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ABSTRACT

Massive multiple-input multiple-output (MIMO) theoretical perfor-
mance results have attracted the attention of the community due to
the possibility of increasing the spectral efficiency in wireless com-
munications. The performance potential is mainly conditioned to
the use of digital beamforming techniques which demand one radio-
frequency (RF) chain per antenna element. For large arrays, this
implementation may result in high complexity, power consumption,
and cost. To reduce the number of RF chains, we use a hybrid beam-
forming (HB) architecture of an analog beamformer implemented
by using phase-shifters and a low-dimensional digital beamformer.
The performance of the HB depends on the resolution of the phase-
shifters. However, very few works in the literature take into account
finite phase-shifters. In this paper, we address the problem of de-
signing HB in frequency selective channels using finite-resolution
phase-shifters. The strategy is to exploit the second-order statistics
of the channel and a least-square formulation to obtain the discrete
phase of each phase-shifter. The digital part is derived based on ana-
log solution to maximize the single-user MIMO system sum-rate.
This solution requires a number of RF chains compared to the rank
of the spatial covariance matrix which is far lower than ones de-
manded to implement the full digital beamforming. The simulation
results show that the proposed technique can achieve a sum-rate per-
formance very close to that of the digital beamforming assuming
low-rank channels.

Index Terms— Massive MIMO, hybrid beamforming, phase-
shifters, alternating least-squares

1. INTRODUCTION

Massive multiple-input multiple-output (MIMO) is the next wire-
less communication systems due to its capability of increasing the
system spectral efficiency. The large number of antennas at the base
station (BS) makes possible to spatially multiplex many independent
signals into the same frequency-time communication resource [1].
However, its theoretical results depend upon a digital beamform-
ing (DB), which enables both phase and amplitude control of the
signals, but demands a dedicated radio frequency (RF) chain per
antenna element. This solution can prohibit the implementation of
massive MIMO because of the high cost and the RF chain power
consumption [2, 3].

The analog-digital beamforming architecture, also known as hy-
brid beamforming (HB), has gained attention due to the use of less
RF chains than the number of antennas, which is particularly of prac-
tical importance in massive MIMO systems. This beamforming is
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a concatenation of two beamformers, a low-dimension digital one
that scales with the number of RF chains, while the analog one is
a phase-shifter network that maps the signal of each RF chain to
a set of antenna elements [4]. Using this architecture, the authors
in [2, 5] provide a solution for data transmission that maximizes the
single-user MIMO sum-rate. Another work designed the HB for pi-
lot transmission and consequently improves the channel estimation
quality as shown in [6]. In this work, the authors propose that the BS
uses the analog and digital beamformers to spatially multiplex the
pilots. The benefit of it is that the system can use shorter pilot se-
quences and consequently deal with the downlink overhead problem
in massive MIMO. The common assumption in the literature is the
use of infinite resolution phase-shifter; very few works have taken
into account the phase-shifter resolution, such as [3].

The goal of this paper is to design a HB solution that maximizes
the single-user MIMO sum-rate using low-resolution phase-shifters
that operate over frequency-selective channels. The proposed so-
lution exploits only partial information of the channel by using the
spatial covariance matrix to determine a reduced subspace from the
eigen decomposition. We then propose a heuristic to implement
the analog and digital parts at the BS. The method uses the alter-
nate least-square with projection (ALSP) algorithm to construct a
wideband HB subject to a finite-resolution phase-shifter constraint.
The ALSP algorithm appeared earlier in [7] as a solution for the
blind separation of co-channel signals. Herein, we identify this algo-
rithm as a solution to design the wideband beamforming vectors un-
der finite-alphabet phase shifters, which is of practical relevance in
hardware-constrained massive MIMO systems. Once the wideband
beamforming is designed, we calculate a set of narrowband beam-
formers that are based on the baseband frequency channel response.
We show that, with the proposed HB, the number of RF chains needs
to scale with the rank of spatial covariance matrix, which is often
smaller than the number of antennas.

2. SYSTEM MODEL AND PROBLEM DEFINITION

A large number of antennas at the BS prohibits the use of DB solu-
tions especially for high frequencies. This type of implementation
has dedicated RF chains per antenna element, and each chain uses a
digital to analog converter (DAC) for downlink transmission. This
component is responsible for using considerable amount of power
consumption as shown in [8]. This means the DB may reach cost-
inefficient levels in massive MIMO system due to DAC. To address
this problem, we can reduce the number of RF chains (consequently
the number of DACs) by assuming a HB solution at the BS. Its
structure is a concatenation of a full-dimensional analog beamformer
A, which has the same dimension as the number of transmit anten-
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nas, and a low-dimensional digital one D. The analog part is imple-
mented using a phase-shifter network that connects a set of antennas
to each one of the J RF chains. The digital part corresponds to the
baseband processing connected to the J RF chains.

The scenario considered is a single-user MIMO system in which
the BS is employed with N antennas and transmits L < N paral-
lel streams to a user equipment (UE) using M ≥ L antennas. The
channel between BS and UE is frequency selective and follows the
block-fading model, where H(k) ∈ RM×N ∀k k = {1, 2, . . . ,K}
denotes the matrix associated with the kth block. Herein, we de-
fine the term “block” as a set of frequencies whose channel response
is approximately constant, and the number of subcarriers F within
the set defines the coherence bandwidth. For this paper, we assume
that the spatial channel covariance matrix is known perfectly at the
BS and UE, and the second-order statistics remain constant over
many blocks. Given this, the BS uses such an information to de-
termine aN×J matrix A whose entries have constant modulus, i.e.
|A(n, j)| = 1, while the J × L matrix D(k) is designed from the
equivalent channel He(k) , H(k)A. Note that the digital part is
frequency selective whereas the analog one is wideband filter.

Let S(k) ∈ CL×F denote the signal transmitted during the kth
fading-block. The matrix S(k) is such that E

[
S(k)S(k)H

]
= IL.

The received signal in the kth fading-block can be expressed as

Y(k) = H(k)AD(k)S(k) + Z(k), (1)

where Z(k) ∼ CN
(
0, σ2IL

)
is the additive Gaussian noise. To ex-

tract S(k), the UE employs a L×M combiner W(k). The number
of antennas at the receiver is expected to be much lower than that
at the BS, which makes the use of a DB possible with affordable
complexity. Thus, the final baseband signal is represented as

R(k) = W(k)Y(k). (2)

Regarding practical implementation of HB, the design of a
phase-shifter network plays a fundamental role on the overall pre-
coder performance because it controls the phase rotation of every
continuous signal. The continuous phase control requires accu-
rate components which can be expensive [9]. On the other hand,
finite-resolution phase-shifters are attractive solutions in terms of
cost because they require simpler hardware implementation than
those with infinite resolution. The analog beamformer with dis-
crete phases is a matrix A ∈ A, where A = {1, a, a2, . . . , aI−1},
a = e

2π
I , and I is the number of discrete phases. Our goal is to

design an HB solution to maximize the downlink single-user MIMO
sum-rate.

Let us assume a Gaussian signaling in S(k). The average rate
per block is

R(k) = log2

∣∣∣∣IL +
1

σ2
W(k)†Q(k)

∣∣∣∣ , (3)

where Q(k) = W(k)H(k)AD(k)D(k)HAHH(k)HW(k)H and
the operator (.)† denotes the pseudoinverse [3, 10]. The optimal HB
and combiner are obtained as a solution of the following optimiza-
tion problem

max
A,{D(k),W(k)}K

k=1

1/K

K∑
k=1

R(k)

s.t. trace{AD(k)D(k)HAH} ≤ Pk/F ∀k, (4)

where Pk is the power budget of the kth block1. Therefore, the prob-
lem consist of designing D(k) and W(k) per block while A has to
be the same for all k.

3. HYBRID BEAMFORMING AND DIGITAL COMBINER

The precoder and combiner to solve (4) can be obtained by opti-
mizing jointly A, D(k), and W(k) ∀k k = {1, 2, . . . ,K}; how-
ever, the non-convexity of the problem leads us to search alternative
strategies to solve it. Our approach consists of decoupling the HB
precoder and the digital combinyer by solving firstly the mutual in-
formation maximization problem of Y(k) and S(k) to obtain the
HB and subsequently the design of W(k) is obtained from (4) for a
fixed HB.

Firstly, let us consider the mutual information function for the
block k as

R1(k) = log2

∣∣∣IL + H(k)AD(k)D(k)HAHH(k)H
∣∣∣ . (5)

The precoder design can be expressed as

max
A,{D(k)}K

k=1

1/K

K∑
k=1

R1(k)

s.t. trace{AD(k)D(k)HAH} ≤ Pk/F ∀k,
A ∈ A. (6)

In (6), the analog beamforming solution involves an exhaustive
search over the set A. To design A, we first note that every digital
beamformer can be expressed as D(k) = BC(k), where B is a
J × J matrix that combines output of the phase-shifters, and C(k)
is a J × L matrix that precodes the signal S(k). The motivation
behind this factorization is to adjust the signal amplitude by per-
forming a linear combination over the phase-shifters. Assuming that
C(k)C(k)H = γ2IL, the remaining problem consists of optimiz-
ing jointly two wideband beamformers A and B. The advantage of
working only with A and B is that we can remove the dependence
on the block index k and optimize them based on the channnel
covariance matrix R = E

[
H(k)HH(k)

]
.

The second part of our problem involves the design of the digital
beamformers C(k) and W(k). This can be done by first fixing the
wideband matrices A and B, and then calculating the digital beam-
formers using the eigenbeamforming solution. More specifically,
the matrices C(k) and W(k) can be obtained from the left and right
singular vectors of the effective channel matrix defined as

He(k) , H(k)AB. (7)

We now focus on the design of the wideband beamformer AB. Two
solutions are discussed for this purpose. The first one is a baseline
method originally applied to narrowband channels in [2]. The sec-
ond solution is the main contribution of this paper, where we pro-
pose to find AB using a least squares formulation that is solved by
the ALSP algorithm.

3.1. Statistical Wideband HB

We design the RF beamformer assuming C(k)C(k)H = α2IL,
where α =

√
Pk/F‖AB‖2F to ensure the power constraint in (6),

1Equal power allocation in frequency is non-optimum in principle, but it
is assumed for simplicity.
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and the operator ‖.‖2F denotes the Frobenius norm. Therefore, the
problem can be rewritten as

max
A,B

1/K

K∑
k=1

log2

∣∣∣∣IL +
γ2

σ2
BHAHH(k)HH(k)AB

∣∣∣∣
s.t. A ∈ A. (8)

The phase-shifter network remains constant over the frequency do-
main while the channel frequency response does not. Such a con-
tradiction motivates us to express the problem in function of the
channel spatial covariance matrix instead, as the second order statis-
tics are constant over the transmission bandwidth. Assuming a large
number of blocks, which means a large bandwidth, we can use the
expectation operator E [.] to express (8), and Jensen’s inequality to
establish the relationship

E
[
log2

∣∣∣IL + G(k)HG(k)
∣∣∣] ≤
log2

∣∣∣IL + E
[
G(k)HG(k)

]∣∣∣ , (9)

where G(k) =
√

γ2

σ2 H(k)AB. Using the right-hand side of (9)
into (8), the dependence of block k is removed and the problem is

max
A,B

log2

∣∣∣∣IL +
γ2

σ2
BHAHRAB

∣∣∣∣
s.t. A ∈ A. (10)

The objective function is still not concave, yet (10) is convenient
because the formulation has no frequency dependence. Moreover,
the use of the channel second-order statistics gives the advantage of
updating A and B with low periodicity, as R changes slower than
H(k).

Based on (10), the design of A and B is done from the eigenvec-
tors of R. We exploit two solutions in this paper: 1) the RF chains
are combined into pairs using the rows of B and 2) A and B are
jointly determined by minimizing ‖ΓE − AB‖, where ΓE are the
first E eigenvectors of R.

The number E represents the amount of channel knowledge
used by the BS to design the HB solution. The critical case is
E = L, where the BS uses the same number of eigenmodes as
the number of layers. For this design, there is no extra degree of
freedom to exploit. If E > L, there are more eigenmodes than the
number of layers and more information about the channel. With this
design, the signal-noise ratio (SNR) tends to increase because the
BS uses more relevant modes to represent the instantaneous channel.

3.1.1. Paired Phase-shifter

The first solution uses the fact that any vector is obtained from a
combination of two other vectors with constant modulus entries. Us-
ing this result, it is possible to combine two columns of A using two
rows of B to implement one eigenvector. The equation to be solved
is given by [2]:

A(n, j)B(j, e) + A(n, j + 1)B(j + 1, e) = Γ(n, e), (11)

where e is the eigenmode index. Using the procedure described in
[2], the solution for B is as follows

B(j, e) =
γmax(e) + γmin(e)

2
, (12)

B(j + 1, e) =
γmax(e)− γmin(e)

2
, (13)

Algorithm 1 ALSP

Require: A ∈ A
Ensure: minA,B ‖Γ−AB‖2F

Start the algorithm with a random choice for Â

while ‖Âi − Âi−1‖2F ≥ ε do
B̂i+1 = A†iΓE
Âi+1 = ΓEB†

Âi+1 = projA
[
Âi+1

]
end while

where γmax(e) = maxn{|Γ(n, e)|} and γmin(e) = minn{|Γ(n, e)|}.
The solution for the phase shifters is then given by [2]

φn,j = ∠Γ(n, e) + cos−1
(
|Γ(n,e)|+γmax(e)γmin(e)
|Γ(n,e)|(γmax(e)+γmin(e))

)
, (14)

φn,j+1 = ∠Γ(n, e) + cos−1
(
|Γ(n,e)|−γmax(e)γmin(e)
|Γ(n,e)|(γmax(e)−γmin(e))

)
, (15)

where φn,j = ∠A(n, j) and φn,j+1 = ∠A(n, j + 1). In this
technique, each eigenvector is implemented by combining two RF
chains. Therefore, the total number of RF chains to transmit the E
eigenmodes is scaled by two, i.e. J = 2E. This means the BS can
eliminate the hardware limitations of the analog beamforming at the
cost of twice more RF chains. Note, however, that this solution as-
sumes phase-shifters with infinite resolution. We then need to round
the values φn,j and φn,j+1 to the closest phase in a codebook of I
possible values.
3.1.2. LS criterion

If we could relax the constant modulus restriction in (10), the opti-
mum solution is AB = ΓE , where ΓE corresponds to the E dom-
inant eigenvectors. Since we cannot do this relaxing in practice, to
obtain a solution for A and B, we propose to solve the following
problem:

min
A,B

‖ΓE −AB‖2F s.t. A ∈ A. (16)

An attractive solution to this problem is given by the ALSP algo-
rithm proposed earlier in [7] in the context of co-channel signals
blind separation. In that work, the convergence is proven by as-
suming one of the matrices belonging to a finite set. This assump-
tion matches up with the one in the problem (16), where the analog
beamformer follows a finite-alphabet.

The algorithm starts by assuming an initial guess Â to obtain B̂

in the LS sense, yielding B̂ = Â†ΓE . Given B̂, we then condition-
ally update Â in the LS sense, which gives Ã = ΓEB̂†. Since the
solution found for Â in the equation above is unstructured and does
not meet the finite resolution requirement for the phase shifters, we
project the elements of Â onto the admissible finite alphabet set A,
i.e. Â = projA

[
Ã
]
. The overall algorithm is summarized in the

Table 1.
Note that, in the proposed solution, the number of RF chains

scales with the rank of covariance matrix, i.e. J = E. Thus, this
technique requires half of the number of RF chains needed in the
paired phase shifter solution of Section 3.1.1. Assuming the criti-
cal case E = L consequently the number of RF chains is J = L,
otherwise J > L.
3.2. Narrowband Digital Beamformers and Combiners Design

We now consider the design of C(k) and W(k) at the BS and UE,
respectively, provided that the wideband part AB has been found
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Fig. 1: Sum-rate for different numbers of RF chains and different
phase-shifter resolutions.

using one of the two methods derived in the previous section. For
a fixed ÂB̂, the set of digital beamformers can be found in closed-
form by maximizing the overall spectral efficiency. To this end, we
work on the effective channel matrix He(k) , H(k)ÂB̂ and pro-
pose to find C(k) and W(k) by solving the following problem:

max
{C(k),W(k)}K

k=1

1/K

K∑
k=1

log2

∣∣∣∣IL +
γ2

σ2
Q(k),

∣∣∣∣ ,
s.t. trace{C(k)C(k)H} = 1,

Q(k) = W(k)He(k)C(k)C(k)HHe(k)
HW(k)H .

The problem solution is obtained from the singular value decomposi-
tion He(k) = U(k)HΣ(k)V(k)H . The UE uses the L left singular
vectors, W(k) = U(k)HL , while the BS uses the L right singular
vectors, C(k) = V(k)L.

4. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we present numerical results to evaluate the perfor-
mance of the proposed HB solution based on the ALSP algorithm
in terms of the sum-rate (bps/Hz). The plots consider different num-
bers of RF chains and different phase-shifter resolutions. The bench-
marks considered are the upper-bound obtained from the DB sum-
rate by assuming knowledge of H(k) ∀k k = {1, 2, . . .K} and
the paired HB implementation using infinite phase-shifter resolu-
tion. The simulated 128 × 2 MIMO channel has a 10MHz band-
width, and is generated using an extension of the COST2100 chan-
nel model for massive MIMO systems, assuming a coherence block
of 300 KHz [11]. The number of layers for all simulations is L = 2.

In Fig. 1, we first consider the case with J = 2 RF chains
and phase-shifters with resolution given by I = 2 and I = 4 dis-
crete phases. The bechmark is the paired HB solution with J = 4.
Note that the ALSP solution provides the possibility of reducing the
number of RF chains and the phase-shifter resolution without a great
sacrifice in the sum-rate. For instance, the scheme with I = 4 and
J = 2 only looses 1 bps/Hz compared to the benchmark one.

To further improve the spectral efficiency, the system must in-
creaseE which means the transmitter must use more eigemodes, i.e.
the BS should employ more RF chains. The rank of covariance ma-
trix rank (R) = 10 determines the number of RF chains to reach the
best performance. The relationship between the rank and the num-
ber of RF chains depends on the technique used to implement the
eigenvectors. The paired HB solution demands J = 20 RF chains
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Fig. 2: The plot shows the error ‖ΓE −AB‖F per iteration of the
ALSP algorithm. The number of RF chains is fixed to J = E.

whereas the proposed technique demands J = 10 only. Thus, us-
ing the ALSP solution to the HB problem, the number of RF chains
scales with the rank of the covariance matrix which in this example
is an order of magnitude less than the number of antennas.

The results in Fig. 1 also show that the sum-rate with J = 2 is
better than that with J = 4 in low SNR, which is explained by the
lack of power allocation solution performed across the beams. More
specifically, there are eigenmodes whose ratio between the eigen-
value and the noise variance is high consequently more power could
be allocated to them. This would improve the overall performance.

A disadvantage of the statistical approach is the natural loss
identified between the full DB and the paired HB. While the first
uses the perfect instantaneous channel state information, the second
represents the channel using a reduced space. This leads to a re-
duction of the channel degrees of freedom and, consequently, an ap-
proximation error, which explains the gap shown in Fig. 1. However,
we believe it is still interesting to exploit the second-order statistics
because the BS and UE can properly represent the channel in a com-
pressed space. With this strategy, it is also possible to reduce the
pilot overhead, which is a bottleneck in donwlink channel estima-
tion for massive MIMO systems.

Figure 2 depicts the approximation error ‖ΓE −AB‖2F per it-
eration of the ALSP algorithm. Note that fixing the number J of RF
chains and increasing the phase-shifter resolution I , the error tends
to decrease, as expected. However, the error tends to increase by
using more eigenmodes (i.e. more RF chains). To reduce the losses,
the BS has to use phase-shifters with higher resolution.

5. CONCLUSION
This paper presents a HB that uses a limited number of RF chains
and phase-shifters with finite resolution for massive MIMO sys-
tems. The proposed solution exploits the second order statistics of
the channel to derive the wideband part of the HB, and instantaneous
channel knowledge of significantly reduced dimension, to derive the
narrowband part of the HB. Comparing our solution with the scheme
that uses only a pair of phase-shifters, the number of RF chains in the
latter scales with twice the rank of spatial covariance matrix, while
the proposed solution only scales with the rank of covariance matrix,
thus being more cost-effective. Finally, it is worth mentioning that
the proposed framework can also be applied for pilot transmission
in the downlink of a hardware-constrained massive MIMO system
that operates with finte resolution phase-shifters. The use of the
proposed HB design in the problem of downlink channel estimation
is under investigation and will be subject of a future work.
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