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Abstract. The Adaline network [1] is a classic neural architecture whose
learning rule is the famous least mean squares (LMS) algorithm (a.k.a.
delta rule or Widrow-Hoff rule). It has been demonstrated that the LMS
algorithm is optimal in H∞ sense since it tolerates small (in energy) dis-
turbances, such as measurement noise, parameter drifting and modelling
errors [2,3]. Such optimality of the LMS algorithm, however, has been
demonstrated for regression-like problems only, not for pattern classifi-
cation. Bearing this in mind, we firstly show that the performances of
the LMS algorithm and variants of it (including the recent Kernel LMS
algorithm) in pattern classification tasks deteriorates considerably in the
presence of labelling errors, and then introduce robust extensions of the
Adaline network that can deal efficiently with such errors. Comprehen-
sive computer simulations show that the proposed extension consistently
outperforms the original version.

Keywords: Adaptive linear classifiers, least mean squares, labelling er-
rors, outliers, M-estimation, robust pattern recognition.

1 Introduction

Linear neural network architectures, such as the ADAptive LINear Element
(Adaline) network [1], have been used either as a standalone device that forms
itself the core of the designed intelligent system, or as a fundamental building
block of more advanced multilayer nonlinear neural networks, such as the mul-
tilayer perceptron (MLP), the radial basis functions networks (RBFN) [4], the
No-Propagation (No-Prop) network [5] and the echo-state network (ESN) [6].

Weights in the Adaline are updated using the well-known least mean squares1

(LMS) algorithm, which minimizes the mean squared error (MSE) by updating
the weight vector in the negative direction of the instantaneous gradient of the
MSE with respect to the weight vector. It has been demonstrated that the LMS
algorithm is optimal in H∞ sense since it tolerates small disturbances, such as

1 Also known as delta rule or the Widrow-Hoff rule.

S. Wermter et al. (Eds.): ICANN 2014, LNCS 8681, pp. 579–586, 2014.
c© Springer International Publishing Switzerland 2014

https://www.researchgate.net/publication/233393016_The_No-Prop_algorithm_A_new_learning_algorithm_for_multilayer_neural_networks?el=1_x_8&enrichId=rgreq-037a99b58caca3acf5d5abddb412f198-XXX&enrichSource=Y292ZXJQYWdlOzI2NTg0NzI0OTtBUzoxNDM1NjM2MjcxNzU5MzZAMTQxMTIzOTY0NDExMg==
https://www.researchgate.net/publication/3321589_Thinking_about_thinking_The_discovery_of_the_LMS_algorithm?el=1_x_8&enrichId=rgreq-037a99b58caca3acf5d5abddb412f198-XXX&enrichSource=Y292ZXJQYWdlOzI2NTg0NzI0OTtBUzoxNDM1NjM2MjcxNzU5MzZAMTQxMTIzOTY0NDExMg==
https://www.researchgate.net/publication/2984340_Networks_for_approximation_and_learning_Proc_IEEE?el=1_x_8&enrichId=rgreq-037a99b58caca3acf5d5abddb412f198-XXX&enrichSource=Y292ZXJQYWdlOzI2NTg0NzI0OTtBUzoxNDM1NjM2MjcxNzU5MzZAMTQxMTIzOTY0NDExMg==


580 C.L.C. Mattos, J.D.A. Santos, and G.A. Barreto

measurement noise, parameter drifting and modelling errors [2,3]. However, when
the disturbances are not small (e.g. presence of impulsive noise) the performance
of the LMS algorithm deteriorates considerably [7].

It is important to highlight that the aforementioned studies on the robustness
of the LMS algorithm have been ascertained for regression-like tasks, typically
found in the signal processing domain, such as channel equalization and time
series prediction. In this paper, however, we are interested in evaluating the
performance of the Adaline classifier trained by means of the LMS algorithm and
variants in pattern classification tasks contaminated with outliers, in particular
those resulting from labelling errors2. It is important to emphasize that the
online behavior of the Adaline/LMS algorithm is desirable in scenarios where
the full dataset is not initially available.

In order to handle labelling errors efficiently, we evaluate the performance
of the Adaline network as a pattern classifier for different variants of the LMS
algorithm, such as the Kernel LMS (KLMS) [8] and the least mean M -estimate
(LMM) [7] algorithms, in order to devise an improved robust variant for that
classifier. For the sake of completeness, performance comparison of the Adaline
classifier with an SVM classifier trained with the kernel Adatron algorithm [9]
is also carried out.

The remainder of the paper is organized as follows. Section 2 describes all the
LMS-based algorithms that will be applied. Section 3 presents the experimental
results with both artificial and real data within a robust classification context.
Finally, Section 4 concludes the paper.

2 The Basics of the LMS Algorithm and Variants

Given a sequence of input-output pairs {(xi, yi)}
N
i ∈ R

D×R, the corresponding
output of the Adaline classifier3 is estimated as

ŷi = w
T
i xi, i ∈ {1, . . . , N} (1)

where N is the total number of available inputs, wi ∈ R
D is the weight vector

and ŷi ∈ R is the estimated output provided by the linear model. The problem of
training an Adaline classifier corresponds to the process of recursively updating
the weight vectorwi for each input vector. In the following paragraphs we briefly
describe the LMS and some variants of it that will be evaluated in this paper.
Before proceeding, however, it is worth mentioning that the LMS variants to be
described next were introduced in the context of signal processing applications
and have not been evaluated before in the robust classification scenario.

2 This type of outlier may result either from mistakes during labelling the data points
(e.g. misjudgment of a specialist) or from typing errors during creation of data
storage files (e.g. by striking an incorrect key on a keyboard).

3 In this paper we discuss only binary classification problems. Thus, we need only one
output neuron. Generalization of the presented concepts to multiclass problems is
straightforward.
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The LMS can be seen as a search algorithm in which a steepest-descent-based
approach is applied to obtain a solution that minimizes the MSE:

JMSE(wi) =

N
∑

i=1

E{e2i } =

N
∑

i=1

E{(yi −w
T
i xi)

2}, (2)

where E{·} is the expectation operator and ei = yi −w
T
i xi is the error for the

i-th iteration. Minimization of the Eq. (2) is obtained by taking its gradient

with respect to the weights: ∂JMSE(wi)
∂wi

= −2E{eixi}. The recursive algorithm is
calculated updatingwi at each iteration in the negative direction of this gradient,
which involves approximating E{eixi} by its instantaneous value eixi:

wi+1 = wi − µ
∂JMSE(wi)

∂wi

= wi + µeixi, (3)

where µ is a learning step which controls the convergence rate. The choice of
the µ is problem dependent and can reduce the efficiency of the method. One
possible alternative arises when a variable step size is applied. In the normalized
LMS (NLMS) algorithm, the learning step is divided by the squared L2-norm of
the input as follows:

wi+1 = wi +
µ

ǫ+ ‖x‖2
eixi, (4)

where ǫ is a very small positive constant needed to avoid division by zero.
The second algorithm to be described is the LMM algorithm [10,7] which bor-

rows concepts from robust statistics and theM -estimation framework introduced
by Huber [11]. The goal of robust statistics is to devise parameter estimation
algorithms that provides faithful estimates in modelling scenarios where the as-
sumption of Gaussianity for estimation errors does not hold. In this regard, the
LMM algorithm derives from a more general objective function than the MSE:

JLMM(wi) =
N
∑

i=1

E{ρ(ei)} =
N
∑

i=1

E{ρ(yi −w
T
i xi)}, (5)

where ρ(·) is the M -estimate function [11]. The function ρ(·) computes the con-
tribution of each error ei to the objective function JLMM(wi). Note that when
ρ(u) = u2, the function JLMM(wi) reduces to the MSE function JMSE(wi).

Weight updating in LMM follows the same logic of the LMS algorithm:

wi+1 = wi − µ
∂JLMM(wi)

∂wi

= wi + µq(ei)eixi, (6)

where q(ei) = 1
ei

∂JLMM(wi)
∂wi

is the weighting function. Note that, if ρ(ei) = e2i ,
then q(ei) = 1, and Eq. (6) becomes equal to Eq. (3). In the present paper the
modified Huber M -estimate function will be considered [7]:

ρ(ei) =

{

e2i /2, 0 ≤ |ei| < ξ
ξ2/2, otherwise

, q(ei) =

{

ei, 0 ≤ |ei| < ξ
0, otherwise

, (7)
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where ξ is a threshold parameter which avoids the influence of inputs with large
errors. Smaller values of ξ produce more resistance to outliers, but at the expense
of lower efficiency when the errors are normally distributed.

If we divide the step size of the LMM algorithm by the squared L2-norm of
the input vector, we get the Normalized LMM (NLMM) algorithm [7]:

wi+1 = wi +
µq(ei)eixi

ǫ+ x
T
i xi

, (8)

where ǫ has the same meaning as in Eq. (4).
The third LMS-like algorithm to be described is the KLMS algorithm, which

works as the LMS algorithm but now operating on the feature space obtained
by applying a mapping Φ(·) to the inputs, generating a new sequence of input-
output pairs {(Φ(xi), yi)}

N
i=1 [8]. Weight updating is similar to the Eq. (3), i.e.

wi+1 = w + µeiΦ(xi). (9)

Considering w0 = 0, where 0 is the null-vector, after N iterations we get

wN = µ

N−1
∑

i=1

eiΦ(xi), ŷN = w
T
NΦ(xN ) = µ

N−1
∑

i=1

eiκ(xi,xN ), (10)

where κ(xi,xj) = Φ(xi)
TΦ(xj) is a positive-definite kernel function. It should

be noted that only Eq. (10) is needed both for training and testing. Although the
values of the weight vector do not need to be computed, the a priori errors ei, i ∈
{1, · · ·N}, and the training inputs xi, i ∈ {1, · · ·N}, must be maintained for
prediction. In [12] a normalized version of the KLMS algorithm, named NKLMS,
was proposed by modifying Eq. (10) as follows

ŷN = µ
N−1
∑

i=1

ei
κ(xi,xN )

κ(xi,xi)
. (11)

Since we are going to evaluate the performance of the Adaline classifier, when
experimenting with KLMS and NKLMS algorithms we used their linear versions,
choosing the linear kernel κ(xi,xj) = x

T
i xj + C, where C is a constant.

The last estimation algorithm to be described, the Kernel Adatron (KAda-
tron) [9], is an on-line algorithm for training linear perceptron-like classifiers by
providing a procedure that emulates Support Vector Machines without resorting
to any quadratic programming toolboxes. By writing the KAdatron algorithm in
the data-dependent representation {(xi, yi)}

N
i=1, we obtain the following steps:

1. Initialize αi = 0 (Lagrange multipliers).

2. Calculate zi =
∑N

j=1 αjyjκ(xi,xj).
3. Calculate γi = yizi.
4. Let δαi = µ(1 − γi) be the proposed change to αi;

– If (δαi + αi) ≤ 0 then αi = 0.
– If (δαi + αi) > 0 then αi = αi + δαi.
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5. If a maximum number of presentations of the training set has been exceeded
then stop, otherwise return to Step 2.

The estimation for a new input x∗ can be written as:

ŷ∗ =
∑

i∈SV

yiα
o
iκ(x∗,xi), (12)

where αo
i is the solution of KAdatron algorithm and SV represents the index set

of support vectors. As with KLMS and NKLMS cases, we will also use a linear
kernel for experiments with KAdatron.

3 Experimental Results and Discussion

The experimental results were separated in two groups: one with artificial 2-
dimensional data for the sake of visualization of the decision regions obtained
by each classifier; and other with two real-world datasets (Iris and Vertebral
Column)4, for analyzing classifiers’ performance due to the presence of outliers.

The first group of experiments involved a 120 2-dimensional samples from
two classes (red and blue), which are linearly separable. All data samples are
used for training the classifiers, since the goal is to visualize the final position
of the decision line and not to compute recognition rates. A number of outliers
from the red class was gradually added at each experiment, close to the region
associated to the blue class. The obtained decision lines for each version of the
Adaline classifier is shown in Figure 1. The learning step µ was set to 0.01 and
the number of training epochs was set to 100 for all experiments.

One may notice that with the addition of 10 and 15 outliers, the Adaline/LMM,
Adaline/NLMM and Adaline/NKLMS were less sensitive to the presence of out-
liers than the other classifiers. With the addition of 30 outliers, all the classifiers
were strongly affected, except the Adaline/NKLMS. A remark is then required
here. It is commonsense that the very nature of outliers demand that they should
appear in a small number. When this number is too high, perhaps they should
not be considered as outliers anymore, but as usual data samples of the class.
In this situation, we recommend a more powerful classifier (e.g. the ELM or the
MLP) to be used, since it can produce a nonlinear decision curve.

In the second group of experiments, the Iris dataset was prepared in the
following way: the Virginica and Versicolor classes were labeled +1 and −1,
respectively. From those two classes, 80% was used for training and 20% for
testing. During training step, some samples from Setosa class were added with
the label +1, being considered as outliers from the Virginica class. The number
of generated outliers were 0%, 5%, 10%, 20% and 30% of the original number of
Virginica samples in the training set.

The results obtained after 100 training-testing cycles are summarized in Table
1. It can be noticed that in the experiment without outliers, aside from Ada-
line/KLMS and Adaline/NKLMS, all methods achieved similar results. From

4 Freely available at [13].
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(a) 0 outliers. (b) 10 outliers.

(c) 15 outliers. (d) 30 outliers.

Fig. 1. Effect in the decision regions after adding outliers

5% to 10%, Adaline/LMM and Adaline/NLMM practically did not change their
performances, while all the others methods suffered with the inclusion of out-
liers. With 20% of outliers, Adaline/LMM is also penalized, but Adaline/NLMM
maintains high accuracy rates. With 30%, all algorithms obtain lower accuracy
values. For this last case we again emphasize that those samples cannot actually
be considered outliers anymore, but normal training samples.

The Vertebral Column dataset was configured as a 2-class problem since we
removed the samples from the Disk Hernia class and considered only the ones
from Normal and Spondylolisthesis classes. The same 80% − 20% partitioning
was used. The addition of outliers was done by mislabeling some patterns on
purpose: a portion (0%, 5%, 10%, 20% and 30%) of training samples from the
Spondylolisthesis class had their labels changed to the Normal class. The results
averaged after 100 repetitions are presented in Table 1.
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Table 1. Results for Iris and Vertebral Column classification without and with outliers

Iris dataset

0% 5% 10% 20% 30%

Adaline/LMS 96.25 ± 3.72 88.95 ± 6.68 83.85 ± 7.81 75.10 ± 10.02 68.95 ± 10.88
Adaline/NLMS 96.15 ± 3.75 93.50 ± 4.58 91.90 ± 6.02 83.75 ± 8.11 77.30 ± 9.86
Adaline/LMM 95.85 ± 4.02 94.95 ± 4.17 94.90 ± 4.44 75.10 ± 9.61 69.05 ± 10.84
Adaline/NLMM 95.70 ± 3.63 94.90 ± 4.38 94.80 ± 4.76 95.10 ± 4.14 77.10 ± 9.83
Adaline/KLMS 92.15 ± 6.08 87.35 ± 8.12 85.50 ± 8.48 76.45 ± 10.08 69.15 ± 10.28
Adaline/NKLMS 91.15 ± 6.66 87.85 ± 7.73 86.50 ± 8.42 84.05 ± 8.75 79.75 ± 8.94
KAdatron 95.20 ± 5.27 86.55 ± 7.27 76.20 ± 11.17 71.60 ± 9.92 68.00 ± 9.97

Vertebral Column dataset

Adaline/LMS 90.06 ± 4.85 89.52 ± 3.93 89.32 ± 4.32 84.22 ± 4.99 76.60 ± 7.14
Adaline/NLMS 91.10 ± 3.86 90.90 ± 3.88 90.88 ± 3.85 85.92 ± 4.41 78.52 ± 5.93
Adaline/LMM 91.90 ± 3.66 92.18 ± 3.27 92.16 ± 3.61 90.54 ± 3.61 82.02 ± 7.36
Adaline/NLMM 91.32 ± 3.63 91.36 ± 3.65 92.02 ± 3.76 88.74 ± 3.98 80.32 ± 6.32
Adaline/KLMS 85.32 ± 4.97 85.22 ± 5.17 83.78 ± 5.30 79.00 ± 5.37 68.52 ± 6.75
Adaline/NKLMS 81.02 ± 5.13 81.78 ± 5.28 83.08 ± 5.03 80.30 ± 5.77 68.24 ± 6.88
KAdatron 95.80 ± 2.66 92.98 ± 4.91 91.12 ± 5.59 85.06 ± 9.00 77.24 ± 9.55

In this case, only from 20% of outliers the Adaline/LMS, Adaline/NLMS
and KAdatron algorithms suffered from performance degradation. The Ada-
line/NLMM classifier and mainly the Adaline/LMM classifier suffered less re-
duction in the mean accuracy rate when compared to the other classifiers. Similar
behavior was observed for 30% of outliers. Once again the Adaline/KLMS and
the Adaline/NKLMS classifiers did not achieve good overall results.

Concerning the results achieved by the Adaline/KLMS and Adaline/NKLMS
classifiers when compared with Adaline/LMM, Adaline/NLMM, KAdatron and
even with Adaline/LMS and Adaline/NLMS, they did not achieved good re-
sults. One possible explanation might be our choice of a linear kernel, as those
methods were originally proposed mainly for non-linear applications with Gaus-
sian and polynomial kernels [8,12]. It is also interesting to notice that although
the KAdatron classifier algorithm obtained good results in the scenarios with-
out outliers (for the Column dataset it was the best method), its results were
strongly affected when for the scenarios with outliers.

4 Conclusion

In the present paper we evaluated several variants of the LMS learning rule to
obtain different Adaline-like classifiers. The methods were evaluated for binary
classification with outliers added during training, to check their robustness. After
the experiments, the performances of Adaline/LMM and Adaline/NLMM clas-
sifiers exceeded the other techniques as the number of outliers was increased.
The obtained results indicate the feasibility of the application in robust pattern
recognition of algorithms usually related to filtering and regression problems. For
instance, to the best of our knowledge, this is the first time the LMM, NLMM,
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KLMS and NKLMS learning rules are applied to classification in the presence of
outliers. Currently we are applying the concepts presented in this paper to add
robustness to nonlinear classifiers, such as the Extreme Learning Machine.
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