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Abstract—In this paper, we propose a low-complexity equalizer
for multiple-input multiple-output systems with large receive an-
tenna arrays. The computational complexity reduction is achieved
by exploiting array separability on a geometric channel model.
This property suggests a two-stage receive processing, consisting
of (i) sub-array beamforming and (ii) low-dimension minimum
mean square error (MMSE) equalization. Simulations indicate
that the proposed method outperforms the classical MMSE filter
in terms of complexity provided that the number of channel
scatterers and the sub-arrays dimensions are not excessively
large.

I. INTRODUCTION

Mobile communication has established itself as a ubiquitous
technology in modern life. The number of mobile connected
devices is expected to grow exponentially owing to the ad-
vent of new technologies such as wireless sensor networks
and to the popularity of services such as instant messaging
and audio/video streaming. The quality of service in this
demanding scenario relies on higher data-rates, broader signal
coverage, and increased reliability from the communications
systems. Advances in the physical layer are thus necessary
in order to satisfy these continuously increasing system re-
quirements. Among the most promising novel technologies
for 5th generation of mobile communications systems are
massive multiple-input multiple-output (MIMO) and mmWave
technologies [1], [2]. The former enables wireless systems to
form highly directive beams that can maximize energy transfer
to a desired user, while minimizing leakage towards interfering
users. The latter provides very large bandwidth and antenna
miniaturization thanks to millimeter range propagation.

Linear filtering turns out to be a possible solution to the
receive processing problem for massive MIMO systems due
to their conceptual simplicity. For instance, the minimum mean
square error (MMSE) filter aims at maximizing the signal
portion while attenuating the interference and noise compo-
nents. The major drawback of this filter is the complexity
required for the data covariance matrix inversion, which may
become prohibitive in the massive MIMO case. In view of this,
strategies to reduce the computational complexity of linear
filters are of interest.

Several complexity reduction strategies have been proposed
as alternatives to the closed-form MMSE filter, including:
Gauss-Seidel optimization [3], Neumann series approximation
[4], and the symmetric successive overrelaxation method [5].
An approach that exploits the array manifold separability has
been presented as a solution to reduce the computational

Fig. 1. Considered MIMO system model with uniform planar arrays at both
transmission and reception.

complexity in large array beamforming tasks [6]. Therein, the
Khatri-Rao product factorization of the array manifold matrix
is exploited to simplify the beamforming filters calculation.
However, [6] is limited to the single-input multiple-output case
without multipath propagation.

Contribution: In this paper, we assume array separability
at the receiver side to simplify the equalizer filter design
in a massive MIMO system with two-dimensional arrays.
As will be shown later, complexity reduction is achieved by
decoupling sub-array beamforming and MMSE equalization
into two stages. To this end, we introduce multilinear algebra
notation in Section II and consider the Khatri-Rao factorization
of a geometric channel model from the array separability
assumption in Section III. The MIMO system model is recast
using multilinear algebra to provide a spatially decoupled
model. We then propose an equalization scheme based on mul-
tilinear algebra product properties in Section IV. Simulation
results are shown and discussed in Section V, and the paper
is concluded in Section VI.

Notation: We denote scalars by lower and uppercase italic
letters, vectors by lowercase bold letters, matrices by upper-
case bold letters, and tensors as calligraphic uppercase letters.
The notation [·](n) stands for the n-mode unfolding of the
argument tensor. Matrix transpose and conjugate-transpose are
respectively denoted by (·)T and (·)H. Frobenius and `2 norms
are written as ‖ · ‖F and ‖ · ‖2, respectively. Symbols ×n, ⊗
and � stand for the n-mode, Kronecker and Khatri-Rao prod-
ucts, respectively. The statistical expectation operator and the
pseudo-inverse are represented by E[·] and (·)†, respectively.
Matrix IN denotes the (N ×N) identity matrix, and IN the
(N × N × N) identity tensor, whose values assume 1 along
its main diagonal and 0 elsewhere.

II. MULTILINEAR ALGEBRA

Multilinear algebra is essentially the algebraic framework
for multilinear operators, also known as tensors. In this work,
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the term “tensor” refers to a multidimensional array structure.
The reader is referred to [7] for more formal definitions. In
the following, we present definitions and properties for 3-
dimensional tensors since the treated structures in this work
are, at most, 3-dimensional.

Consider a third-order tensor T ∈ CN1×N2×N3 . We define
respectively the elements of the 1-, 2-, and 3-mode unfolding
matrices of T :[
[T ](1)

]
n1,n2+(n3−1)N2

= [T ]n1,n2,n3
, [T ](1) ∈ CN1×N3N2 ,

[
[T ](2)

]
n2,n1+(n3−1)N1

= [T ]n1,n2,n3
, [T ](2) ∈ CN2×N3N1 ,

[
[T ](3)

]
n3,n1+(n2−1)N1

= [T ]n1,n2,n3
, [T ](3) ∈ CN3×N2N1

as the “matricization” of T along its three modes. The 1-
, 2-, and 3-mode products between tensor T and matrices
U1 ∈ CM1×N1 , U2 ∈ CM2×N2 and U3 ∈ CM3×N3 , respec-
tively, are defined as

[T ×1 U1]m1,n2,n3
,

N1∑
n1=1

[T ]n1,n2,n3
[U1]m1,n1

,

[T ×2 U2]n1,m2,n3 ,
N2∑

n2=1

[T ]n1,n2,n3 [U2]m2,n2 ,

[T ×3 U3]n1,n2,m3
,

N3∑
n3=1

[T ]n1,n2,n3
[U3]m3,n3

.

One can simultaneously apply n-mode products along different
modes. For example, consider

G , T ×1 U1 ×2 U2 ×3 U3 ∈ CM1×M2×M3 , (1)
[G]m1,m2,m3

=
N1∑

n1=1

N2∑
n2=1

N3∑
n3=1

[T ]n1,n2,n3
[U1]m1,n1

[U2]m2,n2
[U3]m3,n3

.

Equation (1) is known as the Tucker model, and, in this case,
T is referred to as the core tensor and U1, U2, U3 as its
factor matrices.

A special case of the Tucker model is the Parallel Factors
(PARAFAC) model, which is defined as

P = IR ×1 A×2 B×3 C ∈ CM1×M2×M3 . (2)

Here, the core tensor is diagonal and the factor matrices A ∈
CM1×R, B ∈ CM2×R, C ∈ CM3×R have the same number R
of columns, which is also called the tensor rank. The unfolding
matrices of (2) can shown to be written as [8]:

[P](1) = A(C �B)T ∈ CM1×M3M2 ,

[P](2) = B(C �A)T ∈ CM2×M3M1 ,

[P](3) = C(B �A)T ∈ CM3×M2M1 . (3)

III. SYSTEM MODEL

Consider a MIMO system with a transmitter equipped
with a uniform planar array (UPA) of size Nh

t elements
in the horizontal plane times Nv

t elements in the vertical
plane (Nt = Nh

t N
v
t ). The receiver employs a UPA of size

Nr = Nh
r N

v
r , as depicted in Figure 1. The horizontal and

vertical element spacing for the transmit and receive arrays
are δht , δvt , δhr , and δvr , respectively. The transmitter applies a
filter F ∈ CNt×B to transmit the data symbol vector s(n) ,
[s1(n), . . . , sB(n)]

T, where we assume E[s(n)s(n)H] = σ2
sIB .

The receiver observes the following signal vector:

x(n) = HFs(n) + b(n) ∈ CNr×1, (4)

where H ∈ CNr×Nt is the narrow-band block fading
channel matrix between the transmitter and receiver, and
b(n) ∈ CNr×1 the zero mean additive noise component with
Rbb , E

[
b(n)b(n)H

]
= σ2

b INr . We adopt a geometric
channel model with L scatterers, each one contributing a single
propagation path between the transmitter and receiver. These
assumptions are valid for transmissions in the mmWave band
[9], [10]. The channel matrix can then be written as

H =
√

NtNr

L

L∑
`=1

λ`gr(θ
`
r, φ

`
r)gt(θ

`
t , φ

`
t)ar(θ

`
r, φ

`
r)at(θ

`
t , φ

l
t)

H,

(5)
where λ` is the complex gain of the `th path, with E[|λ2` |] = 1.
The departure and arrival azimuth angles of the `th path are
denoted by φ`t and φ`r, respectively, whereas its departure and
arrival elevation angles are denoted by θ`t and θ`r. The factors
gt(·) and gr(·) refer to the antenna gains of the transmitting
and receiving arrays, respectively. The response of the antenna
element in the Cartesian position (nht , n

v
t ) of the transmit array

with respect to a plane wave from direction (θ, φ) can be
written as [11]

[at(θ, φ)]nh
t +(nt

v−1)Nh
t
=

1√
Nt

exp(j2π((nht − 1)δht sinφ sin θ + (nv
t − 1)δvt cos θ))

for nht ∈ {1, . . . , Nh
t } and nvt ∈ {1, . . . , Nv

t }. Likewise, the
element response in position (nhr , n

v
r) of the receive array is

[ar(θ, φ)]nh
r+(nv

r−1)Nh
r
=

1√
Nr

exp(j2π((nhr − 1)δhr sinφ sin θ + (nv
r − 1)δvr cos θ))

with nhr ∈ {1, . . . , Nh
r } and nvr ∈ {1, . . . , Nv

r }. Using matrix
notation, Equation (5) can be rewritten as

H = ArΓAH
t ∈ CNr×Nt ,

Ar ,
[
ar(θ

1
r , φ

1
r), . . . ,ar(θ

L
r , φ

L
r )
]
∈ CNr×L,

At ,
[
at(θ

1
r , φ

1
r), . . . ,at(θ

L
r , φ

L
r )
]
∈ CNt×L,

Γ ,
√

NtNr

L diag(λ1, . . . , λL)diag(gr(θ1r , φ
1
r), . . . , gr(θ

L
r , φ

L
r ))

diag(gt(θ1t , φ
1
t ), . . . , gt(θ

L
t , φ

L
t )) ∈ CL×L.

We also assume Nr ≥ Nt and B ≤ min(Nr, Nt). The channel
matrix H is assumed to be full column-rank, implying L ≥ Nt.
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It is well-known that the antenna array response can be
separated into its spatial domain contributions [11]. Assuming
separability on the receive array, it follows that

ar(θ
`
r, φ

`
r) = av

r(θ
`
r, φ

`
r)⊗ ah

r (θ
`
r, φ

`
r), ` = 1, . . . , L,

[ah
r (θ, φ)]nh

r
=
(
1/

√
Nh

r

)
exp(jπ((nhr − 1) sinφ sin θ)),

[av
r(θ, φ)]nv

r
= (1/

√
Nv

r ) exp(jπ((n
v
r − 1) cos θ)),

where ah
r (θ, φ) and av

r(θ, φ) denote the steering vectors cor-
responding to the linear sub-arrays along the y and z-axes,
respectively. In view of this, the receive array manifold matrix
can be rewritten as

Ar = Av
r �Ah

r ,∈ CNr×L,

Ah
r =

[
ah
r (θ

1
r , φ

1
r), . . . ,a

h
r (θ

L
r , φ

L
r )
]
∈ CNh

r ×L,

Av
r =

[
av
r(θ

1
r , φ

1
r), . . . ,a

v
r(θ

L
r , φ

L
r )
]
∈ CNv

r×L.

Let He , HF ∈ CNr×B be the effective channel matrix. It
can be expressed as

He =
(
Av

r �Ah
r

)
UT, U , FTA∗tΓ ∈ CB×L. (6)

We identify (6) as the transposed 3-mode unfolding (3) of the
third-order PARAFAC tensor

He = IL ×1 Ah
r ×2 Av

r ×3 U ∈ CNh
r ×N

v
r×B . (7)

Equation (7) represents a trilinear channel model that decou-
ples the receive horizontal and vertical spatial signatures from
the channel fading and transmitter beamforming. Note that
(7) could be easily extended to support higher-order separable
arrays, as shown in [6]. Using tensor notation, the received
signal (4) is rewritten as

X(n) = He ×3 sT(n) + B(n)

=
(
IL ×1 Ah

r ×2 Av
r ×3 U

)
×3 sT(n) + B(n)

= IL ×1 Ah
r ×2 Av

r ×3 s(n)TU + B(n), (8)

where X(n) ∈ CNh
r ×N

v
r and B(n) ∈ CNh

r ×N
v
r denote

reshaping matrices of x(n) and b(n), respectively. In the
next section, we propose a novel equalization strategy that
exploits the multilinearity of the data model (8) to reduce the
computational cost of the receive signal processing.

IV. PROPOSED EQUALIZATION METHOD

The MMSE equalizer is one of the most popular MIMO re-
ceiver filters since it attempts to jointly minimize interference
and noise contamination [11]. Its coefficients are obtained by
computing

Go = argmin
G∈CB×Nr

E
[
‖s(n)−Gx(n)‖22

]
= PsxR−1xx , (9)

Rxx , E
[
x(n)x(n)H

]
= σ2

sHFFHHH + σ2
b INr

∈ CNr×Nr ,

Psx , E
[
s(n)x(n)H

]
= σ2

sF
HHH ∈ CB×Nr .

As the number of receiving antennas grows, the calculation of
Go becomes more convoluted due to the large computational
costs involved in the inversion of Rxx.

In order to reduce the equalizer’s implementation costs, we
propose to exploit the multilinear channel structure (7) in the
equalizer optimization. It is assumed that the receiver knows

the sub-arrays manifold matrices Ah
r and Av

r and. In practice,
these parameters can be estimated using array processing
techniques such as MUSIC and ESPRIT [12]. Also, both the
proposed and MMSE equalizers assume perfect knowledge of
the channel matrix H. The proposed filtering method is divided
into two stages: (i) sub-array beamforming, and (ii) low-
dimension MMSE equalization. It will be hereafter referred
to as Two-Step Sequential (2-Seq) filter.

More specifically, the sub-array beamforming task consists
of performing spatial zero-forcing filtering along the first and
second signal dimensions. The beamformer output is given
by [8]

Y(n) , X(n)×1 Ah†

r ×2 Av†

r ∈ CL×L (10)

= IL ×3 s(n)TU + B(n)×1 Ah†

r ×2 Av†

r .

The subsequent step consists of equalizing the fading matrix
U in (10). To this end, we consider the vectorization of Y(n):

y(n) = (Av†
r ⊗Ah†

r )x(n) = Θs(n) + b̃(n) ∈ CL2×1 (11)

where Θ , [IL]T(3)U
T ∈ CL2×B denotes the sparse fading

matrix, and b̃(n) , (Av†

r ⊗ Ah†

r )vec(B(n)) ∈ CL2×1 the
colored noise component. It is worth noting that in order to
form Θ, one needs to first compute U = (A†rHe)

T. The
MMSE equalizer for y(n) is then given by

Q̃o , argmin
Q∈CB×L2

E
[
‖s(n)−Qy(n)‖22

]
= PsyR−1

yy , (12)

Ryy , E[y(n)y(n)H] = σ2
sΘΘH + Rb̃b̃ ∈ CL2×L2

,

Rb̃b̃ , E
[
b̃(n)b̃(n)H

]
= σ2

n(A
v†
r ⊗Ah†

r )(Av†
r ⊗Ah†

r )H,

Psy , E[s(n)y(n)H] = σ2
sΘH ∈ CB×L2

, .

From Equations (8), (10), (11), and (12), it follows that 2-Seq
filter can be concisely written as G2-Seq = Q̃o(A

v†

r ⊗Ah†

r ) ∈
CB×Nr . In scenarios with poor scattering propagation (e.g.
mmWave channels), computational complexity can be reduced
further by capitalizing on the sparsity of Θ.

The number L of scatterers has a major role on the filter’s
numerical stability and computational complexity. The sub-
array manifold matrices Ah

r and Av
r need to be full column-

rank in order to their pseudo-inverse exist in (10). Since the
probability of these matrices becoming singular increases as L
grows, scenarios with only a few scatterers are more attractive
for the use of the 2-Seq filter. Besides, the colored noise
covariance matrix Rb̃b̃ may become singular as the number
L of scatterers grow, making Ryy a near-singular matrix.

The proposed two-step filtering strategy can still be applied
to the Rayleigh channels even though they do not lead to the
multilinear representation in (8). In this case, the beamforming
output signal is given by

u(n) , (Av†

r ⊗Ah†

r )x(n) = Φs(n) + b̃(n) ∈ CL2×1,

where Φ , (Av†

r ⊗Ah†

r )He ∈ CL2×B . The low-dimensional
MMSE equalizer is then as follows

Q̂o , argmin
Q∈CB×L2

E
[
‖s(n)−Qu(n)‖22

]
= PsuR−1

uu, (13)

Ruu , E[u(n)u(n)H] = σ2
sΦΦH + Rb̃b̃ ∈ CL2×L2

,

Psu , E[s(n)y(n)H] = σ2
sΦH ∈ CB×L2

.
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Here the sub-array manifold matrices are formed according
to some strategy. We opted for pointing the array beams
at L linear spaced angles in order to reduce the method’s
computational complexity. Nevertheless, any classical beam-
forming strategy for Rayleigh channels could still be em-
ployed, resulting in an increased complexity. It is worth noting
that Φ does not exhibit a sparsity pattern as Θ because
the Rayleigh channel model does not admit the multilinear
representation (7). In this scenario, the 2-Seq filter is expected
to be less accurate than the classical MMSE filter as a result of
the model mismatch. However, the computational complexity
reduction can be leveraged in practical scenarios.

Computational complexity: The first filtering stage corre-
sponds to O(Nh3

r + Nv3

r ) operations due to the pseudo-
inverses. The computation of (12) or (13) amounts to O(L6)
operations since the beamformer output signal lies in a L2-
dimensional space. Therefore, the general computational com-
plexity of the 2-Seq filter is O(Nh3

r + Nv3

r + L6) whereas
that of the classical MMSE filter is O(N3

r ) = O(Nh3

r Nv3

r ).
For instance, let Nh

r = Nv
r = L2 = λ. The calculation of

the 2-Seq and MMSE filters amounts to O(3λ3) and O(λ6)
operations, respectively. In the following section, results of
numerical simulations conducted to evaluate the computational
performance of the proposed method will be presented and
discussed.

V. SIMULATION RESULTS

In this section, we investigate the computational complexity
and the symbol recovery performance of the 2-Seq receiver.
We also assess the influence of the channel model on its
performance. The classical MMSE filter (9) is used as a
benchmark.

We consider two figures of merit in our simulations: the
number of FLOPS necessary to compute the equalizer and
the MSE = 1

R

∑R
r=1

1
K ‖Sr −GX‖2F, where R denotes the

number of independent Monte Carlo runs, K the number of
transmitted QPSK symbols, Sr ∈ CB×K the symbol matrix in
the rth experiment, X ∈ CNr×K the corresponding received
signals matrix, and G the considered equalizer. The number
of FLOPS were counted using the Lightspeed toolbox [13].
In each experiment, the channel gains λ` were generated from
a zero mean and unit variance Gaussian random variable, the
direction of departure and arrival azimuth and elevation angles
were uniformly selected from [−80◦, 80◦] and [10◦, 170◦],
respectively. The horizontal and vertical array inter-element
spacing is half-wavelength. Truncated discrete Fourier trans-
form matrices were used for precoding.

In Figure 2, we provide the MSE performance and the
mean processing time for the MMSE and 2-Seq filters as
functions of the number Nr of antenna elements in the receive
array for R = 1000 experiments and L ∈ {6, 9, 12} scat-
terers. The receive array consists of a UPA with dimensions
Nr = N ×N, N ∈ {15, 20, 25, 30}. Since the N > L in all
scenarios, the sub-array manifold matrices are tall and possibly
full column-rank depending on the multipath arrival angles.
The very few experiments where the 2-Seq filter failed due
to numerical instability were discarded according to a MSE
threshold. Figure 2 indicates that the symbol recovery quality
of both filters improves as L and Nr increase since there are
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N
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O
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Fig. 2. Symbol recovery (left) and computational performance (right) of the 2-
Seq ( ) and MMSE ( ) filters as functions of Nr for different number
L of scatterers. SNR = 10dB, B = 4, K = 103, Nh

t ×Nv
t = 2× 2.

more “copies” of the transmitted data. By contrast, 2-Seq’s
computational complexity varies little with Nr, as expected
from the discussion in Section IV. This result suggests that the
proposed method becomes more efficient than the benchmark
one as L decreases, which may be the case in scenarios with
poor scattering propagation.
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Fig. 3. Symbol recovery (top) and computational performance (bottom) of
the 2-Seq ( ) and MMSE ( ) filters as functions of the SNR for
the geometrical (top-left) and Rayleigh (top-right) channel models. B = 4,
K = 103, L = 6, Nh

t ×Nv
t = 2× 2, Nh

r ×Nv
r = 20× 20.
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The influence of the noise power on the filtering perfor-
mance is investigated in Figure 3 for the geometrical (5) and
Rayleigh channel models, where the results were obtained
from R = 1000 experiments. The inputs of the Rayleigh
channel matrix were extracted from i.i.d. zero mean and unit
variance Gaussian random variables for each experiment. We
observe in the geometrical model scenario that there is no MSE
degradation for the 2-Seq filter due to the system separability.
For the Rayleigh channel model, however, there is a MSE
performance gap. In this case, H does not admit the separable
representation (7), and the signal model (8) becomes inac-
curate. Nevertheless, the proposed method is still employed
in this experiment by forming the beamformers Ah

r and Av
r

pointed at L = 6 linearly spaced directions and afterwards
performing the low-dimension MMSE equalization (13). The
performance gap is therefore due to the low-dimensionality of
the MMSE filter compared to the Rayleigh channel rank. The
number of FLOPS is practically the same for both channel
scenarios, since the same value for Nr and L were used. The
small difference comes from the computation of Θ and Φ.

The absolute value of the colored noise covariance matrix
inputs are depicted in Figure 4 for L = 6 and L = 12.
We observe that as L grows, Rb̃b̃ becomes sparser and rank
deficient and, consequently, Θ approaches singularity. Besides
the low-complexity, numerical stability is therefore another
reason to employ the proposed method in communication
channels with only a few scatterers.

VI. CONCLUSION

We presented a low-complexity equalization scheme for
MIMO systems with massive receive antenna array. The pro-
posed filter is based on the assumed receive array separability
reflecting a multilinear structure on the geometrical channel
and data models. Such algebraic property is exploited to
decouple spatial filtering from MMSE equalization, which en-
ables computational cost reduction. Simulation results confirm
the reduced complexity of the proposed method provided the
number of channel scatterers is small. Furthermore, results
indicate that the proposed filter can still be employed to non-
separable channels resulting in computational cost reduction
with symbol recovery degradation. Full transceiver optimiza-
tion considering separability at both transmitter and receiver
ends with interfering users, and channel estimation methods
based on the presented model are outlined as future work.
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