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guilherme@deti.ufc.br

Abstract. The Forward Stagewise Regression (FSR) algorithm is a pop-
ular procedure to generate sparse linear regression models. However, the
standard FSR assumes that the data are fully observed. This assumption
is often flawed and pre-processing steps are applied to the dataset so that
FSR can be used. In this paper, we extend the FSR algorithm to directly
handle datasets with partially observed feature vectors, dismissing the
need for the data to be pre-processed. Experiments were carried out on
real-world datasets and the proposed method reported promising results
when compared to the usual strategies for handling incomplete data.

1 Introduction

Missing data is a common occurrence in many real-world domains that may
have a significant effect on the results of machine learning algorithms. Roughly
speaking, in the problem of learning from incomplete datasets, a machine learn-
ing algorithm has to learn from input vectors where some of its attributes are
unknown. Possible reasons for the absence of these attributes are transmission
and storage problems, operator failure, measurement error and etc [1].

According to Little and Rubin in [2], understanding the missingness mech-
anism is fundamental to the task of designing solutions to handle the missing
data problem. Missing data mechanisms are usually classified into three main
groups: Missing Completely at Random (MCAR), Missing at Random (MAR)
and Not Missing at Random (NMAR). In MCAR, the missingness of a com-
ponent is independent of its real value and any value of other components on
the dataset. This characterization is often seen as very restrictive and various
authors consider that it is very unlikely in real-world applications [3]. A more
realistic approach is the MAR mechanism. In MAR, the missingness of a compo-
nent is independent of the value itself but can be related to the observed values.



Finally, MNAR characterizes a whole different situation where the instance is
not missing at random. In MNAR the missing probability is related to the value
of the missing component and handling such problems usually requires a model
of the missingness mechanism. In this work, we consider the case where the prob-
ability of a component being missing is not related to its value, hence we adopt
the less restrictive option, assuming that the missing data is MAR.

Considering the MAR framework, the simplest strategy to handle missing
data is the Listwise Deletion (LD). In this method, only fully observed input
vectors are used to build the learning model. Although LD is simple and popular,
it may lead to poor modeling as the number of vectors with missing components
increases [4]. In such cases, a better solution consists in filling the missing compo-
nents with likely values. The so-called imputation strategies comprise a variety
of methods mostly based on either probabilistic models or regression methods
[4]. In the probabilistic approach, the vectors in the dataset are assumed to
be i.i.d. random variables and inference is carried out to estimate the missing
values. The Conditional Mean Imputation (CMI, [5]) is a widely used statistical
imputation method in which the missing components are filled according to their
expected values given the observed components of the same vector. In general,
one can assume the data follow any distribution, being the multivariate normal
distribution the most common use.

It is worth noting that, in the context of machine learning, data imputation
based methods consist of pre-processing steps, i.e., the learning process only
starts when the missing data vectors are filled or deleted. Recently, [6] and [1]
propose variants of machine learning methods that can handle missing data
directly and thus do not require any pre-processing step. In addition to being
elegant solutions, those methods also achieved promising results.

The Forward Stagewise Regression (FSR, [8]) algorithm is a linear regression
sparse model. According to Hastie et. al [9], there are two main reasons that
explain why sparse linear models are preferable to non-sparse ones (e.g., linear
models coupled with least-squares estimation). First, sparse models often pro-
duce lower variance predictions, and hence good generalization. Second, models
with reduced number of nonzero coefficients tend to represent only strong effects
of the data, thus eliminating details that may be important to a further analy-
sis. The FSR follows a strategy for constructing a sequence of sparse regression
estimates: it starts with all coefficients equal to zero, and iteratively updates the
coefficient of the variable that achieves the maximal correlation with the current
residual [7].

In this paper we propose a new variant of the FSR algorithm with a built-in
mechanism to handle missing data. The proposed model is based on the estima-
tion of the expected correlations between each feature and the vector of residuals
at each iteration. To compute the necessary steps, we assume that the data are
normally distributed. Results show that our method is able to outperform LD
and CMI strategies in various real-world datasets.

The remainder of the paper is organized as follows. Section 2 overviews the
FSR algorithm. Section 3 introduces the proposed method to extend the FSR



to incomplete data. Section 4 reports the empirical assessment of the proposal,
comparing it to the CMI and LD strategies. Conclusions are given in Section 5.

2 Forward Stagewise Regression

Consider a regression setup in which you are given a set D = {(xi, yi)}Ni=1

of input/output training examples, such that x1, · · · ,xN are p-dimensional in-
put column vectors and y1, · · · , yN are their respective scalar outputs. Fur-
thermore, define the N × p matrix X = [x1, · · · ,xN ]T and the column vector
y = [y1, · · · , yN ]T . We assume a linear relationship between the input and output
variables (a linear model) of the form:

y = Xθ + r, (1)

where r ∈ RN denotes a column vector of residuals and θ = [θ1, · · · θp]T repre-
sents the parameters of the linear model.

The goal in sparse linear estimation is to provide an estimate θ̂ of the pa-
rameters θ such that the l2-norm of the residuals is small while having as many
as possible entries in θ̂ with values equal to zero. This is usually achieved by the
following minimization problem:

θ̂ = arg min
θ′
‖y −Xθ′‖2 + λ‖θ′‖1, (2)

where ‖·‖2 and ‖·‖1 denote the l2 and l1 norms, respectively, and we use θ′ to dis-
tinguish from the actual parameter vector. This formulation leads to a quadratic
programming problem and thus many numerical methods can be used to solve
it [8]. Among the various methods, the Forward Stagewise Regression algorithm
leads to an approximate solution by means of simple iteractive procedure.

The Forward Stagewise Regression algorithm computes θ̂ by iteratively se-
lecting and increasing the value of one of its coefficients θ̂j according to the
correlation between Xj and a vector of residuals r. Henceforth, we use Xj to
denote the jth column of X, that is, Xj = [x1j , x2j , · · · , xNj ]

T . In other words,
Xj comprises the values of the jth feature of all input points. At the beginning

of the FSR, the estimates θ̂ are set to zero so that the vector r reduces to y. At
each iteration, both parameters and residuals are updated. The FSR algorithm
is detailed in the following steps:

1. Start with θ̂(0) = 0 and r(0) = y. In addition, standardize the columns of X
to have zero mean and unit variance.

2. For each iteration t = 1, 2, . . .
3. Find the feature index j ∈ {1, · · · , p} most correlated with the residual

variable at instant t− 1 *.

* We are assuming that the vectors {xi} are realizations of a p-dimensional random
variable. Likewise, r comprises N samples from the residual random variable. We
use the method-of-moments estimator for the correlation between jth variable and
the residual variable, that is, 1

N
XT

j r.



4. Update the parameter estimate according to:

θ̂
(t)
j ← θ̂

(t−1)
j + δ

(t)
j , such that δ

(t)
j =

{
ε, if XT

j r
(t−1) > 0,

−ε, otherwise.
, (3)

where the step-size ε > 0 is a pre-defined constant.
5. Update the vector of residuals as follows:

r(t) ← r(t−1) − δ(t)j Xj . (4)

6. Go back to step 2 until the residuals are uncorrelated with all the predictors.

3 Proposed Method

We now consider the case where some instances of X have one or more missing
entries. We are interested in reformulating the FSR algorithm to handle such
case. In this matter, we first need to tackle the problem of estimating the corre-
lation between the j-th feature and the residual variable, i.e., the value of XT

j r
when some entries of Xj and/or r are missing. Under this scenario, we can con-
sider the missing components of X as random variables. Thus, in the general
case where any entry of X can be missing, the expected value of the desired
correlation is given by

E
[
XT

j r
]

= E
[
XT

j y −XT
j Xθ

]
= E[XT

j y]− E[XT
j Xθ]

=

N∑
i=1

(
yiE[xi,j ]

)
−

N∑
i=1

(
E[xi,jx

T
i θ]
)

=

N∑
i=1

(
yiE[xi,j ]− E[xi,j ]E[xT

i θ] + Cov[xi,j ,x
T
i θ]
)

=

N∑
i=1

(
yiE[xi,j ]−

(
E[xi,j ]

p∑
k=1

θkE[xi,k] +

p∑
k=1

θkCov[xi,k, xi,j ]

))

=

N∑
i=1

(
yiE[xi,j ]−

p∑
k=1

θk
(
E[xi,k]E[xi,j ] + Cov[xi,j , xi,k]

))
(5)

In the missing data scenario, there is uncertainty only on the unobserved/missing
entries of X, as the observed values are constants, i.e., E[xi,j ] = xi,j if xi,j is not
missing. Likewise, Cov[xi,j , xi,k] = 0 if xi,j or xi,k are not missing.

Eq. (5) expresses the expected correlation as a function of the expected values
of the inputs and the covariance between different attributes of the same input
vector. Let Mi denote the indices of the unobserved entries of xi. Furthermore,
let Oi = {1, . . . , p} \ Mi. Thus, the vector xi can be divided into two parts
[xi,Oi ,xi,Mi ].



We are interested in computing the expected value of Xjr conditioned on
the observed values of X. For that, as shown in Eq. (5), we need to compute the
expected value of, and the covariance between, the missing entries of each train-
ing point xi conditioned on the observed entries of the same vector, compactly
written as E[xi,Mi

|xi,Oi
] and Cov[xi,Mi

|xi,Oi
].

According to [1], under the assumption that xi ∼ N (µ,Σ), we can obtain
E[xi,Mi

|xi,Oi
] and Cov[xi,Mi

|xi,Oi
] as follows:

E[xi,M |xi,O] = µM + ΣMOΣ
−1
OO(xi,O − µO), (6)

Cov[xi,M |xi,O] = ΣMM −ΣMOΣ
−1
OOΣOM , (7)

where we omitted the dependence of i in M and O for simplicity. The subscripts
OO, OM , MO and MM refer to the subsets of the full covariance matrix Σ
between missing and observed variables of xi. Additional details can be found
in [1]

The FSR for incomplete data can be summarized as follows:

1. Start with θ̂(0) = 0 and r(0) = y. In addition, standardize the columns of X
to have zero mean and unit variance.

2. For each iteration t = 1, 2, . . .
3. Find the feature index j most correlated with the residual variable at instant
t− 1:

j = arg min
k=1,...,p

E[Xkr
(t−1)|XO], (8)

where XO refers to all pairs of indexes (i, j) at which xi,j is observed.
4. Update the parameter estimate according to:

θ̂
(t)
j ← θ̂

(t−1)
j + δ

(t)
j , such that δ

(t)
j =

{
ε, if E[Xjr

(t−1)|XO] > 0,

−ε, otherwise.
.

(9)
5. Update the vector of residuals as follows:

r(t) ← r(t−1) − δ(t)j E[Xj |XO]. (10)

6. Go back to step 2 until the residuals are uncorrelated with all the predictors.

Remarkably, Eq. (5) can be written concisely as:

E
[
Xjr

]
= E

[
Xj

]T
y − E

[
Xj

]TE[X]θ − N∑
i=1

eTj Cov[xi]θ (11)

where ej is the jth vector of the canonical basis of Rp and Cov[xi] is the full co-
variance matrix of the example xi (which is the covariance matrix of the missing
entries padded with zeros in the components related to the observed entries).

Therefore, one can conclude that the proposed method differs from common
imputation strategies as the last term in Eq. (11) takes into account the uncer-
tainty concerning the missing data entries.



4 Performance Evaluation

To asses the performance of the proposed method, named Forward Stagewise
Regression for Incomplete datasets (FSRI), we carried out a set of experiments
with 5 arbitrary real-world datasets, available at [10]. We compare FSRI to
standard methods used to handle missing data. For each dataset, we varied the
amount of inputs with missing variable from 10% to 50%. The description of the
datasets is presented in Table 1.

Table 1. Datasets description.

# Features # Training samples # Test samples
Wine 13 100 78
CPU 9 139 70
Cancer 32 129 65
Automobile Price 15 106 53
Forest Fire 4 344 173

The FSRI was compared to the Listwise Deletion (LD) and the Conditional
Mean Imputation (CMI). Both CMI and LD were used as pre-processing steps
and the standard FSR was used to generate the linear models. For FSRI and
CMI, we estimate the parameters of the data distribution using the Expectation
Conditional Maximization (ECM, [5]) algorithm for datasets with missing values.

All methods were compared based on two criteria, the Mean Square Error
(MSE) between y and the results of each model and Mean Squared Difference
between the Coefficients (MSDC) of each linear model and the linear model ob-
tained by a FSR on the same dataset without missing values. All experiments
were repeated 500 times. Table 2 shows the average MSE obtained in the exper-
iments.

Beforehand, it is important to clarify that some of the LD results are not
filled which indicates that the FSR algorithm was not able to converge due
to the significant number of discarded examples. Concerning the other AMSE
values, one can see that the average MSE for all methods increase as the number
of missing data increases. However, it is noticeable that FSRI had the lowest
AMSE for all datasets and missing data percentages. This performance gap is
even more significant in the experiments with the highest number of missing
data.

Along with the MSE, we computed the MSDC metric to quantify the dif-
ference between the linear model generated by each method and an ideal linear
model obtained by a FSR on a complete (no missing data) dataset. We decided
to compare the methods on several instants during the learning process. The
instants are defined according to the norm of the weights generated by each
method. We considered the norm obtained by the FSR in the complete dataset
as the maximum norm and evaluated all method at 3 different ratios of this
norm. Such procedure was adopted to provide a fair comparison since different



methods show weight vectors with varying norms at each iteration. Tables 3, 4
and 5 show the MSDC values for the ratios 0.3, 0.45 and 0.6.

As can be noticed, the difference between the weight vectors generated by
each method and the ideal linear model increased with the number of missing
data. Once again FSRI had the best overall performance being less sensible to
the presence of missing data.

Table 2. Average MSE between the outputs of each linear model and the target
outputs. The number of input vectors with missing entries varies from 10% to 50%.

Wine
10% 20% 30% 40% 50%

FSRI 6.3404 6.5319 6.7531 7.3600 8.1164
CMI 6.6190 7.5510 10.7476 22.9362 54.9262
LD 12.0314 23.6968 35.8139 - -

CPU
10% 20% 30% 40% 50%

FSRI 2.7838e+05 2.8849e+05 2.9230e+05 3.2206e+05 3.2950e+05
CMI 2.8381e+05 3.0676e+05 3.4010e+05 4.5708e+05 6.2148e+05
LD 3.3261e+05 4.1271e+05 7.8900e+05 1.3920e+06 -

Automobile Price
10% 20% 30% 40% 50%

FSRI 4.2238e+08 4.2386e+08 4.1773e+08 4.2275e+08 4.1695e+08
CMI 4.4615e+08 4.9690e+08 7.7811e+08 1.8076e+09 3.4648e+09
LD 1.5076e+09 1.1875e+09 - - -

Cancer
10% 20% 30% 40% 50%

FSRI 8.5119e+04 8.2159e+04 8.0475e+04 7.9577e+04 7.7541e+04
CMI 9.2285e+04 9.4305e+04 9.9716e+04 1.1450e+05 1.6995e+05
LD 1.4298e+05 - - - -

Forest-Fire
10% 20% 30% 40% 50%

FSRI 6.4320e+05 6.7355e+05 6.8613e+05 6.9128e+05 7.0489e+05
CMI 6.4374e+05 6.7554e+05 6.9017e+05 6.9693e+05 7.1871e+05
LD 6.4787e+05 7.2750e+05 9.2299e+05 1.2284e+06 1.6003e+06



Table 3. Average MSDC between each linear model and the linear model obtained by
a FSR on the same dataset. In this experiment we set 0.30 of the maximum norm as
the comparison point

Wine
10% 20% 30% 40% 50%

FSRI 0.0028 0.0060 0.0114 0.0168 0.0297
CMI 0.0031 0.0077 0.0151 0.0232 0.0402
LD 0.0345 0.1261 0.2264 0.2236 0.2635

CPU
10% 20% 30% 40% 50%

FSRI 949.5511 1642.1833 2362.9053 2609.0817 2905.4348
CMI 994.5057 1767.8236 2581.6698 2890.8464 3208.9734
LD 2858.6407 4416.8752 4713.3837 5112.4878 5491.9145

Automobile Price
10% 20% 30% 40% 50%

FSRI 4.99136e+05 7.89447e+05 1.37572e+06 1.64525e+06 2.34146e+06
CMI 5.38478e+05 9.24256e+05 1.65136e+06 2.06429e+06 3.04505e+06
LD 6.07145e+06 1.43461e+07 1.09962e+07 1.48738e+07 2.57570e+07

Cancer
10% 20% 30% 40% 50%

FSRI 315.5959 689.3359 879.4547 939.1615 941.2634
CMI 321.0407 714.4983 984.0727 1214.7930 1433.9887
LD 2738.7149 - - - -

Forest-Fire
10% 20% 30% 40% 50%

FSRI 1.3064 2.6853 3.1192 4.2199 5.1891
CMI 1.3349 2.9743 3.6451 5.192 6.3540
LD 1.3788 3.7616 7.3096 10.2142 12.6646

Table 4. Average MSDC between each linear model and the linear model obtained by
a FSR on the same dataset. In this experiment we set 0.45 of the maximum norm as
the comparison point

Wine
10% 20% 30% 40% 50%

FSRI 0.0033 0.0065 0.0125 0.0194 0.0348
CMI 0.0032 0.0087 0.0179 0.0283 0.0520
LD 0.0425 0.1681 0.3012 0.3126 0.2575

CPU
10% 20% 30% 40% 50%

FSRI 1277.7359 2385.4040 3638.0817 4105.8572 4838.1707
CMI 1370.3084 2707.6797 4261.6337 4913.7103 5758.5741
LD 4757.6309 7546.5486 8578.5215 9597.8471 11329.4762

Automobile Price
10% 20% 30% 40% 50%

FSRI 6.39862e+05 1.08062e+06 1.88349e+06 2.19982e+06 3.00759e+06
CMI 6.97030e+05 1.26571e+06 2.29862e+06 2.74333e+06 3.96610e+06
LD 7.66190e+06 1.52016e+07 2.54035e+07 2.24063e+07 -

Cancer
10% 20% 30% 40% 50%

FSRI 815.4529 1432.2428 1835.1505 1571.4583 1542.1451
CMI 859.2785 1783.3939 2393.9583 2772.8872 3309.5005
LD 5932.4867 - - - -

Forest-Fire
10% 20% 30% 40% 50%

FSRI 1.8247 3.6323 4.1453 5.2285 7.4526
CMI 1.8937 4.2270 5.4768 8.0466 10.3822
LD 2.3055 6.5959 13.2102 18.6168 23.3338



Table 5. Average MSDC between each linear model and the linear model obtained by
a FSR on the same dataset. In this experiment we set 0.60 of the maximum norm as
the comparison point

Wine
10% 20% 30% 40% 50%

FSRI 0.0033 0.0084 0.0169 0.0262 0.0426
CMI 0.0037 0.0104 0.0221 0.0350 0.0630
LD 0.0511 0.1926 0.3183 0.5117 -

CPU
10% 20% 30% 40% 50%

FSRI 1191.6427 2369.9071 3796.9097 4585.2540 5591.5145
CMI 1313.4053 2841.6674 4745.0750 5810.1135 7133.1241
LD 5174.1832 8978.9877 11144.0691 12598.5600 18165.6937

Automobile Price
10% 20% 30% 40% 50%

FSRI 8.20843e+05 1.55785e+06 2.47574e+06 3.08841e+06 3.95091e+06
CMI 8.92548e+05 1.80668e+06 3.03822e+06 3.66187e+06 5.14811e+06
LD 9.34456e+06 1.83650e+07 2.34479e+07 - -

Cancer
10% 20% 30% 40% 50%

FSRI 1471.5130 2002.8079 2187.5142 2280.6016 1995.2143
CMI 1561.4253 2983.8447 4298.5120 4711.2356 5891.7460
LD 7616.6000 - - - -

Forest-Fire
10% 20% 30% 40% 50%

FSRI 2.0451 4.1852 4.8350 5.6707 9.1165
CMI 2.1624 5.2306 6.8008 10.2454 14.4056
LD 3.2613 9.3837 20.2777 28.8248 36.5733

5 Conclusions

In this paper we proposed a variant of the Forward Stagewise Regression al-
gorithm for incomplete datatsets. In the proposed method, named FSRI, we
considered the inputs as normally distributed random variables and modified
the steps of FSR such that weights are incremented according to the expected
correlation of the residuals and each of the features. FSRI was compared to
popular strategies to handle missing values and achieved promising results.

It is worth highlighting that the performance of FSRI can be significantly
degraded if the normality assumption of the training set does not hold. Hence we
are currently working to extend the FSRI formulation for non-Gaussian datasets
using nonparametric/semi-parametric models
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