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Abstract 

This paper introduces the concept of dynamic em- 
bedding manifold (DEM), which allows the Kohonen 
self-organizing map (SOM) to learn dynamic, nonlin- 
ear input-ouput mappings. The combination of the 
DEM concept with the SOM results in a new mod- 
elling technique that we called Vector-Quantized Tem- 
poral Associative Memory (VQTAM). We use VQTAM 
to propose an unsupervised neural algorithm called 
Self-Organizing N A R X  (SONARX) network. The 
SONARX network is evaluated on the problem of mod- 
eling and prediction of three chaotic time series and 
compared with MLP, RBF and autoregressive (AR) 
models. Its is shown that SONARX exhibits similar 
performance when compared to MLP and RBF, while 
producing much better results than the AR model. The 
influence of the number of neurons, the memory order, 
the number of training epochs and the size of the train- 
ing set in the final prediction error is also evaluated. 

1 Introduction 

The ability to handle spatiotemporal data is a require- 
ment for an artificial device (model) trying to infer any 
dynamical properties of the system under study. The 
observed signals, generated by nonlinear dynamic sys- 
tems, may be very complex. Examples of such a com- 
plexity are given by time series that possess a chaotic 
nature. Artificial neural networks, as computational 
models of learning and memory in living organisms, 
should be capable of dealing with such complex spa- 
tiotemporal data. In particular, the use of nonlinear 
neural models opens the door. to study modeling and 
prediction of chaotic time series. 

This task poses an important question: can prediction 
of a chaotic signal (here defined as a time series gen- 
erated by a nonlinear dynamical system with a low di- 
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The remaining of the paper is organized as follows. In 
Section 2 we briefly describe how the Kohonen SOM 
can be used to learn static input-output mappings. In 
Section 3 we present several ways of introducing the 
temporal dimension into the SOM and introduce the 
concept of dynamic embedding manifold. In Section 4 
we discuss the issue of modeling chaotic time series. In 
Section 5 several simulations are carried out using the 
SO-NARX network in one-step-ahead prediction tasks. 
The paper is concluded in Section 6 .  
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mension attractor) provide any knowledge about the 
system that produces the time series? It is known that 
the dynamical system is a map that relates the current 
state with the previous ones in state space. Therefore, 
when a model predicts the next point in state space, it 
aims to identify the map that characterizes the original 
dynamical system. The problem is that the map is not 
guaranteed to be unique when one uses a finite num- 
ber of state space points. The other problem is that 
the map may be very complex and nonlinear, therefore 
there is no guarantee to identify the map with sufficient 
accuracy through prediction. 

This paper shows how to use the Kohonen self- 
organizing map (SOM) [l] to learn nonlinear dynamic 
mappings such as those associated with chaotic time 
series. We propose the concept of dynamic embedding 
manifold (DEM). The combination of the DEM con- 
cept with the SOM results in a new modelling tech- 
nique that we called Vector-Quantized Temporal Asso- 
ciative Memory (VQTAM). We use VQTAM technique 
to propose an unsupervised neural algorithm called 
Self-Organizing N A R X  (SONARX) network. With the 
SO-NARX network it is possible to identify the dynam- 
ics of nonlinear dynamic systems using the one-step 
prediction framework on a segment of the chaotic time 
series. 
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2 The Self-organizing Map 

The neurons in the SOM are arranged in an output 
layer A with fixed topology, i.e., in one, two and 
even in three-dimensional configurations. Each neu- 
ron i E A is associated with a weight vector w, = 
[wZl w22 ... E 9F with the same dimen- 
sion as the input vector x = [ Q , x ~ ,  . . . , 2nIT E R". 
Through an unsupervised learning process, the output 
neurons become tuned and organized after several pre- 
sentations of the data. The learning algorithm that 
leads to self-organization can be summarized in two 
steps: (i) Search for the winning neuron, i', and (ii) 
weight adaptation. The first step is competitive, while 
the second one is cooperative. 

~ 

2.1 Learning Stat ic  Input-Output Mappings 
The SOM algorithm has beenmostly applied to pat- 
tern recognition tasks which involves clustering or cat- 
egorization, classification and data visualization. More 
recently, the SOM has been extended to learn static 
input-output mappings. This is possible through the 
concept of embedding manifold [2]. Mathematically, the 
embedding manifold, Xemb, is the result of the Carte- 
sian product of the input space Xi" and the output 
space Xout: 

c !Rd (1) Xemb = Xin Xout - 

where d = dim(XZn) + dim(Xout). The dimensions of 
the input and output spaces do not need to be the same. . 
Generally speaking, the joint distribution of the input- 
output data belong to a nonlinear manifold which is 
embedded in the augmented input space Sd.  

The practical effect of this definition is that the input 
vector xin(t) E Xi" and the output vector ,Out(,) E 
x o u t  are put together to form a single, augmented in- 
put vector xema(t) E Xemb. In other words, the net- 
work input vector and the weight vector of a neuron i 
in the SOM has their dimensions increased to include 
de output data, being described now as follows: 

For example, to learn the inverse kinematics of an in- 
dustrial robot arm [2], the input vector xi" can be the 
Cartesian position of the end-effector, while the out- 
put vector xout(t) can be the joint angles. For train- 
ing purpose, the winning neurons are found using xemb 
or, more commonly, using only the portion correspond- 
ing to xin. The input vector xin is used to update 
the weights win, while xoUt updates the weights woUt. 
As the training evolves, the SOM learns to associate a 

given output signal with the corresponding input, while 
performing vector quantization of the input and output 
spaces. For this reason, we refer to this technique as 
Vector Quantized Associative Memory (VQAM). It is 
worth noting that standard supervised neural networs 
such as MLP and RBF learn an input-output map- 
ping through error correction schemes, while the SOM 
learns it via the VQAM memory scheme. The element 
responsible for the "connection" of the input space Xi" 
with the output Xout is the winning neuron i'. 

3 Time in the SOM 

A major characteristic of the standard SOM described 
in the previous section is that it can only learn an input- 
output mapping that is static. That is, those mappings 
that can be represented as follows: 

Y(t) = f(x(t)) 
where x(t) and y(t)  represent the system input and out- 
put, respectively. For a neural network to be dynamic, 
it must be given me-mory about past states of the sys- 
tem being modeled. Currently, four techniques have 
been used in order to enable the SOM to process tem- 
poral data. The first one adds temporal information 
to the input of the SOM through the use of delay lines 
and leaky integrators [3]. The second technique adds 
temporal information internally to the network in the 
activation and/or learning rules [4]. The third tech- 
nique uses SOMs hierarchically, trying to capture spa- 
tiotemporal aspects of the input through successive re- 
finements [5]. The fourth approach uses a feedback 
loop to insert temporal information into the SOM [6].  

3.1 Learning Dynamic Input-Output Mappings 
In this section we propose to extend the concept of 
embedding manifold in order to take into account tem- 
poral aspects. In a simple notation, we have: 

X""b(t) x y t )  x XO"t(t) 

where Xemb(.) is called dynamic embedding manifold 
(DEM). The main novelty is the inclusion of temporal 
dependence in each one of the involved spaces, Xin(t) 
and Xout(t). Thus, the augmented vector xemb(t) 
=[xi"(t) xoUt (t)lT contains now information about cur- 
rent and past states of the system. This memory mech- 
anism can assume the form of time delays and/or leaky 
integrators. 

With the inclusion of time into the embedding mani- 
fold, the SOM can now be used to approximate input- 
output mappings such as those described by: 

Y(t> = f(x(t), . . . ,x( t  - d ; y ( t  - 11,. . . ,Y(t -PI) (2) 
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where p and q are the orders of the input and output, 
respectively. The ideia underlying the concept of em- 
bedding manifold also applies here. The only difference 
is that the nature of the association between X i n ( t )  
and X""'(t) is not only spatial but also temporal. For 
this reason, we refer to this technique as vector quan- 
tized temporal associative memory (VQTAM). As an 
illustrative example of the power of the VQTAM tech- 
nique, we use the standard SOM to perform nonlinear 
modelling and prediction of chaotic time series. 

4 The SONARX Network  

Consider a scalar time series denoted by { y ( t ) } ,  which 
is described by a special case of Eq. (2), called nonlin- 
ear regressive model of order p as follows: 

?At) = f ( y ( n  - 11, Y(n  - 21,. . ., Y(n  - P I )  + 4 t )  (3) 

where f is a nonlinear function of its arguments and 
E is a residual which is included to take into account 
any modeling uncertainty and/or noise. It is assumed 
that E ( t )  is drawn from a white Gaussian noise pro- 
cess. The nonlinear function f is unknown, and the 
only thing that we have available is a set of observables: 
y(l), y(2), . . . , y(N), where N is the total length of the 
time series. The requirement is to construct a physical 
model of the time series, given this data set. To do so, 
we propose to use the SOM with the DEM concept as a 
one-step predictor of some order p .  Since this network 
is able to approximate nonlinear input-ouput mappings 
such as those described by Eq. (2), we refer to it as the 
Self-Organizing NARX (SONARX) network, as being 
the unsupervised version of the NARX network [7]. 

For training purpose, the past p samples y ( n  - l),  
y(n-2), . . ., y ( n - p )  form the SONARX network input 
vector xin(t), while the output vector xoUt is defined 
as the future sample y ( t ) .  Then, we have: 

x2"W = [y( t -  l> ,Y( t -2) , . . . ,y ( t -P) ]  
xout(t)  = y ( t + T )  

where T defines the horizon of prediction., In this pa- 
per, we set T = l. The winning neuron i* is determined 
on the basis of the input vector x in( t ) :  

i*(t) = argmin{llxin(t) 2 - wi"(t)ll} (4) 

The weight vectors are adjusted as follows: 

wfn(t + 1) = wfn(t)  + a(t)[xin(t) - Wi"(t)] 
wp"'(t + 1) = w p y t )  + a'(t)[x""t(t)  - w p y t ) ]  

for all neurons i belonging to the neighborhood of the 
winning unit i*. The parameters 0 < a(t) ,  a'(t) 5 1 are 
the learning rates associated with wi*( t )  and w;"'(t), 
respectively. During the test phase, the input vector 
xi"( t )  is formed with p past unseen samples,'the win- 
ning unit is found according to Eq. (4), and the one- 
step-ahead estimate of the time series is recovered from 
w y  (t ) : 

$(t)  w F t ( t )  

This is an feedforward prediction scheme in the sense 
that the actual output of the network is not fed back 
to  the input during prediction. The VQTAM approach 
used to train the SO-NARX network evolves so as to 
associate the current value of the time series with its 
predecessors. Due to the nature of the SOM learn- 
ing, this association converges to a steady state that 
minimizes the squared value of the prediction error, 
e ( t )  = y ( t )  - $(t) ,  p + 1 5 t 5 N in a topology- 
preserving sense. 

4.1 Three Chao t i c  T i m e  Series 
Modeling and prediction of chaotic time series is still 
a relatively new research topic, dating back to 1987 
[8]. The interesting point about this field is that, even 
under noise-free conditions, a chaotic system shows an 
apparently random behavior, but may still be modeled 
using techniques from nonlinear deterministic system 
identification. However, even with perfect modeling of 
the dynamical behavior of the system in the noise free 
case, only short-term predictions are possible due to the 
extreme sensitivity of chaotic systems to  uncertainties 
in initial conditions. In this paper, three well-known 
chaotic time series widely used as benchmarks are con- 
sidered: the Mackey-Glass time series [9], the Lorenz 
time series [ lo] ,  and the chaotic laser time series [11]. 
For all time series a total of 3000 samples were used 
and scaled between [-1,1]. Each series was further di- 
vided into two sets for cross-validation purpose: 2000 
samples for training and 1000 samples for testing. 

5 Simulations 

An unidimensional SO-NARX with 400 neurons is 
trained for 250 epochs. Each epoch consists of one pre- 
sentation of the entire sequence minus the r first sam- 
ples. The established criterion to compare one-step- 
ahead predictors is based on the normalized average 
prediction error, pe = & C i Z 1 ( & ( i )  - ~ ( i ) ) ~ ,  where 
2 ( i )  is the predicted value, ~ ( i )  is the actual value of 
the sample, M is the number of samples and u2 is the 
variance of the time series. The first set of tests is 
concerned with the determination of the order p of the 

M 
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memory for the vector xi"(t) .  Figure 1 shows the result 
for the Mackey-Glass time series. The prediction errors 
were computed for 800 time steps, and the minimum 
value was found for p = 2. For the Lorenz and Laser 
time series the minimum value of the prediction error 
ocurred for p = 3. 

I 

O B  "'t 

003 , , , , , , , , 

Figure 1: Determination of memory order of SO-NARX 
for the Mackey-Glass time series. 

A sample of the Laser time series used for testing the 
SONARX together with the predicted values is shown 
in the Figures 2a and 2b for p = 1 and p = 3 (best value 
suggested by SONARX for this time series), respec- 
tively. The histograms of the prediction errors p e ( t )  
for the Mackey-Glass time series and the correspond- 
ing autocorrelation functions are shown in Figures 3a,b 
and 4a,b, respectively. The analysis of the residuals can 
be used to help choosing an adequate memory order. 
For example, the histogram for the SO-NARX network 
with p = 2 is more similar to a Gaussian distribution 
than that for p = 1. Furthermore, the autocorrelation 
function for p = '2 indicates that the prediction errors 
are less correlated than those for p = 1. These graphics 
confirms that the memory order to model correctly the 
Mackey-Glass time with the SO-NARX network should 
be p = 2. 

The next simulations evaluate the sensitivity of the SO- 
NARX to several parameters such as the number of 
neurons, the length of the training sequence, and- the 
number of training epochs. Figure 5 shows the evo- 
lution of the final prediction error for the Laser time 
series as the number of neurons increase from 1 to 1000. 
The prediction error decays exponentially fast and sta- 
bilizes around 500 neurons. From this value onwards, 
larger changes in the number of neurons result in very 
small changes in the final prediction error. The same 
behavior occurs for the other two time series. 

Figure 6 shows the evolution of the final prediction er- 
ror for the Laser time series as the number of training 

Figure 2: Predicted (solid line) and actual (dotted line) 
test samples of the Laser time series for (a) p = 
1 and'(b) p = 3. 

epochs increase from 1 to 500. The prediction error 
decays exponentially very fast and stabilizes after 150 
epochs. From this quantity onwards, larger increments 
in the number of epochs result in very small changes in 
the final prediction error. In other words, this means 
that 150 epoch is sufficient for the SO-NARX to learn 
in a statistical sense the dynamics of the chaotic sys- 
tem. The same behavior is observed for the other two 
series. 

Figure 7 shows the evolution of the final prediction er- 
ror for the Mackey-Glass and Lorenz time series as the 
number of training samples from 100 to 10000. For the 
Mackey-Glass time series the prediction error decays 
exponentially very fast and stabilizes after 5500 sam- 
ples. From this quantity onwards, larger increments in 
the number of samples result in very small changes in 
the final prediction error. For the Lorenz time series the 
prediction error reaches a minimum around 300 s a -  
ples only. From this value onwards, the prediction error 
increases in a very small rate until it stabilizes around 
5500 samples. The interpretation of the results shown 
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Figure 3: Histograms of the prediction errors e ( t ) ,  t = 
1,. . . , 800, for (a) p = 1, and (b) p = 2. 

in Figures 6 and 7 is as follows. Since the three time 
series are chaotic, the "randomness" that they exhib- 
ited does not go away by gathering more information 
after a certain number of training samples or epochs. 

The last simulation compares the SONARX with MLP 
and RBF networks and a linear AR model. The orders 
p = 49,20,33 of the AR model for the three time series 
were found by the AIC procedure [12] and the coeffi- 
cients were computed using a robust Bayesian method 
proposed in [13]. The MLP network has 7 units in the 
hidden layer and 1 unit in the output layer. The trans- 
fer function for all neurons in the hidden and output 
layers is the hyperbolic tangent function. The MLP 
was trained with the backpropagation learning algo- 
rithm with adaptive learning rate and momentum. The 
RBF network has 17 gaussian basis functions whose the 
centers were computed by the K-means algorithm, and 
1 output neuron whose weights were computed via the 
pseudoinverse method [14]. Number of input neurons of 
the MLP and RBF networks is equal to the dimension 

~ of xin. The results in Table 1 shows that it is possible 

(b) 

Figure 4: Autocorrelation functions of the prediction er- 
rors e ( t ) ,  t = 1,. . . ,800, for (a) p = 1,  and (b) 
p = 2. 

for the SONARX network, using a simpler formulation 
of the prediction task, to produce prediction errors of 
the same of order of magnitude of those produce by 
MLP and RBF networks. Furthermore, the SONARX 
network is faster to train than the MLP and RBF net- 
works for the same final prediction error. 

Table 1: SONARX versus MLP. RBF and AR models. 
Mackey-Glass Lorenz Laser 

SONARX 0.0034431 0.0028182 0.040541 
0.0011379 0.0011939 0.026615 
0.0077794 0.0015367 0.035016 

A R(.49,20,33) 0.64220 0.020582 0.81695 

6 Conclusion 

In this paper, we proposed a simple mathematical 
concept, called dynamic embedding manifold (DEM), 
which enables the Kohonen map to learn nonlinear, 
dynamic input-output mappings. The combined use 
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Figure 5: Evolution of the prediction error for the Laser 
series by increasing the number of neurons in 
the SONARX network. 

0 4 0  

Figure 6: Evolution of the prediction error for the Laser 
series as the number of epochs for training the 
SONARX network increases. 

of the SOM with the DEM concept results in a tech- 
nique that we called vec tor  quantized temporal associa- 
tive m e m o r y  (VQTAM). This technique was succesfully 
applied to the problem of modeling and prediction of 
chaotic time series. The VQTAM technique is quite 
general and can be used to learn input-output map- 
pings occurring in problems in which the temporal di- 
mension plays an essential role. Further studies are be- 
ing carried out in order to apply the concepts of DEM 
and VQTAM to sensorimotor learning and control. 
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