(G) that we
can colour with 1; so, colour z, z′ with j. Now, consider that v1 is
the only coloured neighbour of vi. If m(G) = 5, then there exists
a colour k 6= 1, 2, i with which we can colour z and z′. Otherwise,
if m(G) = 4 (thus, i = 3), suppose that N(v3) = {x′, y′, v1} and
x′, y′ ∈ N(v4). Note that, as D(G)(v2) = ∅ and v4 /∈ N(v1), E1b
must occur and d(v1) = 3. However, in this case, D(G) encircles
two pairs, x′, y′ and x, y, a contradiction. So, there must exist
a neighbour x′ of v3 non-adjacent to v4; colour x′ with 1 and
z, z′ different from x′ with 2 (one can verify that z, z′ /∈ N(v1) as
|D(G)| = 4). Finally, suppose that vi ∈ N(v2). If vm(G) ∈ N(v2),
we colour the link between vi and vm(G) as in the previous item; so,
consider vm(G) /∈ N(v2). Note that m(G) = 5, i = 4, ND(G)(v2) =
{v4} and ND(G)(v1) = {v3}. Colour z, z′ with 3 and, if there exists
a link 〈v2, x′, y′, v4〉, change the colour of y′ to 1. If, at the end,
vm(G) has a link neighbour y′ still uncoloured, then give colour i
to y′, where vi is the other extremity of the link passing by y′.

• E2 occurs: suppose, without loss of generality, that 〈x, v1, v2, y, vm(G)〉
is a cycle in G and that, if E2a occurs, then vm(G)−1 ∈ D(G)\N(vm(G)).
Let W = D(G) \ {vm(G)}. Colour vi with i, for all i ∈ [1, m(G) − 1],
x, y with m(G) − 1 and vm(G) with 1. Note that, as neither x nor y
is encircled by D(G), vm(G)−1 /∈ N(z), for all z ∈ {x, y, v1, v2}; thus,
the precolouring is proper and r(vi) = 0, for all i ∈ [1, m(G) − 1].
Now, we need to colour the link vertices of W . First, consider a link
〈vi, · · · , vj〉, where vi, vj ∈ N(vm(G)): if x′ 6= y′, give colour i to y′

and colour j to x′ (if x′ or y′ is already coloured, do not change their
colours); otherwise, give colour 2 to x′. Now, if there is still some
uncoloured link vertex, note that such a vertex lies within a link with
extremity in vm(G)−1 and vm(G)−1 /∈ N(vm(G)) (hence, E2a occurs). So,
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let z, z′ be all the uncoloured link neighbours of vi, i ∈ [1, m(G) − 2].
Note that r(vi) = 0; thus, if there exists c ∈M(vi) \ {m(G)− 1}, then
we can colour z and z′ with c. We prove that this colour exists. As
v1 and v2 have exactly 2 coloured neighbours and m(G) ≥ 4, we know
that M(vj) \ {m(G) − 1} 6= ∅, for j = 1 and j = 2. So, consider
vi ∈ N(vm(G)). By an analogous argument, we can suppose that vi
has more than two coloured neighbours. It is easy to verify that, in
this case, vm(G)−1 ∈ N(vi) and there exists a path of length at most
3, 〈vi, x′, y′, vj〉, for some j ∈ [3, · · · , m(G) − 2]; thus, m(G) ≥ 6 and,
trivially, {1, · · · , m(G)−2}\ψ(N [vi]) 6= ∅, i.e., colour c exists. We can
apply an analogous argument to colour any uncoloured link neighbour
of vm(G)−1 at the end. We then obtain an unsaturated precolouring ψ
with candidate set W that colours all link vertices of W . Also, observe
that vm(G) is the only vertex not in W that may have degree larger
than m(G)− 1; if this is the case, we have that E2b occurs and vm(G)

is within the link 〈v1, x, vm(G), vm(G)−1〉. So, ψ and W satisfy Lemma
2.15.

3.3.3 |D(G)| = m(G) and D(G) encircles a vertex u

Let D(G) = {v1, · · · , vm(G)} and suppose that D(G) encircles u ∈ V \D(G).
By Lemma 2.1, we can suppose, without loss of generality, that v1 /∈ N(u) and
that v = vm(G) is a (v1, u)-bridge (i.e., v ∈ N(v1)∩N(u) and d(v) = m(G)−1);
also, there must exist vq ∈ N(u)\{v} (if there exists vq that is within a cycle
with v, then choose this vertex).

Let W = D(G) \ {v}; clearly, W satisfies Lemma 2.15, as v is within
the link 〈v1, v, u, vq〉. So, now we construct an unsaturated precolouring with
candidate set W that colours all link vertices of W . Apply colour i to vi,
1 ≤ i < m(G), colour 1 to u and colour q to v. Note that the only situations
where we repeat colours in the neighbourhood of some vertex of W are: if
there exists vk ∈ N(u) ∩ N(v1), in which case, by the choice of vq, we have
k = q and r(v1) = r(vq) = 1; or if there exists vk ∈ N(v) ∩ N(vq), in which
case we can suppose that k = 1 (thus, again, r(v1) = r(vq) = 1). So, we can
suppose that

(*) r(vi) = 0, for all vi ∈ W \ {v1, vq}, r(v1) = r(vq) ≤ 1 and, if r(v1) =
r(vq) = 1, then 〈u, v, v1, vq〉 is a cycle in G.

Now, we want to colour the remaining link vertices. Consider vi ∈ NW (u)
and let S ⊆ NW (vi) be the neighbours of vi having a link with vi. Let
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{x1, · · · , xq} ⊆ N(vi) be such that xj ∈ N(u) ∩ N(vi) or xj is within a link
between vi and some vij ∈ S. Note that, if vj ∈ S, then vj /∈ N(u), the link
between vi and vj is the only one with extremity in vj and N

W (vj) = {vi}.
Also, if xj ∈ N(u) ∩ N(vi), then vi is the only neighbour of xj in W . Now,
if q = 1 and x1 ∈ N(u), then we colour x1 with any colour in M(vi) (if
M(vi) = ∅, colour x1 with any colour different from 1, i). Otherwise, we have
S 6= ∅ and, consequently, d(vi) = m(G) − 1 (vi must be a (u, vj)-bridge, for
all vj ∈ S). By Proposition 3.13, since {x1, · · · , xq, u} ⊆ N(vi) \W , there
exists at least q vertices in W \ {v1} non-adjacent to vi whose colours we can
use to colour x1, · · · , xq. By what was said before, one can verify that this
colouring does not increase r(vj), for all vj ∈ W , and (*) still holds.

Now, we colour the remaining link vertices. Note that if r(vi) = 0 and
vi has only one uncoloured link neighbour x, then we can just colour x with
any colour in [1, · · · , m(G)] \ ψ(N(x)) (as x /∈ D(G), we have that d(x) <
m(G)− 1 and such a colour must exist). We prove that this always occurs,
i.e., that, for all vi ∈ W , vi has at most one uncoloured link neighbour,
say x, and if x exists, then r(vi) = 0. So, suppose that there exists a link
P = 〈vi, x, y, vj〉 where x is uncoloured. If (vi, vj) ∈ E(G), then we know
that x 6= y and vj ∈ N(u), as otherwise x would have been coloured in
the previous paragraph. As pointed out before, this is the only link with
extremity in vi; also, trivially, there is no cycle 〈u, vq, v1, v〉 containing vi
and, by (*), we know that r(vi) = 0. Now, suppose that (vi, vj) /∈ E(G). As
u is encircled by D(G), it is easy to see that there exists a cycle C containing
the link P and either u or some vk ∈ ND(G)(u). In either case, P is the
only link of this type with extremity in vi, i.e., x is the only uncoloured link
neighbour of vi. Also, as (vi, vj) /∈ E and by (*) and the existence of the
cycle C, it easy to see that r(vi) = 0.

3.3.4 |D(G)| = m(G) + 1 and G has no quasi-good set

Now, we colour the graphs that, although having more than m(G) dense
vertices, do not have a quasi-good set. By Theorem 3.7, we know that
|D(G)| = m(G) + 1 and one of the following situations occurs:

• The structure of D(G) is as represented in Figure 3.7: we know that
m(G) = 4, d(v1) = d(v2) = 3 and the link vertices of D(G) \ {v1, v2}
are {v1, v2, x, y, x′, y′}. Observe Figure 3.17. One can easily verify that
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ψ and W satisfy Lemma 2.15, for ψ being the precolouring presented
and W being the set of grey vertices.

v1(2)
v2(2)(2)

x(1)

y(3)

x′(1)

y′(3)

(1)
(3)

Figure 3.17: Partial colouring of a graph whose structure is as in Figure
3.7. The grey vertices can be the basis of a b-colouring of G with m(G)− 1
colours.

• D(G) induces a cycle of length 5 and d(u) = 3, for all u ∈ D(G): let
〈v1, v2, v3, v4, v5〉 be the cycle induced by D(G). Colour vi with i, for
i ∈ [1, 2, 3], v4 with 1 and v5 with 3; let ψ be the obtained precolouring.
One can easily verify that {v1, v2, v3} and ψ satisfy Lemma 2.15.

• There are vertices u, v with degree m(G) − 1 and a non-dense vertex,
x, such that 〈u, v, x〉 is a cycle in G and D(G) ⊆ N(u) ∪ N(v): let
W = D(G) \ {u, v} = {v1, · · · , vm(G)−1} and colour each vi ∈ W with
colour i. Since d(u) = d(v) = m(G) − 1 and x ∈ N(u) ∩ N(v), there
exist vi ∈ NW (u) and vj ∈ NW (v). Colour u with j and v with i.
Now, suppose that there is an uncoloured link 〈va, x, y, vb〉. If x 6= y,
then colour x with b and y with a. If x = y, then: if va, vb ∈ N(u),
colour x with colour j; otherwise, colour x with colour i. Note that
each vk ∈ NW (u) has at most two link neighbours, namely u and some
vj ∈ NW (u) \ {vi}. The same is analogously valid for the vertices in
NW (v). Then, clearly, r(vi) ≤ 1, for all vi ∈ W . Thus, we obtain an
unsaturated precolouring ψ with candidate set W that colours all link
vertices of W and where every vertex z ∈ V (G) \W with degree at
least m(G)− 1 is a link vertex of W (these vertices are exactly u and
v). Thus, Lemma 2.15 can be applied to extend ψ to a b-colouring of
G with m(G)− 1 colours.
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3.4 b-Colouring a cactus that has a quasi-

good set

In this sectio, we consider G to be a cactus that has a quasi-good set and
with m(G) ≥ 7. The main result of this section is the following.

Theorem 3.16. Let G be a cactus with m(G) ≥ 7 and W be a quasi-good
set of G. Then, there exists a b-colouring of G with basis W .

Let G be a cactus with m(G) ≥ 7. Given a quasi-good set W of G,
we will construct an unsaturated precolouring of G with candidate set W
that colours W ∪ N(W ). Then, by Lemma 2.15, we know that this partial
colouring can be extended to the entire graph.

Let G′ denote the induced subgraph G[W ∪ N [W ]] and let H be a con-
nected component of G′. A subset R ⊆ V (H) is a tight set of H if H [R]
is connected and, for every u ∈ W ∩ R, either N(u) \W ⊆ R or there is a
cycle C in H [R] that contains u and the only neighbours of u in R are its
neighbours in C. R is called a basic tight set of H if it either induces a cycle
or equals (N(u) \W ) ∪ {u}, for some u ∈ W ∩ V (H). We denote the basic
tight set (N(u) \W ) ∪ {u} by [u].

The general idea is to colour each vertex ofW with a different colour and,
then, colour each connected component H of G′ separately, using a sequence
of tight sets of H , R1, · · · , Rk, where R1 is basic, Ri ⊂ Ri+1, i = 1, · · · , k−1,
and Rk = V (H). So, we start by colouring R1 and, at step i, we extend the
precolouring that colours Ri−1 to a precolouring that colours Ri, i = 2, · · · , k.

In the next subsection, we show how to obtain this sequence. We also
ensure some other properties for the tight sets of the sequence that will be
important for colouring G′. Then, in Subsection 3.4.2 we show how to colour
a basic tight set of H and how to extend the precolouring that colours Ri−1

to a precolouring that colours Ri. We will also need the following definitions.
Let H be a connected component of G′. Given a tight set R of H , we say

that X is an R-flap if X is the set of vertices of a connected component of
H \ R. Also, if u ∈ (R ∪ N(R)) ∩W is such that N(u) \ (W ∪ R) 6= ∅, we
say that u is an intermediate vertex of R.

3.4.1 Tight sets

Before we explain how to obtain the desired sequence of tight sets, we show
how to obtain a basic tight set having a convenient property. To better
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understand the necessity of this property, consider a connected component
H of G′ and a sequence of tight sets R1, · · · , Rk of H as mentioned before.
Suppose that we have an unsaturated precolouring ψ with candidate set W
that colours exactly Ri ∪ W in H , i ∈ [1, k − 1]. In order to extend ψ to
colour Ri+1 \ (Ri ∪ W ), we would like to ensure that there are sufficiently
many vertices of W “distant” from any Ri-flap X , so that we can use the
colours of these “distant” vertices to colour (X ∩ (Ri+1 \ Ri)) \ W . More
formally, we want to ensure the following for all tight set R in the sequence:

(Half Property) |X ∩W | ≤ 1
2
|W |, for every R-flap X .

From now on, we write “R satisfies (HP)” when a tight set R satisfies
the Half Property. Observe that if R is a tight set of H that satisfies (HP)
and R′ is a tight set of H containing R, then R′ also satisfies (HP). Thus, we
need only to ensure that the first tight set of the sequence satisfies (HP). We
prove the existence of a basic tight set that satisfies (HP) in the following
lemma, where we also ensure another property that will be useful later.

Lemma 3.17. Let H be a connected component of G′. There exists a basic
tight set R that satisfies (HP). Furthermore, if H [R] is a cycle, then there is
no u ∈ W such that R ⊆ (N(u) \W ) ∪ {u}.

Proof: We first prove that there exists a basic tight set of H that satisfies
(HP). Observe that, as V (G′) = N(W ) ∪ W , H must have at least one
basic tight set. So, let R be a basic tight set of H and {X1, . . . , Xk} be
the set of R-flaps with indices such that |X1 ∩ W | ≥ · · · ≥ |Xk ∩ W |. If
|X1 ∩ W | ≤

1
2
m(G), we are done; so, suppose otherwise. Observe that

|(V (H) \ X1) ∩W | ≤
1
2
m(G). In the procedure described in the next two

paragraphs, we obtain a basic tight set R′ of H such that, for every R′-flap
X , either (I) X ⊆ V (H) \ X1, in which case |X ∩ W | ≤ 1

2
m(G); or (II)

X ⊂ X1. Thus, if R
′ still has a flap X containing more than 1

2
m(G) vertices

of W , then |X| < |X1|. So, as the graph is finite, we can run the procedure
until we find the desired tight set.

Suppose, first, that R = [u], for some u ∈ V (H) ∩ W , and let N =
|N(X1) ∩ [u]|. We know that |N | ≤ 2 and N separates R from X1. Suppose
that there exists a cycle C intersecting R andX1 and let R′ = V (C); trivially,
R′ is a basic tight set of H . As G is a cactus, one can verify that C contains
N . Consequently, either (I) or (II) holds, for every R′-flap. Now, suppose
that there is no such cycle. Then, we know that N(X1) ∩ [u] = {x} and
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N(x) ∩ X1 = {x′}. Also, x′ separates X1 from R and, trivially, if x′ ∈ W ,
then every [x′]-flap satisfies (I) or (II). So, suppose that x′ /∈ W . Observe
that, in this case, x 6= u as, otherwise, x′ ∈ [u]. Also, as V (H) ⊆ N(W )∪W ,
there must exist v ∈ NW (x′), and every [v]-flap satisfies (I) or (II).

Now, assume that R induces a cycle in H and let N(X1) ∩ R = {x}.
Suppose that x ∈ W and consider R′ = [x]. Let X be any R′-flap. Observe
that, as x separates R from X1, we have that X ⊆ V (H) \X1 or X ⊆ X1,
i.e., X violates (I) and (II) only if X = X1, in which case NX1(x) ⊆W . So,
suppose that this is the case, i.e., that NX1(x) ⊆ W . If NX1(x) = {u}, let
R′ = [u]. Otherwise, we know that there exists a cycle C containing x and
NX1(x); thus, let R′ = V (C). It is easy to see that X satisfies (I) or (II),
for all R′-flap X . Now, suppose that x /∈ W . One can easily verify that an
argument analogous to the one in the previous paragraph can be applied by
analysing if x is within a cycle in H [X1 ∪ {x}] or not.

Now, let R be a basic tight set of H satisfying (HP). If H [R] is a cycle
and R ⊆ (N(u)\W )∪{u}, for some u ∈ W , then R ⊆ [u] and, consequently,
[u] is a basic tight set that satisfies the lemma. �

Now, we want to construct a desired sequence from a basic tight set R
satisfying the lemma above. So, we setR1 to R and, while the current set Ri is
not equal to V (H), we obtain Ri+1 from Ri by adding either (N(u)\W )∪{u},
for some intermediate vertex u of Ri, or (N(Ri) ∩X) \W , for some Ri-flap
X , in the case Ri has no intermediate vertex. The following two lemmas
prove that this procedure works.

Lemma 3.18. Let H be a connected component of G′ and R be a tight set of
H that satisfies (HP). Then w ∈ R, for all w ∈ W such that N(w) \W ⊆ R.

Proof: Let w ∈ W \ R. Observe that if w is not in the same connected
component as R and N(w) \W ⊆ R, then N(w) \W = ∅ and, as d(w) =
m(G)− 1, we have W = N [w], a contradiction since V (H) ∩W 6= ∅ (recall
that V (H) ⊆ V (G′) ⊆ W ∪ N(W )). So, let X be the R-flap containing w
and denote by S the set N(w) ∩ R. By Lemma 3.1, we know that |S| ≤ 2,
and, by (HP) and the fact that m(G) ≥ 7, there must exist at least 4 vertices
in W \ X . Observe that, as d(w) ≥ m(G) − 1, for each vertex in W \ {w}
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non-adjacent to w, there must exist at least one vertex in N(w) \W , i.e.,

|N(w) \W | ≥ |W \N [w]|
≥ |W \ (S ∪X)|
= |(W \X) \ S|
= |W \X| − |S ∩W |

Also, as |W \X| ≥ 4 and N(w) \W = (N(w) \ (S ∪W ))∪ (S \W ), we have:

|N(w) \ (W ∪ S)| ≥ 4− (|S ∩W |+ |S \W |) = 4− |S| ≥ 2

Thus, N(w) \ (W ∪ R) 6= ∅. �

Lemma 3.19. Let H be a connected component of G′ and R be a non-empty
tight set of H that satisfies (HP), R 6= V (H). Then, either R′ = R ∪ [u] is
a tight set, for some intermediate vertex u of R, or R has no intermediate
vertex and R′ = R ∪ NX(R) is a tight set, for any R-flap X. Furthermore,
R ⊂ R′.

Proof: First, note that if there exists u ∈ R∩W such that u is an intermediate
vertex of R, then R′ = R∪ [u] is tight as it is connected and R′∩W = R∩W .
So, suppose that every intermediate vertex of R is not in R. Let u be any
intermediate vertex of R and let R′ = R ∪ [u]. Suppose that R′ is not tight.
As R′ is connected, there must exist w ∈ W ∩R′ such that N(w) \W * R′.
Obviously, w 6= u; hence, w ∈ R and we have a contradiction, as in this case,
w is also an intermediate vertex of R. So, if R has any intermediate vertex,
then there exists an intermediate vertex u of R such that R ∪ [u] is tight.
Observe that, by the definition of intermediate vertex, we have R ⊂ R ∪ [u].

Now, consider a tight set R of H that has no intermediate vertex, R 6=
V (H), and let X be any R-flap. Also, let S = NX(R) and R′ = R ∪ S.
Obviously, R ⊂ R′ and R′ is still connected. Additionally, by Lemma 3.18
and the fact that R has no intermediate vertex, we know that S ∩W = ∅
and, consequently, NS(u) = ∅, for all u ∈ W ∩ R. Thus, W ∩ R = W ∩ R′

and NR′

(u) = NR(u), for all u ∈ R ∩W . So, R′ is also tight. �

We can then obtain a sequence of tight sets of H as desired with the
additional property that every set on the sequence satisfies (HP). Now, con-
sider a tight set R on the sequence and let X be an R-flap. As m(G) ≥ 7,
we know that there are at least four vertices in W \ X , say w1, w2, w3, w4.
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As said before, we would like to use the colours of these vertices to colour
N(R)∩X . However, observe that if w ∈ R∩W separates X from R, it may
occur that {w1, · · · , w4} ⊆ N(w) \ X and, thus, we cannot use the colours
of those vertices to colour any x ∈ N(w) ∩ X . To solve this problem, we
introduce the following definitions.

Let R be a tight set of H . If w ∈ W is an intermediate vertex of R,
let J(w,R) be the union of R-flaps that intersect N(w). We say that R has
a 4-gap if |W \ (J(w,R) ∪ {w})| ≥ 4, for all intermediate vertex w of R.
Observe that, if R,R′ are tight sets such that R ⊆ R′, then the R′-flaps are
contained in the R-flaps; so, one can easily see that if R has a 4-gap, then R′

also has a 4-gap. Thus, it is sufficient to ensure that the initial basic tight
set has a 4-gap. Unfortunately, if the first tight set of the sequence is a cycle,
then it does not necessarilly have a 4-gap. So, if C is the vertex set of a cycle
of H , we define [C] as being the set C ∪

⋃

w∈C∩W (N(w) \W ) and we prove,
in the following lemma, that [C] is tight and has a 4-gap.

Lemma 3.20. Let H be a connected component of G′ and R be a basic tight
set of H satisfying (HP). If R = [w], for some w ∈ W , then R has a 4-gap.
Otherwise, [R] is tight and has a 4-gap.

Proof: If R = [u], for some u ∈ W , let Q denote R; otherwise, let Q denote
[R]. Trivially, Q is connected and, as N(w) \W ⊆ Q, for all w ∈ Q∩W , we
have that Q is tight. Now, we want to prove that Q has a 4-gap. Let w ∈ W
be an intermediate vertex of Q (if there is no such vertex, Q has a 4-gap by
definition). We know that w /∈ Q, as N(w) \ (W ∪ R) 6= ∅. So, let X be the
Q-flap containing w. As w ∈ X , trivially, J(w,Q) ∪ {w} = X . Also, as Q
satisfies (HP) and m(G) ≥ 7, we have |W \ (J(w,Q)∪ {w})| = |W \X| ≥ 4.

�

3.4.2 Colouring Phase

Let G be a cactus with m(G) ≥ 7, W ⊆ D(G) be a quasi-good set of G
and G′ = G[W ∪ N(W )]. We say that a precolouring ψ of G is nice for W
(or simply nice, if there is no ambiguity) if it is an unsaturated precolouring
with candidate set W that colours only vertices of G′ and is such that, for
every connected component H of G′, the coloured vertices in H are exactly
(W ∩V (H))∪R, where R is either empty or is a tight set of H that satisfies
(HP). For simplicity, asW is the candidate set of ψ and must be coloured, we
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say only that ψ colours R. Also, from now on, we consider that the vertices
of W are coloured with colours from the range [1, m(G)] and we denote the
vertex of W coloured with i by wi.

So, given a nice precolouring ψ of G′ and a connected component H such
that ψ colours only vertices of W in H , we will pick a basic tight set R as
explained in Lemma 3.17, extend ψ to colour R, obtaining a nice precolouring
ψ+, then we extend ψ+ to colour: N(u) \W , for some intermediate vertex u
of R; or, if R has no intermediate vertex and R 6= V (H), we extend ψ+ to
colour NX(R), for some R-flap X . We first show how to extend ψ to colour
a basic tight set R of H .

Lemma 3.21. Let G be a cactus with m(G) ≥ 7, W ⊆ D(G) be a quasi-good
set of G, H be a connected component of G′ = G[W ∪ N(W )], ψ be a nice
precolouring that colours only vertices of H that are in W and R = [w], for
some w ∈ H ∩W . Then, there exists a nice precolouring that extends ψ and
colours R.

Proof: Let X1, · · · , Xq be the vertex sets of the non-trivial connected com-
ponents of H − w containing at least one vertex of [w] (i.e., |Xi| ≥ 2 and
Xi ∩ (N(w) \W ) 6= ∅). Observe that if x ∈ N(w) \ (W ∪

⋃

i=1,··· ,qXi), then
{x} is a connected component of H−w. So, after colouring N(w)∩Xi, for all
i ∈ [1, q], we can give any colour fromM(w) to x, if there exists such a colour;
otherwise, i.e., if M(w) = ∅, we can colour x with any colour different from
ψ(w). An analogous argument can be made in the case where Xi∩W = {u}
and N(w) ∩ Xi = {u, x}, x 6= u: since w is the only coloured neighbour of
u, we have M(w) ⊆ M(u); thus, after colouring Xj ∩N(w), for all j ∈ [1, q],
j 6= i, we can give any colour from M(w) to x (again, if M(w) = ∅, colour x
with any colour different from ψ(w), ψ(u) - exists as m(G) ≥ 7). So, suppose
that (Xi ∩W ) \ N(w) 6= ∅, for all i ∈ [1, q]. By Lemma 3.1, we know that
|Xi ∩ [w]| ≤ 2, for all i ∈ [1, q]. So, consider, without loss of generality, that
there exists an index p ∈ [0, q] such that |Xi ∩ [w]| = 2, for all i ∈ [1, p],
and |Xi ∩ [w]| = 1, for all i ∈ [p + 1, q]. For each i ∈ [1, q], denote the
vertices in Xi ∩ [w] by xi, yi (if i > p, consider xi = yi). Also, denote the set
{x1, y1, · · · , xq, yq} by Z. We want to construct a function f : Z → M(w) in
such a way that the vertex of W coloured with f(zi) is in Xi, for all zi ∈ Z.
Then, we will use this function to colour [w]. So, consider the cases:

• i > p: let u ∈ (W ∩Xi) \N(w) and set f(xi) to ψ(u);
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• i ≤ p: if there exist u1, u2 ∈ W ∩ Xi such that u1 is reachable from
xi and not from yi and u2 is reachable from yi and not from xi, then
set f(xi) to ψ(u1) and f(yi) to ψ(u2). Otherwise, suppose, without
loss of generality, that every vertex of W ∩Xi reachable from yi is also
reachable from xi. Let u ∈ W ∩ Xi reachable from both xi and yi, if
there exists one, or let u be any vertex in W ∩Xi, otherwise. Set f(xi)
to ψ(u) and f(yi) to null.

Now, let J = {z ∈ Z : f(z) 6= null}. Note that xi ∈ J , for all i ∈ [1, q],
and that f(z) 6= f(z′), for all z, z′ ∈ J . Furthermore, let z, z′ ∈ J and
f(z) = c; we know that wc is not adjacent to w and is not reachable from z′.
Thus, if |J | ≥ 2, we can permute the colours defined by f on the vertices of
J in such a way that ψ(z) 6= f(z), for all z ∈ J , and obtain an unsaturated
extension of ψ that colours J . So, suppose that |J | = 1 (hence, q = 1). If
p = 0, as x1 is not encircled by W , there must exist u ∈ W not reachable
from x1 and we can color x1 with ψ(u). So, consider p = 1. If there exists
u ∈ X1 ∩W not reachable from yi (recall the construction of f), then colour
yi with ψ(u) and xi with ψ(u

′), for any u′ ∈ W not reachable from xi (exists,
as xi is not encircled by W ). So, suppose that every u ∈ Xi∩W is reachable
from both xi and yi. We know that there exists a cycle C containing x1, y1, w
and at least one u ∈ W ∩Xi. Trivially, any V (C)-flap X separated from C
by w is also a connected component of H − w and, as q = 1, we know that
|W ∩ X| ≤ 1. Furthermore, let A be the subset of [w]-flaps containing any
neighbour of x1 or y1. Note that any V (C)-flap separated from C by other
vertex than w is contained in some [w]-flap in A. One can then verify that if
[w] satisfies (HP) or has a 4-gap, then V (C) also does; thus, as V (C) * [v],
for all v ∈ W , we can consider the basic tight set V (C) instead of [w].

Denote by ψ+ the extension of ψ obtained in the previous paragraph.
Now, let S = Z \J (subset of uncoloured yi’s) and consider yi ∈ S (note that
if q = 1, then S = ∅). Suppose that there exists u ∈ Xi ∩W not reachable
from yi. If f(xi) 6= ψ+(u), then colour yi with ψ+(u) and remove it from
S. Otherwise, by the construction of f , we have that W ∩Xi = {u}. Thus,
ψ+(N(yi)) ⊆ ψ+({xi, w}) and we can colour yi either with a colour from
Mψ+(w), if one exists, or with any colour not in ψ+(N(yi)). So, we denote
the subset Xi ∩W by Fi and consider that every vertex in Fi is reachable
from both xi and yi, for all yi ∈ S. Also, note that N(yi)∩ [w] = {w}, for all
yi ∈ S; thus, during the colouring of [w], every coloured neighbour of yi is in
W , for all yi ∈ S. Consequently, if |S| > |Mψ+(w)| and we are able to colour
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S ′ ⊂ S with cardinality |Mψ+(w)| each with a different colour from |Mψ+ |,
then we can colour yi with any colour not in N(yi), for all yi ∈ S \ S ′ (such
a colour exists as q ≥ 2). So, from now on we consider that |M(w)| ≥ |S|.
Trivially, Fi ∩ Fj = ∅, for every pair yi, yj ∈ S. Let u ∈ W be such that
ψ+(u) ∈ M(w). We know that if some yi cannot be coloured with ψ+(u),
then u ∈ Fi and, consequently, yj can be coloured with ψ+(u), for every
yj ∈ S \ {yi}. So, if |S| ≥ 2 and ψ+(Fi) ∩ M(w) 6= ∅, for every yi ∈ S,
then we can colour S with colours from M(w). Now, suppose otherwise and
consider, without loss of generality, that y1 ∈ S and M(w) ⊆ ψ+(F1). As y1
is not encircled by W , there must exist a vertex u ∈ W not reachable from
y1 (and, consequently, not in X1). As u /∈ F1 and M(w) ⊆ ψ+(F1), we must
have that ψ+(u) /∈ M(w). So, let z ∈ N(w) be such that ψ+(z) = ψ+(u). If
z = u, then d(w) ≥ m(G) (as u is not reachable from y1) and we can repeat
the colour ψ+(z) in y1; and if z 6= x1, then colour z with c, for any c ∈M(w),
and y1 with ψ

+(u). So, suppose that z = x1. Recall the definition of Wt and
note that Wx = Wy. Thus, as W does not encircle the pair (x1, y1), one can
verify that either d(w) ≥ m(G), in which case we can colour y1 with ψ+(u),
or there exists u′ ∈ W \ (Wx ∪ {u}). Thus, as ψ+(x1) 6= ψ+(u′), we can
apply the same argument as before to colour y1. After this, just colour the
remaining uncoloured vertices in [w] with the colours missing in N(w). �

Lemma 3.22. Let G be a cactus with m(G) ≥ 7, W ⊆ D(G) be a quasi-good
set of G, H be a connected component of G′ = G[W ∪ N(W )], R ⊆ H be
basic tight set satisfying Lemma 3.17 such that H [R] is a cycle and ψ be a
nice precolouring that colours only vertices of W in H. Then, we can extend
ψ to colour either [R], if |R ∩W | = 1, or R, otherwise.

Proof: For each x ∈ R \W , denote by N∗(x) the subset NW (x) \ R. Note
that if NW (x)∩R = ∅, for some x ∈ R \W , then N∗(x) 6= ∅. If R ∩W = ∅,
note that it is easy to use the colours in ψ(

⋃

x∈RN
∗(x)) to colour R. If

R ∩W = {w}, note that we can colour [w] using Lemma 3.21. Then, let ψ+

be the obtained precolouring and R = {w, x1, · · · , xq}. Also, let ψ+(w) = c,
ψ+(x1) = c1 and ψ+(xq) = cq. Colour xi with c, for each i even in [2, q − 1].
Then, for each i odd in [3, q−1], if wc1 is not reachable form xi, then colour xi
with c1; otherwise, colour xi with ψ(w

′), for any w′ ∈ N∗(xi−1). At the end,
if q is even and ψ(xq−1) = c1 = cq, then change the colour of xq to ψ(w

′), for
any w′ ∈ N∗(xq−1); otherwise, if q is even and ψ(xq−1) = cq 6= c1 (in which
case, we know that wc1 is separated from R by xq−1 and wcq ∈ N

∗(xq−2)),
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then change the colour of x1 to cq and of xq to c1. So, from now on, we
suppose that |W ∩ R| ≥ 2.

First, consider that there exists at least one maximal subpath P ⊆ H [R]
such that P ∩W = ∅ and P has length greater than one. So, let P1, · · · , Pq
be all such subpaths and let xi, yi be the extremities of Pi, for every i ∈ [1, q].
We know that N∗(x) 6= ∅, for all x ∈ Pi \ {xi, yi}, i ∈ [1, q]. We first colour
S = R \

⋃q

i=1(Pi \ {xi, yi}). So, let P be a connected component of H [S].
Trivially, P is a path; so, let z, z′ be the extremities of P . First, we colour
NP (w), for all w ∈ P ∩W non adjacent to z or z′. Let w be such a vertex
and let NP (w) = {t1, t2}. If ti /∈ W , let wi ∈ (W ∩ P ) \ {w} closest to ti,
i = 1, 2. We know wi exists as ti 6= z, z′; also, we know that ti is within
a link between w and wi, i = 1, 2. If both t1 and t2 are not in W , then
colour t1 with ψ(t2), if t1 is not coloured yet, and t2 with ψ(t1), if t2 is not
coloured yet. Otherwise, suppose that t1 ∈ W , t1 is not coloured and t2 /∈ W
(if both are in W or t1 is coloured, there is nothing to do). If (t2, w2) is not
an edge, than colour t2 with ψ(w2). Otherwise, let t′ ∈ NP (w2) \ {t2}. If
t′ ∈ W , as t2 is not encircled by W , there must exist w′ ∈ W not reachable
from t2, in which case we colour t2 with ψ(w′). Otherwise, we postpone the
colouring of t2 for the iteration of w2. Now, consider w ∈ W ∩P adjacent to
z or z′. Let NP (w) = {t1, t2}, where t2 ∈ {z, z

′}, without loss of generality.
We know that t2 is an extremity of some Pi, i ∈ [1, q]. Let x ∈ N(t2) ∩ Pi
and w′ be any vertex in N∗(x). If t1 ∈ W , then colour t2 with ψ(w′); so,
suppose otherwise. If |P ∩W | ≥ 2, then define w1 related to t1 as before. If
w1 /∈ N(t1), then colour t1 with ψ(w1) and t2 with ψ(w′); otherwise, colour
t1 with ψ(w′), if t1 is not coloured yet, and t2 with ψ(w1). Now, suppose
that P ∩W = {w}; then, t1 is also the extremity of some Pj , j ∈ [1, q], as
t1 ∈ {z, z′}. Note that, as |W ∩ R| ≥ 2, we have i 6= j. Thus, colour t2
with ψ(w′) and t1 with ψ(w′′), for any w′′ ∈ N∗(x′), where x′ ∈ N(t1) ∩ Pj.
Now, we colour Pi \ {xi, yi}, for all i ∈ [1, q]. Let ψ+ be the precolouring
obtained above and consider Pi = 〈xi = v1, v2, · · · , vq = yi〉, i ∈ [1, q]. Also,
let u1 ∈ NR(v1) \ Pi and u2 ∈ NR(vp) \ Pi; as |W ∩ R| ≥ 2, we know that
u1 6= u2, and as ψ+ is a proper precolouring, we know that ψ+(v1) 6= ψ+(u1)
and ψ+(vp) 6= ψ+(u2). If ψ+(v1) 6= ψ+(u2) and ψ+(vq) 6= ψ+(u1), then we
can easily colour v2, · · · , vp−1 by alternating the colours ψ+(u1), ψ

+(u2) in Pi;
so, suppose otherwise. One can verify that, in this case, R ∩W = {u1, u2}
and N(u1) ∩N(u2) 6= ∅, i.e., R forms the cycle 〈u2, x, u1, v1, · · · , vp〉. So, let
w ∈ N∗(x2). If there exists w′ ∈ W \ {w} not reachable from x, then colour
x with ψ+(w′), v1 and vp with ψ+(w) and, then, we can again alternate the
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colours ψ+(u1), ψ
+(u2) in Pi \ {v1, vp}. Otherwise, we have p = 3 and, as

m(G) ≥ 7, there must exist w′ ∈ W separated from R by x (and, obviously,
w′ 6= u1, u2, w). Thus, we colour x with ψ+(w), v1 with ψ+(u2), v3 with
ψ+(u1) and v2 with ψ+(w′).

Now, suppose that H [R] is a cycle such that every maximal subpath
of R that does not intersect W has length at most one. Let R ∩ W =
{u1, · · · , uq}. We write R as 〈u1, x1, y1, · · · , uq, xq, yq〉 and assume that xi =
ui when (ui, ui+1) ∈ E(G) and that yi = xi when the path between ui and
ui+1 has length at most two. We analyse the following cases (recall that
q ≥ 2):

• q ≥ 5: for i = 1, · · · , q, if xi 6= ui then give colour ψ(u(i+3) mod q) to
xi. After this, for each uncoloured yi, let j = (i + 1) mod q. Then,
choose any colour in ψ(W ∩ R) \ {ψ(xi), ψ(uj), ψ(x)}, where x is the
neighbour of uj in R different from yi, i.e., x is either xj or u(j+1) mod q.
See Figure 3.18 for a better understanding. Note that, as x1, · · · , xq
are coloured first, if xi = yi, for some i, the colouring is still proper.

u1

u2

u3

u4

u5

(ψ(u4))
(ψ(u1))

(ψ(u5))

(ψ(u2))

(ψ(u1))
(ψ(u3))

(ψ(u4))

(ψ(u3))

(ψ(u5))

(ψ(u2))

Figure 3.18: Representantion of a nice precolouring ψ that colours a basic
tight set R when H [R] is a cycle and |R∩W | = 5. Some of the dense vertices
may not exist, i.e., the paths between vertices of W in the cycle may have
length 1,2 or 3.

• q = 4: all the possible cycles are represented in Figure 3.19, as well
as a precolouring of R′ ⊆ R. The only situations where there is some
uncoloured vertex in R are in (a), (b) or (c). If (a) or (c) occurs, as x1
is not encircled by W , there must exist a vertex w ∈ W not reachable
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from x3; then, just colour x3 with ψ(w). So, suppose that (b) occurs.
If there exists w ∈ (NW (u1)∪NW (x1))\R, then give colour ψ(w) to x3
and, as x1 is not encircled byW , there must exist w′ ∈ W not reachable
from x1; then, give colour ψ(w

′) to x1. Otherwise, we can suppose that
(N(ui) ∩W ) \R = ∅, i = 1, · · · , 4, and (N(xi) ∩W ) \ R = ∅, i = 1, 2.
As m(G) ≥ 7, we can choose any two colours c, c′ ∈ {1, · · · , m(G)} \
{ψ(u1), ψ(u2), ψ(u3), ψ(u4)} to give to x1 and x3.

(a)
(b)

(c)

x1

x1

x3

u1 u1

u1

u1

u1u1

u2

u2
u1

u2

u2

u2

u2

u2

u3

u3

u3

u3

u3

u3

u3

u4

u4

u4
u4

u4

u4

u4

(ψ(u1)) (ψ(u1))

(ψ(u1))

(ψ(u1))(ψ(u3))

(ψ(u4)) (ψ(u4))

(ψ(u3))

(ψ(u3))

(ψ(u2))

(ψ(u4))

(ψ(u2))

(ψ(u1))
(ψ(u3))

(ψ(u4))

u1

x1
u2

u3

(ψ(u4)) (ψ(u3))

u4

Figure 3.19: Cases where |R ∩ W | = 4 and there is at least two edges in
G[R ∩W ].

• q = 3: all the possible cycles are represented in Figure 3.20, as well
as a precolouring of R′ ⊆ R. The only situations where there is some
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uncoloured vertex in R are in (a), (b), (c) and (d). If (d) occurs, as
x3 is not encircled by W , then there must exist w ∈ W not reachable
form x3 and we can just give colour ψ(w) to x3. Now, suppose that (a)
occurs. If there exists w ∈ (NW (x2) ∪ NW (u2)) \ R, then give colour
ψ(w) to y2 and colour ψ(u1) to x2. Otherwise, suppose that (NW (y2)∪
NW (u3)) \ R is also empty (or we have an analogous situation) and
give colour ψ(u1) to y2 and any colour fromM(u2) to x2 (such a colour
must exist asm(G) ≥ 7 and ψ(N [u2]∪N(x2)) = {ψ(u1), ψ(u2), ψ(u3)}).
Now, suppose that (b) occurs. If there exists any w ∈ W \ {u2} not
reachable from x3, then give colour ψ(w) to x3. Otherwise, as x3 is
not encircled by W , we must have that u2 is the only vertex in W not
reachable from x3; consequently, we have that d(u1) ≥ m(G) and we
can give colour ψ(u1) to y2 and colour ψ(u2) to x3. Finally, consider
that (c) occurs. Observe that if we can colour x3 with ψ(w), for some
w reachable from x1 not through u1, then, as x1 is not encircled by
W , there must exist w′ not reachable from x1 and we can colour x1
with ψ(w′) (by the choice of w, we know that w 6= w′). So, we can
suppose that d(u3) = m(G) − 1 (otherwise, x3 can be coloured with
ψ(u2)) and (NW (x1)∪NW (u2)) \R = ∅. Analogously, we can suppose
that d(u2) = m(G)−1 and (NW (x3)∪N

W (u3))\R = ∅. Thus, if there
exist w,w′ ∈ W \ (N [u1] ∪ {u2, u3}), w 6= w′, then we can colour x1
with ψ(w) and x3 with ψ(w′). Otherwise, as E2 does not occur, we
have that either W \ (N [u1] ∪ {u2, u3}) = {w} and d(u1) ≥ m(G), in
which case we colour x1 and x3 with ψ(w), orW \{u2, u3} ⊆ N [u1] and
d(u1) ≥ m(G) + 1, in which case we colour x1 and x3 with any colour
c /∈ ψ({u1, u2, u3}).

• q = 2: recall that NR(u1) = {x1, y2} and NR(u2) = {y1, x2}. First,
suppose that at least one of the paths between u1 and u2 in R has
length two, say x1 6= y1, and that u1 /∈ N(u2). Then, give colour
ψ(u2) to x1 and ψ(u1) to y1. Assume that u2 6= x2 6= y2. If there
exists w ∈ N(x2) \ R, then give colour ψ(w) to y2 and y1 and colour
ψ(u1) to x2. Otherwise, if there exists w ∈ NW (u2) \ R, then give
colour ψ(w) to y2 and then colour x2 with any colour in M(u2) (if
there is none, just repeat colour ψ(u1) in x2). Finally, suppose that
NW (y) \ R = ∅, for all y ∈ R; then, we can pick two colours different
from ψ(u1), ψ(u2) to give to x2 and y2. Now, assume that x2 = y2.
As x2 is not encircled by W , there must exist w ∈ W not reachable
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Figure 3.20: Cases where |R ∩W | = 3.
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from x2; so, give colour ψ(w) to x2. Observe that we can use analogous
arguments to colour x2, y2 in the case where u1 = x1. So, consider the
case where u1 6= x1 = y1 and u2 6= x2 = y2. We can again suppose that
NW (xi) \ R = ∅, i = 1, 2. If there exists w,w′ ∈ W \ N [u1] ∪ N [u2],
w 6= w′, then we can colour x1 with ψ(w) and x2 with ψ(w′); so,
suppose otherwise. If W \ (N [u1]∪N [u2]) = {w}, then, as neither E1.a
nor E1.b occurs, at least one of u1, u2, say u1, is such that NW (u1) 6= ∅
and d(u1) ≥ m(G). Thus, we can colour x1 with ψ(w) and x2 with
ψ(w′), for any w′ ∈ NW (u1). Now, suppose that W ⊆ N [u1] ∪ N [u2].
As xi is not encircled, for i = 1, 2, then at least of u1, u2, say u1, is
such that NW (u1) 6= ∅ and d(u1) ≥ m(G). If d(u1) = m(G), then, as
E1.d does not occur, we have Nw(u2) 6= ∅; consequently, as E1.c does
not occur, then d(u2) ≥ m(G) and we can colour x1 and x2 with one
colour from ψ(NW (u1)) and one colour from ψ(NW (u2)). Now, assume
that d(u1) > m(G). If NW (u1) has more than one vertex, then we can
colour x1 and x2 using colours from ψ(NW (u1)). Otherwise, as E1.b
does not occur, we must have that d(u2) ≥ m(G) and, again, we can
use one colour from ψ(NW (u1)) and one colour from ψ(NW (u2)) to
colour x1 and x2.

�

Now, we know how to extend a nice precolouring that colours only vertices
ofW in H to a precolouring that colours R, where R is a basic tight set of H .
However, recall that we also want to ensure a 4-gap for the initial coloured
tight set. Thus, if the basic tight set R of H constructed with Lemma 3.17
induces a cycle, we want to colour [R]. The lemma below constitutes one
of the two possible cases of the “induction step” (see Lemma 3.19) and can
sometimes be applied to colour [R], depending on the cardinality of R ∩W .
The colouring of [R] is presented afterwards. We need the following further
definition.

Let H be a connected component of G′, R be a tight set of H and ψ be a
nice precolouring that colours R. Let x ∈ V (H) \ R; we say that colour i is
forbidden for x in ψ if wi is reachable from x or there exists w ∈ NW (x)∪{x}
such that w has a neighbour in R \W coloured with i; we denote the set of
colours forbidden for x in ψ by Fψ(x) (we ommit ψ, if there is no ambiguity).
Recall that J(u,R) is the union of all R-flaps that intersects N(u), where u
is an intermediate vertex of R.
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Lemma 3.23. Let H be a connected component of G′, ψ be a nice precolour-
ing of G′ that colours R ⊆ V (H) and u be an intermediate vertex of R such
that R ∪ [u] is tight. If there exists wc1, wc2 ∈ W \ (J(u,R) ∪ {u}) such that
c1, c2 ∈ Mψ(u) and c1, c2 /∈ Fψ(x), for all x ∈ N(u) \ (W ∪ R), then there is
a nice precolouring of G that extends ψ and colours R ∪ [u].

Proof: Let U be the set of uncoloured neighbours of u (trivially, U = N(u) \
(W ∪ R)) and Q be the bipartite graph (U ∪M(u), E ′), where (x, c) ∈ E ′ if
and only if c /∈ F (x). By assumption, we have (x, ci) ∈ E ′, for all x ∈ U ,
i = 1, 2. Now, we prove that there exists a matching of Q that covers M(u)
and, then, show how to use this matching to extend ψ to a nice precolouring
that colours R ∪ [u]. But, first, we make some observations about the edges
of Q.

Let c ∈M(u) and consider an R-flap X and x ∈ X∩U . By definition, we
know that if (x, c) /∈ E(Q), then either wc is reachable from x or there exists
w ∈ NW (x)∪{x} such that w has a neighbour in R\W coloured with c. One
can verify that, if the latter occurs, then w 6= u, as c ∈ M(u), and u ∈ X .
Also, by Lemma 3.1, x is the only vertex in U for which this occurs. Now,
if the former occurs, then at most one other vertex y ∈ X ∩ U also reaches
wc and, as in this case u separates wc from z, for every z ∈ N(u) \ {x, y}, we
have that x, y are the only two vertices for which this occurs. Consequently,
c has at most three non-neighbours in Q and, if it is the case, then c is
unique, i.e., (I) |U \NQ(c′)| ≤ 2, for all c′ ∈M(u) \ {c}. Now, suppose that
NQ(c) = ∅. Trivially, c 6= c1, c2 and, thus, we have |M(u)| ≥ 3. Also, by
(I) and Lemma 2.14, we know that |M(u)| ≤ 3. So, let U = {x, y, z} and
suppose, without loss of generality, that wc is reachable from x and y and
there exists w ∈ (N(z) ∩W ) ∪ {z} such that w has a neighbour in R \W
coloured with c. By Lemma 3.1, we know that u has at most one neighbour
in R, say z′. Consequently, u /∈ R and u, x, y, z are all in the same R-flap,
X . Also, note that any colour c′ ∈ ψ(W \ (X ∪ {wψ(z′)})) is missing in N(u)
and, as |W \ X| ≥ 4 (ψ is nice and, hence, R satisfies (HP)), there must
exist at least one colour c′ ∈ ψ(W \X) \ {ψ(z′), c1, c2}. Obviously, c′ 6= c as
wc ∈ X ; but then we get a contradiction as |M(u)| = 3. Thus, NQ(c) 6= ∅,
for all c ∈M(u).

Now, suppose, by contradiction, that there is no matching inQ that covers
M(u). By Hall’s Theorem (we direct the reader to [30]), we know that there
exists a subset C ⊆ M(u) such that |C| > |NQ(C)|. So, let C be such a
subset. As NQ(c) 6= ∅, for all c ∈M(u), we know that |C| > 1 and, as there
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exists at most one colour c ∈ M(u) such that |U \ N(c)| > 2, we have that
|NQ(C)| ≥ |U |−2. However, as U ⊆ N(ci), i = 1, 2, we have that c1, c2 /∈ C,
i.e., |C| ≤ M(u) − 2. But then, |U | − 2 ≤ |NQ(C)| < |C| ≤ |M(u)| − 2,
contradicting Lemma 2.14.

Now, letM be a matching that covers M(u) in Q. We want to colour x
with c, for all (x, c) ∈M. Let (x, c) ∈M and w ∈ N(x)∩W , w 6= u. By the
construction of Q, we know that no neighbour of w in R\W is coloured with
c; thus, if c appears in the neighbourhood of w, then wc ∈ N(w) and, as wc is
not reachable from x, d(w) > m(G)− 1. If x is the only common neighbour
of u and w, then after extending ψ usingM, r(w) = 1 ≤ d(w)−m(G) + 1.
So, suppose that there exists another y ∈ N(w) ∩ N(u). Trivially, if y is
paired inM with a colour that does not appear in N(w), we have the same
result as before; so, suppose that (y, c′) ∈ M, for some wc′ ∈ N(w) ∩ W .
As u separates R from wc, wc′, we know that c, c′ 6= c1. So, let (z, c1) ∈ M.
Again, as wc is separated from z by u, we know that if (z, c) /∈ E(Q), then
there exists v ∈ NW (z) ∪ {z} such that v has a neighbour v′ in R coloured
with c. Obviously, v′ /∈ W and, as c ∈ Mψ(u), we have v 6= u. One can see
that, in this case, (z, c′) ∈ E(Q) and (M\{(z, c1), (y, c′)})∪{(z, c′), (y, c1)} is
also a matching that covers M(u). So, the precolouring ψ+ obtained from ψ
by colouring x with c, for every (x, c) ∈M, is unsaturated. Finally, observe
that, for all w ∈ W \ {u} such that N(w) ∩ U 6= ∅, as c1, c2 ∈ Mψ(w) and
|N(u)∩N(w)| ≤ 2, if there exists x ∈ U still uncoloured, then we can colour
x with c1 or c2 without increasing r(w), for all w ∈ W , i.e., there exists an
unsaturated precolouring that extends ψ+ and colours R ∪ [u]. As R ∪ [u] is
tight and R satisfies (HP) (hence, R∪ [u] also does), this precolouring is also
nice. �

Now, we show how to colour [R], when H [R] is a cycle.

Lemma 3.24. Let H be a connected component of G′ and ψ be a nice pre-
colouring that colours R, where R is a basic tight set satisfying Lemma 3.17
such that H [R] is a cycle. Then, we can extend ψ to colour [R].

Proof: Let W ∩ R = {u1, · · · , uq} and denote J(ui, R) by Ji, i = 1, · · · , q.
As observed in the proof of Lemma 3.19, we know that if ui ∈ R ∩ W is
an intermediate vertex of R, then R ∪ [ui] is a tight set. Thus, if for some
i ∈ [1, q], there exists wc1, wc2 ∈ W \ (Ji ∪ {ui}) such that c1, c2 ∈ M(ui)
(and, hence, c1, c2 /∈ F (x), for all x ∈ N(ui) \ (W ∪ R), as ui separates x
from wc1, wc2), then we can apply Lemma 3.23 to colour N(ui) \ (W ∪ R).
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So, suppose that this is not the case, i.e., that (I) there exists at most one
wc ∈ W \ (Ji ∪ {ui}) such that c ∈ M(ui), for some i ∈ [1, q]. Consequently,
we have q ≤ 5. Note also that if N(ui)∩R ⊆W , as the colours of N(ui) \W
have no influence over the colouring of R, we can colour [ui] separately using
the strategy of the proof of Lemma 3.21. So, we also suppose that (II)
NR(ui) \W 6= ∅, for all i ∈ [1, q]. By Lemma 3.23, we also have q ≥ 2. We
then analyse the cases q ∈ {2, 3, 4}:

• q = 4: note that if W \ (
⋃4
i=1(Ji ∩W ) ∪ R) 6= ∅ or Ji ∩W 6= ∅ and

Jk ∩W 6= ∅, for some i, k ∈ [1, 4], i 6= k, then |W \ (Jl ∪ {ul})| ≥ 4, for
all l ∈ [1, q], contradicting (I) as ul has at most two vertices coloured
with some colour in ψ(W \ (Jl ∪ {ul})). So, suppose, without loss of
generality, thatW \R ⊆ J1. Then, after we colourN(u1), N(ui)\W can
be coloured independently with colours fromM(ui), for every i ∈ [2, 4].
Let N = N(u1) \ (W ∪ R) and denote by x1, x2 the neighbours of u1
in R. If ψ(xi) /∈ ψ({u2, u3, u4}), for i = 1 or i = 2, then at least two
colours of ψ({u2, u3, u4}) are in M(u1), contradicting (I). So, suppose,
without loss of generality, that ψ(x1) = ψ(u2) and ψ(x2) = ψ(u4).
By (II), we know that at least one of x1, x2 is not in W , say x1. Let
y ∈ (N(x1) ∩ R) \ {u1} and z ∈ (N(y) ∩ R) \ {x1}. Observe that
ψ(u3) ∈ M(u1) and suppose that there exists c ∈ M(u1) \ {ψ(u3)}
(trivially, c 6= ψ(ui), for all i ∈ [1, 4]). We show that it is possible to
change the colour of x1 to c, thus contradicting (I). Suppose otherwise;
then either ψ(y) = c (and, consequently, y /∈ W ) or y ∈ W and ψ(z) =
c. In both cases, if there is any other colour inM(u1)\{ψ(u3), c}, then
we can change the colour of x1; so, suppose otherwise. If ψ(y) = c,
then we know that z ∈ W and we can change the colour of y to any
colour in ψ(W ∩R) \ {ψ(z), ψ(t)}, where t ∈ N(z)∩R, t 6= y, and then
we can colour x1 with c. Now, suppose that y ∈ W and ψ(z) = c. Let
t ∈ NR(z) \ {y} and w ∈ NR(t) \ {z}. If t /∈ W , change the colour of z
to any colour in ψ(W ∩R) \ {ψ(t), ψ(y)}; otherwise, change its colour
to any colour in ψ(W ∩ R) \ {ψ(y), ψ(t), ψ(w)}. Then, colour x1 with
c. Finally, if M(u1) = {ψ(u3)}, then colour any x ∈ N(u1) \ (W ∪ R)
with ψ(u3) (x exists, by Lemma 2.14) and, then, colour the remaining
uncoloured vertices in N(u1) \ (W ∪R) using the colours ψ(u2), ψ(u4).

• q = 3: note that if |W \ (Ji ∪R)| ≥ 2, for all i ∈ [1, 3], then |W \ (Ji ∪
{ui})| ≥ 4, contradicting (I). So, suppose, without loss of generality,
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|W \ (J1 ∪ R)| ≤ 1. As m(G) ≥ 7, we have |J1 ∩ W | ≥ 3 (hence,
|W \ (Ji∪{ui})| ≥ 5, i = 2, 3) and, consequently, we can apply Lemma
3.23 to colour N(u2)∪N(u3) after colouring N(u1). So, let N = N(u1)\
(W∪R) and let N(u1)∩R = {z1, z2}. By (II), at least one of z1, z2 is not
inW , say z1. Also, by (I), we can suppose that at least one of z1 and z2
is coloured with a colour from ψ(W ∩R) and that if W \ (J1 ∪R) 6= ∅,
then ψ(z1), ψ(z2) ∈ ψ(W ∩R). If W \ (J1 ∪R) 6= ∅, denote by u4 such
vertex.

First, we show how to change the colour of z1 in ψ to some colour c ∈
M(u1)\ψ(J1∩W ). We make this in such a way not to change the colour
of z2. This procedure will be useful later, when we extend ψ to colour
N . Let r1 ∈ NR(z1)\{u1}, r2 ∈ NR(r1)\{z1} and r3 ∈ NR(r2)\{r1} (as
z1 /∈ W and |W∩R| = 3, we have r2 6= u1). First, suppose that r1 /∈ W .
If ψ(r1) 6= c, then change the colour of z1 to c. Otherwise, change the
colour of r1 to any colour in ψ({u1, u2, u3}) \ ψ({r2, r3}) and, then,
colour z1 with c. Note that, as r2 6= u1, we have r1 6= z2 and the colour
of z2 is not changed. Now, suppose that r1 ∈ W . If ψ(r2) 6= c, colour z1
with c. Otherwise, note that r2 /∈ W and r3 6= u1; let r4 ∈ NR(r3)\{r2}.
As m(G) ≥ 7, there must exist a colour c′ /∈ {c, ψ({r1, r3, r4, u4}); then,
we colour r2 with c

′ and z1 with c. Again, as r3 6= u1, then r2 6= z2 and
the colour of z2 is not changed.

We colour N similarly as we colour [w] in the proof of Lemma 3.21.
Let X1, · · · , Xp be the non-trivial connected components of H \ {u1}
containing at least one vertex of N and and assume the existence of an
index r ∈ [0, p] such that |Xi∩N | = 2, for all i ∈ [1, r], and |Xi∩N | = 1,
for all i ∈ [r + 1, p], r ≥ 0. As in the proof of Lemma 3.21, we can
suppose that (Xi ∩W ) \N(u1) 6= ∅, for i = 1, · · · , p. Also, denote the
vertices in Xi ∩ N by xi, yi (if i > r, consider xi = yi) and construct
the function f as in the proof of Lemma 3.21. Let Q be the subset
{zi : f(zi) 6= null} (we know that f(xi) 6= , for all i ∈ [1, p]). First,
suppose that |Q| ≥ 2. We permute the colours defined by f on the
vertices of Q in such a way that ψ(z) 6= f(z), for all z ∈ Q. By the
construction of f , we know that wf(z) ∈ J1\N(u1), for all z ∈ Q. So, as
at least one of z1 and z2 is coloured with a colour in ψ(W ∩R), we know
that at most one vertex z ∈ Q is such that f(z) /∈M(u1), in which case
one between z1, z2 is coloured with f(z), say z1. So, change the colour
of the vertex of Q coloured with f(z) to c ∈ ψ({u2, u3}) \ ψ(z2). The
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obtained partial colouring is unsaturated. Now, let S be the subset of
uncoloured yi’s. Suppose that, for some yi ∈ S, there exists u ∈ Xi∩W
not reachable from yi. By the construction of yi, we know that yi does
not reach any vertex of Xi ∩ W . Thus, NW (yi) = {u1} and we can
colour yi with any colour in M(u1). So, suppose that yi reaches every
vertex of Xi∩W , for all yi ∈ S. Now, let Fi = Xi∩W , for each yi ∈ S.
Trivially, Fi∩Fj = ∅, for every pair yi, yj ∈ S. Let c ∈ M(u1). We know
that if yi cannot be coloured with c, then wc ∈ Fi and, consequently, yj
can be coloured with c, for any other yj ∈ S, j 6= i. So, if |S| ≥ 2 and
ψ(Fi) ∩M(u1) 6= ∅, for at least two vertices of S, then we can colour
S with colours from M(u1). Now, suppose otherwise and consider,
without loss of generality, that y1 ∈ S and M(u1) ⊆ ψ(F1). As y1 is
not encircled, there must exist a vertex u ∈ W not reachable from y1
(and, consequently, not in X1). As u /∈ F1 and M(u1) ⊆ ψ(F1), we
must have ψ(u) /∈M(u1). So, let z ∈ N(u1) be such that ψ(z) = ψ(u).
If z = u, then d(w) ≥ m(G) (as u is not reachable from y1) and we
can repeat the colour ψ(z) in y1; so, suppose otherwise. Let v ∈ F1

be such that ψ(v) ∈ M(u1). If z 6= x1, then colour z with ψ(v) and
y1 with ψ(u) (observe that here we may need to use the procedure
explained in the previous paragraph in the case where v ∈ {z1, z2}).
So, suppose that ψ(x1) = ψ(u). As x1, y1 is not an encircled pair and
every vertex reachable from x1 is also reachable from y1 and vice-versa,
there must exist another vertex u′ ∈ W \ {u} not reachable from y1.
Since ψ(x1) 6= ψ(u′), we can colour y1 using analogous arguments. At
the end, we colour the remaining uncoloured vertices in S with the
colours missing in N(u1). At the end, if there are still uncoloured
vertices in N(u1), as |N(w) ∩ N(u1)| ≤ 2, for all w ∈ J1, we can use
the colours ψ(u2), ψ(u3) to colour these uncoloured neighbours.

Now, consider the case where |Q| = 1. We analyse the possible situa-
tions:

– x1 = y1: if ψ(zi) /∈ ψ({u2, u3}), for i = 1 or i = 2, then we
can easily colour x1. So, suppose otherwise and assume, without
loss of generality, that ψ(z1) = ψ(u2). As X1 is non-trivial and
W ∩ X1 * N(u1), there must exist w ∈ X1 such that ψ(w) ∈
M(u1). So, change the colour of z1 to ψ(w) as explained before
and colour x1 with ψ(u2).
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– x1 6= y1: let c ∈ M(u1). First, suppose that there exists w ∈
W \ R such that w is not reachable from x1 or from y1. If wc
is not reachable from x1, then we can colour x1 with c and y1
with c′ ∈ ψ({w, u2, u3}) \ ψ({z1, z2}). So, we can suppose that
wc is reachable from x1 and y1. Then, change the colour of z1
to c and colour x1, y1 with the colours in ψ({w, u2, u3}) \ ψ(z2).
Now, suppose that every vertex of W \R is reachable from x1 or
y1 (consequently, W \ R ⊆ J1). As X1 is non-trivial and x1, y1 ∈
X1 \W , we know that there exists at least one vertex in X1 ∩W .
Thus, we can suppose that ψ(z1) = c, where wc ∈ X1 ∩ W (we
change the colour of z1 as explained before, if necessary) and,
consequently, ψ(z2) ∈ ψ({u2, u3}). As observed previously, we
know that we can change the colour of z1 without changing the
colour of z2 and the only assumption made for z1 in the procedure
to change its colour is that z1 /∈ W . Thus, if z2 /∈ W and |X1 ∩
W | > 1, then we can analogously recolour z2 to a colour from
ψ(X1 ∩W ) \ ψ(z1) without changing the colour of z1 and, then,
colour x1, y1 with ψ(u2), ψ(u3). Also, if |X1∩W | = 1 then d(u1) ≥
|(W \{u1, · · · , u4})∪{x1, y1, z1, z2}| ≥ m(G), in which case we can
colour both x1 and y1 with the colour in ψ({u2, u3}) \ ψ(z2). So,
suppose that z2 = u2 (without loss of generality) and |X1∩W | ≥ 2.
In this case, as all vertices of W \ R are reachable from x1 or y1,
then either we can colour x1 with ψ(w), for some w ∈ W ∩X1 not
reachable from x1, and then colour y1 with ψ(u3); or we can colour
y1 with ψ(w), for some w ∈ W ∩ X1 not reachable from y1, and
then colour x1 with ψ(u3); or every vertex of W ∩X1 is reachable
from both x1 and y1. If the latter occurs, then d(u1) ≥ m(G), as
x1, y1 is not an encircled pair, and we can colour both x1 and y1
with ψ(u3).

Finally, if there are still uncoloured vertices in N(u1), say x, we know
that the component X of H \ {u1} containing x either contains only
x or is such that X ∩ W = {w} and w ∈ N(x). So, ψ(N(w)) =
{ψ(u1)}, if w exists, and we can colour x with any colour in M(u1) or
in {ψ(u2), ψ(u3)}, if M(u1) = ∅.

• q = 2: we know that one of u1, u2 satisfies (I), say u1. Thus, as at
most two colours in ψ(W \ (J1 ∪ R)) appears in N(u1), we have (i)
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|W \ (J1 ∪ R)| ≤ 2. So, as m(G) ≥ 7, we have |J1 ∩W | ≥ 3 (hence
|W \ (J2 ∪ {u2})| ≥ 4) and we can apply Lemma 3.23 to colour N(u2)
after colouring R ∪ N(u1). Also, we know that if P is a maximal
path in H [R] not intersecting W of length greater than 1, then, as
H ⊆ G[W ∪ N(W )], each internal vertex of P must have at least one
neighbour in W \ R. Thus, by (i), at most two distinct vertices in
R are internal vertices of such paths. As by (II) we also know that
NR(u1) \ W 6= ∅, we have that all the possible structures of R are
represented in Figure 3.21.

First, note that if (a) or (b) occurs, then we can colour [u1] as explained
in the proof of Lemma 3.21 and, then, give colour ψ(u1) to x2 in (a),
and any two distinct colours in ψ((J1 ∪ {u1}) ∩ W )) \ ψ({x1, y1}) to
x2, y2 in (b) (as |(J1 ∪{u1})∩W | ≥ 4, these colours exist). So, assume
that (c)-(g) occurs. Note that, in each situation, |W \ (J1 ∪ R)| ≥ 1
by the existence of paths of length greater than 1 that do not intersect
W . If there exist z1, z2 ∈ (J1 ∩ W ) \ N(u1), z1 6= z2, observe the
precolourings presented in Figure 3.21. As the precolourings do not
use colours from W \ (J1 ∪ R) in N(u1), we can use Lemma 3.23 to
extend them to precolourings that colour R∪N(u1). Now, suppose that
|(J1∩W )\N(u1)| ≤ 1. Suppose that ψ∗ is an extension of ψ that colours
R such that: (ii) if (J1∩W )\N(u1) = {w}, then ψ∗(w) ∈ ψ∗(NR(u1)).
Note that, as ψ∗ is unsaturated and w′ is separated from u1 by R, for
all w′ ∈ W such that ψ∗(w′) ∈ M(u1), we can colour the uncoloured
vertices in N(u1) ∩ J1 with colours in M(u1). So, suppose that the
vertex w exists (otherwise the precolouring obtained in Lemma 3.22
satisfies our constraint). In the precolourings presented in Figure 3.21,
consider z1 to be w, z2 to be u2, replace the colour of x′ ∈ NR(u2)
coloured with ψ(z2) by ψ(u1) and, in (f), colour the vertex t with ψ(w)
instead of ψ(u1). The obtained precolourings satisfy (ii).

�

Finally, we present a lemma to extend a precolouring that colours R ⊆
V (H), where R has no intermediate vertex.

Lemma 3.25. Let ψ be a nice precolouring of G and H be a connected
component of G′ where ψ colours R ⊆ W . If R has no intermediate vertex
and R 6= V (H), then there is a nice precolouring of G that extends ψ and
colours R′ = R ∪NX(R), for some R-flap X.
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Figure 3.21: Cases where |R ∩ W | = 2. The colours are represented in
parenthesis.
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Proof: Let X be any R-flap, SX = NX(R) and SR = NR(X). By Lemma 3.1,
we know that |SX | ≤ 2 and |SR| ≤ 2. Thus, as ψ is nice, we have |X ∩W | ≤
1
2
m(G) and, as m(G) ≥ 7, there must exist at least two vertices w1, w2 in
W \ X such that ψ(wi) /∈ ψ(SR). So, we can give colours ψ(w1), ψ(w2) to
the uncoloured vertices in SX , obtaining an unsaturated precolouring ψ+.
By Lemma 3.19, we know that R′ = R ∪ NX(R) is tight and, as R satisfies
(HP), then R′ also does; consequently, the ψ+ is also nice. �

The presented lemmas imply Theorem 3.16 as the graph is finite and,
with each application of Lemmas 3.23 and 3.25, we increase the size of the
subset of coloured vertices of G′, i.e., we eventually colour G′ entirely.



Chapter 4

Outerplanar Graphs

The results in this chapter were presented in the 8th French Combinatorial
Conference, at Orsay, 2010, and a complete version was submitted to the
journal Discrete Mathematics [34].

In this chapter, we consider outerplanar graphs with girth at least 8. We
recall that G is outerplanar if it has an embedding in the plane such that
no two edges cross (i.e., the graph is planar) and all vertices lie on the same
face. Our main result is the following:

Theorem 4.1. Let G be an outerplanar graph with girth at least eight. Then
χb(G) is equal to either m(G) or m(G)− 1. Moreover, we can determine the
value of χb(G) (and a b-colouring with χb(G)colours) in polynomial time.

Let G be an outerplanar graph with girth at least 8. We already know, by
Theorem 2.19, that if G does not have a good set, then χb(G) = m(G)− 1.
Also, we know by Lemma 2.20 that if G has a good set, then one can be
found in polynomial time. It remains to prove that if G has a good set, then
χb(G) = m(G). The proof is given in Section 4.1.

Given any graph G, the graph obtained from G by a subdivision of an
edge (u, v) ∈ E is the graph (V ∪{w}, (E\{(u, v)})∪{(u, w), (v, w)}). A sub-
division of G is a graph obtained from G by a sequence of edge subdivisions.
Here is a classical characterization of outeplanar graphs.

Theorem 4.2. Given a graph G, the following are equivalent:
- G is outerplanar;
- G does not have a subgraph that is a subdivision of K4 or of K2,3;
- G is planar, and every block of G is either a vertex, an edge, or an hamil-
tonian cycle.
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Here are a few properties of induced cycles in outerplanar graphs.

Theorem 4.3. An outerplanar graph G with n vertices has O(n) induced
cycles. The intersection of any two induced cycles of G is either empty, or
one vertex, or an edge. The edge intersection graph of induced cycles in G
is a forest.

One can produce the list C of induced cycles of an outerplanar graph G
as follows. First produce the list of blocks of G; this can be done in time
O(n) [35]. Now let Q be the list of blocks of G that are cycles. Remove an
element A of Q. If A is induced, put it in C. Else, let e be a chord of A and
let A′, A′′ be the two subcycles of A determined by e. Append A′ and A′′ to
Q. Continue with the next element of Q. Stop when Q becomes empty.

The following proposition will be of use in our colouring procedure.

Proposition 4.4. Let A be an induced cycle in an outerplanar graph G, and
let x, y be two non-adjacent vertices of A. Then every induced path P between
x and y is included in A.

Proof: If at least one internal vertex of P is not in A, then V (P ) ∪ V (A)
contains a subdivision of K2,3, a contradiction. �

4.1 Outerplanar graphs with a good set

In this section we prove the second part of the main theorem, namely:

Theorem 4.5. Let G be an outerplanar graph with girth at least 8. Suppose
that G has a good set. Then χb(G) = m(G).

Let W = {v1, . . . , vm(G)} be a good set of G and LW be the set of link
vertices ofW . We want to construct an unsaturated precolouring with candi-
date set W that colours W ∪LW ; then, the theorem follows by Lemma 2.15.
We start by assigning colour i to vi (i = 1, . . . , m(G)); then we extend this
precolouring to colour L in several phases. Before explaining these phases,
we need to introduce some terminology and notation.

Let A be any cycle in G that contains vertices of W . We call sector of A
any subpath P of A, of length at least one and using consecutive vertices of
A, such that the extremities of P are in W and the interior vertices of P are
in L. We say that a cycle is special if it contains either three or four vertices



4.1. OUTERPLANAR GRAPHS WITH A GOOD SET 99

of W and every sector of A is a link. Note that in a special cycle A every
vertex of V (A) ∩ L has a neighbour in V (A) ∩W . Moreover, every special
cycle has length at most 12 and, consequently (since girth(G) ≥ 8), is an
induced cycle.

Let S be the collection of special cycles of G. One can obtain S easily by
examining every member of the collection C of induced cycles of G. Let L0

be the set of vertices of L that belong to special cycles.
Now, we colour the vertices of L. There will be four phases. In the first

phase, we colour the vertices of L0. In the second phase we colour the vertices
of NL\L0(vi) for every vi ∈ W that has at least two neighbours in L \ L0.
In the third phase we colour the uncoloured vertices of L \ L0 that have a
neighbour in L. In the fourth phase, we colour the remaining vertices of L.
Throughout the colouring procedure, we shall ensure that the precolouring is
proper and that no colour is repeated in N(w) for all w ∈ W , except in the
last phase, where we may repeat a colour in N(w) if d(w) allows it. Thus, the
obtained precolouring is ideed an unsaturated precolouring. During Phases
1, 2 and 3, we shall ensure that the following property P holds.

(P) If a vertex x gets colour j during Phases 1, 2 or 3, then either:
P1 there exists a path 〈x, x′, vj〉, or
P2 there exists a path 〈x, u, x′, vj〉 or 〈x, u, x

′, x′′, vj〉 for some u ∈ W .

4.1.1 Phase 1

During this phase, we colour the vertices of L0. We do this by considering
each special cycle A ∈ S and colouring its uncoloured vertices. This is called
the iteration of cycle A. The cycles of length at most 9 are iterated first.
So let A = 〈vi1, x1, y1, vi2, · · · , viq , xq, yq, vi1〉 be any special cycle, where
A ∩ W = {vi1 , . . . , viq}, and possibly xi = yi for any i = 1, . . . , q. By the
definition of a special cycle, we have q ∈ {3, 4}. Some vertices of L ∩ V (A)
may have been coloured during the iteration of another special cycle before
A. The uncoloured vertices of A are coloured according to the following
pattern. If q = 3 (so A has length 8 or 9), the pattern is shown in Figure 4.1
and we colour the vertices as represented there.

If q = 4 (so A has length between 8 and 12), the pattern is shown in
Figure 4.2 and is formally defined as follows, where subscripts are understood
modulo 4 and from the set {1, 2, 3, 4}.

• If xj is uncoloured, then ψ(xj)← ij−1, for j = 1, . . . , 4;
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va

vb

vc

(c)

(b)

(b)

(a)

(a)

vb

vc

(b)

(a)

va

(c)

(b)

(a)

(c)

Figure 4.1: The attributed colours are in parenthesis.

• If yj is uncoloured, then ψ(yj)← ij+2, j = 1, . . . , 4.

vi1
vi2

vi3
vi4

(i4) (i3)

(i1)

(i4)

(i2)

(i3)

(i1) (i2)

Figure 4.2: The attributed colours are in parenthesis.

It is easy to check that every vertex coloured during Phase 1 satisfies
property P.

Lemma 4.6. After Phase 1 is applied, in every special cycle A the precolour-
ing is proper and no vertex w ∈ V (A) ∩W has two neighbours of the same
colour in A.

Proof: Let A be a special cycle. Any colour that appears in A is either a
colour given precedingly during the iteration of another special cycle or a
colour j such that vj ∈ V (A) ∩W . Consider any vertex x ∈ V (A) ∩ L that
is already coloured before the iteration of A. So x was coloured during the
iteration of another special cycle A′. By Theorem 4.3, the intersection of A
and A′ is either {x} or {x, y} for some neighbour y of x. In either case, the
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colour h of x is such that vh ∈ V (A′) \ V (A), so x is the only vertex of A
that receives colour h. If vj is any vertex in V (A) ∩W , then clearly, by the
definition of the colouring, colour j is not given to two adjacent vertices of A
or to two neighbours of a vertex w ∈ V (A) ∩W . Thus the lemma holds. �

4.1.2 Phase 2

For every w ∈ W and vertex x ∈ L adjacent to w, let D(w, x) be the set of
colours j such that x lies on a link between w and vj, i.e., on a link 〈w, x, vj〉
or 〈w, x, x′, vj〉.

In this phase, for every vertex w ∈ W that has at least two neighbours in
L \L0 we color the uncoloured vertices of N(w)∩ (L \L0). This is called the
iteration of vertex w. Let Lw = N(w)∩ (L \L0). For each x ∈ Lw, we pick a
colour fx ∈ D(w, x) (= {j | x lies on a w, vj-link}). Since girth(G) ≥ 8, we
have D(w, x) ∩ D(w, y) = ∅ for all x, y ∈ N(w) with x 6= y. Consequently
the set {fx | x ∈ Lw} has the same cardinality as Lw. Some vertices of
Lw may have been coloured during this phase in the iteration of another
member of W . We colour the uncoloured vertices of Lw with the colours
from {fx | x ∈ Lw} in such a way that each vertex x receives a colour
ψ(x) 6= fx. This is possible because |Lw| ≥ 2. Clearly, every vertex that is
coloured during Phase 2 satisfies property P2.

4.1.3 Phase 3

Let R be the set of uncoloured vertices of L \ L0 that have a neighbour in
L. In this phase, we colour the vertices of R. So consider any x ∈ R. Pick
any x′ ∈ NL(x) and vj ∈ NW (x′). Assign colour j to x. Clearly, x satisfies
property P1.

Lemma 4.7. After Phases 1, 2 and 3 are applied, the precolouring is proper
and does not repeat any colour in the neighbourhood of any vertex w ∈ W .

Proof: Suppose on the contrary that there are two vertices x, y such that
ψ(x) = ψ(y) = j and either (i) x, y are adjacent or (ii) x, y are two neighbours
of some vertex w ∈ W . Since x satisfies property P, there exists a path Px
equal to either 〈x, x′, vj〉 or 〈x, u, x′, vj〉 or 〈x, u, x′, x′′, vj〉 for some u ∈ W
and x′, x′′ ∈ L. Likewise, there exists a path Py equal to either 〈y, y′, vj〉
or 〈y, v, y′, vj〉 or 〈y, v, y′, y′′, vj〉 for some v ∈ W and y′, y′′ ∈ L. Since
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girth(G) ≥ 8, each of Px, Py is induced. It may be that Px \ vj and Py \ vj
are not disjoint, but anyhow it is a routine matter to check that in case (i),
V (Px)∪V (Py) either contains a cycle of length at most 7 or induces a special
cycle. In case (ii), as at least one between x and y is not coloured during
Phase 2 on the iteration of w, again V (Px) ∪ V (Py) ∪ {w} either contains
a cycle of length at most 7 or induces a special cycle. In either case, this
contradicts girth(G) ≥ 8 or Lemma 4.6. �

4.1.4 Phase 4

Let R′ be the set of vertices of L that are uncoloured after Phase 3. So
R′ ⊆ L \L0. Moreover, every vertex x ∈ R′ has no neighbour in L and is the
only neighbour in L \ L0 of each w ∈ NW (x). Thus, the following is valid:

P4a If 〈x, w, y〉 is a path with x ∈ R′, w ∈ W , y ∈ L. Then y ∈ L0.

We divide this phase into three subphases. In the first two subphases,
we deal with vertices x ∈ R′ such that there exists a path 〈x, w, y〉 with
w ∈ W and y ∈ L0. To do this, for each vertex y ∈ L0, let Wy be the set
{w ∈ NW (y) | NR′

(w) 6= ∅}, let R′
y be the set {x ∈ R′ : NWy(x) 6= ∅} and

let us call span of y the value span(y) = |Wy|. For each vertex y ∈ L0 we
will colour every x ∈ R′

y. We call this the iteration of y. Vertices with span
at least 2 are iterated in Subphase 4.1, and vertices with span equal to 1 are
iterated in Subphase 4.2. In Subphase 4.3, we colour the remaining vertices
of R′.

Subphase 4.1

Consider any vertex y ∈ L0 with span(y) ≥ 2. Let q = |Wy| = span(y).
Let Wy = {vi1 , . . . , viq} and R′

y = {x1, . . . , xq} where xj is the neighbour
of vij in R′ (recall that each vertex of Wy has only one neighbour in R′, for
otherwise its neighbours would have been coloured during Phase 2). For each
xj (j = 1, . . . , q), choose a colour cj ∈ D(vij , xj). As xj has no neighbour
in L, we know that vcj ∈ N(xj). It may happen that some of the xj ’s are
coloured during this phase in the iteration of some y′ ∈ L0 processed before y.
So let us assume up to symmetry that x1, . . . , xr are the uncoloured vertices
in {x1, . . . , xq}, with r ≤ q. If r = 0, just proceed to the next element of L0.
If r = 1, give colour c2 to x1. If r > 1, take any permutation c′1, . . . , c

′
r of

c1, . . . , cr such that c′j 6= cj , and assign colour c′j to xj , j = 1, . . . , r.
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Lemma 4.8. After Phase 4.1 is applied, the precolouring is proper and does
not repeat any colour in the neighbourhood of any vertex w ∈ W .

Proof: Suppose that the precolouring is not proper after the iteration of
some vertex y ∈ L0 in Subphase 4.1. With the notation above, this must be
because some vertex xk ∈ R′

y receives colour cj while xk is already adjacent
to a vertex z of colour cj. We have z /∈ L because NL(xk) = ∅. So z = vcj .
But then {y, vik , xk, vcj , xj , vij} induces a cycle of length 6, a contradiction.

Now suppose that the precolouring repeats a colour in N(w) for some
w ∈ W . This must be because some vertex xk ∈ R′

y ∩ N(w) receives a
colour cj while w already has a neighbour z 6= xk of colour cj (possibly
w = vik). Since girth(G) ≥ 8, we have z 6= vcj . So z ∈ L. By P4a, we
have z ∈ L0, so z was coloured during Phase 1. This means that some
special cycle A ∈ S contains z and vcj . If w = vik , then A and the path
〈vcj , xj , vij , y, vik , z〉 between vcj and z, which is not contained in A because
it contains xj , xk /∈ L0, contradict Proposition 4.4. If w 6= vik , then A and
the path P = 〈z, w, xk, vik , y, vij , xj , vcj〉 contradict Proposition 4.4. �

Subphase 4.2

During this second subphase, we may need to change the colour of vertices
of L0; as we make these modifications, we will ensure that:

P4b If y ∈ L0, then ψ(y) can be changed only during the iteration of y
in Subphase 4.2;

P4c If ψ(y) is changed to j, then there exists a path 〈y, w, x, vj〉 for some
w ∈ W and x ∈ R′.

So consider any vertex y ∈ L0 with span(y) = 1. Let Wy = {vi} and
R′
y = {x} where x is adjacent to vi. Choose a colour j ∈ D(vi, x). As x

has no neighbour in L, we know that vj ∈ N(x). Assume that x is still
uncoloured. Let h be the colour of y. By P4b, h is the original colour of y.
Let A be the special cycle such that y was coloured during Phase 1 in the
iteration of A. So vh ∈ A. Also, h 6= j, for otherwise 〈y, vi, x, vj〉 should be
the path Py of property P, with Py ⊂ V (A), and x would be coloured already.
We assign colour h to x and recolour y with j. Clearly, y satisfies P4b and
P4c.

Lemma 4.9. After Phase 4.2 is applied, the precolouring is proper and does
not repeat any colour in the neighbourhood of any vertex w ∈ W .
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Proof: Suppose that the precolouring is not proper after the iteration of some
vertex y ∈ L0 in Subphase 4.2. This must be because, with the notation
above, either (i) x has a neighbour u of colour h, or (ii) y has a neighbour z
of colour j.
First assume that (i) holds. We have u /∈ L because x has no neighbour in
L. So u = vh. By property P, there exists a path Py of length at most four
between y and vh. Combining this path with 〈y, vi, x〉, we obtain a cycle of
length at most 7, a contradiction.
Now assume that (ii) holds. Clearly, z 6= vj , so z ∈ L, and (z, vj) /∈ E(G)
because the colouring is proper. Also z did not have its colour changed to j
before this iteration, for otherwise, by P4c, we would have a cycle of length
7. So j is its original colour. Moreover, N(z) ∩N(vj) = ∅ (for otherwise, we
have a cycle of length 6), and consequently z was not coloured during Phase
3. If z was coloured in Phase 2, we could find a special cycle containing x,
a contradiction to x ∈ R′. Also z /∈ R′, since z has a neighbour y ∈ L. So
z was coloured during Phase 1 applied to a special cycle A′ that contains
vj and z. But then A′ and the path 〈vj, x, vi, y, z〉 between vj and z, which
contains x /∈ L0, contradict Proposition 4.4.

Now suppose that the precolouring repeats a colour in N(w) for some
w ∈ W after the iteration of some vertex y ∈ L0 in Subphase 4.2. We may
assume that y is the first vertex for which there is such a repetition. The
repetition occurs because either (iii) w ∈ NW (x) and w has a neighbour
z 6= x with ψ(z) = h, or (iv) w ∈ NW (y) and w has a neighbour z 6= y with
ψ(z) = j.
Suppose that (iii) holds. We know that w 6= vi, for otherwise colour h was
repeated already inN(w) (on y and z) before this iteration, which contradicts
the choice of y. If z = vh, then A and the path 〈y, vi, x, w, z〉 contradict
Proposition 4.4. Therefore z 6= vh. So z ∈ L. By P4a, z ∈ L0, so z was
coloured during Phase 1. By P4b, the colour of z has not changed (for
otherwise, this would be during the iteration of z, and then x would be
coloured already). So h is the original colour of z. By property P, there is a
path Pz of length at most four between z and vh. Then, by Proposition 4.4,
the path 〈y, vi, x, w, z, Pz〉 must join A on a neighbour of y, contradicting the
fact that z is coloured in Phase 1 (there is no induced cycle containing z and
vj).
Suppose that (iv) holds. Since girth(G) ≥ 8, we have z 6= vj . So z ∈ L.
Suppose that w = vi. By P4a, z ∈ L0, so z was coloured during Phase 1.
The colour of z has not changed, for otherwise x would have been coloured
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already. So there exists a path Pz of length at most four between z and vj ,
and by combining Pz and the path 〈vj , x, vi, z〉 we obtain a cycle of length
at most 7, a contradiction. Therefore w 6= vi. Now, either j is the original
colour of z, or j was given to z during the iteration of z in Phase 4. In
either case, by property P or P4c, there is a path Pz of length at most four
between z and vj , and by combining Pz and the path 〈vj , x, vi, y, w, z〉 we
obtain either a cycle of length at most 7, or a special cycle that contains x,
a contradiction. �

Subphase 4.3

Now, let x be a vertex of R′ that is still uncoloured; so x and all vertices
vi ∈ NW (x) have no neighbour in L.

Suppose that every vertex ofW is either in NW (x) or adjacent to a vertex
of NW (x). SinceW is a good set, x is not encircled byW , so there is a vertex
w ∈ NW (x) with d(w) ≥ m(G) and a vertex u ∈ NW (w). In that case we
give colour ψ(u) to x. Note then that this situation cannot occur for another
vertex x′ 6= x, for otherwise there would be a cycle of length at most 6
containing x and x′. So w is the only vertex of W with a repeated colour in
its neighbourhood, and that colour appears only twice in its neighbourhood.

In the opposite case, there exists a vertex u ∈ W that is not in N(x)
and is not adjacent to any vertex of NW (x). So we can give colour ψ(u) to
x, and this colour will not appear twice in the neighbourhood of any vertex
w ∈ W .
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Chapter 5

Block Graphs

In this chapter, we consider the problem:

k,b-Colouring
-Input: graph G, positive integer k
-Question: does there exist a b-colouring of G with k colours?

We know that decinding if a bipartite graph G has b-chromatic num-
ber m(G) is NP-complete [28]; consequently, the problem above is also NP-
complete. In Section 5.2, we present a solution for this problem when k is
fixed and in Section 5.3, we analyse a special case where we can decide, given
a block graph G and a subset W ⊆ Dk(G), if W can be the basis of a b-
colouring of G with k colours. We remark that some of our results may lead
the reader to ask if block graphs are b-continuous. The answer is yes, as all
chordal graphs are b-continuous; the proof can be found in [14].

5.1 m(G)− χb(G) arbitrarily large

Let r be any positive integer; in this section, we construct a graph G such
that χb(G) ≤ m(G)−r. Let k be an integer such that k ≥ r. An (r, k)-gadget
is the graph G′ obtained from the complete graph C of size 2kr+2r− k− 2,
as follows: add two vertices v1, v2 adjacent to all vertices of the clique and
to each other, then add two stable sets of size k, S1, S2, S1 adjacent to v1

and S2 to v2, and, finally, for each vertex u ∈ S1 ∪ S2, add a stable set Su of
size 2kr + 2r − 2 adjacent to u. Observe Figure 5.1. We denote the starting
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clique of G′ by C(G′), the two vertices adjacent to the clique by v1(G′) and
v2(G′) and the stable set adjacent to vj(G′) by Sj(G′), j = 1, 2.

Sk Sk

Sx Sx Sx Sx

x = 2kr + 2r − 2

· · · · · ·

K2kr+2r−k−2

· · ·· · ·

Figure 5.1: An (r, k)-gadget.

Our graph G is the disjoint union of r (r, k)-gadgets, G′
1, · · · , G

′
r. Note

that, for all i ∈ {1, · · · , r}, we have:

• A vertex u ∈ C(G′
i) has degree equal to 2kr + 2r − k − 2 − 1 + 2 =

2kr + 2r − k − 1;

• d(vj(G′
i)) = 2kr + 2r − k − 2 + 1 + k = 2k + 2r − 1, for j = 1, 2;

• d(u) = 2kr+2r−2+1 = 2kr+2r−1, for all u ∈ Sj(G′
i), j = 1, 2; and

• d(u) = 1, for all other vertex u.

So, there are
∑r

i=1 |S
1(G′

i) ∪ S
2(G′

i) ∪ {v
1(G′

i), v
2(G′

i)}| = r(2k + 2) =
2rk + 2r vertices with degree 2kr + 2r − 1 and all other vertex has degree
at most 2kr + 2r − k − 1 < 2kr + 2r − 2; hence, m(G) = 2kr + 2r. Suppose
for a contradiction that χb(G) > m(G) − r and let ψ be an optimal b-
colouring of G with basis V ′. Trivially, the vertices of V ′ have degree at
least m(G) − r. As, for all i ∈ {1, · · · , r} and all u ∈ V (G′

i) \ D(G), we
have that d(u) ≤ 2kr + 2r − k − 1 = m(G) − k − 1 ≤ m(G) − r − 1, then
u /∈ V ′. So, V ′ ⊆ D(G) and, as |V ′| > m(G) − r, there must exist a gadget
G′
i such that all the dense vertices of G′

i are in V ′; denote vj(G′
i) by vji ,

j = 1, 2, and S1(G′
i) ∪ S

2(G′
i) ∪ {v

1
i , v

2
i } by Bi. Observe that, as v1i and v2i
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are b-vertices and NV ′

(v1i ) ∩N
V ′

(v2i ) = ∅, all the colours in ψ(V ′ \ {v1i , v
2
i })

must all appear in C(G′
i). However, |ψ(V

′ \ {v1i , v
2
i }| ≥ m(G)− r − 1, while

|C(G′
i)| = 2kr + 2r − k − 2 = m(G) − k − 2; a contradiction, as k ≥ r, i.e.,

m(G)− (r + 1) > m(G)− (k + 2).

Remark that the constructed graph is a block graph and if we remove the
edges of C(G′

i), for all i, the argument is still valid and the obtained graph
is series-parallel. Also, if instead of having a stable Sj(G′

i), we add a clique
Kj(G′

i) of size k and, for each u ∈ Kj(G′
i), we add a clique of size x− k − 1

adjacent to u, instead of a stable of size x, the argument again works and
the obtained graph is the line graph of a tree (a claw-free block graph).

5.2 Deciding if χb(G) ≥ k, k fixed

In this section, we present a solution for the problem below restricted to
block graphs.

Fixed k,b-Colouring
-Input: graph G
-Question: does there exist a b-colouring of G with k colours?

Let G be a block graph. As all chordal graphs are perfect, we know that
χ(G) = ω(G); hence, if k < ω(G), the answer is no. Also, if k = ω(G), as
any optimal colouring is also a b-colouring, the answer to the problem is yes.
Thus, from now on, we consider k to be greater than ω(G). In order to solve
Fixed k,b-colouring, we will create a number of instances of the problem
below. If for any of the instances the answer is yes, then the answer to the
original problem is yes; otherwise, the answer is no.

1-PreExtension

-Input: a graph H and a precolouring ψ of H with k colours where each
colour is used exactly once
-Question: can ψ be extended to a colouring of H with k colours?

An instance for 1-PreExtension is created as follows:

• Let W ⊆ Dk(G) of cardinality k;
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• for each u ∈ W , let N ′
u be any subset of N(u) of cardinality k − 1 and

let N be the set {N ′
u : u ∈ W};

• Let G(W,NW ) be initially equal to G and, then, add to G(W,N ) all
edges between the vertices of N , for all N ∈ N ;

• Finally, let ψW be a precolouring where each vertex ofW has a different
colour and all other vertices are not coloured.

Trivially, (G(W,N ), ψW ) obtained as explained before is an instance of
1-PreExtension. Actually, the graph G(W,N )) generalizes the idea of par-
tial b-closure presented in [29]. Note that a colouring of G(W,N ) with k
colours that extends ψW is also a b-colouring of G with k colours with basis
W . In [31], it was proven that 1-PreExtension is solvable in polynomial
time for chordal graphs. Now, we prove that G(W,N ) is chordal.

Theorem 5.1 (Marx[31]). 1-PreExtension can be solved in polynomial time
for chordal graphs.

The following was obtained in coloraboration with Leonardo Sampaio and
another version of this idea can be found in [17].

Lemma 5.2. Let G be a block graph and H = G(W,N ) be obtained as
explained before. Then H is chordal.

Proof: By contradiction, suppose thatH has an induced cycle C ={x1, ..., xq},
q > 3, where (xi, x(i+1) mod q) are the edges of the cycle. Since this cycle is
not in G, there must exist an edge (xi, x(i+1) mod q) that is not in G. Suppose,
without loss of generality, that (xi, xi+1) /∈ E(G), for some 1 ≤ i < q. Thus,
there exists some u ∈ W such that xi, xi+1 ∈ N ′

u. Since C is an induced cycle
in H , we have that xj /∈ N ′

u, for all j 6= i, i+1. So, the path between xi, xi+1

in H defined by C also defines a path P between xi and xi+1 in G that do not
pass through u (it suffices to replace the edges of the cycle that are not in G
by the corresponding common neighbours in G). But then, P ∪ {u} defines
a cycle in G that is not a clique, since (xi, xi+1) /∈ E(G), a contradiction. �

Corollary 5.3. Consider a block graph G with exactly m(G) dense ver-
tices each of degree m(G)− 1. It can be decided in polynomial time whether
χb(G) = m(G) or not.
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u

v

v1
v2

u1 u2

u

u1

u2 u3

u4

(a) (b)

Figure 5.2: Denote by C the cycle formed in both examples. In (a), u ∈
W and N ′

u ∩ C = {u1, u4}. In (b), u, v ∈ W , N ′
u ∩ C = {u1, u2} and

N ′
v ∩ C = {v1, v2}. In both cases, the graph G(W,N ) contains a C4. The

graph represented in (a) is a gem, while the graph in (b) is gem-free. Observe
that both are also interval graphs.

Observe that this result cannot be extended to general chordal graphs,
as shown in Figure 5.2.

Theorem 5.4. Let G be a block graph and k be a positive integer, k > ω(G).
There exists a b-colouring of G with k colours if and only if there exist subsets
W ⊆ Dk(G) of cardinality k and N ′

u ⊆ N(u) of cardinality k − 1, for each
u ∈ W , such that the answer to the problem 1-PreExtension(G(W, {N ′

u :
u ∈ W}), ψW) is yes.

Proof: ⇐ Trivially, as H = G(W, {N ′
u : u ∈ W}) is a supergraph of G, an

extension ψ of ψW to H is also a proper colouring of G. Also, as N ′
u ∪ {u} is

a clique of size k, we have that u has a neighbour coloured with each other
colour, i.e., u is a b-vertex of colour ψ(u), for all u ∈ W .
⇒ Let ψ be a b-colouring of G with k colours and let W be a basis of

ψ. Also, for each u ∈ W , let N ′
u ⊆ N(u) contain exactly one neighbour of

u of each colour. Trivially, |W | = k and |N ′
u| = k − 1, for all u ∈ W . Also,

it is easy to see that ψ is a colouring of G(W, {N ′
u : u ∈ W}) (we only add

edges between vertices with different colours) and, as each vertex of W has
a different colour, ψ is actually an extension of ψW with k colours, i.e., the
answer to the problem 1-PreExtension(G(W, {N ′

u : u ∈ W}), ψW) is yes.

�

Corollary 5.5. Let G be a block graph and k be a fixed positive integer.
Then, Fixed k,b-Colouring can be solved in polynomial time.
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Proof: Note that there are O(nk) possible instances for the problem 1-Pre-

Extension and that, by Lemma 5.2 and Theorem 5.1, each instance can be
solved in polynomial time. Thus, we enumerate these instances and solve
1-PreExtension for each. If at some point we obtain the answer yes, then
we know that there exists a b-colouring of G with k colours, i.e., the answer
to Fixed k,b-Colouring is yes; otherwise, as all the possible instances are
investigated, by Theorem 5.4 the answer is no. �

5.3 k,b-Colouring, k given

Consider a block graph G. In this section, we analyse the existence of a
b-colouring with basis W , given a subset W ⊆ Dk(G). The definition of
blocking clique below can be thought of as an “encircled clique”, although it
does not cover the definition of encircled vertex.

Consider W ⊆ Dk(G) with cardinality k. Let A be a block of G and
u ∈ W ∩ A. We define the saturating index of u related to A in W (and the
saturating index of A in W ) as being the values:

sW (u,A) = min{d(u)− k + 1, |NW (u) \ A|}

sW (A) =
∑

u∈A∩W

sW (u,A)

Furthermore, we define the set:

RW (A) = (A ∩W ) ∪NW (A ∩W )

We omit the W label above when there is no ambiguity. We say that A
is a blocking clique of W if:

|A \W | > sW (A) + |W \RW (A)|

As said before, the definition of blocking clique does not generalize encir-
cled vertices. For example, if x ∈ A \W is encircled by W but NW (x) * A,
then A may not be a blocking clique. Thus, we say that W is unblocked
if it does not have a blocking clique and also does not encircle any vertex.
One can easily verify that if every subset of Dk(G) with k vertices is blocked,
then G cannot be b-coloured with k colours. So, we ask ourselves if the other
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way is also true, i.e., if there exists an unblocked subset of Dk(G) with k
vertices, can we b-colour G with k colours? Unfortunately, this is not the
case as shown by the example in Figure 5.3.

1 2 3

4

5

6

7 8 9

yx

Figure 5.3: Unblocked set that is not a basis. The big vertices represent the
dense vertices. We consider that d(u) = m(G)−1, for all m(G)-dense vertex
u. Note that there are three colours (1, 9 and 6) available for the vertices x
and y, however, when colouring the other non-dense vertices, we need to use
at least two of these colours.

If u ∈ V \W is a link vertex ofW such that every link containing u is not
induced, then we say that u is a side vertex . Observe that the link vertices
presented in Figure 5.3 are side vertices; in that graph, each block has at least
two side vertices. Another example for which being an unblocked subset of
Dk(G) is not sufficient is the following: let W ⊆ Dk(G) with cardinality k,
x, y, z ∈ V \W and v1, v2, w1, w2 ∈ W be such that (W \ {v1, v2}) ∪ {x} is
a block, NW (y) = {v1, w1}, NW (z) = {v2, w2}, d(w1) = d(w2) = k − 1 and
(v1, w1), (v2, w2) /∈ E. Observe Figure 5.4. In this example W is unblocked
and, even though it has only one side vertex, one can see that it is still not
a k-basis: if we give a different colour for each w ∈ W , then z must be
coloured with ψ(v1) and y with ψ(v2); thus, as d(w1) = d(w2) = k − 1, then
we cannot colour x without repeating a colour in N(wi), i = 1, 2. If W has
the described structure, we say that W is a nest . Given an unblocked set
W ⊆ Dk(G), we can prove that if W has no side vertices, then χb(G) ≥ k.
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Also, we prove that, if G is claw-free (and thus, is the line graph of a tree)
and W ⊆ Dk(G) is an unblocked set that is not a nest and is such that each
block has at most one side vertex of W , then χb(G) ≥ k.

W \ {v1, v2, w1, w2}

xy z

w2

v1 v2
w1

Figure 5.4: Representation of a nest.

Theorem 5.6. Let G be a block graph and W ⊆ Dk(G) be an unblocked set
of cardinality k, k ∈ {ω(G) + 1, · · · , m(G)}. If W has no side vertices, then
there exists a b-colouring of G with k colours.

Before proving this theorem, we need to prove the lemma below. We say
that ψ is a full b-precolouring of G with candidate set W if ψ is proper, every
vertex of W has a different colour and is a b-vertex in ψ. Trivially, if ψ+

is a proper extension of ψ, then ψ+ is also a full b-precolouring of G with
candidate set W .

Lemma 5.7. Let G be a block graph and ψ be a full b-precolouring of G
with candidate set W , |W | ∈ {ω(G) + 1, · · · , m(G)}. Then there exists a
b-colouring of G with |W | colours.

Proof: Denote by k the value |W |; we want to obtain a b-colouring of G
with k colours from this precolouring. For this, we iterate on the uncoloured
vertices; whenever the picked vertex has degree lesser than k, we know that
there exists a colour that does not appear in its neighbourhood; so we colour
it with such a colour. However, if an uncoloured vertex u has degree greater
than k−1, it may happen that all colours already occur in its neighbourhood;
if this is the case, we treat it as described in the following.

First, consider the colours to be in {1, · · · , k} and let wi be the vertex of
W coloured with i, for all i ∈ {1, · · · , k}. Consider u ∈ V \W to be such
that d(u) ≥ k, ψ(u) = ∅ and ψ(N(u)) = {1, · · · , k}. Let G1, · · · , Gq be the
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connected components of G − u. Denote by Ci the set NGi(u) and by Mi

the set {1, · · · , k} \ ψ(Ci). Also, if y ∈ Ci, denote by Gi,y the connected
component of G− E(Ci ∪ {u}) containing y. Note that:

1. Ci is a clique of size at most k−2 (since ω(G) < k), for all i ∈ {1, · · · , q};

2. G− u is disconnected (otherwise, N [u] is a clique of size at least k+1,
a contradiction);

3. |Mi| ≥ 2 (since |Ci| < k − 1), for all i ∈ {1, · · · , q}.

Now, let c ∈ {1, · · · , k} and denote by Ac the set {i ∈ {1, · · · , q} : c ∈
ψ(Ci)}. Also, for each i ∈ Ac, let α

c
i ∈ Ci be coloured with c (trivially,

there is exactly one such vertex in Ci). We know that |Ac| ≥ 1, for every
c ∈ {1, · · · , k}. Let c ∈ {1, · · · , k} and suppose that: (1) wc /∈ Gi,αc

i
and

there exists di ∈ Mi such that wdi /∈ Gi,αc
i
, for every i ∈ Ac. Note that we

can switch the colours c and di in Gi,αc
i
, for every i ∈ Ac, and, then, colour u

with c: after the switch, each Ci is still properly coloured, since di ∈Mi, and
if wj ∈ Ci, for some j ∈ {1, · · · , k}, we know that j 6= c, di and, as we give
colour c to u, wj continues to be a b-vertex. Thus, the obtained extension
is still a full b-precolouring of G with candidate set W . Now, if there exists
j ∈ Ac such that (1) occurs for every i ∈ Ac \ {j} and: (2) wc ∈ Gj,αc

j
and

wd ∈ Gj,αc
j
, for some d ∈Mi, then again we can do the switches as before and

still obtain a full b-precolouring. So, suppose that, for every c ∈ {1, · · · , k},
there exists i ∈ Ac such that neither (1) nor (2) occurs for i and c, i.e., one
of the following occurs, for every c ∈ {1, · · · , k}:

(1’) There exists i ∈ Ac such that wc /∈ Gi,αc
i
and {wd : d ∈Mi} ⊆ Gi,αc

i
; or

(2’) There exists i ∈ Ac such that wc ∈ Gi,αc
i
and {wd : d ∈Mi}∩Gi,αc

i
= ∅.

Note that, as |Mi| ≥ 2 and αci 6= αdi , for c 6= d, then there are at most
k
2
colours for which (1’) occurs. Thus, there exists at least one colour c ∈
{1, · · · , k} for which (1’) does not occur and, consequently, (2’) occurs. As
wc is unique, there exists exactly one index i ∈ Ac such that (2’) is valid; so,
for all j ∈ Ac \{i}, we have that neither (1’) nor (2’) holds for j and c. Thus,
we can do switches analogously as before for all j ∈ Ac \ {i}. As for Ci, we
switch the colours c and d in Gi,αc

i
, for any d ∈Mi, and then colour u with c.

Note that, after this, as d /∈ Gi,αc
i
and u is coloured with c, the only vertex
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that may cease to be a b-vertex is wc itself. But in this case, note that the
vertices in N(u) that have their colour changed are the ones coloured with c,
i.e., ψ(N(u)) = {1, · · · , k} \ {c} and u is a b-vertex of colour c. So, we have
a full b-precolouring of G with candidate set (W \{wc})∪{u}. Observe that
the changing in the candidate set does not interfere in a further extension of
ψ, since, at each step, we can simply choose any basis of ψ. �

Now, we prove Theorem 5.6.
Proof: Let W ⊆ Dk(G) with cardinality k, k ∈ {ω(G)+1, · · · , m(G)}, be an
unblocked set with no side vertices. By Lemma 5.7, we know that it suffices
to obtain a full b-precolouring of G′ = G[W ∪ N(W )] with candidate set
W . We use a similar idea as the one used for trees. Let W = {w1, · · · , wk}
and colour wi with colour i, for all i ∈ {1, · · · , k}. Recall the definition of
link vertices given in Section 2.4 and represent the set of link vertices of W
by L. We first colour the blocks of G′ containing at least two vertices of
L. So, let A be such a block and let L ∩ A = {x1, · · · , xq}, q ≥ 2. As
xj is not a side vertex, it must be within a link that has an extremity wij
separated from A \ {xj} by xj , for all j ∈ {1, · · · , q}. Thus, we can use the
colours {i1, · · · , iq} to colour the uncoloured vertices in {x1, · · · , xq} in such
a way that ψ(xj) 6= ij , j ∈ {1, · · · , q}. Observe that if (x, y) ∈ E(G), for
x, y ∈ L, then both x and y are coloured. Now, let y1, · · · , yq ∈ NL(u) still
uncoloured, for some u ∈ W , and let vi ∈ L(yi) \N [u] (vi exists, since yi is
not a side vertex). If q > 2, then permute the colours ψ(v1), · · · , ψ(vq) in
y1, · · · , yq analogously. Otherwise, suppose that there exists y ∈ N(u) \W
such that ψ(y) 6= ∅ and let w ∈ L(y) \ N [u]. Also, let A be the block
containing y and u. Obviously, y1 /∈ A. Give colour ψ(w) to y1 and if there
exists y′ ∈ A such that ψ(y′) = ψ(w), then give colour ψ(v1) to y′. Now,
let x ∈ L be still uncoloured. We know that NL(x) = ∅ and NL(wi) = {x},
for all wi ∈ NW (x). So, every block A containing x such that A ∩W 6= ∅
is actually contained in W ∪ {x}. Thus, as x is not encircled by W , either
there exists wi ∈ W \ (N(x) ∪ N(NW (x))) or there exists wi ∈ NW (wj) for
some wj ∈ NW (x) such that d(wj) > k − 1. Then we can give colour i to x.
At the end, as k > ω(G) and any uncoloured vertex in G′ has exactly one
neighbour in W , we can colour the remaining vertices in G′ until each vertex
of W is a b-vertex, thus obtaining a full b-precolouring of G with k colours.

�

Corollary 5.8. Let G be a block graph and let k ∈ {ω(G)+1, · · · , m(G)}. If
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there exists W ⊆ Dk(G) with cardinality k such that W is a stable set, then
there exists a b-colouring of G with k colours.

Proof: Let W ⊆ Dk(G) be a stable set with k vertices. Note that, if W *
N(x), for all x ∈ V \ W , then the hypothesis of Theorem 5.6 hold and
the corollary follows. So, suppose the contrary and let x be such a vertex.
Obviously, x ∈ Dk(G). Then, let W ′ be obtained from W by removing
any vertex and adding x. Colour each vertex of W ′ with a different colour.
Trivially, x is already a b-vertex and any y ∈ V \W ′ is adjacent to at most
one vertex inW ′\{x}. Thus, for each w ∈ W ′\{x}, we can colour N(w) until
w is a b-vertex without repeating any colour in N(z), for all z ∈ W ′ \ {x}.
The obtained precolouring is trivially a full b-precolouring with k colours.

�

Corollary 5.9. Let G be a block graph and let k ∈ {ω(G) + 1, · · · , m(G)}.
If |Dk(G)| > ∆2 +∆, then G has a b-colouring with k colours.

Proof: The proof is similar to the one given by Kratochv́ıl et al in [28] for d-
regular graphs. By Corollary 5.8, we just need to find a stable set in Dk(G).
Take any vertex of Dk(G), put it in W and remove it from G together with
all its neighbours; trivially, the number of removed vertices is at most 1+∆.
Repeat the process k − 1 times; at the end, the number of removed vertices
is at most (k − 1)(∆ + 1) ≤ (m− 1)(∆ + 1) ≤ ∆(∆+ 1). So, there exists at
least one more vertex in Dk(G) to put in W and the corollary follows. �

Corollary 5.10. Let G be a block graph and denote m(G) by m. If |D(G)| >
m2 +m, then χb(G) = m.

Proof: Again, by Corollary 5.8, we need to find a stable set in D(G). Let
D+ represent the set of dense vertices with degree at least m. We know
that |D+| ≤ m; thus, there are more than m2 dense vertices with degree
m − 1. So, if we iterate on D(G) \D+ removing at each time a vertex and
its neighbourhood, as at each step we remove exactly m vertices, we know
that we can do at least m iterations, i.e., the stable set can be obtained. �

Theorem 5.11. Let G be a claw-free block graph and W ⊆ Dk(G) be an
unblocked set of cardinality k, k ∈ {ω(G) + 1, · · · , m(G)}. If each block
has at most one side vertex of W and W is not a nest, then there exists a
b-colouring of G with k colours.
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Proof: We partition the set of link vertices, L, as follows:
S: contains all side vertices;
L1: set of link vertices in L\S having a neighbour in L\S or a neighbour

w ∈ W such that |NL\S(w)| ≥ 2; and
L2 = L \ (S ∪ L1).
Note that |NL2(w)| ≤ 1, for all w ∈ W , NL2(x) = ∅, for all x ∈ L1 ∪ L2,

and if NL2(w) 6= ∅, w ∈ W , then NL1(w) = ∅. Also, for all x ∈ L2, since
x ∈ L \ S and NL\S(x) = ∅, we have |NW (x)| ≥ 2. For each block A of G,
define W ∗

A as the set {w ∈ A ∩W : NW (w) \ A 6= ∅} and, for each z ∈ A,
denote by Az the block containing z different from A (if there is no such
block, set Az = ∅). Let x ∈ S. We know that NW (x) ∪ NL(x) ⊆ A, for
some block A of G, and, as each block has at most one side vertex, we know
that NS(x) = ∅. Denote the block containing x by B(x). Observe that the
following is valid:

(*) If there exists a colour c ∈ {1, · · · , k} \ ψ(B(x) ∪
⋃

w∈B(x)∩W N(w)),
then we can colour x with colour c.

We first colour each vertex of W with a different colour and then colour
L1 as explained in the proof of Theorem 5.6. Suppose that x ∈ S is such that
NW (x) = {w}. Note that if we can obtain an unsaturated pre-colouring of
W ∪ (L \ {x}), at the end we can just colour x with any colour in M(w) (if
y ∈ N(x) \ {w} is coloured, as NL(x) ⊆ N(w), we have that ψ(y) /∈M(w)).
So, we can suppose that |NW (x)| ≥ 2, for all x ∈ S.

Now, we colour NS(A), for every block A such that |W ∗
A| ≥ 2. Let A be

such a block. Note that if x ∈ NS(w) \ A, for some w ∈ A ∩W , then, as
|NW (x)| ≥ 2, we have w ∈ W ∗

A. So, let A1, · · · , Aq be all the the blocks such
that Ai∩A ⊆W and Ai∩S 6= ∅. Denote by wi the common vertex of A and
Ai, by xi the side vertex of Ai and let vi be any vertex in (Ai∩W )\{wi}. As
G is claw-free and |B ∩ S| ≤ 1, for all block B of G, we know that wi 6= wj,
for all 1 ≤ i 6= j ≤ q. Suppose, without loss of generality, that x1, · · · , xp
are all the uncoloured vertices in {x1, · · · , xq}. If p ≥ 2, give colour ψ(v1) to
xi, i = 2, · · · , p, and colour ψ(v2) to x1. If p = 1, let w ∈ W ∗

A \ {w1} and
w′ ∈ NW (w) \ A. If q ≥ 2, colour x1 with ψ(v2); otherwise, colour it with
ψ(w′). Note that (I) at most two colours in ψ(NW (W ∗

A)) are used to colour
NS(A) and that, for each w ∈ W ∗

A, at most one colour in NW (w) \A is used.
Now, let x be an uncoloured vertex of S and let A = B(x). We know

thatW ∗
Aw

= {w}, for every w ∈ W ∗
A (otherwise, x would have been coloured).

Thus, ψ(x′) ∈ ψ(R(A) \ A), for all x′ ∈ NS(A). Note that if NL(w) = {x},
for all w ∈ A ∩W , then, as x is not encircled, there must exist w ∈ W not
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reachable from x and we can just colour x with ψ(w). So, we analyse the
cases:

• There exists y ∈ A ∩ L2: note that, in this case, NL\S(w) = {y}, for
all w ∈ A ∩ W ; so, ψ(N(w)) ⊆ ψ(R(A)), for all w ∈ A ∩ W . As
NL\S(y) = ∅ and y /∈ S, there must exist w1 ∈ N

W (y) \ A. Also, as y
is not encircled by W , there must exist w2 ∈ W not reachable from y.
Suppose that there exists w ∈ W ∗

A such that w2 ∈ N(w). As w2 is not
reached by y, we have d(w) > k − 1. If there exists x′ ∈ NS(A) such
that ψ(x′) = ψ(w2), let w

′ = B(x′) ∩ A (observe that, by (I), x′ must
have been coloured during the iteration of A; thus, w′ ∈ W ). As G is
claw-free, we have d(w) = |A| + |Aw| − 2 and d(w′) = |A| + |Aw′| − 2;
so, either there exists w′′ ∈ Aw \ {w,w2}, in which case we can suppose
that ψ(x′) 6= ψ(w2) (recall (I)), or d(w

′) is also greater than k − 1. In
any case, we can colour x with ψ(w1) and y with ψ(w2). Now, suppose
that there exists x′ ∈ NS(W ∗

A) still uncoloured and let w′ = B(x′)∩A;
observe that W ∗

A = {w′}. If any u ∈ Aw′ ∩W has a coloured neighbour
z /∈ W , we know that z /∈ Aw′ and we can give colour ψ(z) to x and
ψ(w1) to x

′. Otherwise, either there exists w3 ∈ W \ (R(A)∪{w1, w2}),
in which case we colour x′ with ψ(w3), or w

′ is already a b-vertex and
we can colour x′ with ψ(w′′), for any w′′ ∈ A ∩W , w′′ 6= w′.

• A ∩ L2 = ∅ and NL2(A) 6= ∅: let NL2(A) = {y1, · · · , yq} and let
wi ∈ A ∩ N(yi), i = 1, · · · , q. As NL\S(yi) = ∅ and N(x) ⊆ A, we
have that wi ∈ W , i = 1, · · · , q. For each yi, let vi be any vertex in
NW (yi) \Awi

(vi exists, since N
L\S(yi) = ∅ and yi is not a side vertex).

Suppose that q = 1. If (II) Aw1
∩ S = {x′} and ψ(x′) = ∅, we have

a case analogous to the previous one; so, suppose otherwise. As y1 is
not encircled, there must exist z ∈ W distant from y1; so, give colour
ψ(v1) to x and colour ψ(z) to y1. If there exists x′ ∈ NS(A) such that
ψ(x′) = ∅, we know that w′ ∈ B(x′) ∩ A is different from w1, by (II).
One can verify that it is possible to make an analogous argument as
the one made at the end of the previous case. If q > 2, then give colour
ψ(v1) to yi, i = 2, · · · , p, ψ(v2) to y1 and ψ(v3) to x. If there exists
x′ ∈ NS(W ∗

A), we can suppose that either x′ /∈ N(yi), for i = 1, · · · , q,
or x′ ∈ N(y1); in any case, we can colour x′ with ψ(v1). So, now,
suppose that q = 2 and consider the following cases:

– There exists u1 ∈ NW (y1)\(Aw1
∪{v1}): then give colour ψ(v1) to
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y2, ψ(u1) to x and ψ(v2) to y1; if there exists x′ ∈ NS(W ∗
S), then

give colour ψ(v1) to x
′, if x′ /∈ N(y2), or colour ψ(v2), otherwise.

Now, suppose that NW (yi) ⊆ Awi
∪ {vi}, i = 1, 2.

– There exists w′ ∈ W ∗
A \ {w1}: let v′ ∈ NW (w′) \ A. Then, give

colour ψ(v′) to y1, ψ(v2) to x, ψ(v1) to y2 and if, there exists
x′ ∈ NS(y1) such that ψ(x′) = ψ(v′), then give colour ψ(v1) to
x′. After this, if there exists x′ ∈ NS(W ∗

A) such that ψ(x′) = ∅,
then either we can colour x′ with ψ(v1), or x

′ ∈ N(y2). If the
latter occurs, then either there exists a colour c 6= ψ(v1), ψ(v2)
with which we can colour x′, or w2 is already a b-vertex and we
can just give colour ψ(v2) to x

′.

– W ∗
A = ∅: as W is not a nest, either there exists w′ ∈ W \ (A ∪
{v1, v2}), or d(wi) > k− 1, for i = 1 or i = 2. If the latter occurs,
say d(w1) > k − 1, then give colour ψ(v2) to y1 and x and colour
ψ(v1) to y2. Otherwise, as NL(w) = {yi}, for all w ∈ NW (yi) \A,
NL(wi) = {x, yi} and ψ(x) = ∅, i = 1, 2, we have that at least one
of y1, y2, say y1, is such that ψ(w′) /∈ ψ(N(w)), for all w ∈ NW (y1).
Thus, give colour ψ(w′) to y1, ψ(v1) to y2 and ψ(v2) to x.

• A∩L2 = ∅ and NL2(A) = ∅: first, suppose that there is no uncoloured
side vertex in NS(W ∩ A). Let J = L1 ∩ A. If NL1(A) = ∅, as W is
unblocked, we have (observe that if y ∈ A \ (W ∪ J), then y ∈ S and,
consequently, y = x): |A \W | = |J + 1| ≤ s(A) + |W \ RW (A)| and,
hence, s(A) + |W \ (RW (A) ∪ J)| ≥ 1. So, there must exist a colour
c ∈ {1, · · · , k}\ψ(RA∪J), in which case we give colour c to x, or there
exists w ∈ W ∗

A such that d(w) > k − 1, in which case we give colour
ψ(w′) to x, for any w′ ∈ (Aw∩W )\{w}. Now, let w1, · · · , wq ∈ A∩W
be such that Ji = Awi

∩ L1 6= ∅ (observe that wi is not necessarily in
W ∗
A). Note that, for i = 1, · · · , q, (II) if y ∈ Ji and w ∈ L(y)\Awi

, then
ψ(w) /∈ ψ(Az \{z}), for all z ∈ A, z 6= wi. So, if there exists yi ∈ Ji, for
some i ∈ [1, q], and w ∈ L(yi) \Awi

such that ψ(w) /∈ ψ(A∪Awi
), then

we can colour x with ψ(w). Suppose then that such a pair of vertices
yi, w do not exist.

Let R∗ =
⋃

y∈J(L(y) \ A). We analyse the existence of vertices in
Ji coloured with some colour in ψ(R∗). First, note that if yi ∈ Ji is
coloured with c ∈ ψ(R∗), then yi is coloured during the iteration of
vertex wi; hence, Ji = {yi}. So, suppose, without loss of generality,
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that J1, · · · , Jp−1 are all the sets formed by such vertices and denote
by yi the vertex in Ji, i ∈ [1, p− 1], p ≥ 1. Also, suppose that y1 is the
first vertex to be coloured between y1, · · · , yp−1. Let v ∈ R∗ such that
ψ(y1) = ψ(v) and y ∈ J such that v ∈ L(y) \ A. Also, let c′ be any
colour in ψ(L(y1) \Aw1

) and consider the moment before the iteration
of w1. If J is not coloured yet, we know that J = {y} and, in this case,
we colour y with c′ and y1 with ψ(v). If J is already coloured and there
exists y′ ∈ J such that ψ(y′) = ψ(v), then we change the colour of y′ to
c′ and then colour y1 with ψ(v). Finally, if J is coloured and there is
no vertex in A coloured with ψ(v), then we just colour y1 with ψ(v). In
any of those cases, at the end of the iteration of w1, J is coloured and
there is no vertex in J coloured with ψ(v). So, we can suppose that in
the subsequent iterations of wi, i ∈ [2, p−1], we always give colour ψ(v)
to yi; i.e., we can suppose that: (III) there exists a colour c ∈ ψ(R∗)
such that ψ(yi) = c, for all i ∈ [1, p− 1]; and (IV) ψ(z) /∈ ψ(J), for all
z ∈ L(yi) \ Awi

, for all i ∈ [2, q]. If p > 2, by (IV), there must exist
w ∈ L(y2) \ Aw2

such that ψ(w) /∈ ψ(A ∪ Aw2
), a contradiction; thus,

p ≤ 2. We analyse the following cases:

– q ≥ 2: we recall (II) and remark that the colours in L(y) \Aw2
do

not appear in A, for all y ∈ J2, as well as the colours in L(y) \ A
do not appear in Aw2

, for all y ∈ J . So, let y1 ∈ J1, y2 ∈ J2 and
w ∈ L(y2) \ Aw2

. Give colour ψ(y1) to x and colour ψ(w) to y1.

– q = 1: let y1 ∈ J1. First, note that, for all w ∈ Aw1
∩W , NL2(w) =

∅ and if w 6= w1, as |W
∗
w1
| = 1, we have that NS(w) ⊆ Aw1

. If
there exists w ∈ Aw1

\ {w1} and y ∈ NL\S(w) \ J (consequently,
y ∈ L1 and ψ(y) 6= ∅), then give colour ψ(y) to x. Otherwise, note
that ψ(N(w)) ⊆ ψ(Aw1

), for all w ∈ (Aw1
∩W )\{w1}. Then, give

colour ψ(y1) to x and, if w1 is already a b-vertex, just colour y1
with any colour in ψ((A∩W ) \ {w1}); otherwise, there must exist
a colour c /∈ ψ(A ∪Aw1

), in which case, we can colour y1 with c.

Now, suppose that there exists an uncoloured vertex x′ ∈ NS(W ∩ A)
and let w ∈ B(x′) ∩ A. We know that W ∗

A = W ∗
Aw

= {w}. If there
exist y ∈ NL1((A ∩W ) \ {w}) and y′ ∈ NL1((Aw ∩W ) \ {w}), then
give colour ψ(y′) to x and ψ(y) to x′. Now consider, without loss of
generality, that NL1((Aw∩W )\{w}) = ∅. Observe that NL(w′) ⊆ Aw,
for all w′ ∈ (Aw ∩W ) \ {w}. Thus, we can colour x as explained before
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and, after this, either there exists a colour c ∈ {1, · · · , k} \ ψ(A ∪ Aw)
that does not appear in N(w) (and, consequently, in N(w′), for all
w′ ∈ Aw ∩W ) with which we can colour x′, or w is already a b-vertex
and we can colour x′ with ψ(w′), for any w′ ∈ (A ∩W ) \ {w}.

�



Chapter 6

Cartesian Product of Trees by
other Graphs

In this chapter, we investigate the cartesian product of trees and some other
graph classes. Let H = T @ G be the cartesian product of a tree T by a
graph G. Generally, we will number the vertices of graph G and represent
the copy of T related to the i-th vertex of G by T i. Also, we represent the
copy of u ∈ V (T ) in T i by ui.

Now, let W ⊆ V (H) be a set of m(H) dense vertices. Let T i be one
of the copies of T in H ; denote by V i the set V (T i) and by X i the set
X ∩ V i, for any X ⊆ V (H). Also, given X ⊆ V (H), denote by X/T the
set {x ∈ V (T ) : xi ∈ X}, and given xi ∈ V (H), denote by x the vertex of
T corresponding to xi. We say that xi ∈ V i \W i is locally encircled by W i

if |N(xi) ∩W i| ≥ 2 and W i ⊆ N(xi) ∪ N(NW (xi)). Since T is a tree and
|NW i

(xi)| ≥ 2, for all locally encircled vertex xi, the following proposition is
trivially valid.

Proposition 6.1. Each T i has at most one locally encircled vertex.

A link P such that V (P ) ⊆ V i, for some i, is said to be an internal link ;
if P is a non-internal link, we say that P is a cross link . Figure 6.1 represents
the different possible types of cross links, where the big vertices represent the
vertices of W .

Actually, there may exist a cross link of the form 〈ui, ul, vl, vj〉, i 6= l 6= j,
which is not represented in the figure. However, in this case, if vi ∈ W , then
vl is within a cross link of Type 6, and otherwise, vl is within a cross link
of Type 5. The same argument can be applied to ul; thus, all vertex that

123
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Type 5

Type 1 Type 2 Type 3

Type 4

Type 6

T i T jT l

T i T j

uj

T i T jT i T j

vi vl vj

T i T jT l T f

uj

vj

T i T j

Figure 6.1: Different types of cross links. The big vertices are in W and the
small ones are not in W . The dotted edge in Type 6 represents that either
the edge exists or l = f .
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lies within a cross link, also lies within a cross link of one of the presented
types. Note that, in Type 5, if ul ∈ W , then vl is within a link of Type 3
and vj is within a link of Type 1. Thus, we say that 〈vi, vl, vj, uj〉 is a cross
link of W of Type 5, i 6= l 6= j, only if ul /∈ W . Later we will see that this
actually ensures that the cartesian products being considered in this paper
do not have cross links of Type 5.

Let xi ∈ V i be a link vertex of W . If it is within an internal link of T i,
we say that xi is an internal link vertex of W i; and if xi is not within any
internal link, we say that xi is a cross link vertex. Denote by L the set of
link vertices of W , by LI the set of internal link vertices of W , by LC the set
of cross link vertices of W and by R the set V (H) \ (W ∪ LI).

In Sections 6.2, 6.3 and 6.4, we obtain an unsaturated precolouring of H
with candidate set W , |W | ∈ {m(H) − 1, m(H)}, for the cartesian product
H of a tree by a cycle, a path and a star, respectively. Both W and Ψ will
be assured to satisfy Lemma 2.15, so we can extend it to a b-colouring of H
with |W | colours. In the next section, we analyse the general case, i.e., the
cartesian product of a tree by a general graph.

6.1 General graph

In the following sections, whenever H = T @ G has a good set W , where G
is in some determined graph class, we will try to obtain an unsaturated pre-
colouring with candidate setW where all the link vertices ofW are coloured.
In this section, we explain how to obtain an initial precolouring of H and,
also, how to colour cross links of Type 1, requiring that some properties are
valid.

Suppose that W is a good set of H . The first step to construct an initial
unsaturated precolouring is to colour each vertex ofW with a different colour
in the range [1, m(H)]; we denote the vertex ofW coloured with i by (γ)i and
the obtained precolouring by Ψ. The next step is to extend Ψ by colouring
the internal link vertices of T i using the Tree Strategy (Section 2.5), whenever
it is possible (i.e., whenever W i does not locally encircle any vertex), for each
copy T i of T in H . The final step is to colour the cross link vertices in T i

that are within links of Type 2 but that do not have any neighbours in W i

(pointed vertex in Figure 6.1). Denote this set of vertices by Z. We colour
Z in such a way to preserve the following property:

(*) If zi ∈ Z is coloured with colour c, then there exists xi ∈ N(zi) such
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that (γ)c ∈ NW i

(xi).
We know that (II) Ψ(V j) ⊆ Ψ(W j), for all j. Consider zi ∈ Z. Note that

if we colour zi with a colour that satisfies (*), then r(vj) does not increase,
for all vj ∈ W \W i, since vj has at most one neighbour in V i, namely vi,
and by (II). Also, as NW i

(zi) = ∅, any proper extension of Ψ is also an
unsaturated precolouring. So, we just want to find a vertex (γ)c ∈ W i that
satisfies (*) and such that c does not appear in N(zi). Let X = {xi1, · · · , x

i
q}

be the neighbours of zi in V i such that NW i

(xij) 6= ∅, j = 1, · · · , q. As zi

is within a link of Type 2 and NW i

(zi) = ∅, we have q ≥ 1. Also: (I) if
yj ∈ N(zi) is coloured, then yj ∈ Z ∪ LI ∪W . Now, consider xil ∈ X and
(γ)c ∈ NW i

(xil). Observe that X ∩ Z = ∅ and that if yj ∈ NZ(zi), then, by
(*) and (II), Ψ(yj) 6= c. So, as (γ)c /∈ N(zi) and by (I), if c /∈ Ψ(X), we
can give colour c to zi and obtain an unsaturated precolouring. So, suppose
that there exists xij ∈ X such that Ψ(xij) = c. By (I) and the fact that xij is
coloured and xij /∈ Z ∪W , we have that xij ∈ L

i
I . By Lemma 2.16 and the

fact that zi /∈ LiI separates x
i
j from (γ)c in T

i, we know that NLi
I (xij) = ∅ and

that xij is the only local link neighbour of (γ)d, for all (γ)d ∈ N
W i

(xij). Thus,

|NW i

(xij)| ≥ 2. This implies that |
⋃q

f=1N
W i

(xif)| > |X| and, consequently,

there exists (γ)d ∈ NW i

(xif ), for some xif ∈ X , such that d /∈ Ψ(X). So, we
extend Ψ by colouring yi with d. Now, observe that the following is valid:

Lemma 6.2. Let W be a good set and Ψ be a pre-colouring obtained as
explained before. If yi ∈ L is coloured with colour c, then (γ)c ∈ W i and either
yi ∈ LiI and Lemma 2.16 holds, or yi ∈ Z and there exists xi ∈ NLi

(yi) \W
such that (γ)c ∈ NW i

(xi).

In the following lemma, given an unsaturated precolouring, Ψ, we explain
how to extend it to colour links of Type 1, requiring that some properties
are met.

Lemma 6.3. Consider an unsaturated precolouring Ψ with candidate set W .
Let vi ∈ W and xi1, · · · , x

i
q ∈ N

Ri

(vi) be uncoloured neighbours of vi in a path
of Type 1 such that NW (xij) = {v

i}, for j = 1, · · · , q. If there exists j 6= i

such that vi, xjl are the only coloured neighbours of xil, for l = 1, · · · , q, and
|Ψ({xj1, · · · , x

j
q})| ≥ 2 then we can obtain an unsaturated precolouring that

extends Ψ and colours xi1, · · · , x
i
q.

Proof: Colour xi1, · · · , x
i
q with the colours in M(vi) taking care not to give

colour Ψ(xjl ) to xil, l ∈ [1, q]. As Ψ({xj1, · · · , x
j
q}) has at least two colours
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(thus, q ≥ 2), it is possible to do this even if M(vi) = 1. Suppose that
there are still some uncoloured vertices in {xi1, · · · , x

i
q}, i.e., q > M(vi). If

|M(vi)| > 1, repeat the colour of some xik in the remaining uncoloured ver-
tices. Otherwise, if |M(vi)| = 1, let xik be the coloured vertex in {xi1, · · · , x

i
q};

for each l ∈ [1, q], l 6= k, if Ψ(xjl ) 6= Ψ(xjk), colour xil with Ψ(xjk), oth-
erwise colour xil with Ψ(xik). Note that as there are at least two colours in
{xj1, · · · , x

j
q}, at the end there will also be at least two colours in {xi1, · · · , x

i
q};

thus, the lemma can be applied recursively. Trivially, the obtained pre-
colouring is still unsaturated. �

6.2 Trees and Cycles

The main result of this section is the following:

Theorem 6.4. Let T be a tree. Then, χb(T @ Ck) = m(T @ Ck), k ≥ 4.

First, we analyse the case where T = P2 in the lemma below. In the
proof, we will see that if k ≥ 4, then χb(P2 @Ck) = m(P2 @Ck). Thus, in the
remaining of this section, we consider T to be different from P2. This lemma
will be also useful in Section 6.3.

Lemma 6.5. χb(P2@Pk) ≥ m(P2@Pk)−1 and χb(P2@Ck′) ≥ m(P2@Ck′)−1,
k ≥ 2, k′ ≥ 3.

Proof: Trivially, P2 @ P2 equals a C4 and can be b-coloured with m(P2 @

P2) − 1 = 2 colours. Now, let 〈a1, · · · , ak〉 represent either the path Pk or
cycle Ck, k ≥ 3. Note that m(P2 @ P3) = 3 and, trivially, χb(P2 @ P3) ≥
ω(P2 @P3) = 2 = m(P2 @P3)− 1. Analogously, we have that m(P2 @C3) = 4
and χb(P2 @C3) ≥ ω(P2 @C3) = 3 = m(P2 @C3)− 1. So, we consider k ≥ 4.
Denote the product being treated by H and let P2 = 〈u, v〉. Colour ui with
(i − 1) mod 4 and vi with (i + 1) mod 4, for all i ∈ {1, · · · , 4} (observe
Figure 6.2). This precolouring can be extended to the entire graph H by
alternating the colours 1 and 3 in ui, vi, for i ≥ 5. It is easy to verify that
u2, u3, v2, v3 are b-vertices and, as d(ui), d(vi) ≤ 3, for i = 1, · · · , k, we know
that m(H) = 4 and the lemma follows. �

Now, consider the cartesian product H = T @ Ck, k ≥ 4. Let Ck =
〈a1, · · · , ak〉. We know that:

dH(ui) = dT (u) + 2, i = 1, · · · , k
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4 3

2 3

1 2

14

u1

v1

u2 u3 u4

v2 v3 v4

Figure 6.2: Precolouring of P2 @ Pk or P2 @ Ck, k ≥ 4.

So, we have at least 4m(T ) ≥ m(T )+2 vertices in H with degree at least
m(T )+1, i.e., m(H) ≥ m(T )+2. Also, if m(H) > m(T )+2 and ui ∈ D(H),
then:

dH(ui) ≥ m(H)− 1⇒ dT (u) + 2 > m(T ) + 2− 1⇒ dT (u) > m(T )− 1

As there exist at most m(T ) such vertices in T , we have:

m(T ) + 2 ≤ m(H) ≤ km(T )

Let W ⊆ D(H) be a subset of m(H) dense vertices of H containing every
vertex of degree at least m(H). Trivially, if dH(ui) > m(H) − 1, for some
i ∈ [1, k], then {u1, · · · , uk} ⊆W . Actually, we can suppose that:

(*) If ui ∈ W , for some i ∈ [1, k], then {u1, · · · , uk} ⊆ W , except for at
most one vertex α ∈ V (T ) for which there exists an index iα such that
αi ∈ W , for all i ∈ [1, iα], and α

i /∈ W , for all i ∈ [iα + 1, k].

Lemma 6.6. Let W ⊆ D(H) with cardinality m(H) containing all ui ∈
D(H) with d(ui) ≥ m(H) and such that (*) holds. Then, W is a good set.

Proof: Suppose that xi ∈ V i \W is encircled by W . First, note that if W ⊆
{u1, · · · , uk} and u 6= x, then NW (xi) ⊆ {ui}, contradicting Proposition 2.1.
Also, if there exists ui ∈ W such that {u1, · · · , uk} ⊆ W , then xi does not
reach u(i+2) mod k, a contradiction. Thus, W ⊆ {x1, · · · , xi−1} (and, hence,
x = α). Actually, as k ≥ 4, m(H) ≥ 4 and xj ∈ N(xi) ∪N(NW (xi)), for all
xj ∈ W , we must have k = 5 and m(H) = 4. However, we know that T has
at least one vertex with degree at least 2, say v, and, consequently, H has
at least 5 vertices with degree at least 4, v1, · · · , v5, and m(H) should be at
least 5, a contradiction. �
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Now, given a good set W satisfying Lemma 6.6, we prove that we can
obtain a b-colouring of H with W as basis. Actually, we show how to obtain
an unsaturated precolouring that colours all link vertices of W ; the theorem
then follows as by Lemma 2.15 this precolouring can be extended to a b-
colouring of H with m(H) colours. But before we move on, we make some
observations that will lead to an useful equation. Let ui ∈ W i. We know
that:

N(ui) = NW i

(ui) ∪NLi
I (ui) ∪NRi

(ui) ∪ {u(i−1) mod k, u(i+1) mod k}

Also, note that either vi ∈ W i is a neighbour of ui or there exists at most
one vertex of LiI that is within an internal link between vi and ui, i.e.:

|NW i

(ui) ∪NLi
I (ui)| ≤ |W i| − 1

Thus, we have:

d(ui) = |NW i

(ui) ∪NLi
I (ui)|+ |NRi

(ui)|+ 2

m(H)− 1 ≤ |W i| − 1 + |NRi

(ui)|+ 2

|W \W i| ≤ |NRi

(ui)|+ 2 (6.7)

In the following two lemmas, we analyse the easier cases.

Lemma 6.8. Let H = T @Ck, where T is a tree different from P2 and k ≥ 4,
and W ⊆ D(H) be a good set satisfying Lemma 6.6. If W ⊆ {w1, · · · , wk},
for some w ∈ V (T ), then χb(H) = m(H).

Proof: Denote m(H) by m and let W = {w1, · · · , wm}. First, colour wi with
i, for all i ∈ {1, · · · , m}. Observe that, as |W i| ≤ 1, for all i ∈ {1, · · · , k},
there is no internal link and the existing types of cross links are Type 1 and
Type 6. Suppose first that m < k. If there exists a link of Type 6, then
w = α and m ∈ {k − 2, k − 1}. If m = k − 2, we have k ≥ 6 (as m ≥ 4)
and we can colour wm+1 with Ψ(w1) and wk with Ψ(wm). Now consider
m = k − 1. Since T 6= P2, we have δ(T ) ≥ 2 and, hence, δ(H) ≥ 4; thus,
as dH(wk) = m − 1 ≥ 4, we have that m ≥ 5 and we can give colour Ψ(w3)
to wk. After this, note that we can recursively apply Lemma 6.3 to colour
NL(wi), starting from w1 up to wm (|NL(wi)| ≥ 2, since δ(H) ≥ 2).
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Now, consider that m = k and let NT (w) = X = {x1, · · · , xq}. Trivially,
xij ∈ LC , for all i ∈ {1, · · · , k}, j ∈ {1, · · · , q}. By Lemma 2.14 and the

fact that wi has exactly two coloured neighbours, namely w(i−1) mod k and
w(i+1) mod k, for all wi ∈ W , we have q ≥ k − 3. For each i ∈ {1, · · · , k},
colour xij with (i + j + 1) mod k, if j ∈ {1, · · · , k − 3}, and with (i − 1)
mod k, otherwise. Observe that Ψ({xi1, · · · , x

i
k−3}) = {1, · · · , m(G)}\{i, (i−

1) mod k, (i + 1) mod k}; thus, each wi is a b-vertex. To see that the
precolouring is also proper, note that colour i does not appear in X and: for
each j ∈ {1, · · · , q}, i ∈ {1, · · · , k}, as the coloured neighbourhood of xij is

{wi, x(i−1) mod k
j , x

(i+1) mod k
j } and Ψ(N [xij ]) is either {i, (i+j) mod k, (i+j+

1) mod k, (i+j+2) mod k} or {i, (i−2) mod k, (i−1) mod k, i mod k}
of cardinality 4, we know that the precolouring is proper. �

Lemma 6.9. Let H = T @ Ck, where T is a tree different from P2 and
k ≥ 4, and W ⊆ D(H) be a good set satisfying Lemma 6.6. If m(H) ≤ 6,
then χb(H) = m(H).

Proof: Let u ∈ T with maximum degree; as T 6= P2, we have dT (u) ≥ 2 and
dH(ui) ≥ 4, for all i ∈ {1, · · · , k}. So, as k ≥ 4 and by Lemma 6.8, we need to
consider only the values 5 and 6 for m(H). First, consider m(H) = 5. So, as
k ≥ 4 and by Lemma 6.8, we can suppose that k = 4. Also, as T is connected,
there must exist α ∈ N(u) such that dT (α) ≥ 2, i.e., we can suppose that
W = {u1, u2, u3, u4, α1}, where (u, α) ∈ E(T ). So, H contains the graph
represented in Figure 6.3. Observe that the presented precolouring does not
repeat colours in N(zi), for all zi ∈ W , and all link vertices are coloured
(unless dT (u) > 2, in which case we can just repeat colours in N(ui), since
ui is already a b-vertex, i = 1, · · · , 4). Thus, the presented precolouring can
be extended to a b-colouring of H with 5 colours.

Now, consider m(H) = 6. By Lemma 6.8 and the uniqueness of α, we
can suppose that k ≤ 5. So, there exist u, α ∈ V (T ) such that either k = 4
and W = {u1, u2, u3, u4, α1, α2} or k = 5 and W = {u1, u2, u3, u4, u5, α1}.
Observe the precolourings presented in Figures 6.4 and 6.5. In Figure 6.4.(b),
note that the remaining links of Type 1 between α1 and α2 can be coloured as
in Figure 6.4.(a). Also, if H has more links of Type 1 than it is represented in
the figures, these links can be easily coloured. Finally, if the distance between
u and α in T is greater than 2, the precolourings presented in Figures 6.4.(c)
and 6.5.(c) can be easily adapted to H .
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1 2 3 4

3 5 1 5

5 4 5 2

u

α

Figure 6.3: Precolouring of W and the link vertices when m(H) = 5.

�

Proof of Theorem 6.4: Let W be a good set satisfying Lemma 6.6. By
Lemmas 6.5, 6.8 and 6.9, we can suppose that T 6= P2, |W

1| ≥ 2 and
m(H) ≥ 7. Let Ψ be an unsaturated precolouring ofW obtained as explained
in Section 6.1. We want to colour the vertices locally encircled by W and the
remaining cross link vertices of W . Note that by the way we classify vertices
to be within cross links of Type 2 and Type 5 and by the uniqueness of α,
we have that the uncoloured cross link vertices lie in links of Type 1, Type
3 or Type 6. Also, note that only αiα+1 and αk can lie within links of Type
2, 3 or 6.

We first colour links of Type 3 and Type 6. Let i = iα. First, suppose
that there exists vi ∈ NW i

(αi). Then give colour Ψ(v(i−1) mod k) to αi+1 and,
if i+1 < k, give colour Ψ(vk−2) to αk (note that, in this case, k− 2 ≥ i, i.e.,
Ψ(αi+1) 6= Ψ(αk)). Now, suppose that NW i

(αi) = ∅. So, αi+1, αk are not
within links of Type 3 and, if they are link vertices and are still uncoloured,
then i ≥ k − 2 (i.e., 〈αi, αi+1, αk, α1〉 is link of Type 6). Let vi ∈ W i \ {αi}
(exists as |W 1| ≥ 2). Since NW i+1

(αi+1) = ∅ and αi+1 is still uncoloured,
we have NLi

I (αi) = ∅ (otherwise, αi+1 is within a link of Type 2 and should
already be coloured). The same is valid for vk. Thus, we can colour αi+1 with
Ψ(vi+1) and αk with Ψ(vk), if i+1 < k. Note that: (I) if αj is coloured with
a colour not in Ψ(W j), then j ∈ {iα + 1, k} and there exists viα ∈ NW (αiα)
such that Ψ(αiα+1),Ψ(αk) ∈ Ψ({v1, · · · , vk}).

Now, we proceed to colour the locally encircled vertices. By Proposition
6.1, we know that there exists at most one locally encircled vertex in T i, for
i = 1, · · · , k. Also, by the uniqueness of α, it is easy to see that if xi, yj

are locally encircled and i 6= j, then x = y. So, let xp, · · · , xq be all the
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Figure 6.4: Precolouring of W and the link vertices when m(H) = 6 and
k = 4.
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Figure 6.5: Precolouring of W and the link vertices when m(H) = 6 and
k = 5.



134CHAPTER 6. CARTESIAN PRODUCT OF TREES BY OTHER GRAPHS

locally encircled vertices (note that p ∈ {1, iα + 1} and q ∈ {iα, k}). We
know that, until now, Ψ(V i) ⊆ Ψ(W i ∪ {αi}). By (I) and the fact that
|NW p

(xp)| ≥ 2 implies that there exists up ∈ NW p

(xp) \ {αp, vp}. We colour
xj with Ψ(u(j−2) mod k), for j = p, · · · , q.

Finally, we colour links of Type 1. We know that any internal link vertex
is already coloured and that if yi is within a cross link of Type 3 or 6, then
yi ∈ {αiα+1, αk}. Thus, if yi ∈ L is still uncoloured, then yi has exactly one
neighbour in W and such neighbour is in V i. Also, if vi ∈ W i, then vi has
at most |W i|+2 coloured neighbours, namely {v(i−1) mod k, v(i+1) mod k} and
(W∪LI∪{αiα+1, αk})∩V i of cardinality at most |W i|. Asm(H) = k|W k|+iα
and |W i| ≤ |W k|+ 1, we have:

|M(vi)| ≥ m(H)− 1− (|W i|+ 2)
≥ k|W k|+ iα − 1− (|W k|+ 1 + 2)
≥ (k − 1)|W k|+ iα − 4

Note that if |W k| ≥ 2, then |M(vi)| ≥ 2. Otherwise, we have |M(vi)| ≥
k+ iα−5 = m(H)−5 and, as m(H) ≥ 7, we have |M(vi)| ≥ 2. Thus, we can
assume |M(vi)| ≥ 2, for all vi ∈ W . Denote by L1 the set of uncoloured link
vertices and let vi ∈ W . Note that if v 6= α or iα ≥ 2, then every yi ∈ NRi

(vi)
is within a link of Type 1 or 3, namely 〈vi, yi, yj, vj〉 or 〈vi, yi, yj〉 (in the case
y = α and i ∈ {iα+1, k}), where j ∈ {(i− 1) mod k, (i+1) mod k}. So, if
NL1(vi) 6= ∅, then either NL1(vi) = NRi

(vi) or NL1(vi) = NRi

(vi) \ {αi} and
i ∈ {iα + 1, k}. Also, note that Ψ(u(i−1) mod k) 6= ∅ and Ψ(u(i+1) mod k) 6= ∅,
for all ui ∈ W . Thus, NL1

(vi) is the set of all the uncoloured neighbours of
vi and, by Lemma 2.14, we have |NL1

(vi)| ≥ |M(vi)|. Finally, note that vi

has at most one more coloured neighbour than vj, for all j ∈ {i+ 1, k}, and
if it is the case then either (a) i ≤ iα < j and some yi ∈ N(vi) is within an
internal link between vi and αi, or (b) i ≤ iα + 1 < j < k and α ∈ N(v).
We choose a subset X1 ⊆ NL1(v1) with cardinality |M(v1)| and construct a
subset Xj, for all j ∈ {2, · · · , k}, as follows:

• If (a) occurs:

Xj =

{

{xj : x ∈ X1/T}, j ∈ {2, · · · , iα}
{xj : x ∈ X1/T} ∪ {yj}, j ∈ {iα + 1, · · · , k}

• If (b) occurs:

Xj =

{

{xj : x ∈ X1/T}, j ∈ {2, · · · , iα + 1, k}
{xj : x ∈ X1/T} ∪ {αj}, j ∈ {iα + 2, · · · , k − 1}
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We know that X i ⊆ NL1(vi) and |X i| = |M(vi)|, for all i ∈ {1, · · · , k}.
We will colour X i with colours fromM(vi), for every i ∈ {1, · · · , k}, starting
from X1 up to Xk. As each vertex of X i will be coloured with a differ-
ent colour from M(vi), i ∈ {1, · · · , k}, the following holds throughout the
procedure:

(i) Ψ(yi) 6= Ψ(ti), for all yi, ti ∈ X i, y 6= t.

LetX1/T = {x1, · · · , xq}, where q = |M(v1)| (recall that q ≥ 2). Start by
colouring X1 with the colours from M(v1). Now, consider the i-th iteration,
i > 1, and let X i = {yi1, · · · , y

i
l}. Suppose, without loss of generality, that

xj = yj, for j ∈ {1, · · · , q}, and that (X i/T ) \ (X1/T ) = {yl}, if l > q.
We first prove that l ≥ 4. Suppose that l = 3. By Equation 6.7, we know
that there exists at most three vertices in W \ (W k ∪ {vk−1, v1}). So, as
k ≥ 4 and W * {v1, · · · , vk}, we have that W k = {vk} and m(H) = 6,
a contradiction. Now, suppose that l = 2. As q ≥ 2, we have l = q and
αk /∈ N(yk2 ) (otherwise, we would have l = q + 1 as, in this case, y12 is within
the internal link 〈v1, y12, α

1, i.e., y12 /∈ X1). Also, by Equation 6.7, we know
that there exists at most two vertices in W \ (W k ∪{vk−1, v1}). So, as k ≥ 4,
we have W k = {vk} and m(H) = 5, a contradiction.

Now, consider l ≥ 4. Let H ′ = (X i,M(vi)) be a bipartite graph where
(yij, c) ∈ E(H

′) if and only if c /∈ Ψ(N(yij)). Observe that a perfect matching
of H ′ gives us an extension of Ψ that colours X i with colours fromM(vi). We
now make some observations about the edges in H ′. Note that each yij has
at most two coloured neighbours different from vi, for all j ∈ {1, · · · , l− 1},

namely yi−1
j and y

(i+1) mod k
j , while yil may have one more coloured neighbour,

namely αi when i ∈ {iα + 1, k}. So, yij has at most two non-neighbours in
H ′, for all j ∈ {1, · · · , l − 1}, and yil at most three. Also, by (i) each colour
c ∈ M(vi) \ Ψ(αi) has at most two non-neighbours in H ′, while Ψ(αi) may
have three non-neighbours (in the case i ∈ {iα + 1, k} and Ψ(αi) ∈ M(vi)).
By Hall’s Theorem, H ′ has a perfect matching if and only if |NH′

(A)| ≥ |A|,
for all A ⊆ X i. As l ≥ 4, we already know that NH′

(yij) 6= ∅, for all
j ∈ {1, · · · , l}. If |A| = 2, as l ≥ 4 and at least one vertex of A is different
from yik, say y

i
j, we have |NH′

(A)| ≥ |NH′

(yij)| ≥ 2. If |A| = 3, as at most

one colour has three non-neighbours in H ′ and l ≥ 4, we have |NH′

(A)| ≥ 3.
Finally, if |A| ≥ 4, as no colour has more than three non-neighbours in H ′

we have NH′

(A) =M(vi).

At the end, if any xi ∈ L1 is still uncoloured, we know that xi has at
most 4 neighbours in H [W ∪N(W )], namely x(i−1) mod k, x(i+1) mod k, αi and
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vi ∈ NW i

(xi). So, as m(H) ≥ 7, we can colour xi with any colour not in its
neighbourhood, for all xi still uncoloured. �

6.3 Trees and paths

The main result of this section is the following:

Theorem 6.10. Let H = T @Pk, k ≥ 5. If H has a good set, then χb(H) =
m(H); otherwise, χb(H) = m(H)− 1.

Consider the cartesian product H = T @Pk, k ≥ 5. Let Pk = 〈a1, · · · , ak〉.
Note that:

dH(ui) = dT (u) + 2, i = 2, · · · , k − 1

dH(ui) = dT (u) + 1, i = 1, k

As we have at least 3m(T ) ≥ m(T ) + 2 vertices in H with degree at least
m(T ) + 1, we have m(H) ≥ m(T ) + 2. Suppose that m(H) > m(T ) + 2;
if ui ∈ D(H), as dH(ui) ≤ dT (u) + 2, i = 1, · · · , k, we have dH(ui) ≥
m(H)− 1⇒ dT (u) + 2 > m(T ) + 2− 1⇒ dT (u) > m(T )− 1. As there exist
at most m(T ) such vertices in T , we have:

m(T ) + 2 ≤ m(H) ≤ km(T )

Let W ⊆ D(H) be a subset of m(H) dense vertices of H containing
every vertex of degree at least m(H). Trivially, if dH(ui) > m(H)− 1, then
{u2, · · · , uk−1} ⊆W . Actually, we can make the following assumptions:

A1 At most one vertex α ∈ V (T ) is such that there exists an index iα <
k − 1 for which αi ∈ W , for all 2 ≤ i ≤ iα, and αi /∈ W , for all
iα < i ≤ k;

A2 {u2, · · · , uk−1} ⊆W , for all u ∈ V (T ) \ {α} such that some ui ∈ W ;

A3 If there exists w2 ∈ W 2 with d(w2) = m(H)− 1, then u1, uk ∈ W , for
all ui ∈ W such that dH(ui) > m(H)− 1;

A4 If α does not exist, then at most one vertex, denoted by β, is such that
β1 ∈ W and βk /∈ V k; all other vertex vi ∈ W is such that v1 ∈ W iff
vk ∈ W .
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Observe that, if α exists, as α2 ∈ W and αk−1 /∈ W , we have that
dH(αi) = m(H)− 1, for i = 2, · · · , k − 1.

Let ui ∈ W i. Note thatN(ui) ⊆ NW i

(ui)∪NLi
I (ui)∪NRi

(ui)∪{ui−1, ui+1}
and we can make an argument analogous to the one made for cycles, i.e.,
Equation 6.7 is also valid here. Now, we analyse the existence of a good set
in H .

Lemma 6.11. Suppose that T 6= P2. Then H = T @ Pk, k ≥ 5, does not
have a good set if and only if k = 5, |D(H)| = m(H), d(vi) = m(H)− 1, for
all vi ∈ D(H), and there exist u2, u3, u4 ∈ V (H) \D(H) such that D(H) ⊆
N(u2) ∪N(u3) ∪N(u4).

Proof: First, note that if k = 5, |D(H)| = m(H), d(vi) = m(H) − 1, for
all vi ∈ D(H), and there exist u2, u3, u4 ∈ V (H) \D(H) such that D(H) ⊆
N(u2) ∪ N(u3) ∪ N(u4), then D(H) encircles u3 and, as |D(H)| = m(H),
H does not have a good set. Now, it remains to prove the other way of the
equivalence.

Let W ⊆ D(H) be a subset of cardinality m(H) that satisfies A1-A4.
First, we prove that if W encircles some vertex ui ∈ V (H) \W , then k = 5,
i = 3 andW ⊆ N(u2)∪N(u3)∪N(u4). Note that ui does not reach any vertex
in W i+2, since ui+1 /∈ W . Also, by Proposition 2.1 and the uniqueness of α,
there must exist vi ∈ W i such that {v2, · · · , vk−1} ⊆ W . Thus, i ≥ k − 2.
Similarly, ui cannot reach any vertex in V i−2 \ {ui−2}. Consequently, as
vi−2 6= ui−2, we have i − 2 ≤ 1. Hence, as k ≥ 5, we have i = 3 and k = 5.
Now, suppose that there exists wj ∈ W \ N(uj), for some j ∈ {1, · · · , 5}.
Trivially, if j 6= 3, then u3 does not reach wj. Furthermore, if w3 ∈ W we
know that w2 ∈ W and u3 does not reach w2, a contradiction.

Now, let W ⊆ D(H) be a subset of cardinality m(H) that satisfies A1-A4
and contains all vertices of H with degree at least m(H). Trivially, ifW does
not encircle any vertex, then it is a good set. So, suppose that W encircles
u3 ∈ V (H) \W . Note that, as u4 /∈ W , w3 is the only (u3, w4)-bridge, for
all w4 ∈ W , and, consequently, d(w3) = m(H) − 1, for all w3 ∈ W 3. Also,
since d(w2) = d(w3) = d(w4), for all w3 ∈ V 3, and W ⊆ N(u2) ∪ N(u3) ∪
N(u4) ⊆W 3∪{w2, w4 : w3 ∈ W 3}∪{u2}, we have d(wi) = m(H)−1, for all
wi ∈ W . So, as W contains all vertices with degree at least m(H), we have
d(wi) = m(H) − 1, for all wi ∈ D(H). Note that D(H) ∩ (V 1 ∪ V k) = ∅.
Now, let v ∈ V (T ) be such that v2, v3, v4 ∈ W (v exists by Proposition 2.1
and the uniqueness of α). If u3 ∈ D(H), note that either (W \ {v3, v4}) ∪
{u3, u4}, if u = α, or (W \ {v2, v3, v4}) ∪ {u2, u3, u4}, otherwise, is a good
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set that satisfies Assumptions A1-A4. So, suppose that u3 /∈ D(H) and
let wj ∈ D(H) \ W . We know that j 6= 1, k. So, if w /∈ N(u), we know
that (W \ {v2, v3, v4})∪ {w2, w3, w4} is a good set. Otherwise, consider that
D(H) ⊆ N(u2) ∪ N(u3) ∪ N(u4). Let W ′ be either (W \ {w3}) ∪ {w4}, if
w = α (note that iα must be equal to 3, since α2 must be reached by u3 and
u2 /∈ D(H)), or (W \ {v3})∪{w3}, if w 6= α. Note that in both cases W ′ is a
good set, but Assumptions A1-A4 are not valid; these situations are stated
in Lemma 6.12. �

The following lemma follows directly from the proof of the lemma above.

Lemma 6.12. If H has a good set W then either (I) there exists a good set
for which Assumptions A1-A4 are valid or (II) k = 5, there exist u2, u3, u4 ∈
V (H) \D(H) such that D(H) ⊆ N(u2)∪N(u3)∪N(u4) and x2, x3, x4 ⊆W ,
for all xi ∈ W , except for at most two vertices, in which case one of the
following occurs for W :

• there exist w2, w4 ∈ W such that w3 /∈ W ; or

• there exist v3, w2, w4 ∈ W such that v2, v4, w3 /∈ W .

We first prove the following part of Theorem 6.10:

Lemma 6.13. Let H = T @ Pk, k ≥ 5. If H does not have a good set, then
χb(H) = m(H)− 1.

Proof: By Lemma 2.4, we know that χb(H) < m(H). We choose a subset
W ⊆ D(H) with cardinality m(H) − 1 such that vi ∈ D(H) \W is a link
vertex of W (by Lemma 6.11, we know that |D(H)| = m(H)). Then, we
construct an unsaturated precolouring Ψ with candidate set W that colours
all link vertices of W . As a consequence, by Lemma 2.15, Ψ can be extended
to a b-colouring of H with m(H) − 1 colours and the lemma follows. By
Lemma 6.11, we know that k = 5, |D(H)| = m(H) and there exist u2, u3, u4 ∈
V (H)\D(H) such thatD(H) ⊆ N(u2)∪N(u3)∪N(u4). Note thatm(H) ≥ 6,
since m(H) = 3|D(H)∩V 3| and dH(u3) ≥ 3 (i.e., m(H) ≥ 5, as u3 /∈ D(H)).
So, let v3, w3 ∈ D(H) and consider W = D(H) \ {w3}. Trivially, w3 is a
link vertex of W . Colour each vertex of W with a different colour and give
colour: Ψ(v2) to u4; Ψ(v4) to u2; Ψ(w2) to u3; and Ψ(v3) to w3. After this,
note that the only uncoloured links are of Type 1 and, since dT

i

(zi) ≥ 3
and ui is the only coloured neighbour of zi in T i, then zi has at least two
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uncoloured neighbours in such a link, for all zi ∈ W \{w2, w4} (observe that,
as w3 /∈ W , then w2, w4 are not extremities of links of Type 1). So, for each
zi ∈ W \ {w2, w4}, we colour the link neighbours of z2 with the colours in
M(z2) and, then, by Lemma 6.3, we can colour the link neighbours of z3 and
z4, in this order. �

Now, we colour H with m(H) colours, in the case where H does not have
a good set satisfying A1-A4.

Lemma 6.14. Let H = T @Pk, k ≥ 5 and W be a good set of H that satisfies
the item (II) of Lemma 6.11. Then, there exists a b-colouring of H with basis
W .

Proof: Let Ψ be a precolouring where each vertex of W is coloured with a
different colour. We know that k = 5, there exist u2, u3, u4 ∈ V (H) \D(H)
such that D(H) ⊆ N(u2)∪N(u3)∪N(u4) and x2, x3, x4 ⊆W , for all xi ∈ W ,
except for at most two vertices, in which case one of the following occurs:

• there exist w2, w4 ∈ W such that w3 /∈ W : as dH(u3) ≥ 3 and u3 /∈
D(H), we have that m(H) ≥ 5. Thus, there exist v2, v3, v4 ∈ W (and
consequently, m(H) ≥ 6 as, in this case, d(u3) ≥ 4). Give colour Ψ(v2)
to u4; Ψ(v4) to u2; Ψ(w2) to u3 and Ψ(v3) to w3. Note that no colour
is repeated in N(zi), for all zi ∈ W . Furthermore, as m(H) ≥ 6 and zi

has only coloured neighbour in T i, ui, we have that zi has at least two
uncoloured neighbours in a link of Type 1; thus, by Lemma 6.3, Ψ can
be extended to colour the links of Type 1.

• there exist v3, w2, w4 ∈ W such that v2, v4, w3 /∈ W : as dH(u3) ≥ 4
and u3 /∈ D(H), we have that m(H) ≥ 6. Consequently, there exists
z2 ∈ W 2 \ {w2}. Give colour: ψ(z2) to u4 and v2; Ψ(w2) to u3; Ψ(v3)
to w3; and Ψ(w4) to u2 and v4. After this, since m(H) ≥ 6, we have
that each xj ∈ W \ {v3, w2, w4} has at least two neigbours in a link of
Type 1; thus, by Lemma 6.3, we can colour these links.

As W is a good set and Ψ colours all link vertices of W , by Lemma 2.15, Ψ
can be extended to a b-colouring of H with basis W . �

The following lemma colours the easier case, when H has a good set
satisfying A1-A4.
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Lemma 6.15. Let H = T @ Pk, k ≥ 5, and W be a good set of H that
satisfies A1-A4. If W ⊆ {u1, · · · , uk}, for some u ∈ V (T ), or m(H) ≤ 5,
then χb(H) = m(H).

Proof: First, note that if W ⊆ {w1, · · · , wk}, then every link is of Type 1
and we can colour the link vertices of V 1 up to V k using Lemma 6.3. So,
suppose that |{w1, · · · , wk} ∩ D(H)| < m(H), for every w ∈ V (T ). Let
u ∈ V (T ) with maximum degree. If T = P2, the lemma follows by Lemma
6.5. Thus, d(u) ≥ 2 and, as k ≥ 5 and |{u1, · · · , uk} ∩ D(H)| < m(H), we
havem(H) = 5. Also, as T is connected, there must exist α ∈ N(u) such that
d(α) ≥ 2. Note that if d(u) > 2 or k ≥ 7, then |{u1, · · · , uk} ∩ D(H)| ≥ 5,
a contradiction. Thus, dT (u) = dT (α) = 2 and k ≤ 6. Let W ′ be either
{u2, u3, u4, α2, α3}, if k = 5, or {u2, u3, u4, u5, α2}, if k = 6. As |D(H)| > 5,
by Lemmas 6.11 and 6.12 we know that W ′ is a good set. Observe that
the precolouring presented in Figure 6.6 or in Figure 6.7 is an unsaturated
precolouring of H with candidate set W ′.

3

4

1 2 35

53

2

1

3 54

4
u

α

Figure 6.6: Precolouring of H , where m(H) = 5 and k = 5. The grey vertices
represent W ′.

�

Before we move on to prove Theorem 6.10, we make the following remarks.

Remark 6.16. Let v1 ∈ V 1 \W . If v1 is within a link of Type 3 or Type 4,
then v2 ∈ W and NW 2

(v2) 6= ∅.

Remark 6.17. If xi, yj are locally encircled vertices, i 6= j, i, j ∈ [1, k], then
either x = y or i ∈ {1, k} and j ∈ [2, k − 1].
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Figure 6.7: Precolouring of H , where m(H) = 5 and k = 6. The grey vertices
represent W ′.

Proof of Theorem 6.10: By Lemmas 6.11, 6.13, 6.14 and 6.15, we can suppose
that H has a good set W that satisfies Assumptions A1-A4, m(H) ≥ 6 and
|W 2| ≥ 2. Let Ψ be obtained as explained in Section 6.1 (thus, Ψ sastifies
Lemma 6.2). Observe that, by Assumptions A1-A4, we can suppose that all
cross link vertices still uncoloured are in links of Type 1, Type 2, Type 3 and
Type 4.

We first colour the locally encircled vertices, starting by the ones in
V 2, · · · , V k−1. Denote the set of encircled vertices by Le and the set Le \
(V 1 ∪ V k) by L∗

e. By Lemma 6.1, we know that each T i contains at most
one encircled vertex and, by Remark 6.17, we know that all the vertices
in L∗

e are copies of the same vertex of T . So, let x ∈ V (T ) be such that
L∗
e ⊆ {x

2, · · · , xk−1}. Actually, observe that L∗
e = {xp, · · · , xq}, where

p ∈ {2, iα+1} and q ∈ {iα, k− 1}. If there exists wp ∈ W p \ (N(xp)∪ {αp}),
then, for all j ∈ {p, · · · , q}, colour xj either with Ψ(wj+1), if j < k − 1, or
with Ψ(w2), otherwise. Now, consider W p \ {αp} ⊆ N(xp). Note that, as
|NW p

(xp)| ≥ 2, there exists up ∈ W p \ {αp} such that NW p

(up) = ∅. By A2,
we have {u2, · · · , uk−1} ⊆W . If k ≥ 6, then colour xj either with Ψ(uj+2), if
j ≤ k − 3, or with Ψ(uj−2), otherwise, for all j ∈ {p, · · · , q}. Now, consider
k = 5; colour x2 with Ψ(u4), if x2 ∈ L∗

e, and x
4 with Ψ(u2), if x4 ∈ L∗

e. Sup-
pose that x3 ∈ L∗

e (otherwise, we are done). If u
1 ∈ W , colour x3 with Ψ(u1);

otherwise, if uk ∈ W , colour x3 with Ψ(uk); otherwise, if d(u3) > m(H)− 1,
colour x3 with Ψ(u2). Now, consider u1, uk /∈ W and d(u3) = m(H)− 1. As
x3 is not encircled by W , then either α exists and is not adjacent to x in T
or there exists w3 ∈ W such that d(w3) > m(H) − 1. If the former occurs,
colour x3 with Ψ(α2); if the latter occurs, colour x2 with Ψ(w2). Finally, we
colour encircled vertices in V 1 ∪ V k. If y1 ∈ V 1 \W 1 is locally encircled, as
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|NW 1

(y1)| ≥ 2 and by A4, there must exist u1 ∈ NW 1

(y1) such that uk ∈ W .
Then, colour y1 with Ψ(u3) and, if yk is also locally encircled, colour yk with
Ψ(uk−2). Observe that the following property holds:

(1) If xi ∈ Le is coloured with Ψ(wj), for some wj ∈ W , then j ∈
{i−1, i−2, i+1, i+2}. Furthermore, w 6= α and if i /∈ {1, k} and wi ∈ N(xi),
then W i \ {αi} ⊆ N(xi) and αi /∈ N(wi).

Now, we colour the cross link vertices that lie within cross links of Type 3
or Type 4, starting by the ones in V 1 and V k different from α1 (note that, as
αk−1 /∈ W , αk is not within such a link). Let X∗

1 = {x1 ∈ V 1 \ (W 1 ∪ {α1}) :
x2 ∈ W 2 and NW 2

(x2) 6= ∅}. Define X∗
k analogously. Let xk ∈ X∗

k and note
that x1 ∈ X∗

1∪W . By Remark 6.16, we know that NW k−1

(xk−1) 6= ∅; thus, by
(1), we know that Ψ(x2) /∈ Ψ(N(xk−1)) and Ψ(xk−1) /∈ Ψ(N(x2)). By (1) and
Lemma 6.2, we also know that Ψ(V 1)∩Ψ(W k−1) = ∅ and Ψ(V k)∩Ψ(W 2) = ∅.
So, give colour Ψ(x2) to xk and, if x1 /∈ W , give colour Ψ(xk−1) to x1. Now,
let x1 ∈ X∗

1 such that xk /∈ X∗
k . As α

1 /∈ X∗
1 , we know that NW 2

(x2) = {α2}.
Thus, by (1) and Lemma 6.2, we know that Ψ(xk−1) /∈ Ψ(N(x2)); we can
then colour x1 with Ψ(xk−1) as before. The following trivially holds.

(2) Ψ(x1) = Ψ(xk−1), for all x1 ∈ X∗
1 , and Ψ(xk) = Ψ(x2), for all xk ∈ X∗

k .
Now, consider that α1 lies within a link of Type 3 or 4 and is still un-

coloured. First, consider any y1 ∈ N(α1) \W . If NW 1

(y1) 6= ∅, then either
NW 1

(α1) 6= ∅ and α1 is an internal link vertex, or NW 1

(α1) = ∅ and α1 lies
within a link of Type 2. We get a contradiction as in both cases α1 should
have already been coloured. Thus, (i) NW 1

(y1) = ∅ and, consequently, if
y1 is coloured, then y1 ∈ X∗

1 , for all y1 ∈ N(α1) \ W . By Remark 6.16,
there exists v2 ∈ NW 2

(α2). First, consider v1 /∈ W . By (i), NW 1

(v1) = ∅
and Ψ(v1) = Ψ(vk−1). Also, by (i), we know that Ψ(v3) /∈ Ψ(N(α1)). So,
if Ψ(v3) /∈ Ψ(N(α2)), then we colour α1 with Ψ(v3). So, suppose that
y2 ∈ N(α2) is coloured with Ψ(v3). By Lemma 6.2, we know that y2 is locally
encircled. We then colour α1 with Ψ(u2), for any u2 ∈ NW 2

(y2) \ {α2}. As
y2 is the only coloured neighbour of α2 not in W and by (i), we know that
Ψ(u2) /∈ Ψ(N(α1) ∪N(α2)). Now, consider v1 ∈ W . We know that a colour
not in Ψ(W 1) appears in N(v1) \ {v2} only if there exists y1 ∈ NT 1

(v1)
such that y1 is locally encircled or y2 ∈ W . If the former occurs, by (1),
Ψ(y1) /∈ Ψ(W 4), and if the latter occurs, by (2), Ψ(y1) = Ψ(yk−1). Also,
by (i), we know that Ψ(v4) /∈ Ψ(N(α1)) and one can verify that if α2 has a
locally encircled neighbour y2, by the existence of v2 ∈ W 2 \ (N(y2)∪ {α2}),
we have Ψ(y2) ∈ Ψ(W 3). Thus, we can colour α1 with Ψ(v4).

Now, let i = iα and consider that αi+1 is also within a link of Type 3 and
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is still uncoloured. Note that, as αi+1 is not an internal link vertex and by
the uniqueness of α, we have: (ii) NW i

(yi) = {αi}, for all yi ∈ N(αi)\W . So,
αi does not have encircled neighbours in T i and, consequently, Ψ(N(αi)) ⊆
Ψ(W i ∪ {αi−1}). Also, the coloured neighbours of αi+1 are αi and vi+1;
hence, we just need to colour αi+1 with a colour c ∈ M(αi) ∩ M(vi+1).
Suppose, first, that αi has a coloured neighbour xi ∈ V i \W i. By (ii), there
exists a link of length three 〈αi, xi, yi, wi〉. Note that there is no locally
encircled vertex in V i+1. Thus, F = Ψ(N(αi) ∪N(vi+1)) ⊆ Ψ(W i ∪W i+1 ∪
{αi−1, vi+2}) \ {αi, vi+1}), i.e., |F | ≤ |W i| + |W i+1|. So, if |W i+1| ≥ 3, as
|W | ≥ 2|W i+1|+ |W i|, we have at least 3 colour in {1, · · · , m(G)}\F . Then,
as least one such colour is different from Ψ(αi) and Ψ(vi+1), we can properly
colour αi+1. Now, suppose that W i+1 = {wi+1, vi+1}. In this case, vi+1 has
no coloured link neighbour and at least one colour c ∈ Ψ({w1, · · · , wk}∩W )
does not appear in N(αi). We can then colour αi+1 with c. Now, consider
that αi has no coloured neighbour in V i\W i; thus, by (ii), αi has exactly two
coloured neighbours, namely αi−1 and vi. If W i+1 = {vi+1}, then vi+1 has
exactly two coloured neighbours, namely vi, vi+2, and, as m(H) ≥ 6, there
exists a colour c /∈ Ψ({αi−1, αi, vi, vi+1, vi+2}) with which we can colour αi+1.
Otherwise, let ui+1 ∈ W i+1\{vi+1} and denote Ψ({u2, · · · , uk−1}) by C. Note
that if Ψ(αi−1) ∈ C, then i = 2, and if Ψ(vi+2) ∈ C, then i+ 2 = k and, as
k ≥ 5, i ≥ 3; consequently, at most one between αi−1 and vi+2 can be coloured
with a colour from C. So, as vi+1 has at most one vertex in V i+1 coloured
with some colour in C and |C| ≥ 3, we have that C \Ψ(N(vi+1)∪{αi−2}) 6= ∅
and we can colour αi+1 as desired.

Now, we colour the vertices in links of Type 2 that are not coloured by
the application of Lemma 6.2, i.e., yj within a link of Type 2 such that
NW j

(yj) 6= ∅. Consider the link 〈xi, xj , yj, wj〉. Note that if j ∈ {1, k},
then yi /∈ W , otherwise yj would be within a link of Type 3 and would
have been coloured previously; otherwise (i.e. if j ∈ {2, · · · , k − 1}), by
A1 and A2, we have x = α, i = iα, j = i + 1 and, again, yi /∈ W . Hence,
NW (yj) = {wj}. We prove that Ψ(xi) /∈ Ψ(N(wj)∪N(yj)); thus, if we colour
yj with Ψ(xi), the obtained precolouring is proper and still unsaturated.
Trivially, Ψ(yi) 6= Ψ(xi) as Ψ is a proper precolouring. Also, note that if
zj ∈ N(yj) \ W , then, as yj /∈ LI , we have NW j

(zj) = ∅. Consequently,
if zj is coloured, then zi ∈ W , 〈zi, zj , yj, wj〉 is a link of Type 2 and, by
Lemma 6.2, Ψ(zj) ∈ Ψ(W j). Now, consider zl ∈ N(vj) \W coloured with a
colour not in Ψ(W j). We know that either l = j and zl is locally encircled
or j = i+ 1 = iα + 1, l = j + 1 = k, z = y and zk is either locally encircled
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or zk is within a link of Type 3 or 4. One can verify in the procedure that
colours encircled vertices that if u1 is a locally encircled vertex coloured with
c, then ψc ∈ NW 3

(u3) and if uk is locally encircled coloured with c′, then
ψc′ ∈ NW k−2

(uk). Thus, if l ∈ {1, k} and zl is locally encircled, we know that
Ψ(zl) 6= Ψ(αi). Also, if zj is locally encircled and j = iα+1, then x = α and,
by (1), Ψ(zj) 6= Ψ(αi). So, consider the case j = i+1 = iα+1, l = j+1 = k
and yk is within a link of Type 3 or 4. By (2), we know that Ψ(yk) = Ψ(y2).

Finally, we colour links of Type 1. Denote by L1 the set of uncoloured link
vertices. We want to prove that we can apply Lemma 6.2 to colour NL1(ui),
for all ui ∈ W , starting from V 1 ∩ L1 up to V k ∩ L1. Let vi ∈ W be such
that NL1(vi) 6= ∅. Observe that it suffices to prove that |NL1(vi)| ≥ 2. As
L1 contains only vertices that lie in links of Type 1, we have {vi−1, vi+1} ∩
W 6= ∅. Thus, by A1, A2 and A4, we know that v2, v3 ∈ W . Recall that
R = V (H) \ (W ∪ LI) and note that if x2 ∈ NR2

(v2), then zi /∈ W , for
all z2 ∈ NT 2

[x2] \ {v2}, for all i ∈ {1, · · · , k}, and, consequently, x2 ∈
NL1(v2), i.e., NL1(v2) = NR2

(v2). Also, note that if x2 ∈ NL1(v2), then, as
xi /∈ W , for all i ∈ {1, · · · , k}, we have xi ∈ NL1(vi), for all vi ∈ W . So,
|NL1(vi)| ≥ |NL1(v2)| and it suffices to prove that |NL1(v2)| ≥ 2. It is easy
to see that, as m(H) ≥ 6, then |W \W 2| ≥ 4. Thus, by Equation 6.7, we
have |NR2

(v2)| ≥ |W \W 2| − 2 ≥ 2. �

6.4 Trees and stars

Let T be a tree and consider a star K1,p = (a0, a1, · · · , ap), where a0 is the
center of the star, p ≥ 2. Let H = T @K1,p. We want to prove the following:

Theorem 6.18. Let H = T @ K1,p, p ≥ 2. If H has a good set, then
χb(H) = m(H); otherwise, χb(H) = m(H)− 1.

We also give an algorithm that finds an optimal b-colouring of H . First,
we analyse the case where m(H) = 3. Observe that m(H) ≥ 3, unless
T = {v}, in which case H = K1,p and the theorem follows from the result
from Irving and Manlove for trees [20]. We prove that T is an edge. Suppose
otherwise; thus, it must have a vertex v with degree at least 2. Let u ∈ N(v)
and note that d(vi) ≥ 3, i = 0, · · · , p, and d(u0) ≥ 3, i.e., there are at least
4 vertices with degree at least 3, namely v0, v1, v2, u0, and m(H) ≥ 4, a
contradiction. So, T = K2 = {v1, v2}. Suppose that Ψ is a b-colouring of H
with m(H) = 3 colours. Without loss of generality, suppose that Ψ(v01) = 1
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and Ψ(v02) = 2. Observe that, in this case, if vi1 is coloured with 3, for some
i ∈ [1, p], as {2, 3} ∈ Ψ(N(vi2)), then v

i
2 must be coloured with 1; thus, vi1 is

not a b-vertex of colour 3. Analogously, there is no vi2 that is a b-vertex of
colour 3, a contradiction. So, χb(H) < 3 and Ψ where Ψ(v01) = Ψ(vi2) = 1
and Ψ(v02) = Ψ(vi1) = 2, i = 1, · · · , p, is an optimal b-colouring of H .

From now on we suppose that m(H) ≥ 4. We know that

dH(u0) = dT (u) + p (6.19)

dH(ui) = dT (u) + 1, i = 1, · · · , p (6.20)

Also, as dH(u0) = dH(ui)+p−1, for i ∈ {1, · · · , p}, the following is valid:

if dH(ui) ≥ m(H)− 1, i ≥ 1, then dH(u0) ≥ m(H) + p− 2 ≥ m(H) (6.21)

Trivially, as p ≥ 2, H has at least 3m(T ) ≥ m(T )+1 vertices with degree
at least m(T ); thus, m(H) ≥ m(T ) + 1. Also, note that if m(H) > m(T ) + p
and ui ∈ D(H), i ∈ {0, · · · , p}, then: dT (u) + p ≥ dH(ui) ≥ m(H) − 1 ≥
m(T ) + p⇒ dT (u) ≥ m(T ). So, as T has at most m(T ) vertices with degree
greater than m(T )− 1, we have that m(H) ≤ (p+ 1)m(T ). Thus:

m(T ) + 1 ≤ m(H) ≤ (p+ 1)m(T )

Now, we present some lemmas that will help us construct a convenient
good set.

Lemma 6.22. Let W ⊆ D(H) be of cardinality m(H) containing all vertices
with degree greater than m(H)−1. If W * V 0 and W encircles ui ∈ V i \W ,

then i 6= 0 and W ⊆ NV 0

(u0) ∪N(ui).

Proof: Suppose that W * V 0 and that W encircles u0 ∈ V 0 \W 0. Let vj be
any vertex in W \ V 0. By Equation 6.21, we have that uj /∈ W (otherwise,
d(u0) ≥ m(H) and u0 should be in W ) and d(v0) ≥ m(H); thus, vj is not
reached by u0, a contradiction. Now, consider that W encircles ui, i ∈ [1, p].
Suppose that there exists vj ∈ W \ (V 0 ∪ V i). As N(ui) ⊆ V i ∪ {u0}, we
must have v = u and u0 ∈ W , otherwise, uj is not reached by ui. But then
d(u0) > m(H)− 1 and vj = uj is not reached by ui, a contradiction. Finally,
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it is easy to see that if there exists vi ∈ W i \ N(ui) then v0 ∈ W is not
reached by ui, i.e., W ⊆ N(ui) ∪NV 0

(u0). �

Lemma 6.23. H does not have a good set if and only if |D(H)| = m(H),
D(H) ⊆ V 0 and D(H) encircles a vertex.

Proof: Let W ⊆ D(H) of cardinality m(H) containing all vertices with
degree at least m(H). Trivially, if W does not encircle any vertex, then
we are done. So, suppose that W encircles ui ∈ V i \W , i ∈ [0, p]. First,
suppose that W ⊆ V 0. By Proposition 2.1, we have ui ∈ V 0. If D(H) ⊆ V 0,
the result follows from the proof of Irving and Manlove in [20]; so, suppose
otherwise and let vj ∈ D(H) ∩ V j, j ∈ [1, p]. By Equation 6.21, we know
that d(v0) ≥ m(H) and, consequently, v0 ∈ W . Also, by Proposition 2.1, we
know that asW encircles u0, there must exist some vertex inW non-adjacent
to u0 and, hence, adjacent to some w0 ∈ NW (u0) with degree m(H)− 1. So,
(W \ {w0})∪ {vj} also contains every vertex with degree at least m(H) and
is not contained in V 0, i.e., we can suppose that W * V 0. Thus, by Lemma

6.22, we know that ui /∈ V 0 and W ⊆ NV 0

(u0) ∪ N(ui). Let wi ∈ W i; as
{w1, · · · , wp} \W 6= ∅, d(wj) = d(wl), for all j, l ∈ [1, p], and W contains all
vertices with degree at least m(H), we know that d(wi) = m(H)−1. If there
exists vi ∈ W i\{wi}, letW ′ = (W \{wi})∪{vj}, for any j 6= 0, i. By Lemma
6.22, we know that W ′ does not encircle any vertex and, as W ′ still contains
all vertices with degree at least m(H), W ′ is a good set. Otherwise (i.e.,
W i = {wi}), by Proposition 2.1 and the fact that N(ui) = NV i

(ui)∪{u0}, we
have that u0 ∈ W . Also, asm(H) ≥ 4, there must exist y0 ∈ W \{u0, w0, wi}
and, since the only way y0 is reached by ui is through u0, we have that
d(u0) = m(H)− 1 and (W \ {u0}) ∪ {wj} is a good set, for any j 6= 0, i. �

The following lemma describes the structure of the chosen good set:

Lemma 6.24. If H is not pivoted, then there exists a good set W ⊆ D(H)
such that:

G1. EitherW contains all vertices with degree at leastm(H) or D(H) ⊆ V 0;

G2. u1, · · · , up ∈ W , for all ui ∈ W , i > 0, except for at most one vertex, α,
for which there exists an index 0 < iα < p such that {α1, · · · , αiα} ⊆W
and {αiα+1, · · · , αp} ∩W = ∅; and

G3. If iα = 1, then d(u0) ≥ m(H), for every u0 ∈ W 0.
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Proof: Let W be the a subset of D(H) with cardinality m(H) containing all
vertices with degree greater than m(H)− 1. If W is not a good set, observe
that in the construction of a good set in Lemma 6.23, either D(H) ⊆ V 0

or we can suppose that W * V 0 and then construct a good set from W by
removing a vertex with degree m(H)− 1 and adding some vj ∈ D(H) \ V 0.

Now, suppose that W is a good set. Trivially, as the vertices v1, · · · , vp

have same degree, we can suppose that for each vertex vi ∈ W , we have
that {v0, · · · , vi−1} ⊆ W . So, while there exist two distinct vertices u, v ∈
V (T ) such that {v1, · · · , vi} ⊆ W and {u1, · · · , uj} ⊆ W , i, j < p, let q =
min{i, p−j}; we remove q vertices from vi, · · · , v1 and add from uj+1, · · · , up.

Finally, let W be a good set that satisfies G1 and G2 and suppose that
iα = 1 and that there exists u0 ∈ D(H) such that d(u0) = m(H) − 1. By
Equation 6.21, we know that u 6= α and ui /∈ W , for i = 1, · · · , p. Thus, by
Lemma 6.22, we know that (W \ {u0}) ∪ {α2} is a good set satisfying G1,
G2 and G3. �

Now, we proceed to the colouring of H . We first colour non-pivoted
graphs. So, consider a good set W that satisfies G1, G2 and G3. We will
construct an unsaturated precolouring with candidate set W where all link
vertices ofW are coloured; after this, by Lemma 2.15, we know we can extend
this precolouring to a b-colouring of H with m(H) colours. So, we partition
L as follows:

- LE - contains all the locally encircled vertices;

- L0 = LI \ LE ;

- L1 = {xi ∈ LC : x0 /∈ W and ∃yi ∈ NLC (xi) s.t. y0 ∈ W};

- L2 = {x
i ∈ LC : x0 ∈ W and NW i

(xi) 6= ∅};

- L3 = {xi ∈ LC \ L2 : x
0 ∈ W};

- L4 = LC \ (L1 ∪ L2 ∪ L3).

Figure 6.8 illustrates the structure of the links that define the partition
above. Note that, by the uniqueness of α, there are no links of Type 5 or
Type 6. Also, observe that L1 contains vertices in links of Type 2, L2 of
Type 3, L3 of Type 2 and Type 4 and L4 of Type 1. Finally, observe that
Li ∩ V 0 = ∅, for i = 1, 2, 3, and that if αi ∈ LC , then αi ∈ L2 ∪ L3 (since
α0 ∈ W ). The following remark trivially holds:
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T 0 T i

xi

L2

T 0 T i

xi

yi

L1 L4

T 0 T i

xix0

T 0 T i

T 0 T i

xi

yi

yi

xi

L3

Figure 6.8: Structure of the sets L1, L2, L3, L4. The bigger vertices are in W
and the grey vertices are within the corresponding subset.
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Remark 6.25. If xi ∈ LI is locally encircled and xi+1 is not, 0 < i < p, then
i = iα, α

i ∈ N(xi) and either |NW i

(xi)| = 2 or NW i

(αi) 6= ∅. Conversely,
if xi is not locally encircled and xi+1 is, 0 < i < p, then i = iα and either
x = α or W i \ (N(xi) ∪N(NW (xi)) = {αi}.

By the above remark, if xi, · · · , xj are all the copies of x different from
x0 that are locally encircled, then either i = 1, j = p, or i = 1, j = iα, or
i = iα + 1, j = p. The following lemma will be used to colour links of Type
4.

Lemma 6.26. Suppose that Ψ is an unsaturated precolouring with candidate
set W , m(H)−1 ≤ |W | ≤ m(H). Let J0 be the set of vertices of a connected
component of T 0[W 0] and J i1 , · · · , J ir be all the copies of J0 such that J if ∩
W = ∅ and NL(J if ) = ∅, for f = 1, · · · , r. If r ≥ 2, then, we can obtain
an unsaturated precolouring of W from Ψ where J if is coloured, for all f ∈
{1, · · · , r}.

Proof: First, note that, as u1, · · · , ui−1 ∈ W , for all ui ∈ W , we have that
j ∈ {i1, · · · , ir}, for all j ∈ [i1, p], and, by the uniqueness of α, either i1 = 1
or i1 = iα + 1. So, denote by i the index i1. Choose any root x0 for J0 and
denote by q the value |M(x0)|. Give the colours in M(x0) to the vertices
xi, · · · , xi+q−1 and let xi+q, · · · , xp remain uncoloured. Then, for each child
t0 of x0, let C represent the set Ψ({xi, · · · , xp}) ∩M(t0) and let Ψ−1(C) be
the set {xk : Ψ(xk) ∈ C}. If |C| > 1, do a permutation of these colours on
the set {tk : xk ∈ Ψ−1(C)} in such a way that Ψ(tk) 6= Ψ(xk). Otherwise,
give the colour c ∈ C to any tk such that Ψ(xk) 6= c (remember that every
coloured vertex in {xi, · · · , xp} has a different colour and that r ≥ 2). After
this, use the remaining colours of M(t0) \ C on the uncoloured vertices in
{ti, · · · , tp}, again leaving the “surplus” neighbours uncoloured. Continue
this procedure from the children of x0 in J0 down to the leaves of J0.

Now, suppose that yk ∈ Jk is still uncoloured, for some k ∈ [i, p]. If W
is a good set, by G1, we know that d(yk) < m(H); hence, there exists some
colour in {1, · · · , m(H)}\Ψ(N(yk)) with which we can colour yk. Otherwise,
by Lemma 6.23, we know that yk /∈ D(H); hence, d(yk) < m(H) − 1 and
there exists a colour in {1, · · · , m(H) − 1} \ Ψ(N(yk)) with which we can
colour yk. �

We first prove the following part of Theorem 6.18.

Theorem 6.27. Let H = T @ K1,p, p ≥ 2. If H does not have a good set,
then χb(H) = m(H)− 1.
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Proof: By Lemma 2.4, we know that χb(H) < m(H). We want to construct
a b-colouring of H with m(H) − 1 colours. By Lemma 6.23, we know that
|D(H)| = m(H), D(H) ⊆ V 0 and D(H) encircles some vertex. Let x0 be
encircled by D(H) and let u0 ∈ W \ N(x0) (u0 exists, by Proposition 2.1).
Also, let v0 ∈ NW (u0) ∩ NW (x0); we know that dH(v0) = m(H) − 1. Give
colours {1, · · · , m(H)− 1} to W \ {v0}, colour Ψ(u0) to x0 and Ψ(w0) to v0,
for any w0 ∈ NW (x0) \ {v0} (by Proposition 2.1, w0 exists). Note that the
remaining uncoloured link vertices are in links of Type 4. By Lemma 6.26,
it is possible to extend Ψ to colour these links. As v0 is the only vertex in
V (H) \W with degree at least m(H)− 1 and v0 is also a link vertex of W ,
we can apply Lemma 2.15 to extend this precolouring to a b-colouring of H
with m(H)− 1 colours. �

Now, consider H to be non-pivoted. The following lemma colours H when
W ⊆W 0 ∪ {x1, · · · , xp}, for some x ∈ V (T ).

Lemma 6.28. Let W be a good set of H satisfying Lemma 6.24. If W ⊆
W 0 ∪ {x1, · · · , xp}, then χb(H) = m(H).

Proof: Colour each vertex of W with a different colour and, then, colour
the local internal vertices of W using the Tree Strategy (Section 2.5). If
there exists a locally encircled vertex y0 ∈ V 0 and W ⊆ V 0, as y0 is not
encircled by W , there must exist v0 ∈ d(w0), for some w0 ∈ N(y0) with
degree at least m(H); thus colour y0 with Ψ(v0). Otherwise (W 6= W 0),
colour y0 with Ψ(x1). After this, if W = W 0, colour the remaining link
vertices using Lemma 6.26. Otherwise, let i = p, if xp ∈ W , or i = iα,
otherwise. If there exists yj ∈ N(xj), j ∈ [1, i], such that y0 /∈ W and
NW 0

(y0) * {x0}, then, colour yj with Ψ(w0), for any w0 ∈ NW 0

(y0) \ {x0},

and vj with Ψ(xj), for every v0 ∈ NW 0

(y0)\{x0}. Now, let J0 be a connected
component of T 0[W 0]. Note that if vj is coloured, for some v0 ∈ W and
some j ∈ {1, · · · , p}, then j ≤ i and either vj = xj or v0 is separated
from x0 in T 0 by some y0 ∈ V 0 \W . Thus, if vj and uj are coloured, for
some v0, u0 ∈ W , u 6= v, and some j ∈ {1, · · · , p}, then v0 and u0 are in
different connected components of T 0[W 0], i.e., there is at most one vertex
y0 ∈ V (J0) such that yi is coloured, for some i > 0. Thus, as p ≥ 2, one can
verify that we can apply the same argument of the proof of Lemma 6.26 to
colour {z1 : z0 ∈ J0}, · · · , {zp : z0 ∈ J0} by choosing y0 as the root of J0. �

From now on, we consider that W is a good set of H satisfying G1, G2
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and G3 and is such that |W 1| ≥ 2 (hence, m(H) ≥ 5). First, we present
some lemmas, each of which is used to colour a subset of L.

Lemma 6.29. Suppose that W is a good set of H satisfying G1, G2 and G3
and is such that |W 1| ≥ 2. Then, there exists an unsaturated precolouring
with candidate set W , Ψ, that colours LI ∪ L1 such that the following hold:
(c1) If xi ∈ LE ∪L1 is coloured with c, i ∈ [1, p], then there exists vi ∈ N(xi)
such that (γ)c = vj, for some j ∈ {0, · · · , p} \ {i}. Furthermore, if xi ∈ L1,
then j = 0 and vi ∈ L3; and
(r1) r(vi) = 0, for all vi ∈ W , except for at most one vertex, denoted by β0,
in which case we have: r(β0) = 1 and there exists y0 ∈ NLE(β0) such that
Ψ(y0) = Ψ(βj), for some βj ∈ W , j 6= 0, and W ⊆ N(y0) ∪N(NW (y0)).

Proof: We first colour each vertex of W with a different colour and then
colour the internal link vertices of T i that are not locally encircled using the
Tree Strategy (Section 2.5), i = 0, · · · , p. Observe that, by the definition of
locally encircled vertex and Remark 2.17, we have r(vi) = 0, for all vi ∈ W .
We colour Le and L1, in this order.

Let x ∈ V (T ) be such that xi ∈ Le, for some i ∈ {0, · · · , p}. First,
suppose that x0 is locally encircled. If there exists wi ∈ W \ (N(x0) ∪
N(NW (x0)), as x0 is locally encircled, we know that i 6= 0; so, we colour
x0 with Ψ(wi). Otherwise, let wi be any vertex in W \W 0 (remember that
W * V 0) and colour x0 with Ψ(wi). Observe that (r1) holds and if w ∈ N(x),
then dH(w0) > m(H) − 1 and the repetition of Ψ(wi) in N(w0) is allowed.
Now, suppose that xi is locally encircled, for some i 6= 0. By the uniqueness
of α and the fact that |NW i

(xi)| ≥ 2, we know that there exists v ∈ N(x) such
that {v0, · · · , vp} ⊆ W and we can suppose that Ψ(x0) /∈ Ψ({v1, · · · , vp}).
Let Le∩{x1, · · · , xp} = {xl, · · · , xq}. If l−q > 0, colour xj with Ψ(vj+1), for
j ∈ {l, · · · , q−1}, and xq with Ψ(vl); otherwise, colour xl with Ψ(v(l+1) mod p).
Note that (c1) holds.

Now, consider xi ∈ L1. As xi is not an internal vertex and x0 /∈ W ,
we know that NW (xi) = {vi}. Also, by the construction of L1, there exists
yi ∈ NLC (xi) such that y0 ∈ W . We colour xi with Ψ(y0). Note that, as
xi /∈ LI , we have that NW i

(yi) = ∅ and, consequently, yi ∈ L3; thus, (c1)
holds. Trivially, Ψ(x0) 6= Ψ(y0), as x0 ∈ N(y0), and also no two neighbours
of yi are adjacent, i.e., the precolouring is proper. In addition, if vi has some
neighbour zi coloured with some colour c /∈ Ψ(W i), then zi ∈ Le ∪ L1 and,
by (c1), we have that c 6= Ψ(y0). Thus, r(vi) does not increase during this
procedure, for all vi ∈ W , and the obtained precolouring is unsaturated. �
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Lemma 6.30. Suppose that W is a good set of H satisfying G1, G2 and G3
and is such that |W 1| ≥ 2. Let Ψ be an unsaturated precolouring satisfying
Lemma 6.29. Then, there exists an unsaturated extension of Ψ that colours
L2. Also, the following hold:
(r2) r(vi) = 0, for all vi ∈ W \ {β0}, except for at most one vertex, denoted
by ρ0, and if ρ0 exists, then r(ρ0) = 1 and either iα = 1 and ρ ∈ N(α) or
iα = p− 1 and ρ0 = α0.

Proof: First, observe that, as NW i

(xi) 6= ∅ and xi /∈ LI , for all xi ∈ L1 ∪ L2,
we have that L1 ∪ L2 is stable and that L2 ∩N(LI) = ∅. So, given vi ∈ W i

and xi ∈ NL2(vi), we just need to ensure that we colour xi with a colour
different from Ψ(x0) and Ψ(vi) and that we do not repeat too many colours
in N(vi), N(x0). Now, consider vi ∈ W . We know that if vp ∈ W and
xp ∈ NL2(vp), then x0 ∈ W and, for all i ∈ {1, · · · , p−1}, either xi ∈ NL2(vi),
or xi = αi, or xi ∈ LI (and, in this case, i ≤ iα andN

W i

(xi) = {vi, αi}). Also,
if vp /∈ W , then v = α and NL2(vi)/T = NL2

(vj)/T , for all i, j ∈ {1, · · · , iα}.
So, let l = min{i : NL2(vi) 6= ∅}, q = max{i : vi ∈ W} and, for each i ∈
{l, · · · , q}, let X i = NL2(vi). By what was said before, we know that either
X i/T = Xj/T , for all i, j ∈ {l, · · · , q}, or there exists x ∈ V (T ) such that
X i/T ⊆ (Xj∪{xj})/T , for all i, j ∈ {l, · · · , q}. LetXq/T = {x1, · · · , xr} and
X0 = {x01, · · · , x

0
r}. We want to use the colours in Ψ(X0) ∪ Ψ({vl, · · · , vq})

to colour X l, · · · , Xq. However, this is not always possible as these colours
may already appear in N(x0i ), for some i ∈ {1, · · · , r}], or in N(vi), for some
i ∈ {l, · · · , q}. So, let F = X0 ∪ {vl, · · · , vq} and CF be the set of colours
Ψ(N(F )). We construct a bijective function f : F → {1, · · · , m(H)} such
that:

(*) f(z) /∈ CF , for all z ∈ F .

We know that if yi ∈ NL(vi) is already coloured, for some i ∈ {l, · · · , q},
then either Ψ(yi) ∈ Ψ(W i) or (c1) occurs. Thus, Ψ(x0i ) /∈ Ψ(N(vj)), for
all i ∈ {1, · · · , r}, j ∈ {l, · · · , q}. However, it may occur that for some
i ∈ {1, · · · , r}:

(i) Ψ(x0i ) ∈ Ψ(N(x0j )), for some j ∈ {1, · · · , r}.

Also, it may occur that for some i ∈ {l, · · · , q}:

(ii) Ψ(vi) ∈ Ψ(N(vj)), for some j ∈ {l, · · · , q}; and/or
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(iii) Ψ(vi) ∈ Ψ(N(x0j )), for some j ∈ {1, · · · , r}.

Let x0i ∈ X
0. If (i) does not occur, then set f(x0i ) to Ψ(x0i ). Otherwise,

let x0j ∈ X0 such that Ψ(x0i ) ∈ Ψ(N(x0j )). Note that, as r ≥ 2, V 0 has
no locally encircled vertex. By (c1), we know that Ψ(xkj ) 6= Ψ(x0i ), for all
k ∈ {1, · · · , p}. Thus, let y0 ∈ N(x0j ) such that Ψ(y0) = Ψ(x0i ). By Lemma
2.16 and the fact that v0 ∈ W separates x0i from x0j in T

0, we know that there

exists z0 ∈ NW 0

(y0) \ {x0j}. By (c1), we know that Ψ(z0) does not appear in
N(vk), for all k ∈ {l, · · · , q}. So, if Ψ(z0) /∈ N(x0k), for all k ∈ {1, · · · , r}, we
set f(x0i ) to Ψ(z0). Otherwise, we can apply the same argument as before and,
as H is finite, we eventually find some w0 ∈ W 0 such that Ψ(w0) /∈ CF ; thus,
set f(x0i ) to Ψ(w0). One can also verify that, if we apply this procedure to
find f(x0i ) and f(x

0
j), i 6= j, then the iterated sequence of vertices ofW 0 \X0

will be different for x0i and x
0
j , i.e., f(x

0
i ) 6= f(x0j ).

Now, let vi ∈ W . If neither (ii) nor (iii) occurs, set f(vi) to Ψ(vi). So,
suppose first that (ii) occurs. Let j ∈ {l, · · · , q} and yj ∈ N(vj) such that
Ψ(yj) = Ψ(vi). By (c1) and the facts that Ψ(yj) /∈ Ψ(W j) and NL2(vj) is still
uncoloured, we have that yj ∈ Le. Let {ya, · · · , yb} be all the locally encircled
copies of y different from y0(recall Remark 6.25 for a better understanding).
One can verify in the proof of Lemma 6.29 that there exists u ∈ V (T ) such
that Ψ({ya, · · · , yb}) ⊆ Ψ({u1, · · · , up} ∩ W ). As Ψ(yj) = Ψ(vi), we have
u = v. Let w ∈ V (T ) such that wk ∈ NW k

(yk) \ {vk}, for all k ∈ {a, · · · , b}
(w exists as |NW k

(yk)| ≥ 2, for all k ∈ {a, · · · , b}, and by the uniqueness of
α). Consider any h ∈ {a, · · · , b}; we prove that ψ(wh) /∈ CF . Note that, for
all k = {1, · · · , r}, because of the distance between x0k and w

0 in T 0, we know
that x0k has no locally encircled neighbour; hence, Ψ(wh) /∈ Ψ(N(x0k)). Now,
consider k ∈ {l, · · · , q}. Recall Remark 6.25 and note that all the locally
encircled vertices in V 1 ∪ · · · ∪ V p are copies of the same vertex of V (T ). So,
if k /∈ {a, · · · , b}, we know that NLe(vk) = ∅ and, as Ψ(NLI (vk)∪NL1(vk)) ⊆
Ψ(W k ∪ W 0), we have Ψ(wh) /∈ Ψ(N(vk)). Otherwise (k ∈ {a, · · · , b}),
we know that NLI (vk) = {yk}; so, as Ψ(yk) ∈ Ψ({v1, · · · , vp} ∩ W ) and
Ψ(L1) ⊆ Ψ(W 0), we have Ψ(wh) /∈ Ψ(N(vk)). So, if (ii) occurs for vi,
set f(vi) to Ψ(wi). Note that f(vi) ∈ Ψ(W i) and f(x0j ) ∈ Ψ(W 0), for all
j ∈ {1, · · · , r}, i.e., until now f(z) 6= f(z′), for all pair z, z′ ∈ F . Now,
consider that (iii) occurs for vi, for some i ∈ {l, · · · , q}. Let ya ∈ N(x0j )
such that Ψ(ya) = Ψ(vi). Note that if a 6= 0, then ya = xaj and a 6= i (as
the precolouring is proper). Thus, Ψ(vi) ∈ Ψ(N(va)), i.e., (ii) also occurs
and we set f(vi) as in the previous case. So, suppose that a = 0. As
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Ψ(y0) /∈ Ψ(W 0) and V 0 ∩ L1 = ∅, y0 must be locally encircled and, hence,
r = 1. Let w0 ∈ NW 0

(y0) \ {x01}. We know that if xk1 is coloured, for some
k ∈ {1, · · · , p}, then either Ψ(xk1) ∈ Ψ(W k) or xk1 ∈ Le ∪ L1 and, by (c1),
Ψ(xk1) 6= Ψ(w0). Also, by Lemma 2.16 and (c1), Ψ(w0) /∈ Ψ(N(vk)), for all
k ∈ {l, · · · , q}. Thus, Ψ(w0) /∈ CF and we set f(vi) to Ψ(w0). Note that, as
r = 1, (i) cannot occur for x01, i.e., f(x

0
1) = Ψ(x01) 6= Ψ(w0). Also, this case

may occur for at most one vertex vi ∈ {vl, · · · , vq}. Thus, as f(vj) ∈ Ψ(vj),
for all j ∈ {l, · · · , q}, j 6= i, we have that Ψ(z) 6= Ψ(z′), for all pair z, z′ ∈ F .

Now, we colour X l, · · · , Xq using the function f . Observe Figure 6.9 for a
better understanding of the following attribution of colours (in the figure, we
suppose l = 1 and q = p). For simplicity, suppose l = 1. If q > r, then, for
each i ∈ {1, · · · , q}, give colours: f(vi+j) to xij, for every j ∈ {1, · · · , q − i};
and f(vj) to xiq−i+j, for every j ∈ {1, · · · , r − q + i}. If r > q, for each

i ∈ {1, · · · , r}, give colours: f(x0i+j) to x
j
i , for every j ∈ {1, · · · , r − i}; and

f(x0j) to x
r−i+j
i , for every j ∈ {1, · · · , q− r+ i}. Finally, if r = q > 1, colour

X1, · · · , Xq as in the first case, except that x1r−1 is coloured f(x0r), x
1
r is

coloured f(vq) and x2r , · · · , x
q
r are coloured f(x01), · · · , f(x

0
r−1), respectively.

Note that, by the construction of f , r(wi) does not increase, for all wi ∈ W .

Finally, we analyse the case where r = l − q + 1 = 1. We know that
either x = α and iα = p− 1 or v = α and iα = 1. Let col(w) denote the set
N(w) ∩ (W ∪ LI ∪ L1) (set of coloured neighbours of w) and W ∗ = {w0 ∈
W : {w1, · · · , wp} ∩W = ∅}. We first consider the case v = α, r = iα = 1.
By G3, we know that dH(x01) > m(H) − 1; and by (r1) and the fact that
xi1 /∈ W , for all i ∈ {1, · · · , p}, we have that r(x01) = 0. So, if there exists
a colour c ∈ M(α1) \ {Ψ(x01)}, we can colour x11 with c. We prove that this
colour exists. By the uniqueness of α, we know that |W | ≥ 3(|W 1| − 1) +
|W ∗|+ 2. Also, as each neighbour of α1 in W ∪ LI defines a different vertex
ofW 1∪{α0} and each neighbour of α1 in L1 defines a different vertex ofW ∗,
we have |col(α1)| ≤ |W 1|+ |W ∗|. Thus, |M(α1)\{Ψ(x01)}| ≥ |W \{α

1, x01}|−
|col(α1)| ≥ 3|W 1|−3+|W ∗|+2−2−|W 1|−|W ∗| = 2|W 1|−3 ≥ 1, as |W 1| ≥ 2.
Now, consider the case x1 = α, iα = p− 1. By Equation 6.21, we know that
d(α0) ≥ m(H), and by the existence of v1, · · · , vp ∈ W and (r1), we know
that r(α0) = 0. Thus, if we colour αp with any colour in M(vp) \Ψ(α0), we
obtain a proper unsaturated extension of Ψ. We prove that such a colour
exists. We know that |W | ≥ 3|W p|+ |W ∗|+iα+1 and, analogously as before,
|col(vp)| ≤ |W p|+|W ∗|; thus, as iα+1 ≥ 2, we have that |M(vp)\{Ψ(α0)}| ≥
|W \ {vp, α0}|− |col(vp)| ≥ 3|W p|+ |W ∗|+2− 2−|W p| − |W ∗| = 2|W p| ≥ 2.
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Trivially, (r2) holds. �

Finally, we are able to finish the proof of Theorem 6.18.

Theorem 6.31. Let H = T @ K1,p, p ≥ 2. If H has a good set, then
χb(H) = m(H).

Proof: Let W be a good set satisfying Lemma 6.24. Suppose that |W 1| ≥ 2,
otherwise the theorem follows from Lemma 6.28. Let Ψ be an unsaturated
precolouring obtained using Lemmas 6.29 and 6.30. It remains to colour L3

and L4.
We start by colouring L3. First, consider the case where there exists

y0 ∈ V 0 ∩ Le. Note that, as W i/T ⊆ W 0/T , for all i ∈ {1, · · · , p}, and
W 0 ⊆ N(y0) ∪ N(NW (y0)), every connected component of H [L3] is either
an isolated vertex or a star. Suppose that vi ∈ L3 is an isolated vertex in
H [L3]. As NW i

(vi) = ∅ (otherwise it should be in L2), v
i must be adjacent

to yi and NW 0

(v0) = ∅. Thus, every link containing vi ∈ L3 is of the form
〈v0, vi, yi, wi〉. So, let i = max{j : vj ∈ L3} and let wi ∈ NW i

(yi). We know
that {w1, · · · , wi} ⊆ W and that at most one colour in Ψ({w1, · · · , wi}),
say Ψ(wj), appears in N(v0), in which case Ψ(y0) = Ψ(wj). Also, Ψ(yk) 6=
Ψ(wk), for all k ∈ {1, · · · , i}, as the precolouring is proper. Thus, for all
vk ∈ {v1, · · · , vi} \ (W ∪{vj}), colour vk with Ψ(wk). As for vj , note that as
v0 has at most p coloured neighbours and |W | ≥ |W 0|+ p+1 ≥ p+3 (recall
that |W 1| ≥ 2), there must exist a colour c ∈ M(v0) \ {Ψ(yj)} with which
we can colour vj. Now, consider a connected component {vp, xp1, · · · , x

p
q} of

T p[L3] that is a star, where vp ∈ N(yp) and vp is the center of the star. Let
i = max{j : NW j

(yj) 6= ∅} (i.e., i is the maximum index such that yi is
coloured). Colour {v1, · · · , vi}∩L3 as before and {vi+1, · · · , vp} with colours
from M(v0). Then, consider xj ∈ {x

p
1, · · · , x

p
q}/T and let J = {x1j , · · · , x

p
j}∩

L3. If |J | ≥ 2, permute the colours from M(x0j ) in J in a way that xij ∈ J
is not coloured with Ψ(vi). Now, consider J = {xpj}. As |W 1| ≥ 2, we have
|W \W 0| ≥ p + 1, and since x0j has at most p− 1 neighbours coloured with
some colour in Ψ(W \W 0), there must exist a colour c ∈M(x0j ) \Ψ(vp) with
which we can colour xpj .

Now, suppose that V 0 has no locally encircled vertex. For each i ∈
{1, · · · , p}, denote by Qi the set of vertices of the subgraph T i[L3]. We know
that NW (xi) = {x0}, for all xi ∈ L3. Also, we know that if yi ∈ LI ∪L1∪L2,
then NW i

(yi) 6= ∅. Denote the set LI ∪ L1 ∪ L2 by S and let Q∗ be the set
⋃p

i=1{x
i ∈ Qi : NS(xi) 6= ∅}. We first colour the vertices in Q∗. We want the
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following property to hold:
(c3) If xi ∈ Q∗ is coloured with c, then ψc ∈ NW i

(yi), for some yi ∈
NS(xi).

Let xi ∈ Q∗, yi ∈ NS(xi) and wi ∈ NW i

(yi). We want to colour xi

with Ψ(wi). First, we prove that if xj is coloured, for some j ∈ {1, · · · , p},
j 6= i, then Ψ(xj) ∈ Ψ(W j) (consequently, as V 0 ∩ Le = ∅, we have Ψ(wi) ∈
M(x0)). By contradiction, suppose otherwise. As x0 ∈ W , we know that
xj /∈ L1. Also, every vertex of (LI \ Le) ∩ V j is coloured with a colour from
Ψ(W j), as well as the vertices of L3 ∩ V j coloured until now. Thus, xj must
be in Le ∪ L2. But then, as NW i

(xi) = ∅, we must have that j < i and
NW j

(xj) = {αj}; consequently, as α is unique and wi ∈ W , we have that the
path 〈αj, xj , yj, wj〉 is a link of W , contradicting the fact that xj ∈ Le ∪ L2.
Now, we prove that Ψ(wi) /∈ Ψ(N(xi)). Suppose that there exists zi ∈ N(xi)
such that Ψ(zi) = Ψ(wi). By (c3), we know that zi /∈ L3. Also, we know
that if zi ∈ L1 ∪ L2, then Ψ(zi) /∈ Ψ(W i). Thus, zi ∈ LI and, by Lemma
2.16, Remark 2.17 and the fact that xi /∈ LI ∪W i separates zi from wi in T i,
we have that |NW i

(zi)| ≥ 2. So, |NW i

(NS(xi))| > |NS(xi)| and there exists
ui ∈ NW i

(NS(xi)) such that Ψ(ui) /∈ Ψ(N(xi) ∪ N(x0)), i.e., we can colour
xi with Ψ(ui).

Now, we colour Qi \ Q∗, for every i ∈ {1, · · · , p}. Let vi ∈ Qi \ Q∗, for
some i ∈ {1, · · · , p}, and note that, as N(vi) ∩ (S ∪W i) = ∅, we must have:

(I) If xi ∈ N(vi) ∩ (L ∪W ), then xi ∈ L3.

Thus, we can colour the connected components of H [Qi] separately. Let
Jp be the vertex set of a connected component of T p[Qp] and J i = {xi :
xp ∈ Jp}, for every i ∈ {1, · · · , p − 1}. Denote Jp/T by J . We will choose
a root for T [J ], say r, and colour the uncoloured vertices in J1, · · · , Jp from
the roots r1, · · · , rp down to the leaves of the subtrees T 1[J1], · · · , T p[Jp].
Let {w1, · · · , wp} ⊆ W . If there exists xp ∈ Q∗ coloured with Ψ(wp),
then choose x as the root; otherwise, if there exists xi ∈ J i such that
Ψ(xi) ∈ Ψ({w1, · · · , wp}), for some i ∈ {1, · · · , p}, then choose x as the
root; finally, choose any vertex of J . Let r be the chosen root. As we
said before, we start by colouring r1, · · · , rp. So, suppose that ri, · · · , rp

are still uncoloured (note that i ∈ {1, iα + 1}). As V 0 ∩ Le = ∅, we
know that |M(r0) ∩ Ψ({w1, · · · , wp})| ≥ p − i + 1. Also, by the choice
of the root and by (c3) and (I), we know that Ψ(xj) /∈ Ψ({w1, · · · , wp}),
for all xj ∈ N(rj), for all j ∈ {i, · · · , p}. Thus, we can colour ri, · · · , rp
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with colours from M(r0) ∩ Ψ(w1, · · · , wp). Now, let t ∈ J be such that
some ti is still uncoloured, for some i ∈ {1, · · · , p}, and x1, · · · , xp are all
coloured, where x ∈ J is the parent of t in T [J ]. By the choice of the
root and by (I), we know that xi is the only neighbour of ti that may
be coloured with some colour in Ψ({w1, · · · , wp}), for all ti ∈ L3 \ Q∗.
Also, analogously as before, we know that there are as much colours in
M(t0)∩Ψ({w1, · · · , wp}) as uncoloured vertices in {t1, · · · , tp}. Thus, if there
are at least two uncoloured vertices in {t1, · · · , tp}, we can make a proper
attribution of colours from M(t0) ∩Ψ({w1, · · · , wp}) to the uncoloured ver-
tices in {t1, · · · , tp}. So, suppose otherwise, i.e., that the only uncoloured
vertex in {t1, · · · , tp} is tp. If there exists yp ∈ N(tp) \ {xp} such that
Ψ(yp) 6= ∅, by (c3), (I) and the choice of the root, we know that yp ∈ Q∗

and Ψ(yp) = Ψ(vp), for some vp ∈ W p \ {wp}. Thus, as t0 has at most p− 1
neighbours coloured with colours in Ψ(W \W 0), there must exist a colour
c ∈ (M(t0) ∩Ψ({w1, · · · , wp, v1, · · · , vp})) \Ψ({xp, yp}). By (c1) and (I), we
know that c /∈ Ψ(N(tp)); thus, we colour tp with c. Now, if y0 and xp are
the only coloured neighbours of yp, as |W \ W 0| ≥ p + 1 (remember that
|W 1| ≥ 2), by an analogous argument we know that |M(t0)| ≥ 2; thus, there
exists a colour c ∈M(t0) \ {Ψ(xp)} with which we can colour tp.

Finally, we colour L4. Note that links of Type 1 always have an extremity
in T 0 and if xi ∈ L4, then x

i is within a link of Type 1. Now, let xi ∈ L4,
i ∈ {1, · · · , p}. As xi is not an internal link vertex and x0 /∈ W , we must
have NW i

(xi) = {vi}. Also, if there exists yi ∈ NL(xi), then, as xi /∈
L1, we have that y0 /∈ W and, consequently, there exists wi ∈ NW i

(yi), a
contradiction to the fact that xi /∈ LI . So, NL(xi) = {x0}, for all xi ∈ L4,
i ∈ {1, · · · , p}. Now, let v0 ∈ W such that NL4(v0) 6= ∅. We start by
colouring NL4(v0) with the colours in M(v0); then we colour NL4(vi), for
all vi ∈ W , i ∈ {1, · · · , p} (note that at least v1 is in W ). Observe that
if x0 ∈ NL4(v0), then xi ∈ NL4(vi), i.e., |NL4(v0)| ≥ |NL4(vi)|, for every
vi ∈ W i. So, we prove that |NL4(v0)| ≥ 2 and, consequently, we can use
Lemma 6.3 to colour NL4(vi), for all vi ∈ W , i ∈ {1, · · · , p}. First, note
that, as v1 ∈ W , if x0 ∈ N(v0) \ (W ∪ LI), then x0 ∈ L4. So, denote by q
the value |NL4(v0)|; we have that d(v0) = |NV 0

(v0) ∩ (L4 ∪ LI ∪W )| + p =
|NL4(v0)|+ |NV 0

(v0)∩(LI∪W )|+p ≤ q+p+ |W 0|−1. By Equation 6.21, we
also know that d(v0) ≥ m(H)+p−2. Thus: m(H)+p−2 ≤ q+p+|W 0|−1⇒
q ≥ |W \ W 0| − 1. As |W 1| ≥ 2, we have that |W \ W 0| > p ≥ 2 and,
consequently, q ≥ 2. �



Chapter 7

Perspectives

In this chapter, we summarize the results presented in this thesis and discuss
about some questions left open.

We generalized the result on trees by Irving and Manlove to the cacti with
m-degree at least 7. We conjecture that if G is a cactus that has a good set
and G is not anomalous, then χb(G) = m(G). Given the results presented
in Chapter 3, it remains to prove the conjecture for cacti with m-degree at
most 6. We believe that a non-constructive approach towards proving this
conjecture is more tangible. For now, we have proven that if G is a minimal
counter-example for this conjecture, then |D(G)| = m(G), d(v) = m(G)− 1,
for all v ∈ D(G), G ⊆ D(G) ∪ N(D(G)) and, for all (u, v) ∈ E(G), at least
one between u and v is a dense vertex. This proof is shown in Appendix A.
The next step to obtain a complete proof of our conjecture would be to prove
that such a minimal counter-example contains either an encircled vertex or
an encircled pair of vertices.

Regarding outerplanar graphs, we give a polynomial-time algorithm to
find an optimal b-colouring of G with either m(G) − 1 or m(G) colours,
where G is an outerplanar graph with girth at least 8. By the construction
given in Section 5.1, we know that this result cannot be generalized to series-
parallel graphs. However, we can still ask: (1) does χb(G) ≥ m(G)− 1 hold
for every outerplanar graph G?; and also (2) does χb(G) ≥ m(G) − 1 hold
for every graph G with girth at least 8? We recall Conjecture 2.12: If G is
a graph that does not have a K2,3 as subgraph, not necessarily induced, and
G 6= C3 @C3, then χb(G) ≥ m(G)− 1. Remark that if this conjecture holds,
then the answer to both questions is yes. Also, we remark that a partial
answer to Question (2) is given in Theorem 2.19: we prove that if G has
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girth at least 8 and does not have a good set, then χb(G) = m(G)− 1.
Motivated by the conjecture on graphs with no K2,3 as subgraph, we

investigated the b-chromatic number of the cartesian products of trees by
cycles, paths and stars. Let T be a tree. We proved that if G is a path of
length greater than 4, or a cycle of length greater than 3 or a star K1,p, p ≥ 2,
then χb(G @ T ) ≥ m(G @ T ) − 1. We also give polynomial-time algorithms
to find optimal b-colourings of those graphs. Observe that the star K1,2

is also a P3. Also, we believe that we can easily prove that χb(T @ P2) ≥
m(T @ P2)− 1 using the results presented in Chapter 6. Thus, it remains to
find the b-chromatic number of the cartesian products T @ P4 and T @ C3.
We remark that an important aspect of the algorithms presented in Chapter
6 is the existence of an algorithm that colours the internal link vertices of T i

preserving certain properties (mainly Lemma 2.16). An interesting question
would be to try to prove these results for graph classes where we can do the
same. For instance, if G has girth at least 11, does χb(G@Pk) ≥ m(G@Pk)−1
also hold for k ≥ 5?

We have also investigated the b-chromatic number of block graphs and
found that the difference m(G) − χb(G) is arbitrarily large, even if G is a
claw-free block graph (i.e., the line graph of a tree). This is the only graph
class attacked in this thesis for which we could not provide a polynomial-
time algorithm to find its b-chromatic number. Nevertheless, we obtained
the following results for block graphs: the fixed parameter decision problem
is polynomially solvable; given a subset W of cardinality k such that d(u) ≥
k− 1, for all k ∈ W , we proved that the difficulty in obtaining a b-colouring
with basis W lies on the existence of a special type of vertex, called side
vertex; and we showed a special case where we can decide if W ⊆ Dk(G) can
be the basis of a b-colouring of G with k colours, G being a claw-free block
graph. So, the complexity of determining the b-chromatic number of a block
graph remains open. We remark that the problem is NP-hard for distance-
hereditary chordal graphs [17], which is a super class of block graphs. Also,
in personal communication, Leonardo Sampaio, currently a graduate student
at INRIA Sophia-Antipolis, France, showed us a proof that the problem is
NP-hard for line graphs. Thus, maybe a good start would be to answer the
question for block graphs which are also line graphs (claw-free block graphs).

Finally, we mention that the problem of finding the b-chromatic number
of a graph with bounded treewidth is still open. Actually, although it is
known that computing the b-chromatic number of a chordal graph is NP-
hard [17], the problem of finding the b-chromatic number of chordal graphs
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with bounded clique number is still open (note that these graphs also have
bounded treewidth). In [14], Faik gives a construction of interval graphs
for which the difference m(G) − χb(G) is arbitrarily large. However, in his
construction, the difference m(G) − χb(G) increases as the treewidth of the
graph increases. Thus, it does not apply for graphs with bounded treewidth,
i.e., it is not known wether the difference m(G) − χb(G) is bounded or not
for graphs with bounded treewidth. No further results on the b-chromatic
number of interval graphs were found.
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Appendix A

Minimal m-defective cacti

In the following, we denote by H−e the graph obtained from H by removing
the edge e.

We say that G is an m-defective graph if χb(G) < m(G) and m(G) = m.
We say that G is minimal m-defective if G is m-defective and every proper
subgraph H of G is not m-defective, i.e., either m(H) < m or m(H) = m
and χb(H) = m(H).

Let G be a minimal m-defective cactus. The main results shown here
are related to describing unnecessary vertices and edges in G. To be more
precise, one result is to prove the following theorem.

Theorem A.1. If G is a minimal m-defective cactus and m ≥ 4, then
|D(G)| = m and d(u) = m− 1, for every u ∈ D(G).

From Theorem A.1, we know that the dense vertices in G are incident to
just enough edges for them to be dense and there are just enough vertices in
D(G) so thatm(G) = m. With this idea in mind, one could expect that there
were no edges between vertices not in D(G). This is false due to the existence
of the anomalous graphs presented in Figure 3.2 and in Figure 3.3. If H is
one of the graphs in these figures, then consider H ′ = H − (u, v). Since H ′

is small, one can check that χb(H
′) = m(H ′). Actually, for any b-colouring

of H ′ with m(H ′) colours, u and v have the same colour. This implies that
H is m(H)-defective. To see that H is minimal, note that for any e ∈ E(H),
either e = uv and χb(H − e) = m(H) or e 6= uv and m(H − e) < m(H).
We prove that the anomalous cacti are the only minimal m-defective cacti
having an edge not incident to a dense vertex.
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Theorem A.2. Let G be a minimal m-defective cactus with m ≥ 4. If there
exists an edge (u, v) ∈ E(G) such that u, v /∈ D(G), then G is isomorphic to
a graph in Figure 3.2 or in Figure 3.3.

Throughout this section, we use many techniques based on recolouring a
previously defined colouring. To simplify the presentation of these results,
we define a recolouring function. Let ψ be a colouring of a graph G, A be a
subset of V (G) and c and c′ be two colours in ψ. Define ψ(A, c↔ c′) as the
colouring obtained from ψ by exchanging in A the colours c and c′.

Lemma A.3. If G is minimal m-defective, then any vertex not in D(G) is
adjacent to at least one vertex in D(G).

Proof: By contradiction, suppose that v /∈ D(G) and v is not adjacent to
a vertex in D(G). Consider the graph G′ obtained by deleting v from G.
Since no vertex in D(G) changed its degree in G′, then m(G′) = m(G) = m.
This implies that χb(G

′) = m as G is minimal m-defective and G′ is a proper
subgraph of G. A b-colouring ψ of G′ with m colours can be extended to
G by colouring v with a colour not used in its neighbourhood, which can be
done since d(v) < m− 1. �

Lemma A.4. Let G be a minimal m-defective cactus, w ∈ D(G) and C be a
component of G\{w}. If C does not contain dense vertices, then |V (C)| = 1
and d(w) = m− 1.

Proof: By contradiction, suppose that C does not contain vertices in D(G).
Lemma A.3 implies that any vertex in C is adjacent to w. Now, Lemma 3.1
implies that there are at most two vertices in C. If C contains an edge
uv, let G′ be obtained from G by deleting the edge uv. Since no vertex in
D(G) changed its degree in G′, then m(G′) = m(G) = m. This implies that
χb(G

′) = m as G is minimal m-defective and G′ is a proper subgraph of G.
Let ψ be a b-colouring of G′ with m colours. If ψ(u) 6= ψ(v), then ψ is also a
b-colouring of G. Otherwise, we can recolour u to any other colour in ψ as w
is adjacent to v with the same colour as u. In any case, we get a b-colouring
of G with m colours. If |V (C)| = 1 and d(w) ≥ m, then we can use a similar
argument as before to show that a b-colouring of G \ C with m colours can
be extended to a b-colouring of G by colouring the unique vertex in C with
a colour different from w to get a contradiction. Thus, d(w) = m− 1. �
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Lemma A.5. If G is a minimal m-defective cactus, m ≥ 4, then |D(G)| =
m.

Proof: Let u, v ∈ D(G) have maximum distance among pairs of dense ver-
tices. Let C be a component of G \ {u} that contains at least one neighbour
of u in G. Since d(u) ≥ 3, there are at least two such components C by
Lemma 3.1. Thus, consider that C does not contain v. We know that
C does not contain any dense vertex as, otherwise, u and v would not have
maximum distance among pairs of vertices in D(G). Lemma A.4 tells us that
d(u) = m− 1 and u has a unique neighbour w in C. Let H = G \ {w}. Note
that m(H) ≤ m(G) = m. By contradiction, suppose that m(H) = m(G);
hence χb(H) = m and there is a b-colouring ψ of H with m colours. We can
build a b-colouring of G with m colours from ψ by giving a colour to w dif-
ferent from ψ(u) to get a contradiction. So, m(H) < m and, since u was the
only vertex inD(G) whose degree changed, we have that |D(G\{w})| = m−1
which implies the lemma. �

Lemma A.6. Let m ≥ 4, G be a minimal m-defective cactus and w ∈ D(G).
If d(w) = m− 1, then N(w) \D(G) is a stable set.

Proof: By contradiction, suppose e is an edge betwen two neighbours of w
not in D(G). Note that m(G − e) = m(G) = m and, since G is minimal
m-defective, we have χb(G − e) = m. Therefore, let ψ be a b-colouring of
G− e with m colours. Note that Lemma A.5 implies that w is a b-vertex of
ψ. Since d(w) = m − 1, all neighbours of w have distinct colours and ψ is
also a b-colouring of G. �

Lemma A.7. Let m ≥ 4, G be a minimal m-defective cactus, u and v be
two vertices of D(G) with d(u) = d(v) = m − 1 and C be a component of
G\{u, v}. If C contains neighbours of both u and v and C contains no dense
vertices, then |V (C)| = 1.

Proof: Suppose that C contains neighbours of both u and v and C contains
no dense vertices. Lemma A.6 implies that no edge in C has both end-
points in N(u) or N(v). If u and v have a common neighbour in C, then
|V (C)| = 1. Thus, consider that u and v have no common neighbour in
C. By Lemma A.3, any vertex in C is adjacent to either u or v. This fact
together with Lemma 3.1 implies that C has at most four vertices. Actually,
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as C is connected and G is a cactus, it is easy to see that C has at most three
vertices. By contradiction, suppose that e is an edge of C with endpoints u′

and v′ such that u′ ∈ N(u) and v′ ∈ N(v). As before, note thatm(G−e) = m
which implies that χb(G− e) = m. Let ψ be a b-colouring of G− e with m
colours. Since ψ cannot be a b-colouring of G, then ψ(u′) = ψ(v′) = c. Let w
be the b-vertex coloured c. The fact that C has at most three vertices implies
that either u or v has only one neighbour in C. Without loss of generality,
suppose that v has only one neighbour r in C. Let Bv be the connected
component of G \ N [u] containing v and Bu = G \ Bv. If w is in Bu, then
ψ(Bv, c ↔ ψ(u)) is a b-colouring of G with m colours. Thus, consider that
w is in Bv. If u is not adjacent to a vertex in C with colour ψ(v), then
ψ(Bv, c ↔ ψ(v)) is a b-colouring of G with m colours. Thus, u has another
neighbour in C with colour ψ(v). Note that in this case, r is adjacent to
v and to two neighbours in C which implies d(r) = 3. So, as r /∈ D(G),
we have m ≥ 5. If there is a colour c′ not in the set {c, ψ(v), ψ(u)} whose
b-vertex is in Bv, then ψ(Bv, c ↔ c′) is a b-colouring of G with m colours.
Thus, consider that the only b-vertices in Bv are v and w. Let B

−
v = Bv\{r}.

Observe that, since m ≥ 5, there is a component of G[B−
v ]− v that does not

contain w and, by Lemma A.4, we know that such a component contains a
single vertex ℓ. In this case, ψ(N(v), c ↔ ψ(ℓ)) is a b-colouring of G with
m colours, a contradiction. Therefore, u and v have at least one common
neighbour in C which, in turn, implies the lemma. �

Proof of Theorem A.2 Let G be a minimal m-defective cactus and let e
be an edge between u and v such that u, v /∈ D(G). Let H = G − e. Since
m(H) = m(G) = m and G is minimal m-defective, then χb(H) = m. Thus,
suppose that ψ is a b-colouring of H with m colours. Note that Lemma A.5
implies that each colour class in ψ has precisely one dense vertex and this
vertex is a b-vertex. If ψ(u) 6= ψ(v), then we get a contradiction as ψ is
also a b-colouring of G. Thus, assume that ψ(u) = ψ(v) and let w be the
b-vertex of this colour class. Throughout the proof of this theorem, we build
a contradiction by constructing a b-colouring ϕ from ψ with m colours such
that ϕ(u) 6= ϕ(v).

We first consider the case in which u and v are in two different components
of H . Let Cv be the vertex set of the component of v and, without loss of
generality, consider that w is not in Cv. By Lemma A.3, there must exist
w′ ∈ N(u) ∩ D(G) (hence, w′ /∈ Cv). Then, ψ(Cv, ψ(w

′) ↔ ψ(w)) is a b-
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colouring of G with m colours such that u and v have different colours, a
contradiction.

Now, suppose that u and v are in the same component of H . As G is a
cactus and (u, v) ∈ E(G), we know that there is a unique path P between
u and v in H . Number P from u to v, x0 = u, x1, · · · , xq, xq+1 = v. For
i = 0, · · · , q + 1, let Ci be the vertex set of the component of H \ E(P )
containing xi and Ri = V (H) \ Ci be the remaining vertices. Also, for
each i ∈ [1, q], let Ci,u be the vertex set of the component of H \ {xi}
containing u; define Ci,v analogously. Without loss of generality, suppose
that the distance from u to w is not greater than the distance from v to
w in H , i.e., distH(u, w) ≤ distH(v, w). Note that this implies that w is
not in Cq,v. Let y be a b-vertex adjacent to u according to Lemma A.3.
Observe that if there exists xi ∈ P \ D(G) such that ψ(xi) 6= ψ(w) and
Ci,v does not contain w and the b-vertex of a colour c 6= ψ(xi), ψ(w), then
ψ(Ci,v, c ↔ ψ(w)) is a b-colouring of H with m colours such that u and v
have different colours, a contradiction. Thus, the following holds:

(*) For all xi ∈ P \D(G) such that ψ(xi) 6= ψ(w), Ci,v either contains w
or the b-vertex of every colour different from ψ(xi).

Observe that the same is analogously valid for Ci,u. Now, observe that if
there exists xi ∈ P ∩D(G) such that Ci,u contains w and a b-vertex w′ such
that ψ(w′) 6= ψ(xi−1), ψ(xi+1), then ψ(Ci,u, ψ(w

′) ↔ ψ(w) is a b-colouring
of H with m colours where u and v have different colours, a contradiction.
Thus, the following also holds:

(**) If xi ∈ P ∩ D(G) and w ∈ Ci,u, then Ci,u ∩ D(G) ⊆ {w,w′, w′′},
where ψ(w′) = ψ(xi−1) and ψ(w

′′) = ψ(xi+1).
Consider first the case that xq is not a b-vertex. Trivially, ψ(xq) 6= ψ(w),

as v ∈ N(xq). By (*) and the fact that w /∈ Cq,v, we have that ψ(xq) = ψ(y)
and the only b-vertices in Rv are w and y. If xq−1 is not a b-vertex, choose
a colour class c not in the set {ψ(w), ψ(y), ψ(xq−1)}. One such colour class
exists as m ≥ 4. We know that the b-vertex of colour class c is in Cv;
thus, it is not in Cq. Note that σ = ψ(Cq, c ↔ ψ(y)) is a b-colouring of
H having a vertex xq that contradicts (*). So, consider that xq−1 is a b-
vertex. Since the only two b-vertices in Rv are w and y, xq−1 is adjacent to
xq and ψ(xq) = ψ(y), then xq−1 = w (and, consequently, q > 2). Let c be
a colour not in the set {ψ(w), ψ(xq−2), ψ(y)} (exists as m ≥ 4). We have
that Cq−2,v contains all b-vertices other than y. We get a contradiction from
ϕ = ψ(Cq−2,v, c ↔ ψ(w)). Observe that if xq−2 = y, then it is adjacent to u
and ϕ is a b-colouring as y is a b-vertex in ϕ.



170 APPENDIX A. MINIMAL M-DEFECTIVE CACTI

Now, consider that xq is a b-vertex and that ψ(xq−1) = ψ(w). By (**)
and the existence of y ∈ N(u) ∩ D(G), we have that q = 1 and x1 = y.
Since u cannot be adjacent to w, the only b-vertex adjacent to u is y. As
dH(u) ≤ m − 3 and v ∈ N(y), we can obtain a b-colouring of H with m
colours by changing the colour of u in ψ to some colour it is not adjacent to,
a contradiction.

Now, we consider the case that xq is a b-vertex but ψ(xq−1) 6= ψ(w) (thus,
q > 1). Let xi be the vertex the closest to v in P \{v} that is not a b-vertex.
Since u is not a b-vertex, such a vertex xi exists. Note that if i < q − 2
or 0 < i = q − 2, then xq contradicts (**). Thus, i ∈ {q − 2, q − 1} and if
i = q − 2, then i = 0 (i.e., xi = u). Also, if i = 0, then q = 2 (as q > 1
and i ≥ q − 2). Let Bv = Ci,v and Bu = V (H) \ Bv. We now consider the
possibilities of whether w is in Bv or Bu and whether xi equals to u or not.

First, suppose that w ∈ Bu and u = xi. Then, q = 2 and, as x2 satisfies
(**), we know that x1 = y and C2,u∩D(G) = {w, y}. Thus, the only b-vertex
adjacent to u is y. Since dH(u) ≤ m− 3 and u is adjacent to y, then there is
a colour c not in {ψ(w), ψ(y), ψ(x2)} such that u has no neighbour coloured
c. We know that the b-vertex coloured c is not in C2,u. Therefore, we get a
contradiction from ϕ = ψ(C1 ∪ {u}, c↔ ψ(w)).

Now, suppose that w ∈ Bu and xi 6= u. Then, i = q − 1, Cq,u ∩D(G) =
{w, y} and ψ(xi) = ψ(y). As xq /∈ Ci,u and ψ(xq) 6= ψ(xi), by (*) we have
w ∈ Ci,u. Also, as w /∈ Ci−1, v and ψ(xi1 6= ψ(y), then, by (*) and the
fact that Ci,u ∩ D(G) = {w, y}, we have ψ(xi−1) = ψ(w). We proceed by
considering whether i = 1 or i > 1 and whether w is in Ci−1 or not. If i > 1
and w ∈ Ci−1, then let c be a colour not in {ψ(w), ψ(y), ψ(xi−2)}. We get a
contradiction from ϕ = ψ(Ci−1,u, c↔ ψ(w)). Note that this colouring works
if xi−2 = y, as u is adjacent to y. If i > 1 and w /∈ Ci−1, then note that xi−1

is not a b-vertex. Thus, as u ∈ N(y) is also coloured with ψ(w) and y is the
only possible b-vertex adjacent to xi−1, we can change the colour of xi−1 to a
colour it is not adjacent to and, then, treat this case as if ψ(xi−1) 6= ψ(w). If
i = 1, then y ∈ Cu as u is adjacent to x1 in P and x1 is not a b-vertex. If w is
not in Cu, let c be a colour not in {ψ(w), ψ(y)}. We get a contradiction from
ϕ = ψ(Cu, ψ(w)↔ c). Thus, consider that w and y are in Cu. Let Hw be the
component that contains w in H [Cu] \ {y}. From Lemma 3.1, y has at most
two neighbours in Hw. Since u is adjacent to x1 and y, ψ(x1) = ψ(y) and
dH(u) ≤ m−3, then u is not adjacent to at least three colour classes different
from ψ(w). Therefore, there is a colour c other than ψ(w) such that u has
no neighbour coloured c and y has no neighbour coloured c in Hw. Thus, ϕ
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is obtained from ψ(Cu \ V (Hw), c↔ ψ(w)) by colouring u with colour c.
Finally, suppose that w ∈ Bv. In this case, we show properties of G

that imply that G is isomorphic to a graph in Figure 3.2 or Figure 3.3. We
know that if xi 6= u, then i = q − 1 and, in this case, w is closer to v
than to u, a contradiction. So, i = 0 and, consequently, q = 2. Also, as
distH(u, w) ≤ distH(v, w), we have that w ∈ C1, and as x2 satisfies (**), we
have that x1 = y and C2,u ∩ D(G) = {w, y}. Thus, there is no b-vertex in
Bu and, by Lemma A.3, we have that Bu = {u}. If dG(y) ≥ m, then note
that m(G \ {u}) = m(G) = m and, therefore, χb(G \ {u}) = m. If σ is a
b-colouring of G\{u} with m colours, then we can extend σ to a b-colouring
of G by giving a colour to u not in {σ(y), σ(v)}. Therefore, dG(y) = m− 1.
Note that this implies that y is not adjacent to a vertex with colour ψ(w)
in Cy as all of its neighbours must have distinct colours and y is adjacent
to u. In particular, y is not adjacent to w. If there is a component Q of
G[C1] \ {y} that does not contain w, then Q contains no dense vertices.
Lemma A.4 tells us that |V (Q)| = 1. Let r be the neighbour of y in Q.
We obtain from ψ a b-colouring of H with m colours where u and v have
different colours by exchanging the colour between r and u, a contradiction.
Thus, suppose that G[C1] \ {y} is connected. Lemma 3.1 implies that y has
at most two neighbours in G[C1]. Therefore, d(y) ≤ 4 which implies that
m ≤ 5 as y ∈ D(G). By Lemma 3.1 and the fact that d(w) ≥ 3, we have
that there exists a component R of G[C1] \ {w} that does not contain y.
Thus, Lemma A.4 implies that |V (R)| = 1 and d(w) = m − 1. Now, we
apply Lemma A.7 to conclude that the neighbours of y not in {u, x2} are
also neighbours of w. Therefore, G has the structure of Figure A.1(a) if
m = 4 and of Figure A.1(b) if m = 5. Now, to get the complete structure
of G, we have to describe the behaviour of Cv = Cq+1 and C2. Note that
D(G) \ {w, y, x2} has either one or two vertices depending on whether m
equals to four or five. Moreover, they are either in C2 or in Cv.

First, consider that there are no dense vertices in C2 \ {x2}. In this
case, as 4 ≤ m ≤ 5, dG(v) ≥ 3 and v /∈ D(G), we have that m = 5
and dG(v) = 3. Thus, by Lemma A.4, dG(x2) = m − 1 = 4 and x2 has two
neighbours in C2 with degree one. Now, let r1 and r2 be the two dense vertices
in D(G) \ {w, y, x2}; we analyse the structure of Cv. First, note that, by
Lemma 3.1 and the facts that dG(v) = 3 and dG(r1) ≥ 4, we have that there is
a component of G\{r1} that contains neither v nor r2. Thus, by Lemma A.4,
dG(r1) = m−1 = 4; analogously, dG(r2) = m−1 = 4. Now, consider the two
colourings σ1 = ψ(N(p), ψ(r1) ↔ ψ(v)) and σ2 = ψ(N(p), ψ(r2) ↔ ψ(v))
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x1 x2

vu

w

Cv

C2

(a) Scheme for G when m = 4.

w x1

u v

x2

C2

Cv

(b) Scheme for G when m = 5.

Figure A.1: Schemes for an anomalous cactus.

and observe that if v is not adjacent to a vertex in {r1, r2}, then either σ1 or
σ2 is a b-colouring of G with m colours where u and v have different colours,
a contradiction. So, suppose, without loss of generality, that v is adjacent to
r1. Finally, note that if r1 is not adjacent to r2, by Lemma A.7, the neighbour
of r1 with colour ψ(r2) has degree one. Then, we get a contradiction from
ϕ = ψ(N(r1) ∪ N(x2), ψ(v) ↔ ψ(r2)). Thus, Lemma A.6 implies that the
cactus graphs that satisfy these properties are isomorphic to the anomalous
graphs in Figure 3.3(a) or Figure 3.3(b).

Now, consider there is precisely one dense vertex, r, in C2 \ {x2}. We
consider two cases based on whether m = 4 or m = 5. If m = 4, then vertices
not in D(G) have degree at most two in G; so, dG(v) = 2. If there exists a
neighbour x of x2 in C2 that is not adjacent to r, then we recolour x with
ψ(w) and v with ψ(r), obtaining a b-colouring of H with m colours where u
and v have different colours, a contradiction. So, N(x2)∩C2 ⊆ N(r) and, as
x2 must have a neighbour coloured with ψ(r), we must have (x2, r) ∈ E(G).
Now, if d(x2) > 3, let x ∈ N(r)∩N(x2); if ψ(x) = ψ(w), just recolour v with
ψ(y); otherwise, exchange the colours ψ(y) and ψ(w) in C2 ∪ {v}. We get
a contradiction as the obtained b-colouring has m colours and u and v have
different colours. So, d(x2) = 3 and Lemmas A.4 and A.6 give us that any
cactus that satisfies these properties is isomorphic to the anomalous graph in
Figure 3.2. Now, consider the case m = 5 and let r′ be the dense vertex in Cv.
First, note that if x2 /∈ N(r), by Lemma A.7, as x2 must have a neighbour
coloured with ψ(r), there exists x ∈ N(x2)∩C2 isolated in C2\{x2}; thus, we
can exchange the colours of x and v, a contradiction. So, x2 ∈ N(r). Also,
by Lemma A.4 and the fact that at most one neighbour of x2 is connected
to r not through x2, we have that dG(x2) = m − 1. Now, consider Cv. If v
is not adjacent to r′, then Lemma A.3 implies that all vertices in Cv \ {v}
are adjacent to r′. Therefore, the neighbour of v in Cv is not coloured ψ(r

′).
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We get a contradiction from ϕ = ψ(C2 ∪ {v}, ψ(w) ↔ ψ(r′)). Therefore,
by Lemmas A.4 and A.6, any cactus graph that satisfies these properties is
isomorphic to the anomalous graph in Figure 3.3(c) or Figure 3.3(d).

Finally, consider there are two dense vertices in C2 \ {x2} other than x2.
Note that this implies m = 5. Moreover, Lemma A.3 implies Cv = {v}.
Let r1 and r2 be the two dense vertices in D(G) \ {w, x1, x2}. First, note
that if there exists a neighbour of x2 isolated in C2 \ {x2}, say x, then: if
ψ(x) = ψ(w), just change the colour of v to ψ(x1); otherwise, exchange
the colours of x and v. In both cases, we obtain a b-colouring of G with
m colours, a contradiction. So, suppose that every neighbour of x2 in C2

is within a component of C2 \ {x2} containing r1 and/or r2. Let y1, y2 ∈
N(x2) such that ψ(yi) = ψ(ri), i = 1, 2. Suppose, first, that ri /∈ N(x2),
i = 1, 2. By Lemma A.7, we have that y1 ∈ N(r2) and y2 ∈ N(r1). If
r1 and r2 are in distinc connected components of C2 \ {x2}, say r1 is in
component Q, then ψ(Q ∪ {v}, ψ(r2) ↔ ψ(w)) gives us a contradiction.
Otherwise, by Lemma A.7, there exists x ∈ N(r1) ∩ N(r2): if ψ(x) 6= ψ(w),
then ψ(N(r1) ∪ {v}, ψ(r2) ↔ ψ(w)) gives us a contradiction; otherwise, we
can apply ψ(N(r1)∪N(r2), ψ(x)↔ ψ(w)) and consider again the case where
ψ(x) 6= ψ(w). So, suppose that r1 ∈ N(x2). By analogous arguments, we can
suppose that r1 and r2 are in the same connected component of C2 \ {x2}.
Thus, by Lemmas 3.1 and A.4 and the facts that x2 has no isolated neighbours
in C2 \ {x2} and d(ri) ≥ 4, we have that dG(x2) = dG(r1) = dG(r2) = 4. If
r2 ∈ N(x), by Lemmas A.4, A.6 and A.7, we obtain a structure as the
one in Figures 3.3(e), Figure 3.3(f) or Figure 3.3(g). Otherwise, we know
that there exists x ∈ N(x2) ∩ N(r1). Also, as dG(r1) = 4 and x must be
coloured with ψ(r2), we have that r2 /∈ N(r1); so, N(r1) ∩ N(r2) 6= ∅. So,
let z ∈ N(r1) ∩ N(r2). If z is unique, then we can consider that ψ(z) =
ψ(y), otherwise, it suffices to apply ψ(N(r1 ∪ N(r2), ψ(y) ↔ ψ(w)). So,
ψ(N(r1) ∪ {v}, ψ(r2)↔ ψ(w) gives us a contradiction. Thus, r1 and r2 have
two common neighbours and the structure of any cactus graph that satisfies
these properties is isomorphic to the anomalous graph in Figure 3.3(h). �

Proof of Theorem A.1 Let m ≥ 4 and G be a minimal m-defective cactus.
If G is anomalous, then G is isomorphic to a graph in Figure 3.2 or in
Figure 3.3 which satisfies the theorem. So, suppose G is not anomalous.
By Lemma A.5, we know that |D(G)| = m; thus, it remains to prove that
dG(u) = m−1, for all u ∈ D(G). Suppose the contrary and let u ∈ D(G) such
that dG(u) ≥ m. By Lemma A.4, we know that there is no isolated vertex in
N(u). Also, as G is not anomalous and by Theorem A.2, we have that there
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are no edges between non-dense vertices, i.e., (I) |N(v) ∩D(G)| ≥ 2, for all
v ∈ N(u) \D(G). Now, let v ∈ N(u) \D(G) (there exists as d(u) ≥ m and
|D(G)| = m). Denote by Cv the set of vertices of the connected component
of G \ {u} containing v and by Cu the set V (G) \ Cv. By Lemma 3.1, we
know that u has at most one neighbour in Cv \ {v}; if such a neighbour
exists, denote it by v′. Also, note that, as dG(u) ≥ 4 and by (I), we have
that |Cu ∩ D(G)| ≥ 1. Suppose that |Cu ∩ D(G)| = 1. Then, as m ≥ 4,
we have that |Cv ∩ D(G)| ≥ 2. Also, as dG(u) ≥ 4 and u has at most two
neighbours in Cv, we have that u must have at least one neighbour x in
Cu \ D(G). In this case we consider x instead of v, i.e., we can suppose
that (II) |Cu ∩ D(G)| ≥ 2. Now, let H = G \ {(u, v)}. Trivially, m(H) =
m and, consequently, χb(H) = m. Let ψ be a b-colouring of H with m
colours. If ψ(v) 6= ψ(u), then ψ is also a b-colouring of G with m colours, a
contradiction. Otherwise, let z ∈ Cu ∩D(G) such that ψ(z) 6= ψ(v′) (exists
by (II)); observe that ψ(Cv, ψ(z) ↔ ψ(u) is also a b-colouring of G with m
colours, a contradiction. �



Appendix B

Résumés des Chapitres

Dans cet annexe, nous faisons un résumé de chaque chapitre de résultats de
cette thèse, donnant une idée générale des méthodes utilisés dans les preuves.

Si G n’a pas un ensemble bon, G est dit pivoté.

B.1 Chapitre 3

On dit que G est un cactus si G ne contient pas de deux cycles qui partagent
une arrête. Dans ce chapitre, nous montrons que si G est un cactus et
m(G) ≥ 7, donc le nombre b-chromatic de G est au moins m(G) − 1. La
preuve ressemble à celle des arbres: nous montrons comment trouver un
ensemble des sommets denses de G qui peut jouer le rôle de basis d’une b-
coloration en m(G) couleurs, s’il en existe un, puis, si ce n’est pas le case, on
obtient une b-coloration de G avec m(G)− 1 couleurs, sinon, on obtient une
b-coloration de G avec m(G) couleurs. Plus précisement, nous prouvons les
suivants principaux résultats:

Théorème B.1. Soit G un cactus avec |D(G)| > m(G) et soit W ⊆ D(G)
un sous-ensemble de cardinalité m(G) + 1 contenant tous les sommets dont
le degré supérieur à m(G) − 1. Alors, G n’est pas un ensemble bon si et
seulement si |M(G)| = m(G) + 1 et:

(I) la structure de W est représentée à la Figure B.1 ou à la Figure B.2,
ou

(II) il existe des sommets u, v ∈ W de degré m(G) − 1 et w /∈ W tels que
〈u, v, w〉 est un cycle et chaque sommet de W est adjacent à u ou à v.

175
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Figure B.1: Dans ce graphe, m(G) = 4, W est représenté par les sommets
plus gros et d(u) = 3, pour tous u ∈ W .

y′

x′ m(G) = 4
x

y

v1

v2 v3
v4

v5

Figure B.2: Dans ce graphe, m(G) = 4, W est représenté par les sommets
plus gros et d(v2) = d(v4) = 3.
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Initielement, nous voulions prouver que tout cactus G ayant un ensemble
bon pourrait être b-coloré en m(G) couleurs. Malheureusement, ce n’est pas
vrai à cause de l’existence des graphes sur les Figures B.3 et B.4. Nous disons
que ces graphs sont anormaux.

u v

Figure B.3: Graphes anormaux avec 4 sommets denses.

Finalement, nous avons prouvés les deux theorèmes suivants concernant
le nombre b-chromatic des cactus.

Théorème B.2. Si G est un cactus et G n’a pas un ensemble bon ou G est
anormal, alors χb(G) = m(G)− 1.

Théorème B.3. Si G est un cactus qui a un ensemble bon et m(G) ≥ 7,
alors χb(G) = m(G).

Nous avons, donc, généralisé le résultat sur les arbres par Irving et Manlove
pour les cactus avec m-degré au moins 7. Nous donnons aussi un algorithme
qui trouve une b-coloration optimale d’un tel cactus. Nous conjecturons que
si G a un ensemble bon et G n’est pas anormal, alors χb(G) = m(G). Il
reste à prouver cette conjecture pour les valeurs de m-degré 4, 5 et 6. Re-
marquez que, si cela est vrai, alors χb(G) ≥ m(G) − 1, pour tout cactus G.
Dans l’Annexe A, nous montrons que, étant donné un entier m, si G est un
cactus minimal tel que m(G) = m et χb(G) < m, alors |D(G)| = m(G),
d(v) = m(G) − 1, pour tout v ∈ D(G), et G ⊆ D(G) ∪ N(D(G)). De plus,
si (u, v) ∈ E(G), pour u, v ∈ V (G) \ D(G), alors G est un cactus anormal
minimal (i.e., G est un des graphes réprésenté sur les Figures B.3 et B.4).

B.2 Chapitre 4

Un graphe G est dit planaire extérieur si G a un plongement sur le plan de
sorte que deux arêtes ne se croisent pas et tous les sommets sont situés sur
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u v

(a)

u v

(b)

u v

(c)

u v

(d)

u v

(e)

u v

(f)

u v

(g)

u v

(h)

Figure B.4: Graphes anormaux avec 5 sommets denses.
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la même face. La maille d’un graphe G est la longueur du plus petit cycle de
G. Dans ce chapitre, nous considérons les planaires extérieurs dont la maille
est au moins 8. Notre résultat principal est le suivant:

Théorème B.4. Soit G un graphe planaire extérieur de maille au moins 8.
Alors χb(G) ≥ m(G) − 1. En outre, nous pouvons déterminer la valeur de
χb(G) (et une b-coloration avec χb(G) couleurs) en temps polynomial.

Considerons G comme un graphe planaire extérieur de maille au moins
8. La preuve a la même structure de la preuve de Irving et Manlove pour les
arbres:

1. Nous prouvons que G est pivoté (n’a pas un ensemble bon) si et seule-
ment si |D(G)| = m(G) et D(G) encercle un sommet de V (G) \D(G).
En même temps, la preuve donne aussi un algorithme pour trouver un
ensemble bon de G, si un existe.

2. Nous montrons comment colorier G avec m(G) − 1 couleurs, dans le
cas où G est pivoté.

3. Si G a un ensemble bon W , nous montrons comment obtenir une b-
coloration avec m(G) couleurs qui a W comme base.

En fait, les preuves des 2 premiers étapes n’utilisent pas le fait que G
est planaire extérieur. Donc, il est vrai pour un graphe quelconque dont la
maille est au moins 8.

Notez que tout cactus est également un graphe planaire extérieur; donc,
ce résultat généralise le résultat présenté dans le Chapitre 3, mais seulement
pour les cactus de maille au moins 8 (et, donc, est une autre généralisations
du résultat par Irving et Manlove sur les arbres). La complexité de la
preuve présentée dans le chapitre 3 nous indique qu’il pourrait nécessiter
un effort beaucoup plus élevé pour généraliser les résultats présentés dans ce
chapitre pour les graphes planaires extérieurs général. En outre, comme nous
avons souligné dans la Section 5.1, ce résultat ne peut pas être généralisé
pour les graphes série-parallèle, qui est une superclasse des graphes planaires
extérieurs. D’autre part, nous avons prouvé que un graphe G général de
maille au moins 8 qui soit pivoté a nombre b-chromatic égal a m(G) − 1.
Jusqu’à présent, nous n’avons pas trouvé un exemple d’un graphe non-pivoté
de maille au moins 8 qui ne peut pas être b-coloré avec m(G) couleurs.
Nous rappelons que si G a maille au moins 11 et G est non-pivoté, alors
χb(G) = m(G) (Corollaire 2.18).
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B.3 Chapitre 5

Un graphe bloc est un graphe dont les blocs sont des cliques. Dans ce
chapitre, nous construisons un graphe bloc qui a la différence m(G)− χb(G)
arbitrairement grande. La construction peut aussi produire de graphes bloc
sans griffes (qui sont les graphes lignes des arbres) et des graphes série-
parallèles (qui sont une superclasse des graphes planaires extérieurs). Comme
conséquence, nous savons que la structure d’arbre n’aide pas toujours à
borner la différence m(G)−χb(G) et que le résultat présenté dans le Chapitre
4 ne peut pas être généralisé pour les graphes série-parallèles.

Nous avons aussi étudier les problèmes de décision suivants:

k,b-Coloration Fixé

-Entrée: graphe G
-Question: existe-t-il une b-coloration de G avec k couleurs?

k,b-Coloration
-Entrée: graphe G, entier positif k
-Question: existe-t-il une b-coloration de G avec k couleurs?

Si u ∈ V (G) a le degré au moins k − 1, nous disons que u est k-dense et
nous notons l’ensemble des sommets k-dense de G par Dk(G). Nous avons
généraliser la notion de sommets encerclé pour couvrir des cliques entières
qui peuvent être encerclés. Si W ⊆ Dk(G) de cardinalité k ne “encercle
pas de clique”, nous disons que W est un ensemble non-bloqué. Finalement,
u ∈ V (G) \W est un sommet latéral de W si u est un sommet de liaison de
W mais qui n’est pas contenu dans un lien induit.

Nous avons prouvé que k,b-Coloration Fixé peut être résolu en temps
polynomial. Quant au problème k,b-Coloration, nous avons analysé la
possibilité d’obtenir une b-coloration avec k couleurs quand on nous donne
un ensemble non-bloqué W . Nous avons découvert que ce que difficulte la
construction d’une b-coloration de G qui a W comme base sont les sommets
latéraux de W . Plus précisement, nous avons prouvé que:

Théorème B.5. Soit G un graphe bloc et W ⊆ Dk(G) un ensemble non-
bloqué, k ∈ [ω(G) + 1, m(G)]. Si W n’a pas de sommets latéraux, alors il
existe une b-coloration de G avec k couleurs.

Comme conséquence, nous avons les corollaires suivants.
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Corollaire B.1. Soit G un graphe bloc et k un entier positif, k ∈ [ω(G) +
1, m(G)]. S’il existe W ⊆ Dk(G) de cardinalité k tel que W est un stable,
alors il y a une b-coloration de G en k couleurs.

Corollaire B.2. Soit G un graphe bloc et k un entier positif, k ∈ [ω(G) +
1, m(G)]. Si |Dk(G)| > ∆2 + ∆, alors il y a une b-coloration de G en k
couleurs.

Corollaire B.3. Soit G un graphe bloc et notons m(G) par m. Si |D(G)| >
m2 +m, alors χb(G) = m.

Finalement, nous avons étudié la possibilité de l’existence d’au plus un
sommet latéral de W dans chaque bloc de G. Nous voudrions répondre à la
question: “étant donné un tel ensemble W , est-ce qu’on peut construire une
b-coloration de G avec |W | couleurs en utilisant W”? En fait, ce n’est pas
toujours possible; observez, par exemple, le graphe de la Figure B.5. Si W
a une structure comme présentée dans la figure, nous l’appelons nid. Nous
avons prouvé que les nids sont les seules exceptions à cette question quand
le graphe d’entrée est un graph bloc sans griffes.

W \ {v1, v2, w1, w2}

xy z

w2

v1 v2
w1

Figure B.5: Representation d’un nid.

Théorème B.6. Soit G un graphe bloc sans griffes et W ⊆ Dk(G) un en-
semble non-bloqué, k ∈ [ω(G) + 1, m(G)]. Si chaque bloc de G a au plus
un sommet latéral de W et W n’est pas une nichée, alors il existe une b-
coloration de G en k couleurs.

B.4 Chapitre 6

Nous avons prouvé que si T est un arbre et G est une châıne de longueur
supérieure à 4, ou un cycle de longueur supérieure à 3 ou une étoile, alors
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χb(G@T ) ≥ m(G@T )−1. Nous donnons également des algorithmes en temps
polynomial pour trouver une b-coloration optimale de ces graphes. Notons
H le graphe G@T . L’idée générale pour la construction d’une b-coloration de
H est la même que pour les planaires extérieurs: nous trouvons un ensemble
bonW , colorons chaque sommet de W avec une couleur différente, puis nous
colorons les sommets de liasion de W et, finalement, nous étendons cette
precolation à une b-coloration de H avec m(H) couleurs. On remarque qu’un
aspect important de trouver cette b-coloration est l’existence d’un algorithme
qui colore les liens interne a T i en n’utilisant que des couleurs des sommets
de W ∩ V (T i), pour chaque copie T i de T . Une question intéressante serait
d’essayer de prouver ces résultats pour certaines classes de graphes où nous
pouvons faire la même chose. Par exemple, si G est planaire extérieur, est-ce
que χb(G @ Pk) ≥ m(G @ Pk)− 1 est valide?
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b-perfect, 28
basis, 26
bipartite graph, 26

complete bipartite graph, 26
star, 26

block, 26
block graph, 27
blocking clique, 112
bridge, 29

cactus, 27, 45
candidate set, see unsaturated pre-

colouring
cartesian product, 27
chord, 25
chromatic number, see proper colour-

ing
clique, 26
complete graph, 26
connected component, 25
connected graph, 25
cross link, see link
cut-vertex, 26
cycle, 25

induced cycle, 25
special cycle, 98

dense vertex, 26
k-dense vertex, 26

distance, 25

edge subdivision, 97
encircled vertex, 29

locally encircled vertex, 123

forest, 25
full b-precolouring, 114

girth, 25
good set, 29

unblocked set, 112

induced subgraph, 25
induced cycle, 25
induced path, 25

internal link, see link

k-dense vertex, see dense vertex

length, 25
link, 36

cross link, 123
internal link, 123
link vertex, 37
side vertex, 113

linked vertices, 37
locally encircled vertex, 123

m-defective, 163
minimal m-defective, 163
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m-degree, 26
missing colours, 37

nest, 113

outerplanar graph, 27, 97

path, 25
induced path, 25

pivoted graph, 29
proper colouring, 26

reachable, 29
redundancy, 37

saturating index, 112
sector, 98
side vertex, 113, see also link
span, 102
special cycle, 98
stable set, 26
star, 26
subdivision, 97
subgraph, 25

tight graph, 35
tree, 25

unblocked set, 112
unsaturated precolouring, 37
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[34] A. Silva and F. Maffray. b-colouring outerplanar graphs with large girth.
submitted to Discrete Mathematics, 2010.

[35] R.E. Tarjan. Depth-first search and linear graph algorithms. SIAM
Journal on Computing, 1:146–160, 1972.


