EDILBERTO ROCHA SILVEIRA

CONTRIBUIÇÃO AO CONHECIMENTO QUÍMICO DE PLANTAS NATIVAS DO NORDESTE <u>Croton sonderianus</u> Muell. Arg.

Dissertação apresentada ao Departamento de Quími ca Orgânica e Inorgânica do Centro de Ciências da Universidade Federal do Ceará, como requisito parcial para a obtenção do Grau de Mestre em Química.

> UNIVERSIDADE FEDERAL DO CEARÁ Fortaleza - Ceará 1979

À meus pais, e às minhas duas mulheres Veranísia e Patrícia

" O HOMEM é pluridimensional. Ele deve desenvolver-se em todas as suas dimen sões: cultural,econômica,social, políti ca, moral e religiosa. O HOMEM deve ser mais, e nunca menos, e jamais nada".

T. ENRIQUEZ

O trabalho apresentado nesta dissertação foi realizado sob a orientação do Prof. Afrânio Aragão Craveiro.

Desejariamos expressar a nossa gratidão;

Aos professores Afrânio A.Craveiro, Carlos Hum berto S,Andrade e José Wilson de Alencar, membros do Comitê de Tese, e particularmente ao primeiro, orientador responsável, pelo grau de amizade e simplicidade oferecido no transcorrer da orientação do trabalho desta dissertação.

Aos professores dos Cursos de Pós-Graduação e Graduação em Química da UFCe. que forneceram o embasamento teórico à nossa formação profissional, especialmente ao Prof. R.Braz Filho(UFRRJ,RJ) que nos introduziu e estimulou no estudo e pesquisa da Química Orgânica, além da contribui ção valiosa na discussão dos espectros de massa das substân cias fixas descritas, e outras discussões úteis.

Aos professores Fco.J.A.Matos e Ma. Iracema L. Machado pelas palavras de estímulo, informações e sugestões inestimáveis, e ao professor Afrânio G.Fernandes(UFCe) pela classificação do material em estudo e informações botânicas contidas no texto.

Também aos professores H.E.Gottlieb(Inst.Weissman ,Israel), P.Baker(NPPN, RJ), Ivone Mascarenhas(I.F.Q.São Carlos, SP.), J.McChesney(Univ. do Mississipi, USA.) e K. H. Pegel (Univ.Natal, África do Sul) pela significativa parcela de contribuição.

Aos colegas do Curso de Pós-Graduação que nos incentivaram, aos funcionários dos laboratórios, Central Analítica e Secretaria de Pós-Graduação, às Sras. Maria Vil<u>a</u> ni(datilógrafa) e Luiza Leão(bibliotecária) e a todas as pessoas que de qualquer maneira tenham influenciado positivamente no desenvolver do nosso trabalho.

vi

À CAPES, CNPq e BNB pelas bolsas de Graduação e Pós-Graduação e auxílios recebidos.

Em especial ao grande amigo Frei Lauro Schwarte, nosso orientador espiritual, ao qual, pelo exemplo de desp<u>o</u> jamento, devemos grande parte dos conceitos de disponibilidade e dedicação ao trabalho e à vida.

LISTA DE FIGURAS

	Página
FIGURA 1 - Mapa do Nordeste do Brasil co	m área
ocupada por <u>Croton</u> sonderianu	<u>s</u> 16
FIGURA 2 - Aspecto geral dos ramos e fol	has de
Croton sonderianus	17
FIGURA 3 - Espectro de RMN ¹³ C(desacopla	do)de MPE-1 27
FIGURA 4 - Espectro de RMN ¹³ C(com acop1	amento) de
MPE-1	28
FIGURA 5 - Espectro de RMN ¹ H de MPE-1	29
FIGURA 6 - Espectro no I.V. de MPE-1	29
FIGURA 7 - Espectro de massa de MPE-1	30
FIGURA 8 - Espectro no U.V. de MPE-1	30
FIGURA 9 - Espectro no I.V. de MPE/1/hid	rolisado 31
FIGURA 10 - Espectro de massa de MPE-1/hi	drolisado 31
FIGURA 11 - Espectro de RMN ¹ H de MPE-1/H	2-neutro 32
FIGURA 12 - Espectro no I.V. de MPE-/1H2-	neutro 33
FIGURA 13 - Espectro de massa de MPE-1/H2	-neutro 33
FIGURA 14 - Espectro de RMN ¹ H de MPE-1/H	2-ácido 34
FIGURA 15 - Espectro de massa de MPE-1/H2	-ácido 34
FIGURA 16 - Desenho estereoscópico de MPE	-1 38
FIGURA 17 - Espectro de massa de MPE-2	41
FIGURA 18 - Espectro de RMN ¹ H de MPE-2	42
FIGURA 19 - Espectro no I.V. de MPE-2	42
FIGURA 20 - Espectro de RMN ¹³ C(desacopla	do)
de MPE-3	47
FIGURA 21 - Espectro de RMN ¹³ C(com acop1	amento)
de MPE-3	48
FIGURA 22 - Espectro de massa de MPE-3	49
FIGURA 23 - Espectro de massa de MPE-3/H2	49
FIGURA 24 - Espectro de RMN ¹ H de MPE-3	50
FIGURA 25 - Espectro no I.V. de MPE-3	50
FIGURA 26 - Espectro de RMN ¹ H de MPE-3/H.	2 51
FIGURA 27 - Espectro no I.V. de MPE-3/H ₂ .	51
FIGURA 28 - Espectro no I.V. de MPE-3/Ha-1	met 52

FIGURA	29 -	Espectro no I.V. de amostra autên	
		tica de 3-oxo-12-metoxi-cleistanta-	
		8,11,13-trieno	52
FIGURA	30 -	Espectro de RMN ¹ H de MPE-3/H ₂ -met	53
FIGURA	31 -	Espectro de RMN ⁻¹ H de amostra au	
		têntica de 3-oxo-12-metoxi-cleis;-	
		tanta-8,11,13-trieno	53
FIGURA	32 -	Espectro de RMN ¹³ C(desacoplado)	
		de MPE-4	61
FIGURA	33 -	Espectro de RMN ¹³ C(com acoplamento)	
		de MPE-4	61
FIGURA	34 -	Espectro no I.V. de MPE-4	62
FIGURA	35 -	Espectro de massa de MPE-4	62
FIGURA	36 -	Espectro de RMN ¹ H de MPE-4	63
FIGURA	37 -	Espectro de massa de MPE-4/met	64
FIGURA	38 -	Espectro de massa de MPE-4/hidr <u>o</u>	
		lisado	64
FIGURA	39 -	Espectro de RMN ¹ H de MPE-4/met	65
FIGURA	4Ò -	Espectro no I.V. de MPE-4/met	65
FIGURA	41 -	Espectro de RMN ¹³ C(desacoplado)	
		de MPE-4/met	66
FIGURA	42 -	Espectro de massa de MPE-3/H ₂ -met	67
FIGURA	43 -	Espectro de massa da mistura rea-	
		cional de MPE-4/H ₂	67
FIGURA	44 -	Espectro de RMN ¹ H da mistura re <u>a</u>	
		cional de MPE-4/H ₂	68
FIGURA	45 -	Espectro de RMN ¹ H de MPE-4/hidro	
		lisado	69
FIGURA	46 -	Espectro no I.V. de MPE-4/hidroli	
		sado	69
FIGURA	47 -	Espectro de RMN ¹ H dos ácidos 1i-	
		vres do óleo fixo das sementes	73
FIGURA	48 -	Espectro de RMN ¹ H dos ésteres me	
		tílicos dos ácidos do óleo fixo	
Con Contraction		das sementes	73
FIGURA	49 -	Cromatograma (CGL) dos ésteres me	
		tílicos dos ácidos do óleo fixo	
		das sementes em coluna comum	74

Página

. viii

Página

FIGURA	50	-	Cromatograma (CGL) dos ésteres m <u>e</u>	
			tílicos dos ácidos do óleo fixo	
			das sementes em coluna capilar 74	ŀ
FIGURA	51	-	Espectro de massa de ins-OSMP 75	;
FIGURA	52	-	Espectro de massa de palmitato de	
			metila	;
FIGURA	53	-	Espectro de RMN ¹ H de ins-OSMP 76)
FIGURA	54	-	Espectro no I.V. de ins-OSMP 77	1
FIGURA	55	-	Espectro de massa de isoesterato	
			de metila 77	1
FIGURA	56	-	Espectro de massa do linolenato de	
			metila 77	1
FIGURA	57	-	Espectro de massa de linoleato de	
			metila	;
FIGURA	58	-	Espectro de massa de oleato de me	
			tila 78	;
FIGURA	59	-	Espectro de massa do araquidato de	
			metila 79)
FIGURA	60	-	Desenho do aparelho extrator de	
			óleos essenciais 82	!
FIGURA	61	-	Cromatograma(CGL) do óleo essenc <u>i</u>	
			al da casca do caule em coluna c <u>a</u>	
			pilar 83	;
FIGURA ~	62	-	Cromatograma (CGL) do óleo essen-	
			cial do lenho do caule em coluna	
			capilar	F
FIGURA	63	-	Espectro de massa do α-pineno 85	;
FIGURA	64	-	Espectro de massa do canfeno 85	,
FIGURA	65	-	Espectro de massa do β-pineno 86	,
 FIGURA	66	-	Espectro de massa do mirceno 86	,
FIGURA	67	-	Espectro de massa do limoneno 87	'
FIGURA	68	-	Espectro de massa do y-terpineno 87	1
FIGURA	69	-	Espectro de massa da cânfora 88	1
FIGURA	70	-	Espectro de massa do terpinen-4-ol 88	1
FIGURA	71	-	Espectro de massa do copaeno 89	1
FIGURA	72	-	Espectro de massa do β-elemeno 89	1

ix

Página

FIGURA 73	- Espectro de massa do α-gurjuneno	90
FIGURA 74	- Espectro de massa do cipereno	90
FIGURA 75	- Espectro de massa do β-cariofileno	91
FIGURA 76	- Espectro de massa do thujopseno	91
FIGURA 77	-Espectro de massa do trans-8-farneseno	92
FIGURA 78	-Espectro de massa do γ-cadineno	92
FIGURA 79	- Espectro de massa do γ-muuroleno	93
FIGURA 80	- Espectro de massa do δ-cadineno	93
FIGURA 81	- Espectro de massa do palustrol	94
FIGURA 82	- Espectro de RMN ¹ H do guaiazuleno	96
FIGURA 83	-Espectro de massa do guaiazuleno	96
FIGURA 84	- Espectro de RMN ¹ H do α -pineno	97
FIGURA 85	- Espectro no I.V. do α-pineno	97

x

ÊISTA DE TABELAS

TABELA I - Espécies do Gênero Croton catalo	
gadas na literatura	06
TABELA II - Compostos descritos na literatura	
como caracterizados em óleos es-	
senciais de espécies do Gênero Croton	09
TABELA III - Espectro de massa de alta resolução	
de MPE-1	35
TABELA IV - Dados espectrométricos de RMN ¹³ C	
de MPE-1	23
TABELA V - Tabela de ângulos e distâncias in	
tramoleculares de MPE-1	37
TABELA VI - Resumo das correlações estruturais	
com os dados espectrométricos de	
MPE-1	39
TABELA VII - Dados espectrométricos de RMN ¹³ C	
de MPE-3	43
TABELA VIII- Resumo das correlações estruturais	
com os dados espectrométricos de	
MPE-3	55
TABELA IX - Dados espectrométricos de RMN ¹⁹ C	
de MPE-4	57
TABELA X - Resumo das correlações estruturais	
com os dados espectrometricos de	
	70
TABELA XI -Rendimentos dos oleos essenciais de	
TAPELA XII - Correlação estrutural con co nices	82
do anomatognero de Electronici	
do cromatograma do oleo essencial	0.5
TARELA VIII- Dades espectrométrices de inc. OSVD	95
TABELA XIV - Dados espectrométricos de INS.USMP	03
TABELA XV - Dados espectrométricos de MPE-2	00
TABLA AV BAUSS espectionetites de MFE-2	03

xi

TABELA	XVI	-	Dados	espectrométricos	de	MPE-3 110
TABELA	XVII	-	Dados	espectrométricos	de	MPE-4 111
TABELA	XVIII	-	Dados	espectrométricos	de	MPE-1/H-neutro.115
TABELA	XIX	-	Dados	espectrométnicos.	de	MPE-1/H2-acido.115
TABELA	XX	-	Dados	espectrométricos	de	MPE-1/hidro
			lisado			
TABELA	XXI	-	Dados	espectrométricos	de	MPE-3/H2117
TABELA	XXII	-	Dados	espectrométricos	de	MPE-3H2-met118
TABELA	XXIII	-	Dados	espectrométricos	de	MPE-4/met119
TABELA	XXIV	-	Dados	espectrométricos	de	MPE-4/hidro
	0		lisado		11.	

1

xii

Página

LISTA DE QUADROS

Página

QUADRO	I -	Fragmentação de MPE-1 no espectrôme	
		to de massa	40
QUADRO	II -	Comparação dos valores de $_\delta$ espera-	
		dos com os valores observados para	
		as absorções no espectro de RMN ¹³ C	
		de MPE-3	54
QUADRO	III -	Fragmentação de MPE-3 no espectrôme	
		to de massa	56
QUADRO	IV -	Fragmentação de MPE-4 no espectrôm <u>e</u>	-
		to de massa	71

xiii

SUMÁRIO

-		1.0		
				Pagina
AGRADECIMENTOS				vi
LISTA DE FIGURAS	100			vii
LISTA DE TABELAS				xi
LISTA DE QUADROS			· ·	xiii
			1	
RESUMO				01
ABSTRACTS	*			02
PARTE I				
Introducão				03
Incrouuçao				
1. Levantamento biblio	ográfico e c	onsideraçõ	es sobre	
a família Euforbia	cea, gênero	Croton e	Croton	1
sonderianus				05
1.1. Considerações sol	bre a famili	a Euforbia	cea e o	
gênero Crotón				11
1.2. Considerações sol	bre Croton s	onderianus	Muell Ar	·g.
e seus constitui:	ntes químico	s		14
PARTE FI				
2.1. Análise espectror	métrica e co	nsideraçõe	s estru-	
turais sobre os	constituinte	s químicos	fixos	
do lenho do caul	e de Croton	sonderianu	s Mull Ar	·g22
2.1.1. MPE-1			_ 	
2.1.2. MPE-2				41
2.1.3. MPE-3				
2.1.4. MPE-4				
	· · ·			
2.2. Analise espectron	metrica e co	nsideraçõe:	s estru-	
turais sobre os	constituinte	s quimicos	do oleo	Section 1
fixo da semente	de Croton so	nderianus l	Mull Arg.	72

2.3.	Análise espectrométrica e considerações sobre	
	os constituintes químicos do óleo essencial	
	da casca e do lenho do caule de <u>Croton</u> sonde	
	rianus Muell Arg	80

PARTE III

3. Parte	e Experimental	
3.1. Int	rodução	98
3.2. Est	udo do óleo fixo das sementes	101
3.2	2.1. Extração do óleo fixo	101
3.2	2.2. Saponificação do óleo e obtenção	
	dos ácidos graxos livres	101
3.3	3.3. Obtenção dos ésteres metílicos	102
3.2	2.4. Análise cromatográfica gás-líquido	
	dos ésteres metílicos	102
3.3. Est	udo da parte volátil	104
3.4. Est	udo da parte fixa - lenho do caule	105
3.4	.1. Obtenção dos extratos	105
3.4	.2. Tratamento cromatográfico de MP4-B	-
	e isolamento dos seus constituintes	
	químicos	105
3.4	.3. Teste de Draghendorf	107
3.4	.4. Teste de Erlich	107
3.5. Obt	enção dos derivados	112
3.5	.1. Hidrogenação catalítica de MPE-1	112
3.5	.2. Hidrólise alcalina de MPE-1	112
- 3.5	.3. Hidrogenação catalítica de MPE-3	113
3.5	.4. Metilação de MPE-3/H ₂	113
3.5	.5. Hidrogenação catalítica de MPE-4	114
3.5	.6. Metilação de MPE-4	114
3.5	.7. Hidrólise alcalina de MPE-4	114
-		
PARTE IV		
4.1. Ane	xos	121
4.2. Ref	erências bibliográficas	126

Página

RESUMO

.01,

O extrato benzênico do lenho do caule de <u>Croton sonde</u> <u>rianus</u> Muell. Arg. apresentou atividade antibiótica contra' <u>Staphylococus aureus e Mycobacterium smegmatis</u>. Dele foram iso lados a 6-metoxi-7-hidroxi-cumarina(escopoletina)e tres novos diterpenos, 12-hidroxi-3-oxo-cleistanta -8,11,13,15- tetraeno, 12-hidroxi-3,4-<u>seco-cleistanta -8,11,13,15,18(4)-penten -3-oa-</u> to de metila e 5S,8R,9S,10R-15,16-epoxi-clerodan-3,13(16), 14trien-20,12R; 18-oato de metila.

O óleo fixo da semente contém β -sistosterol como prin cipal componente do insaponificável e glicerídeos dos ácidos palmítico, isoesteárico, oleico, linoleico, linolênico e ara quídico caracterizados sob a forma de ésteres metílicos.

0 óleo essencial da casca e lenho do caule contem
a-pineno,β-pineno, canfeno, mirceno, limoneno,Y-terpineno, cânfora, terpinen-4-ol, copaeno,β-elemeno,α-gurjuneno, cipereno,
β-cariofileno, thujopseno, trans-β-farneseno,γ-cadineno,δ-cadineno,γ-muuroleno, palustrol e guaiazuleno, entre outras não identificadas.

As determinações estruturais foram realizadas através de métodos espectrométricos (U.V.,I.V.,RMN ¹H, RMN ¹³C e E.M.) difratometria de Raios-X e cromatografia gás-líquido acoplada' à espectrometria de massa.

ABSTRACT

The heartwood benzenic extract of <u>Croton sonderianus</u> Muell. Arg. showed activity against <u>Staphylococus aureus</u> and <u>Mycobacterium smegmatis</u>. Chromatographyc separation allowed the isolation of: 6-metoxy-7-hydroxy-coumarin (scopoletin), and three new diterpenes: 3-oxo-12-hydroxy-cleistanth-8,11,13,15-tetraene, methyl 12-hydroxy-3,4-seco-cleistanth-8,11,13,15,18(4)-penten-3cate and methyl 55,8R,9S,10R-15,16-epoxy-clerodan-3,13(16),14trien-20,12R;18-oate.

The fatty oil from the seeds contains β -sitosterol as the major constituent in the neutral fraction and the glycerides of the acids palmitic, isostearic, oleic, linoleic, linolenic and araquidic identified by GC/MS analysis of their methyl esters.

The essential oils from barks and heartwood contains α -pinene, β -pinene, camphene, myrcene, limonene, γ -terpinene camphor, terpinen-4-ole, copaene, β -elemene, α -gurjunene, cyperene, β -caryophyllene, thujopsene, trans- β -farnesene, γ -cadinene, β -cadinene, γ -muurolene, palustrol and guayazulene, among another unidentified substances.

Structural determinations were done by use of spectrometric methods (U.V., I.R., RNM¹H, RNM¹³C and MS), X-Ray analysis and GC/MS coupled to data processing system.

INTRODUÇÃO

De acôrdo com a filosofia da Coordenação do Curso de Pós-Graduação em Química Orgânica da UFCe., um curso de Mestrado deveria ampliar os conhecimentos teóricos fundamentais ao crescimento intelectual de um profissional graduado des<u>e</u> joso de especializar-se nessa área, bem como aperfeiçoar o seu treinamento prático-experimental, ou seja o seu comportamento em laboratório. Desta forma o "feed-back" da pós-gradua ção consistiria em fornecer "maõ-de-obra" especializada enriquecedora do corpo profissional de indústrias, laboratórios e da própria Universidade, melhorando o nível de ensino da gra duação e pós-graduação, e ampliando o seu quadro de pesquisadores.

Imbuído desses propósitos é que iniciamos o nosso trabalho com <u>Croton sonderianus</u> Muell. Arg., planta até então considerada como "praga invasora de pastos", mas que surpree<u>n</u> dentemente havia apresentado teor significativo de óleos e<u>s</u> senciais nas suas folhas, constituindo-se num elemento de estudo de um projeto de <u>pesquisa básica</u> financiado pelo Ba<u>n</u> co do Nordeste do Brasil (BNB) visando o levantamento da fl<u>o</u> ra odorífera do Nordeste.

A experiência. adquirida nos estágios realizados no laboratório de Química de Produtos Naturais do Departamento de Química Orgânica e Inorgânica da UFCe. nos alertou para a possibilidade de ampliação do estudo químico de <u>C.sonderianus</u> às suas outras partes componentes como caule e raíz.

Óleos essenciais e extratos por solventes foram obti dos e surpresas agradáveis foram fornecidas. O teor de óleo essencial nessas partes da planta chegava a ser percentalmen te maior que nas folhas, sendo constituído principalmente de mono e sesquiterpenos, viabilizando a utilização de óleo de marmeleiro preto(nome popular de <u>C.sonderianus</u>) como um suce dâneo para o óleo diesel e constituíndo-o numa das mais novas e promissoras fontes não convencionais de energia. Uma outra surpresa consistiu na significativa atividade antibiótica apre

sentada pelos extratos por solventes. .

A partir disso novos projetos foram propostos, conv<u>ê</u> nios de intercâmbio de serviços interdepartamentais foram realizados (Química-Farmacologia, Química-Botânica, Química -Agronomia,Química-Tecnologia) proporcionando o interrela cionamento da comunidade científica em âmbito local e regi<u>o</u> mal.

O leitor atento deve ter observado que no - parágra fo 2, da página anterior, o termo pesquisa básica encontrase sublinhado. O nosso propósito é chamar a atenção para exposição de um ponto de vista pessoal no que concerne ao papel da pesquisa. A pesquisa com fins práticos imediatistas não será a solução para os problemas de um país em desenvolvimento, como certos setores da sociedade o enten dem, principalmente se em consequência houver o detrimento da pesquisa pura , com fins acadêmicos. Que esta gera e enriquece a outra o exemplo pode ser encontrado no estudo químico de C. sonderianus.

O presente trabalho, que descreve os métodos e técni cas, observações e conclusões obtidas na contribuição ao conhecimento químico de C. sonderianus, está dividido em quatro partes: a primeira composta por esta introdução, do levantamento bibliográfico, algumas considerações botânicas sobre a família, gênero e espécie do vegetal em estudo e a apresentação dos seus constituintes químicos. A segunda descreve as considerações espectrométricas utilizadas na determinação estrutural. A terceira resume os métodos e técnicas utilizadas na parte experimental, além de apresen tar as constantes físicas de alguns constituíntes. E a quarta constituída pela bibliografia utilizada, resumo do trabalho e anexos.

1. LEVANTAMENTO BIBLIOGRÀFICO E CONSIDERAÇÕES SOBRE A FAMÍLIA EUFORBIÁCEA, GÊNERO CROTON E CROTON SONDERIANUS.

O levantamento de referências na literatura de traba lhos científicos relacionados à química do gênero Croton, resu mido na tabela I (pag.6) e que de modo algum pretende ser exaustivo, revela uma acentuada contribuição do grupo de pesquisa em Produtos Naturais do Departamento de Química Orgâni ca e Inorgânica do Centro de Ciências da UFCe., no que tange principalmente à constituição química de óleos essenciais de espécies desse gênero. Até 1976, o número de compostos descri tos na literatura, como provenientes de óleos essenciais de Croton situava-se em torno de 20(vinte). Hoje, segundo a tabela II (pag. 9), este número aumentou para 46 (quarenta e seis), em torno de 135%, e tende aumentar cada vez mais com a continuação dos estudos naquele Departamento.

Dos 46(quarenta e seis) compostos de óleos essenciais de Croton catalogados(tabela II),<u>Croton sonderianus</u> contribui com 20(vinte), 09(nove) dos quais são descritos pela primeira vez na literatura para o gênero.

TABELAI

K.

ESPÉCIES DO GÊNERO Croton CATALOGADAS NA LITERATURA, E A NATUREZA DO ESTUDO REALIZADO

ORDEM	ESPÉCIE ,	NATUREZA DO ESTUDO	REF	ERÊNCIAS
I	C. argyrophilus	óleos essenciais de		01
II	C. argyrophilloides	terpenoides de		02
III	C. balsamifera	alcalóides de		03
IV	C. bean	isoguaiamina em		04
v	C. bredemeyeril	óleos essenciais de		01
VI	C. cajucara	óleos essenciais de		05
VII	<u>C. californius</u>	crotonfilina A em		06
VIII	<u>C. caudatus</u>	alcalóides e terpenóides de		07
IX	<u>C. celtidifolius</u>	alcalõides de		08
Х	<u>C. corylifolius</u>	crotonfilina e corifilifurano em		09
XI	<u>C.</u> <u>deserticolus</u>	óleos essenciais de		01
XII	<u>C. diasii</u>	diasina em		10
XIII	<u>C. discolor</u>	descolorina em		11
XIV	<u>C. echinocarpus</u>	óleos essenciais de		12
XV	<u>C. eluteria</u>	óleos essenciais de		13
XVI	<u>C. flavens</u>	flavinantina e flavinina em 🛝		14-18
		óleos essenciais de		
XVII	<u>C. floribundos</u>	óleos essenciais de	~ 4	12
XVIII	C. glandulosus	óleos essenciais de		19
XIX	<u>C. gossipifolius</u>	óleos essenciais de		01

.06.

TABELAI (cont.)

12

.07.

ORDEM	ESPÉCIE	NATUREZA DO ESTUDO	REFERÊNCIAS
xx	C. gubunga	acido 4-OH-hídrico em	06
XXI	C. humilis '	alcalóides de	20
XXII	C. lechleri	thaspina em	21
XXIII	C. linearis	alcaloides de	22-24
XXIV	C. lobatus	vomifoliol em	25
XXV	C. lucidus	crotonina em	26
XXVI	C. malambo	óleos essenciais de	01
XXVII	C. macrostachis	síntese de cretepóxido	27-28
XXVIII	C. matourensis	celulose de	29
XXIX	C. monanthygynus	chumbo de	30
XXX	C. nepetifolius	constituição química de	31
XXXI	C. oblongifolius	oblongifoliol em	32-33
XXXII	C. parvifolius	óleos essenciais de	12
XXXIII	C. plumieri	alcalóides de	34
XXXIV	C. populifolius	óleos essenciais de	01
XXXV	C. salutaris	alcalõides de	35
XXXVI	C. sparsiflorus	constituição química de	36-38
XXXVII	C. rhamnifolius	derivado forbólico em	19
		óleos essenciais de	
XXXVIII.	C. ruizianus	alcalóides de	39
XXXIX	C. sonderianus	constituição química de	40

4 <u>1</u>

.

TABELAI (cont.)

.08.

ORDEM	ESPÉCIE	NATUREZA DO ESTUDO	REFERÊNCIAS
XL	C. speciosus '	óleos essenciais de	01
XLI	C. tiglium	constituição química de	41
XLII	<u>C. trinitatis</u>	vómifoliol em	42-43
XLIII	<u>C. turummiquirensis</u>	alcalóides de	44
		óleos essenciais de	
XLIV	C. xantochloros	õleos essenciais de	. 01
XLV	C. zambezicus	alcalõides de	45
XLVI	<u>C</u> . <u>zehntheri</u>	constituintes voláteis de	46

TABELA II

.09.

COMPOSTOS DESCRITOS NA LITERATURA COMO CARACTERIZADOSEMÓLEOS ESSENCIAIS DE ESPÉCIES DO GÊNEROCroton

COMPOSTO

ESPÉCIEa

1.	ac. esteárico	XV	÷.,		-	
2.	ac. palmítico	XV	· •			
3.	aloaromadendreno	XLIV				
4.	calameneno	XXXIX				
5.	cis-anetol	XLVII				
6.	trans-anetol	XLVII				
7.	α-bisaboleno	XXX				
8.	γ-cadineno	xxxixp				
9.	δ-cadineno	XXXIXC				
10.	canfeno	XIX				
11.	cânfora	XXXIX		XLVII		
12.	cariofileno	·I		XXXXIX		
13.	p-cimeno	XXX		XLV		
14.	1,8-cineol	I		XXX		XLIV
15.	cipereno	XXXIX ^b				•
16.	citronelol	XIX				
17.	copaeno	xxx1x ^c		XLVII		
18.	n-eicosano	XLVII				
19.	α-elemeno	I				
20.	β-elemeno	I.		XXXIX ^C		
21.	γ-elemeno	XXX		XLVII		
22.	elemicina	XXX		XXXII		
23.	estragol	XLVII				
24.	eugenol	XV				
25.	trans-β-farneseno	XXXIX ^b				
26.	α-felandreno	XLV				
27.	fenchona	XIX				
28.	α-guaieno	XLVII				
29.	α-gurjuneno	XXXIX ^b				
31.	guaiazuleno	XXXIX ^b				

TABELA	II	(cont.)

.10.

COMPOSTO

ESPECIE

32.	humuleno	I			
33.	isoborneol	XLVII			
34.	limoneno	xxxix _p			
35.	linalol	· VI	XXVI	-	
36.	metileugenol	XXVI	ę.		- <i>I</i>
37.	metillisoeugenol	XLVII			
38.	mirceno	XIX	XXXIX	XLVII	
39.	muuroleno	XXXIXP			
40.	palustrol	xxxixp			
41.	a-pineno	I	IX	XXXIX	XLVII
42.	B-pineno	I	IX	XXXIX	XLVII
43.	sabineno	I			
44.	safrol	XLVII			
45.	a-terpineno	XXXIX			
46.	a-terpineol	XXX	XXXIXC		
47.	thujopseno	XXXIX ^b			

 á - Os números referentes as espécies relacionam -se aqueles da tabela I.

 b - Pela primeira vez descritos para o Gênero , neste trabalho.

c - Pela primeira vez descritos na literatura para a espécie, neste trabalho.

1.1.CONSIDERAÇÕES SOBRE A FAMÍLIA EUFORBIÁCEA E O GÊNERO CROTON

.11.

A família das euforbiáceas é constituída por aproximada mente 300 gêneros e 7500 espécies, dispersos em toda superfí cie terrestre, mais particularmente nas regiões climáticas de caráter tropical caracterizando portanto grande parte da flora brasileira (47).De hábito variado, os espécimens componentes ' vão desde ervas às trepadeiras e árvores de grande porte, sendo geralmente produtores de látex. As flores são sempre monosexua das e os frutos normalmente constituídos por cápsulas tricocas contendo cada coca uma semente oleaginosa.

Entre outros, podemos citar representantes conhecidos ma flora brasileira, como a seringueira(<u>Hevea</u> <u>brasiliensiš</u> Muell. Arg.) nativa da região amazônica no Norte do Brasil, a maniçoba (<u>Manihot glaziovii</u> Muell. Arg.) e o avelós (<u>Euphorbia</u> <u>tirucalli</u> L.) da região nordestina sendo todas laticiferas(48). A mandioca (<u>Manihot esculenta</u> Crantz), aproximadamente 25 variedades, componente "obrigatório" da dieta do caboclo e apre ciada em outras regiões sob a forma de farinha ou goma. A mamo ma (<u>Ricinus comunis</u> L.) e a faveleira(<u>Cnidosculus phyllacanthus</u> Pax et Hoff) cujas sementes são ricas em óleo fixo, este forme cendo também ótima alimentação para o gado na época das sêcas(49).

Dentre os gêneros desta família, encontra-se o gênero <u>Croton</u> (aproximadamente 1000 espécies), como um dos mais impor tantes da flora nordestina em virtude da sua alta ocorrência e larga dispersão nas caatingas, cerrados, matas dos tabulei ros litorâneos e matas pluviais características daquela região. Cerca de 650 espécies ocorrem na América e aproximadamen te 300 dentre elas existem no Brasil contando com vários repre sentantes nas caatingas do Nordeste.

As plantas destas espécies, dentre as quais muitos são produtoras de óleos essenciais (vide tabela I,pag.6) existem sob a forma de ervas perenes, subarbustos, arbustos e arvor<u>e</u> tas, com folhas estipuladas (características de ramos novos e renovos), inteiras, denteadas, raramente triboladas, com nerv<u>a</u> cio palmada ou pinada, com indumento pilifero (algumas vezes com pelos escamosos ou lepdotos, outras com pelos estrelados).

As flores, comumente monóicas, dispostas em racemos al ras vezes especiformes, são pequenas para ambos os sexos e normalmente esbranquiçadas. As flores femininas localizam-se na base da inflorescência enquanto as masculinas dispõe-se no ipice do racemo possuindo 5(cinco) lascínios no cálice. As pétalas são livres e em número de 5 (cinco). O número de esta mes varia de acordo com a espécie, nunca sendo inferior a 5 (cinco). O ovário é súpero, via de regra trilocular, com um évulo em cada loculo. O fruto é uma cápsula deiscente, normalmente tricoca, com uma semente oleaginosa, geralmente escura, en cada coca.

Os representantes deste gênero nativos do Nordeste po dem ser agrupados em quatro categorias diferentes, 3(tres) bem característicos, de acordo com as denominações populares que lhes são atribuídas como: marmeleiro, canelas, velames, e outros, caracterizados como segue:

MARMELEIROS - arbustos ou pequenas árvores com altura rédia de 4(quatro) metros, podendo atingir valores maiores, dependendo da idade. A sua denominação, marmeleiro, advém pro vavelmente da semelhança com as varas eretas do marmeleiro conhecido pelos portugueses colonizadores(50).Fornecem estacas e varas para construção de cercas e madeira para queima. As cas cas são usadas na forma de infusos no tratamento de algumas moléstias(51). Produzem óleos essenciais com rendimentos que variam de 0,5 a 1,7%. São conhecidos, marmeleiro preto(<u>Croton</u> <u>sonderianus</u> Muell. Arg.), marmeleiro sabiá(C.<u>aff.nepetifolius</u>), marmeleiro branco(C. jacobinensis Baill), entre outros.

CANELAS SILVESTRES - arbustos ou subarbustos perenes, com folhas e ramos de aroma forte característico semelhante ao da erva-doce(<u>Pimpinela anisum</u>). Utilizados em medicina popular, como bebida aromática , e na indústria de doces e rapaduras regionais para conferir o sabor e aroma de anís. Produzem óleos essenciais em rendimentos que oscilam entre 0,2 e 2,2 % (52).São conhecidos entre outros,(com denominações populares ' de canela-de-cunhã, canela de cheiro, canela-braba, canela-ma<u>n</u> sa, catinga-de-crioula, canelinha, catinga-de-mulato, etc.) : <u>Croton</u> <u>zehntneri</u> Pax et Hoff, suas variedades e espécies afins, como por exemplo C. rhamnifolius HBK.

VELAMES - arbustos e subarbustos que também recebem denominações específicas (velames, velaminho, velame-de-cheiro, velame-verdadeiro, velame da folha pequena) das localidades onde são encontrados. Utilizados em medicina popular no tratamento de várias moléstias. Produzem óleos essenciais com rendimento de 0,2 a 2,0%. São conhecidos: <u>C.floribundus</u>Spreng, C. campestris St. Hil. entre outros.

OUTROS - plantas pertencentes ao gênero <u>Croton</u>, sem no entanto apresentarem denominações populares coletiva características e que sem poderem ser reunidos em quaisquer dos gr<u>u</u> pos anteriormente descritos, não constituem um conjunto com características semelhantes.

1

1.2. CONSIDERAÇÕES SOBRE <u>Croton sonderianus</u> Muell. Arg. E SEUS CONSTITUINTES QUÍMICOS

.14.

O exemplar em estudo coletado na Fazenda Macapá, Taperoaba-Sobral-Ceará, foi identificado no campo e taxonomicame<u>n</u> te classificado pelo Prof. Afrânio G. Fernandes do Departame<u>n</u> to de Biologia da UFCe.

Segundo a descrição taxonômica contida no vol.XI, da parte II da Flora Brasiliensis, <u>Croton sonderianus</u> Muell.Arg. ¿ uma planta arbustiva, podendo chegar à pequena árvore, rara mente atingindo mais que 6(seis) metros de altura. Apresenta nos ramos, peciolos, racemos e na página inferior das folhas, delicado indumento de pelos estrelados de cor acinzentada, às vezes com brilho vítreo, densamente tomentoso e não lepdoto.

Os ramos são quase cilíndricos, apresentando sua se<u>c</u> ção transversal elítica.

As folhas medem cerca de 10(dez) a 14(quatorze)cm de comprimento por 5(cinco) a 7(sete)cm de largura na parte mais inferior são triangular-ovais ou quase triangular-lanceola das, de ápice acentuadamente acuminados e levemente cordatas na base, glandulosas, peninérvias, com 4(quatro) a 6 (seis) nervuras secundárias que se aproximam da base, apresentando estípulas cetáceas, alongadas, levemente lacinadas. O pecíolo é 4(quatro) a 5(cinco) vezes mais curto que o limbo.

Os racemos possuem flores abundantes com brácteas linear-lanceoladas cada uma com uma flor.

A flor feminina, destituída de pétalas, apresenta cál<u>i</u> ce pentafendido, com lobos orbicular-ovais, obtusos, ondulado nas margens e acrescente superando quase a metade da cápsula. Os lacínios subsaccato-reflexos, apresentam sinuosidades. O ovário é viloso-tomentoso.

A flor masculina apresenta pétalas obovato-lanceoladas, densamente álbido-tomentosas em ambas as partes. Suas glândulas são conatas e glabras.

O disco, adnato ao cálice, é hipógino tomentoso, apresentando cerca de 15(quinze) estames hirtolanosos com anteras quase duas vezes mais longas que largas.

As capsulas medem cerca de 7(sete)mm de comprimento, são depresso-globosas e as sementes 5(cinco)mm de comprimento por 4(quatro)mm de largura, e aproximadamente 2 (dois)mm' de espessura.

Popularmente conhecido como marmeleiro preto, em virtude do tronco e ramos possuirem aspecto geral escuro. É uma das mais abundantes e dispersas plantas do gênero <u>Croton</u> com ponente da caatinga nordestina, habitando principalmente a região entre as bacias do rio S. Francisco e Parnaíba.O mapa da fig. I,pag. 17)apresenta as regiões nordestinas onde são encontradas o marmeleiro preto.

Fornece boa lenha para queima, estacas e varas para cêrcas e para fabricação de armadilhas destinada à pesca da lagosta(conhecidas no Ceará pela denominação local de manzuás).

As cascas são empregadas em medicina popular, na forma de infusos ou simplesmente mastigadas no tratamento de per turbações gástricas.

O extrato benzênico do lenho do caule apresentou atividade antibiótica contra <u>Staphylococus aureus</u> e <u>Mycobacte -</u> <u>rium smegmatis</u>. Dele foram isoladas quatro substâncias denominadas MPE-1(I),MPE-2(II),MPE-3(III) e MPE-4(IV) posterio<u>r</u> mente, caracterizadas como 5S,8R,9S,10R,15,16-epoxi-clerodan -3,13(16),14-trien-20,12R;18-oato de metila,6-hidroxi-7-meto xi-cumarina,12-hidroxi-3-oxo-cleistantan-8,11,13,15-tetraeno e 12-hidroxi-3,4-<u>seco</u>-CLEISTANTAN-8,11,13,15,18(4)-penten-3oato de metila, respectivamente.

As sementes apresentam significativo teor de óleo gor do(22%) que apresentou β-sitosterol(V) como componente prin cipal do insaponificável e glicerídeos dos ácidos palmítico (VI), isoesteárico(VII), linoleico(VIII), oleicc(IX), linolêni co(X), araquídico(XI), na parte saponficável, determinados a través de seus ésteres metílicos.

Apresenta óleo essencial das raízes às folhas, em ren dimentos que variam de 0,5 a 1,7% com aroma característico ' que lembra o odor da própria planta e cores que variam do **marelo** ao azul intenso. Dos óleos essenciais da casca e l<u>e</u> do caule foram isolados α-pineno (XII) e guaiazul<u>e</u> **mo(XIII)** e foram caracterizados β-pineno (XIV); canfeno(XV), **mirceno**(XVI),limoneno(XVII), γ-terpineno(XVIII), cânfora(XIX) **terpinen-4-ol**(XX), capaeno(XXI), β-elemeno(XXII) α-gurjune**mo(XXIII**), cipereno(XXIV), β- cariofileno (XXV), thujopse**mo(XXIII**), trans-β-farneseno(XXVII), γ-cadineno(XXVIII) γ-ca **dineno**(XXIX),γ-muuroleno (XXX), palustrol(XXXI), entre ou **tras**.

Fig. 1 - Aspecto geral dos ramos e folhas de <u>C.sonderianus</u>

1

75

VII

'5

Ö2H MA

CÖZH ME

:ÖH

IV

, CÖ²H

M12

VI

VIII

12 XXX XXVIII XXVI . .21. XXXI XXIX XXVII S
2.1. ANÁLISE ESPECTROMÉTRICA E CONSIDERAÇÕES ESTRUTURAIS SOBRE OS CONSTITUINTES QUÍMICOS FIXOS DO LENHO DO CAULE DE Croton sonderianus Muell.Arg.

2.1.1. M P E - 1

MPE-1 é uma substância cristalina branca com os cristais em forma de agulhas ou placas, com ponto de fusão 134-137°C.

O espectro de massa de alta resolução(tabela III, pag. 35)forneceu o peso molecular 358,1756 u.m.a. sugerindo a formula molecular $C_{21}H_{26}O_5$ (calculado: 358,1752),possuindo po<u>r</u> tanto nove insaturações.

O espectro de RMN 13 C totalmente desacoplado (fig. 3 ,pag. 27) apresenta vinte linhas espectrais, destacan do-se a intensidade da absorção em 19,76, correspondente \tilde{a} dois átomos de carbono, o que foi comprovado pela análise do espectro registrado com acoplamento residual(SFORD = singlefrequency off resonance decoupled)(fig, 4, pg.28) A análise deste último possibilitou a construção da tabela IV, pag. 23, que demonstra o número de carbonos quaternários, terciários, secundários e primários, confirmando a fórmula molecular $C_{21}H_{26}O_5$.

Pelos valores tabelados pode-se inferir a exis tência de dois grupos C=0, o que é confirmado por espectrosco pia na região do infravermelho(fig. 6 ,pg.29). A absorção. em 164,4δ foi associada a uma carbometoxila g -β-insaturada $(\lambda_{max}=1710 \text{ cm}^{-1})$. O outro sinal em campo baixo, relativo ao TMS, 173,08 é compativel com carbonila de Y-lactona (Xmax=1760 cm⁻¹). A constatação do grupamento metoxila é feita pela presença da banda simples e intensa em 3,708 no espectro de RMN ¹H (fig.5 pag.29) além do sinal 51,28 (quarteto no SFORD) no RMN ¹³C. A comprovação do grupamento estermetílico foi obtida pela reação de MPE-1 com KOH/EtOH 50%, re fluxo durante 14 horas, levando a um produto sólido branco (p.f:275-79 °C) de peso molecular 344(fig.10,pag. 31)apresen tando no I.V. (fig. 9 ,pag. 31)absorções características do grupo O-H de ácidos carboxílicos além do deslocamento da ban

DADOS	ESPECTROM	ETRICOS DE	RMN ¹³ C DE M	MPE-1 EM	CDC1 ₃ (δ)
C		ĊH	CH ₂	CH ₃	
173	,0	143,8	44,7	51,2	
164	,4	139,3	35,2	19,7	
142	,3	135,3	26,8	16,8	-
125	,6	108,0	26,5		
. 51	,6	71,6	13,7		
.37	,6.	52,4	14.7		
		40,4			Total
C	6	C ₇ H ₇	C ₅ H ₁₀	C ₃ H ₉	C ₂₁ H ₂₆

.23.

TABELA IV

da, relacionada anteriormente com a carbometoxila.

A presença de uma dupla ligação C=C, em posição \propto relativa à carbometoxila pode ser evidenciada pela pequena dif<u>e</u> rença de deslocamento químico, no espectro de RMN ¹³C, entre os dois carbonos da dupla ligação substituída($(\Delta$ =142,3-135,3=7,0\delta) em virtude de deslocamento para campo mais baixo do carbono mais hidrogenado numa dupla trisubstituída conjugada a uma carbonila. Tal fato é explicado pela contribuição da estrutura de ressonância II mostrada na figura abaixo onde o carbono aparece desprotegido diamagneticamente pelo efeito retirador do grupo C=O.

A caracterização da dupla ligação C=C é complementada' pela presença das bandas em $\lambda_{max} = 1645 e 800 cm^{-1}$ além da presença de banda tripla em 6,53 δ (J=3,0Hz), no espectro de RMN ¹H.

As outras absorções no RMN ¹³C, em campo baixo relati vo ao TMS, 143,8, 139,3, 125,6 e 108,08 são compátiveis com esqueleto furânico β-substituído(53). Isto é confirmado pelo fato de MPE-1 apresentar teste positivo para as reações de Erlich(54) e Dragendhoff(55) (ver parte experimental, pag 107) Outras evidências corroborativas da presença de anel furânico β-substituído são fornecidas pelo espectro na região do ultravioleta (fig.8 ,pag.30) em λ_{max}^{MeOH} (log ϵ)nm= 216(3,87) e 241 inf(2,80), pelas bandas do RMN ^IH em 7,43, 7,45(correspon dentes aos protons α) e 6,40 δ (correspondente ao proton β) pelos picos 1515 e 880 cm⁻¹ no I.V. além dos picos no espec tro de massa referentes aos fragmentos com relação massa-car ga (m/e)= 81(86%),94(55%) e 95(100%) u.m.a.('56 - 60) correspondendo as seguintes proposições estruturais:

A confirmação química da presença de dupla ligação e anel furânico foi possível através da hidrogenação catalítica de MPE-1 (em MeOH/Pd/C 10%). Dois são os produtos desta reação, em ambos desaparecem os sinais entre 7,5 e 5,08 no RMN ¹H (fgs.11`e 14,pag.33,34)os picos em 81,94 e 95 u.m.a. no espe<u>c</u> tro de massa (fig.13,pag.33) anteriormente referidos, além das bandas no infravermelho correspondentes aos grupos funci<u>o</u> nais modificados (fig.12, pag.33)...

Um dos produtos da hidrogenação catalítica, denominado MPE-1/H₂-neutro, substância cristalina branca(p.f:165-168°C), apresentou peso molecular 364(fig. 13 ,pag.33) comprovando a adição de 3 moles de hidrogênio além do aparecimento de bandas adicionais em torno de 4,0-3,5 δ no RMN ¹H. O outro, denominado MPE-1/H₂-ácido, substância gelatinosa; amarelada, apresentou peso molecular 366 demonstrando a absorção de 4 moles de hidrogênio, além do surgimento no RMN ¹H do singleto

largo em 10,58 , variável com D_20 .

O resultado da hidrogenação catalítica, sugere então a hidrogenação total esperada(absorção de 3 moles de H_2) e tam bém a hidrogenólise da γ -lactona(absorção de 4 moles de H_2). Esta última observação indica a posição de lactonização alilicamente situada ao anel furânico, como mostra a figura abaixo. Aberturas desse tipo são bastante relatadas na literatura(26,62,63).

Outros dados fornecidos pelo espectro de RMN¹H rev<u>e</u> lam a presença de um proton carbinólico em região de desprot<u>e</u> ção (pelo anel furânico) através do tripleto em 5,408(J=8,OHz), um metila terciário através do dupleto em 1,028(J=7,OHz) e um metila quaternário pela banda simples em 1,468.

Baseados na análise acima descrita e comparação dos dados de substâncias furano-lactônicas análogas, registrados na literatura (56, 62), decidimos propor a estrutura I para MPE-l que assim teria um esqueleto diterpênico do tipo labdânico modificado, denominado clerodano (63).

A estrutura proposta para MPE-1 foi confirmada e a sua estereoquímica relativa determinada, através de estudos cristalográficos por difração de Raios-X. A tabela V ,pag. 37 ,apresenta os ângulos diedros e as distâncias interatômicas,res pectivamente, e a figura 16, pag.38 ,representa o desenho es tereoscópico(reproduzido por computador) de MPE-1 no estágio final de refinamento, sem levar em consideração os átomos de hidrogênio.

A tabela VI , pag.39 , apresenta em resumo as correlações estruturais dos dados espectrométricos da RMN ¹H e ¹³C de SONDERIANINA, denominação atribuída ao diterpeno clerodân<u>i</u> co inédito MPE-1, após determinação estrutural, e o quadro I, pag.40 , mostra algumas das possíveis rotas de sua fragmentação no espectrômetro de massa.

Fig. 5 - Espectro de RMN ¹H de MPE-1

1

Fig. 6 - Espectro de I.V. de MPE-1

.29.

Fig. 7 - Espectro de massa de MPE-1,

Fig. 8 - Espectro no U.V. de MPE-1.

Fig. 10 Espectro de massa de MPE-l/hidrolisado

.12.

.33.

.35.

TABELA III

DADOS	DE	ES	SPECT	ROMET	RIA	DE	MASSA	DE	ALTA	R	ESO	LUÇA	101	DE	MP	E-1
٢				m/e					Cont	ri	bui	ção	E1	eme	nt	ar
										С		Н			0	
8,16				38.8	297				1							
11,04				40.7	697							-				
5,58				53.0	356					4		5			0	
5,21				55.0	530					4		7			0	
5,21				67.0	540					5		7			0	
9,49				77.0	426					6		5			0	
8,59				79.0	562					6		7			0	
14,34				81.0	364					5		5			1	
14,85				91.0	535		2			7		7			0	
9,15				94.0	995									-		
9,21				95.1	328									•		
15,94			ē T	95.1	721											
25,62	-	1		100.5	256											
17,02				101.5	649											
12,19				105.7	455											
9,07				113.4	809											
6.36				115.4	044											
5.68				117.2	560											
5,80				151.0	013	*				7		3			4	
8,35				159.1	157				1	12		15			0	
5,57				161.0	606				1	0		9			2	
5,40				162.9	991											
8,51				179.0	722				1	0		11			3	
5,91				187.1	091]	.3		15			1	
35,20				197.9	674											
53,18				198.9	684											
77,86				199.9	673											
39,24				200.9	740											
100,00				201.9	715											
20,50				203.9	773											
6,96				217.0	834				-1	.3		13			3	

.36.

TABELA III (cont.)

9	m/o			Co	ntrihu	icão	Elementar	
9	m/ e	- 1		00	C	H	0	
28,26	232.1065				14	16	3	
5,15	246,1324				19	18	0	
44,05	326.1560				20	22	4	
16,97	327.1611				20	23	. 4	
12,20	358.1756	÷.	÷.		21	26	5	

TABELA DE ÂNGULOS E DISTÂNCIAS INTRAMOLECULARES (Desvio padrão entre parêntesis)

			. N	PE-1			1 E - 4	
	At1	At2	At3	d ₁₂ (A)	d ₂₃ (A)	* *	ÂNGULO 1-2-3 (em graus)	
	C2	·C1	C10	1.55(1)	1.57(1)		108.9(7)	
	C2	C1	C11	1.55(1)	1.55(1)		108.3(7)	
	C2	C1	C13	1.55(1)	1.48(1)		112.3(7)	
	C10	C1	C11 .	1.57(1)	1.55(1)		108.6(6)	
	C10	Cl	C13	1.57(1)	1.48(1)		114.0(6)	-
	C11	Cl	C13	1.55(1)	1.48(1)		104.4(6)	
	C1	C2	C3	1.55(1)	1.52(1)	•	112.6(7)	
	C1	C2	C21 ·	1.55(1)	1.58(1)		111.2(7)	
	C3	C2	C21	1.52(1)	1.58(1)		109.7(7)	
	C2	C3	C4	1.52(1)	1.55(1)	•	110.9(7)	
	C3	C4	C5	1.55(1)	1.58(1)		109.3(7)	
	C4	C5	C6	.1.58(1)	1.52(1)		110.1(7)	
	C4	CS	C10	1.58(1)	1.55(1)		107.0(6)	
	C4 -	C5	C20 .	1.58(1)	1.54(1)		109.3(7) .	
	C6	C5	C10	1.52(1)	1.55(1)		104.6(6)	
	C6	C5	C20	1.52(1)	1.54(1)		108.3(7)	
	C10	CS	C20	1.55(1)	1.54(1)	÷	117.3(7)	
	C5	C6	C7	1.52(1)	1.31(1)		123.2(9)	
	C5	C6.	C18	1.52(1)	1.51(1)		118.9(8)	
	C7	C6	· C18	1.31(1)	1.51(1)		117.6(8)	
	C6	C7	C8	1.34(1)	1.50(1)		124.1(8)	
	C7 \	C8	C9	1.50(1)	1.57(1)		115.3(8)	
	C8	C9	C10	1.57(1)	1.58(1)		107.2(7)	
•	C1	C10	C5	1.57(1)	1.55(1)		119.5(7)	
	Cl	C10	C9	1.57(1)	1.58(1)		110.4(6)	
	C5	C10	C9	1.55(1)	1.58(1)		109.3(6)	
	C1	C11	C12	1.55(1)	1.59(1)		105.1(7)	
	C11	C12	C14	1.59(1)	1.49(1)		112.9(8)	
	C11	C12	C4	1.59(1)	1.44(1)		104.5(7)	
	C14	C12	C4	1.49(1)	. 1.44(1)		108.7(7)	
	C1	C13	03	1.48(1)	1.22(1)		128.9(8)	
	Cl	C13	04	1.48(1)	1.22(1)		112.5(7)	
	03	C13	04	1.22(1)	1.35(1)	-	118.6(8)	
	C12	· C14	C15	1.49(1)	1.38(1)		128.5(9)	
	C12	C14	C17	1,49(1)	1.44(1)		125.6(9)	
	C15	C14	C17	1.38(1)	1,44(1)		105.8(8)	2
	C14	C15	05 *	1.38(1)	1.37(1)	•	109.6(9)	
	C17	C16	05	1.33(1)	1.39(1)		110.3(1.0)	
	C1.4	C17	C16	1.44(1)	1.33(1)		107.3(1.1)	8
	C6	C18	01	1.51(1)	1.31(1)		111.9(8)	
	C6	C18	02	1.51(1) .	1.19(1)	•	124.4(9)	
	01	C18	02	1.31(1)	1.19(1)		123.7(9)	
	C18	01	C19	1.31(1)	1.47(1)		117.1(9)	
	C12 .	04	· C13	1.44(1)	1.35(1)		113.4(7)	
	C15	05	C16	1.37(1)	1.39(1)		106.9(9)	

Nota: O desvio padrão se aplica ao último algarismo significativo. Assim, 1.55(1) = 1.55 ⁺ 8.001

TABELA V

-

sem levar em consideração os átomos de hidrogênio.

15		2	
	- [-	200	,
3	4 5	9 8	
č	J.9 18 ÖMe	~	

,

Nº

RMN ¹³ C		21	RMN ¹ H						
δ	SFORD	N°	δ	INT.	DESD./J.				
19,7	t		1,90	1	m				
26,8	t		1,20	1					
135,3	d	2	2,45	1					
142,3	s		2,33	. 1	m				
37,6	S	3	6,53	· 1	t/3,0				
35,2	t	6	2,05	1					
26,5	t	0	1,20	1					
40,4	d .	7	1,88	1					
51,6	S		1,63	1	m				
52,4	d	8	1,50	1	m				
44,7	t	10	1,85	1	m				
71.6	d	11	2,40	2	d/8,0				
125.6	S	12	5.40	1.	t/8,0				
108.0	d	14	6,40	1					
143 8	d	15	7,45	1					
130 3	d	16	7,43	1	İ				
16.8	q								
19.7									
164 5		17	1 02	7	d/7 0				
164,5	5		1,02		<u> </u>				
173,0	S	18	1,46	3	S				
51,2	q	21	3,70	.3	s				

TABELA VI

Quadro I - Algumas rotas de fragmentação de MPE-1 no espectrômetro de massa.

2.1.2. M P E - 2

MPE-2 é uma substância cristalina com ponto de fusão 202-205°C, que revela-se fluorescente à luz ultravioleta.

O seu espectro no infravermelho (fig.19,pag.42)apresenta uma absorção forte em 1715 cm⁻¹ (atribuída ao estiramen to C=O) como também absorções em 1620 com inflexão, 1570,1520, 1440 cm⁻¹ característicos de compostos insaturados (aromáti - . cos e alquenos).

O espectro de RMN ¹H(fig.18, pag.42) em deuteroaceto na apesar das impurezas, apresenta duas bandas de absorção em 7,80 (d,J=10Hz) e 6,1(d J=10Hz) característicos de prótons de dupla ligação conjugada, di-substituída, cis, semelhante aos prótons de dupla de cumarinas. Apresenta também dois sinais simples em 7,13 e 5,75 δ atribuídos às absorções de dois prótons aromáticos em posição para (o acoplamento não é observado) e um sinal simples e intenso em 3,90 δ caracterís tico de metoxila ligada a anel aromático.

O espectro de massa de MPE-2(fig. 17,pag. 41)apresenta o pico molecular com m/e = 198 u.m.a.

Comparação dos dados físicos e espectrométricos com dados análogos da literatura(64,65) permite caracterizar MPE-2 como sendo a 6-metoxi-7-hidroxicumarina(II) denominada escopoletina (ponto de fusão na literatura 204°C).

Fig. 17 - Espectro de massa de MPE-2

Fig. 18 - Espectro de RMN 1 H (60MHz) de MPE-2

Fig. 19 - Espectro no I.V. de MPE-2.

2.1.3. M P E - 3

O espectro de RMN ¹³C de MPE-3(fig.20 ,pag.47)obtido com total desacoplamento, apresenta 20(vinte) bandas espe<u>c</u> trais sugerindo uma estrutura diterpênica (C₂₀). O espectro obtido com acoplamento residual (SFORD)(fig.21 ,pag.48)poss<u>i</u> bilitou a construção da tabela VII abaixo, na qual caracter<u>i</u> zam-se os carbonos metílicos, metilênicos, metínicos e tetrasubstituídos.

TA	BELA	VII

DADOS ESPECTROMETRICOS DE RMN C DE MPE-3 EM CDCI _z ($MN - C$ DE MPE-3 EM CDC1 ₇ (δ)
---	---	---

hett-2

С			CH	CH ₂	CH ₃	
219,7			136,2	120,5	27,0	
153,4		5	111,2	38,2	24,7	
146,6			50,5	34,9	21,2	
140,1				29,4	13,0	
125,7				20,5		
120,8						
47,7						
37,6					-	Total
C ₈	7		C ₃ H ₃	C5H10	C4H12	C20H25

O espectro de massa (fig.22,pag. 49) revelou como sen do 298 u.m.a. o peso molecular de MPE-3. A relação encontrada entre o peso molecular, M, e o pico M + 1, referente à contri buição isotópica foi 28,8%, sugerindo a fórmula molecular $C_{20}H_{26}O_2$ (calculado 28,85%), ou seja com oito insaturações. O pico base no espectro de massa, correspondente ao fragmento com relação carga-massa (m/e) 125, é compatível com esqueleto diterpênico com anel C fenólico apresentando carbonila na posição 3 (66).

Fica evidenciado pelos valores da tabela VII, que a absorção em 219,7 δ pode ser associada a uma carbonila de cetona em hexanel, aparecendo em campo mais baixo do que o normalmente observado (em torno de 208-215 δ). A interação espa cial de grupos alquilas adjacentes à carbonila pode explicar esta desproteção adicional(68). De fato, a confirmação da carbonila é inferida pela presença da banda intensa na região de 1695 cm⁻¹ no espectro no infravermelho(fig.25, pag.50). Os dois grupos metilas situados em posição α à carbonila são caracterizados pelas absorções no espectro de RMN ¹³C em 24,7 e 27,08 (ambos quartetos no SFORD) e pelas bandas simples no espectro de RMN ¹H (fig.24, pag.50)em 1,12 e 1,158 .

A existência do anel aromático foi estabelecida através de dados dos espectros no I.V., RMN ¹H e ¹³C como segue:o espectro de RMN ¹H apresenta uma banda simples em 6,68 δ , com valor integracional de 1(hum) proton, indicando tratar-se de anel aromático penta-substituído. Tal fato pode ser confirma do pela banda em 870 cm⁻¹ no I.V., além das seis linhas espec trais no RMN ¹³C em 153,4, 146,6, 140,1, 125,7, 120,8(bandas simples no SFORD) e 111,2 δ (dupleto no SFORD, poderem ser associadas a um anel benzênico substituído.

Restam ainda no espectro de RMN 13 C em campo baixo, as duas absorções em 136,2 e 120,58 que podem ser associdas' estruturalmente com uma dupla olefínica do tipo vinílico,sem<u>e</u> lhante à do estireno. Tal proposição foi comprovada através da presença de bandas no RMN ¹H em 5,23 (dd,J=17e 2Hz), 5, 55 (dd,J=10 e 2Hz)e 6,608 (dd,J=10,0 e 17,0 Hz)características do sistema AMX do grupamento vinila.

O espectro de RMN ¹H apresenta além das observações' anteriormente referidas, duas bandas simples e intensas em 2,20 e 1,29 δ , e uma outra banda de menor intensidade, larga e variável pela adição de D₂O, em 5,14 δ . A banda simples em 2,20 δ foi associada a um grupo metila ligado a anel aromático, o que foi confirmado pela presença da absorção em 13,0 δ no espectro de RMN ¹³C (quarteto no SFORD). A outra banda, em 1,29 δ , pode ser associada à um grupo metila quartenário. O sinal deslocável com D₂O, em 5,14 δ , foi relacionado a uma h<u>i</u> droxila fenólica sendo esta caracterizada pela absorção inte<u>n</u> sa e arredondada em 3400 cm⁻¹ no I.V., explicando o hidrogê nio não encontrado na análise do espectro com SFORD(C₂₀H₂₅) e proposto na fórmula sugerida pelo espectro de massa(C₂₀H₂₆O₂).

As insaturações evidenciadas pelas discussões até ago ra realizadas somam um total de 7 (quatro do anel benzênico , duas da cetona em hexanel e uma do grupo vinila), o que nos faz relacionar a insaturação que falta para completar as 8 (oito), sugeridas pelos espectros de massa e RMN 13 C, a um anel adicional e assim propor a estrutura parcial para MPE- 3 relacionada com a figura abaixo.

Dentre as várias estruturas possíveis pela mudança de posição dos substituintes do anel benzênico na estrutura parcial proposta para MPE-3, escolhemos aquela representada por III, em virtude da proximidade do modelo biossintético já observado na natureza(69), através de comparação dos dados espectrais com outras substâncias análogas descritas na literatura(68-70), além do fato dos valores observados para os des locamentos químicos no espectro de RMN ¹³C aproximarem-se dos valores calculados teoricamente (quadroII,pag.54) pela regra da aditividade(67) tomando a absorção dos carbonos do anel benzênico (218,58) como valor básico.

A comprovação estrutural de MPE-3, inclusive determina ção da estereoquímica nos seus dois únicos centros assimétri cos ($C_5 e C_{10}$), foi estabelecida pela sua transformação através de reações de hidrogenação e metilação(fig. 26,pag. 51 e fig. 27,pag. 51). O produto final mostrou identidade total, por comparação em cromatografia em camada fina, ponto de fusão mis to e dados espectrométricos (figs. 28 e 29 ,pag.52 e fig.30,31, pag.53) com amostra autêntica de 12.metoxi-3-oxo-cleistantan-8-11,13-trieno(69-71), gentilmente cedida pelo prof.K.H. Pegel · (Universidade de Natal, Durban, Africa do Sul).

Uma vez determinada a configuração de MPE-3, estrutura III, atribuíu-se ao mesmo a denominação de SONDERIANOL,um novo diterpeno com o esqueleto cleistantânico, produto natural pela • primeira vez descrito na literatura.

A tabela VIIĮpag.55 ,resume os dados espectrométricos' de SONDERIANOL e respectivas correlações estruturais e o quadro III,pag.56 ,apresenta algumas das possíveis rotas de sua fragmentação no espectrômetro de massa.

Fig. 22 - Espectro de massa de MPE-3

X

Fig. 23 Espectro de massa de MPE-3/H₂

Fig. 24 - Espectro de RMN 1 H (270MHz) de MPE-3

.50.

Fig. 28 - Espectro no I.V. de MPE- $3/H_2$ -metilado

. 52.

. 53.

Fig. 31 - Espectro de RMN ¹H (100MHz) de amostra autêntica de 3-oxo-12-metoxy-cleistanth-8,11,13-triene. (71)

ATRIBULCÃO	VALOP	CONTRI	BUIÇÃO DO SUBSTI	TUINTES LIGADO E	M POSIÇÃO	VALOP DE	VALOR DE	
MINI DO I GAC	BASE	C⊶1	ORTO	МЕТА	PARA	δCALC.	δOBS.	Δ
C-8	128,5	+ 8,9	(-1,1)+(0,7)	-0,1	-7,3	129,6	125,7	+3,8
C-9	128,5	+ 8,9	+ 0,7	(+0,4)+(+1,4)	-2,9	137,0	140,1	-3,1
C-11	128,5	-	(.12,7)+(+0,7)	2(-0,1)	-1,2	115,1	111,2	+3,9
C-12	128,5	+26,9	+ 0,7	(-0,1)+(+0,4)	-2,9	153,5	153,4	+0,1
C-13	128,5	+ 8,9	(-1,1)+(-12,7)	-0,1	-2,9	120,6	120,8	-0,2
C-14	128,5	+13,1	2 (+ 0,7)	(+1,4)+(-0,1)	1.1-	144,3	146,6	-2,3

. 5.4 .

Quadro II - Cálculo dos valores de δ esperados no RMN ¹³C para os carbonos do anel aromático com padrão de substituição proposto na estrutura III, pag.46, e comparação com os valores de observados. ($\Delta = \delta$ calculado- δ observado).

RMN ¹³C

N°	δ	SFORD
1	38,2	t
2	34,9	t
3	219,7	S
4	47,6	<u>s</u>
5	50,5	d
6	20,5	t
7	29,4	t
8	125,7	S
9	140,1	<u> </u>
10	37,6	S
11	111.2	b
12	153,4	S
13	120,8	s
14	146,6	s
15	136,2	
16	120,5	t
• 17	13,1	<u>q</u>
. 18	24,7	
19	26,9	q
20	21,2	q

		1. A.	
N°	δ	INT.	DESD./J
11	6,68	1	S
15	6.59	1	dd/11:
16	5,54	1	dd/7:1
16	5,18	1	dd/11:1,
17	2,20	3	s
18	1,15	3	5
19	1,12	3	S
20	1.29	3	s
	5,72	1	<u>s*</u>

TABELA VIII

de MPE-3 no espectrômetro de massa.

. 56.

2.1.4. M P E - 4

MPE-4 é uma substância oleosa densa de cor verde-amare lada. O seu espectro de RMN ¹³C totalmente desacoplado(fig.32, pag,61) apresenta 21 (vinte e uma) linhas espectrais e a análise do espectro com acoplamento(fig.33, pag.61) permite a construção da tabela IX, abaixo:

. 57.

TABELA IX

DADOS	ESPECTE	ROMETRICOS	DE RMN	¹³ C D	E MPE-4	EM (CDC13	(8)
C		СН		CH ₂		CH3		
175,3	5	135,5	13	19,6		51,7		
152,6	j _	111,6	.1	14,3		22,8		
146,9)	46,6		34,8	. ÷	12,9		
141,3	5			29,6				
139,1	9			28,6				
127,0)			24,9				
120,0)						-	
41,2	2			· . ·				Total
C.8		C ₃ H ₃	5	C ₆ H ₁₂		C4H1	2 0	21 ^H 27

O espectro de massa de MPE-4(fig.35, pag.62) apresenta o pico molecular com relação carga-massa(m/e)=328 u.m.a.,o que sugere uma fórmula molecular $C_{21}H_{28}O_3$, compatível com o número de carbonos e hidrogenios revelados pela análise dos espectros de RMN ¹³C, ou seja 27(vinte e sete) prótons ligados à carbonos e 1(um) fazendo parte de uma hidroxila e não influenciando portanto no desdobramento das bandas no espectro com acopla mento residual.

Examinando os valores da tabela IX ,acima observa-se a possibilidade da existência de anel benzênico com substituição análoga à MPE-3, pelas absorções em 152,6, 146,9, 141,9 ou 139,1, 127,0, 120,0, 135,5, 111,6, 119,6 e 129,9 & (vide tabela VII,pag. 43).
Os grupos metila e vinila ligados ao anel aromático são evidenciados no espectro de RMN ¹H(fig. 36,pag.63)pelas bandas em 2,20 δ , para o primeiro, e pelas bandas em 6, 61'6 (dd,J=11,0 e 18,0Hz),5,52 (dd,J=2,0 e 11,0Hz) e 5,17 δ (dd, J=2,0 e 18,0Hz) para o segundo, mostrando sistemas análogos a MPE-3. A confirmação para o grupo vinila é fornecida pelas absorções no espectro de I.V.(fig.34,pg.62) em 1640(est.C=C), 1405, 1000 e 935 cm⁻¹ (=C-H def.).

O único próton aromático é caracterizado no espectro' de RMN ¹H pela banda simples em 6,74 δ e absorção em 3110cm⁻¹ no I.V. enquanto o próton hidroxílico fornece uma banda larga em 6,50 δ , aproximadamente, sendo confirmado pela banda intensa e arredondada no I.V. em 3450 cm⁻¹.

Quimicamente a hidroxila foi caracterizada pela obten ção do derivado metilado com $(Me)_2SO_4$, que apresenta peso mo lecular 342(fig. 37, pag.64) fornece espectro de I.V.(fig.40 pag.65) sem a banda de estiramento O-H de hidroxila, enquanto o seu espectro de RMN ¹H (fig. 39, pag.65), apresenta uma banda adicional intensa em 3,72 δ (com respectivo desaparecimento da banda larga em 6,50 δ), O espectro de RMN ¹³C (fig.41, pag.66) também revela um sinal adicional em 55,4 δ característico de \emptyset -OCH₃, mantendo-se todos os outros sememlhantes à MPE-4.

O espectro de RMN ¹H de MPE-4 apresenta dois sinais múltiplos em 4,94(integração 1 proton) e 4,70 δ (integração 1 proton) característicos de sistema ABX₃ relacionado a úupla ligação carbono-carbono de grupamento isopropenila, sendo con firmada pela presença das duas bandas adicionais, em campo baixo,(114,3 e 139,1 ou 141,3 δ) no espectro de RMN ¹³C de MPE-4 quando em comparação com o de MPE-3.

Além das bandas espectrais de RMN ¹H até agora rela cionadas estruturalmente, são observados ainda tres sinais caracterizáveis simples e intensos, em 3,64 δ (relacionado a uma metoxila), 1,78 δ (associado ao metila ligado a dupla car bono-carbono no grupo isopropenila) e 1,22 δ (associado a um metila quaternário).

A mistura reacional da hidrogenação catalítica de MPE-4 revela no espectro de massa (fig.43,pag.67) um pico com m/e= 332'u.m.a., revelando o aumento de quatro unidades de massa pela absorção de 2 moles de hidrogênio, e outro pico menos intenso com m/e=330 u.m.a., associado ao peso molecular do derivado monohidrogenado. O espectro de RMN ¹H(fig.44 pg.68) revela o desaparecimento total do grupo vinila, mas somente parcial do grupo isopropenila demonstrando sua menor reatividade, fato teoricamente não esperado.

O espectro de MPE-4no infravermelho, evidencia a pre sença de uma carbonila (1715 cm⁻¹), relacionada a uma carbome toxila que é confirmada pelo estiramento da ligação C-0 (1200cm⁻¹) e pela absorção em campo baixo no espectro de RMN 13 C em 175,38 característico de CO₂Me. A hidrólise de MPE-4 veio confirmar esta hipótese estrutural em virtude da perda de 14 u.m.a. no espectro de massa de MPE-4/ hidrolisado (fig. 38, pag. 64), pelo desaparecimento da banda em 3,648 no espectro de RMN ¹H(fig.45 ,pag.69) e aparecimento de uma ba<u>n</u> da larga em 7,888 , deslocavel com D_20 , o deslocamento da ban da referente ao estiramento C=0 para 1700cm⁻¹ no espectro de I.V. 'fig.46, pag.69) e o aparecimento da absorção arredonda da em torno de 2650 $\rm cm^{-1}$.

Pelas considerações até agora tecidas, pode-se inferir a existência dos seguintes grupos funcionais na estrutura de MPE-4.

A comparação das fórmulas moleculares de MPE-3 (C₂₀H₂₆O₂) e de MPE-4 (C₂₁H₂₈O₃) constata o mesmo número de insaturações (oito) para os dois compostos estruturalmente re ·lacionados.Como MPE-4 apresenta uma dupla ligação carbono-car bono(grupamento isopropenila) a mais que MPE-3 pode-se levantar a hipótese da abertura de um dos anéis do esqueleto de MPE-3 originando MPE-4.

.59.

A nossa proposição estrutural para MPE-4 se baseia na abertura do anel A do esqueleto cleistantânico, devido a possibilidade de clivagem fotoquímica da ligação C_3-C_4 , reação descrita na literatura para outros tipos de diterpenos com posição 3 carbonilada como mostra-se abaixo. Tal hipótese é atrativa de ser formulada "in vivo", no <u>Croton</u> sonderianus Muell. Arg.

A tabela χ , pag.70, apresenta um resumo das correla ções estruturais com os dados de RMN ¹H e ¹³C e o quadro IV, pag.71, apresenta algumas das possíveis rotas de fragme<u>n</u> tação de MPE-4 no espectrômetro de massa.

Abaixo, representamos a conclusão para MPE-4(estrutura IV) que é o ester metílico de 3,4-<u>seco</u>-SONDERIANOL, denominação atribuída a este diterpeno inédito, membro de uma nova e rara classe de diterpenos possuidores de esqueleto 3,4--seco-cleistantânico.

.61.

Fig. 33 - Espectro de RMN ¹³C (com acoplamento residual) de MPE-4.

Fig. 35 - Espectro de massa de MPE-4.

.62.

Fig. 37 - Espectro de massa de MPE-4/met.

Fig. 39 - Espectro de RMN ¹H (60MHz) de MPE-4/metilado.

Fig. 40 - Espectro no I.V. de MPE-4/metilado.

.67.

Fig. 45 - Espectro de RMN ¹H (60MHz) de MPE-4/hidrolisado

	15	
DIAN	100	
RIVIIN		

	1		
N°	δ	SFORD	
1	34,8	t	
2	28,6	t	
3	175,3	S	
4	141,3*	S	
5	46,6	d	
6	24,9	t	
7	29,6	t	
8	127,0	S	
9	139,1*	S	
10	41,2	S	
11	111,6	d	
12	152,6	S	
13	120,0	S	
14	146,9	S	
15	135,5	d	
16	119,6	t	
17	12,9	q	
18	114,3	t	
19	22,8	. q	
20	27,9	q	
21	51.7	a	

N°	۰ گ	INT.	DESD./J.	
11	6,74	1	S	
15	6,61	1	dd/11,18	
16	5,52	11	dd/2,11	
16	5,17	1	dd/2,18	
17	2,20	3	S	
18	4,94	1	m	
18	4,70	1 1	m	
19	1,78	3	S	
20	1,22	3	*	
21	3,64	3	s	
the second second		1		

TABELA X

2.2.ANALISE ESPECTROMETRICA E CONSIDERAÇÕES ESTRUTURAIS SOBRE OS CONSTITUINTES QUÍMICOS DO ÓLEO FIXO DA SEMENTE DE <u>Croton sonderianus</u> Muell. Arg.

Seguindo a técnica usual para extração de óleos de se mentes(vide parte experimental,pag.104), obteve-se um óleo gordo amarelo límpido numa proporção de 22,1% a partir das sementes de marmeleiro preto.

Saponificação dos glicerídeos (fig.47,pag.73)e post<u>e</u> rior metilação dos ácidos graxos(fig.48,pag.73) forneceu em cromatografia gás-líquido analítico um cromatograma (fig. 49, pag.50) constituído principalmente por tres picos. Quando an<u>a</u> lisada porém por cromatografia gás-líquido, em coluna capilar acoplada à espectrometria de massa apresentou um cromatograma (fig.50,pag.74) constituído por seis picos denominados pelas letras maísculas A a F, associados aos seus espectros de ma<u>s</u> sa.

Comparação dos espectros de massas relacionados aos picos do cromatograma II, com espectros analógos registrados na literatura (71) permitiu caracterizar o pico A como correspondente ao éster metilico do ácido palmitico (fig.52, pag.75), o pico B ao éster metilico do ácido iso-esteárico. (fig.55 ,pag.77), o pico C ao éster metílico do ácido lino leice (fig. 57, pag. 78), o pico D ao éster metilico do ácido oleico(fig. 58, pag. 78), o pico E ao éster metilico do ácido linolênico(fig. 56, pag. 77) e o pico F ao éster metílico do ácido araquídico(fig. 59, pag. 79).

A parte insaponificável do óleo consiste de um sólido amarelado cujo principal constituinte é o β -sitosterol. Estefato foi evidenciado por espectrometria de massa (fig. 51, pag.75),RMN ¹H(fig.53,pag.76) e I.V.(fig.54,pag.76) a compara ção com dados analógos descritos na literatura(65,71) além da comparação com amostra autêntica de β -sitosterol comercial da Merck.

Fig. 47 - Espectro de RMN ¹H (60MHz) dos ácidos livres do óleo fixo das sementes de <u>C</u>.<u>sonderianus</u>.

Fig. 48 - Espectro de RMN ¹H (60MHz) dos ésteres metíl<u>i</u> cos dos ácidos do óleo fixo das sementes de <u>C. sonderianus</u>.

Fig. 53 - Espectro de RMN ¹H (60MHz) de ins-OSMP

Fig. 54 - Espectro no I.V. de ins-OSMP

ŝ.

2.3.1.

Utilizando-se aparelho para arraste com vapor d'água ' desenvolvido nos laboratórios de Química Orgânica do Departamento de Química Orgânica e Inorgânica da UFCe.(fig.60,pag.82). obteve-se óleos essenciais a partir das folhas, casca e lenho do caule, lenho e casca da raíz todos apresentando caracterís ticas físicas diferentes, principalmente na cor, que varia de amarelo a azul intenso. As características físicas e rendimen tos são apresentadas na tabela XI,pag.82.

Tendo o óleo essencial das folhas já sido analisado por cromatografia gás-líquido acoplada a espectrometria de massa e os resultados publicados (39), optou-se pela análise dos óleos essenciais do lenho e casca do caule desta fei ta utilizando-se cromatógrafo gás-líquido com coluna capilár acoplado à espectrometria de massa.

Os cromatogramas obtidos(figs.61 e62,pag. 83 e 84)revelam-se bastante semelhantes e a comparação dos espectros de massa(fig. 63 a 81) relacionados aos picos A a Z do cromatograma III,com espectros análogos descritos na literatura(71) permitiu a correlação estrutural apresentada na tabela XII, pag.95.

2.3.2.

Cromatografia em coluna de sílica (1:50) do óleo azul intenso, à temperatura de aproximadamente 20°C, utilizando hexano como solvente para eluição contínua forneceu uma fr<u>a</u> ção cujo constituinte principal era o guaiazuleno, o que foi comprovado por RMN ¹H(fig. 82,pag.96) e E.M.(fig.83, pag.96), através da comparação com espectros análogos descritos na literatura(64,71). 2.3.3.

Destilação sob pressão reduzida do óleo essencial da casca do caule possibilitou o isolamento de uma fração de α -pineno puro caracterizado por RMN ¹H (fig.84 ,pag. 97) e I.V. (fig.85 ,pag.97) e comparação com espectros analógos descritos na literatura(64,65,71).

.81.

Fig.60 - Aparelho extrator de óleos essen ciais.Modelo de Laboratório sim plificado. Seg. Craveiro et. al. J.Chem. Educ.53(8),<u>652</u> (1976). A: gerador de vapor; B:recipiente com a planta fragmentada; C: condensador; D: recipiente coletor e separador de óleo e água. condensados.

		The second se	and the second se	Statement in the statement of the statem
PARTE DA PLANTA	PESO (Kg)	ÓLEO OBTIDO (m1)	COR DO ÓLEO	8
CASCA DA RAÍZ	0,72	6,0	Azul Claro	0,83
LENHO DA RAÍZ	1,50	4,8	Amarelo Pálido	0,66
CASCA DO CAULE	2,50	43,0	Amarelo Pálido	1,72
LÉNHO ⁻ DO CAULE	3,50	18,5	Azul Claro	0,57
FOLHAS	16,0	54,0	Azul Intenso	0,33

.82.

TABELA XI

Fig. 64 - Espectro de massa relacionado ao pico B do cromatograma (III). (canfeno).

Fig. 65 - Espectro de massa relacionado ao pico C do cromatograma (III). (β-pineno).

Fig. 66 - Espectro de massa relacionado ao pico D do cromatograma (III). (mirceno).

Fig. 68 - Espectro de massa relacionado ao pico F do cromatograma (III). (γ-terpineno).

matograma (III). (terpinen-4-ol).

Fig. 72 - Espectro de massa relacionado ao pico K do cromatograma (III). (β-elemeno).

cromatograma (III). (cipereno).

grama (III). (thujopseno).

Fig. 80 - Espectro de massa relacionado ao pico X do croma tograma (III). (δ-cadineno).

PICO.	P.MOLECULAR	ESPECTRO FIGURA	CORRELAÇÃO ESTRUTURAL	PÁGINA DA REF: 71
A	136	63	α-pineno…	277-6
В	136	64	canfeno	298-2
С	136	65	β-pineno	277-6
D	136	66 .	mirceno	276-1
Е	136	67	limoneno	276-8
F	136	68	¥-terpineno	276-2
G	152	69	cânfora	403-5
Н	154	70	terpinen-4-01	423-2
I	204	-	-	-
J	204	71	copaeno	1028-6
К	· 204	72	β-elemeno	1024-5
L	204	73	α-gurjuneno	1029-1
М	× 204	-	-	-
N	204	74	cipereno	1023-3
0	204	75	β-cariofileno	1025-6
Р	204	76	tujopseno	1031-1
Q	- 204	-	-	-
R	204	77	trans∺βfarneseno	1023-4
S	204	78	γ-cadineno 1027	
Т	204	-		
U	204			
v	204	79	γ-muuroleno 1027-6	
x	024	80	δ-cadineno 1027-4	
Y	222	81	palustrol	1230-4

TABELA XII

.97.

3. PARTE EXPERIMENTAL

.98.

3.1. INTRODUÇÃO

Os pontos de fusão foram determinados em bloco Klofer (Reichert) e não foram corrigidos.

Os espectros de absorção nas regiões do ultra-violeta e visível (UV-Vis) foram registrados em aparelhos SpecordUV-Vis, à temperatura ambiente, utilizando metanol como solven te.

Os espectros de absorção na região do infra- vermelho (I.V.) foram registrados em espectrômetro PERKIN-ELMER mod. 720 e/ou U.R.-20 Jena, utilizando pastilha de KBr para sóli dos, filme para substância líquida ou por dissolução em CC1₄ ou CHC1₃.

Os espectros de ressonância magnética nuclear protôni ca (RMN ¹H) foram registrados em espectrômetros EM-360 da VARIAN(60MHz) e/ou XL-100 da VARIAN(100MHz) ambos do Departa mento de Química Orgânica e Inorgânica da UFCe., e em espec trômetro (270MHz) do Instituto Weissman de Israel por cort<u>e</u> sia do Prof. Hugo E. Gottlieb. Os deslocamentos químicos(δ) foram descritos em parte por milhão(ppm) em relação ao tetr<u>a</u> metilsilano (TMS), utilizando-se CDCl₃ ou CDCl₄ como solve<u>n</u> te. O desdobramento das bandas foram indicados segundo a convenção: <u>s</u> (banda simples). d(dupleto), <u>t</u>(tripleto),q(quar teto, dd(duplo dupleto) e m(banda múltipla).

Os espectros de ressonância magnética nuclear de car bono-13_. (RMN ¹³C) foram registrados em espectrômetros XL-100 da VARIAN no Departamento de Química Orgânica e Inorgânica ' da UFCe., em espectrômetro XL-100 da VARIAN pertencente ao NPPN-Rio de Janeiro, por cortesia do Prof. Paul Baker ou em espectrômetro pertencente ao Instituto Weissman de Israel' por cortesia do Prof. Hugo E. Gottlieb. Os deslocamentos quí micos (δ) foram descritos em parte por milhão(ppm) em rela ção ao tetrametilsilano (TMS), usando CDC1, ...ou $(CD_{z})_{2}C=0$ com solventes. O desdobramento das bandas nos espectros COM acoplamento residual, obtido segundo a técnica de SFORD(sin gle frequency off ressonance decoupled) foram descritos seguindo a mesma convenção utilizada nos desdobramentos das bandas nos espectros de RMN ¹H.

Os espectros de massa(EM) de alta resolução foram r<u>e</u> gistrados em espectrômetro CH-5 da VARIAN do NPPN, Rio de Janeiro por cortesia do Prof. Paul Baker.

Os espectros de massa (EM) de baixa resolução e análises por cromatografia gás-líquido acoplada à espectrom<u>e</u> tria de massa (CGL-EM) foram realizadas em sistema 3300F da FINNIGAN acoplado a computador, no Departamento de Quím<u>i</u> ca Orgânica e Inorgânica da UFCe.

Cromatografias em camada delgada foram realizadas utilizando-se sílica gel G, segundo Stahl, da Merck ou crom<u>a</u> tófilos DC-Alufolien Kieselgel 60F 254(0,2mm de espessura) da Merck.

Cromatografias de adsorção em coluna foram efetuadas utilizando-se sílica gel 60 (70-230 mesh ASTM) da Merck.

Separações em peneira molecular foram realizadas ut<u>i</u> lizando-se Sephadex LH-20.

As cromatografias gás-líquido (CGL), em escala analí tica foram efetuadas em sistema cromatógrafo VARIAN 2440 acoplado ao miniprocessador CDS 111 da VARIAN com detetor de ionização de chama, equipado com coluna de aço : inoxidá vel(1,5m x31mm), empacotado com 1,5% de OV-1 em Cromosorb W. As operações foram realizadas usando-se nitrogênic como gás de arraste. A temperatura foi programada entre 50-250°C com uma velocidade de aquecimento de 4°C/min. As temperaturas do injetor e detetor foram mantidas em 250°C, respectiva mente. A sensibilidade do aparelho foi de 10⁻¹⁰ e atenuação 64.

As reações de hidrogenação catalítica foram realiza das à pressão e temperatura ambiente utilizando-se gerador de hidrogênio da VARIAN Aerograph 9225.

As listas de picos dos espectros de massa descritos nas constantes físicas foram confeccionadas utilizando-se o processo de simplificação por escolha do pico mais intenso 'em intervalos de 14 (quatorze) u.m.a. a partir do pico com m/e=34, semelhante à técnica de armazenamento de dados da biblioteca P.F. do sistema de computação 6115 da FINNIGAN.

3.2. ESTUDO DO ÓLEO FIXO DAS SEMENTES

3.2.1. Extração do óleo fixo (esquema I, anexo I)

Os frutos coletados foram colocados em recipientes com cobertura plástica (para evitar a perda de material por ocasião da ruptura expontânea das cápsulas que contém as sementes) e expostos à luz solar, ocasionando a abertura dos frutos maduros. As sementes obtidas (97,0g) foram trit<u>u</u> radas e extraídas exaustivamente com hexano (12 horas), em aparelho tipo sohxlet.

A solução hexânica, evaporada sob pressão reduz<u>i</u> da, produziu 21,5g de um óleo amarelo límpido (22,1% de re<u>n</u> dimento) com significativo teor de material graxo insaturado.

3.2.2. Saponfficação do óleo e obtenção dos ácidos gra xos livres (esquema I anexo I).

Uma alíquota do óleo obtido(20,0g) foi submetida à refluxo durante 1h:30min, em mistura de KOH aquoso 50% e etanol, segundo a técnica usual(72).

A mistura reacional foi extraída 3 vezes com 25ml de hexano, obtendo-se uma fase orgânica que após evaporação forneceu um material sólido amarelado(0,65g) denominado ins-OSMP(insaponificável do óleo da semente de marmelei ro preto). Dissolução desse material em etanol à quente for neceu após recristalizações sucessivas, filtração em Buchner, lavagem e secagem, 95mg de ins-OSMP, material sólido branco com ponto de fusão 128-132°C e as características espectromé tricas apresentadas na tabela XIIIpag.103.

A fase hidro-alcoólica alcalina foi neutralizada com ácido clorídrico concentrado separando-se em duas camadas. Retirou-se a camada superior oleosa e extraíu-se a cama da inferior, fase aquosa, com hexano(3x20ml). Reuniu-se as frações hexânicas com a fase oleosa, anteriormente separada, e lavou-se com água (2x20ml). Secagem em sulfato de sódio anidro, filtração e posterior evaporação forneceu 12,5g de uma mistura oleosa amarela límpida, de ácidos graxos livres, com os seguintes dados de RMN ¹H (60MH, ,CC1,)

9,60 (s,banda larga) 5,28(t),2,70(m),2,22-2,20'(m) 1,30 (s, com inflexão) e 0,92(d)

3.2.3. Obtenção dos ésteres metilicos (esquema II, anexo II)

Uma alíquota da mistura de ácidos carboxílicos, (1,0g), obtidos em 3.2.2foi submetida à refluxo durante 1 ho ra e 30 min., com 25ml de solução de BF₃/MeOH 14%. Após resfriamento, adicionou-se 20ml de água à mistura reacional, extraindo-se em seguida com clorofórmio (5x10ml). A solução clorofórmica foi lavada com água, tratada com sulfato de sódio anidro, filtrada e após evaporação sob pressão reduzida forneceu 0,8g de uma mistura oleosa avermelhada, de ésteres metílicos, com os seguintes dados de RMN ¹H(60 MHz,CCl₄)

> 5,28(t),3,60(s),2,72(m), 2,19-2,00(m),1,28(s com in flexão) 0,928(d)

3.2.4. Análise cromatográfica gás-líquido dos ésteres metílicos

A mistura obtida em 3.2.3. foi analisada por cr<u>o</u> matografia gás-líquido fornecendo o cromatograma I ,(pg.79) constituído por tres picos principais.

Cromatografia gás-líquido em coluna capilar acoplada a espectrometria de massa entretanto revelou a presen ça de 6 substâncias, com os dados em E.M. apresentados em 2:2;

TABELA XVII.

.103.

DADOS ESPECTROMÉTRICOS DE INS-OSMP

I.V.: $\lambda_{\max}^{KBr} cm^{-1}$

3500, 2980(com inflexão), 2900(com inflexão),1470(com inflexão), 1385, 1060 e 970.

RMN ¹H (60MHz,CCl₄): δ (multiplicidade)

5,20(m), 3,30(s,1argo), 2,30-0,70(m)

E.M.: m/e (%)

414(3)M⁺, 399(1),381(2),354(1),329(8),314(3), 303(8), 273(9), 255(12), 241(3), 231(12), 213(21), 199(9), 185(8), 173(14),159(26), 145(40), 119(32), 105(49) 96(54), 81(59), 67(56), 55(75), e 43(100).

.104.

3.3. ESTUDO DA PARTE VOLATIL

3.3.1. Extração dos óleos essenciais

O material coletado foi dividido em folhas, caule (casca e lenho) e raíz(casca e lenho).

As folhas foram submetidas diretamente ao arraste com vapor d'água. O rendimento e alguns dados físicos do óleo essencial obtido são apresentados na tabela XI, pag. 82

As outras partes da planta, casca e lenho do caule e casca e lenho da raíz foram expostas à luz solar para secagem, e trituradas em moinho tipo martelo. O material fina mente triturado foi submetido a arraste com vapor d'água, obtendo-se os respectivos óleos essenciais. Os rendimentos e algumas características físicas são apresentadas na tabela XI pag. 82.

3.3.2. Análise cromatográfica gás-líquido dos óleos essenciais da casca e lenho do caule

Os óleos essenciais da casca e lenho do caule fo ram submetidos a análise cromatográfica gás-líquido em escala analítica e a análise cromatográfica gás-líquido em coluna ca pilar acoplada à espectrometria de massa. Os resultados são apresentados em 2.3....

As identificações das substâncias foram realizadas por análise dos espectros de massa em sistema de process<u>a</u> mento de dados usando PROGRAM-SEARCH e BIBLIOTECA FINNIGAN P. F., sendo comprovadas posteriormente por comparação com espectros análogos descritos na literatura.

3.4. ESTUDO DA PARTE FIXA - LENHO DO CAULE

3.4.1. Obtenção dos extratos(esquema III, anexo III)

2,30Kg de resíduo do lenho do caule arrastado com vapor d'água, após secagem, foram divididos em alíquotas de 100,0g cada, e estas extraídas exaustivamente(aproximadamente 12 horas) com benzeno em aparelho tipo sohxlet. Após concentração da solução benzênica, sob pressão reduzida,obt<u>e</u> ve-se 51,5g(2,25%) de um extrato viscoso amarelado denominado MP4-B.

Após a extração com benzeno, os cartuchos com as alíquotas foram submetidos à secagem e em seguida extraídos com etanol. Concentração da solução etanólica forneceu 53,8g (2,34%) de um extrato marron amarelado denominado MP4-E.

3.4.2. Tratamento cromatográfico de MP4-B e isolamento dos seus constituintes químicos.

Dissolveu-se 40,0g de MP4-B em clorofórmio e adi cionou-se 200,0g de sílica gel para coluna, Após evaporação do solvente, a temperatura ambiente, acondicionou-se a mistu ra de MP4-B adsorvido em sílica em um funil de decantação e eluíu-se exaustivamente com hexano seguido de benzeno, cloro fórmio, acetona e metanol, respectivamente. Os resultados são apresentados abaixo:

solvente	aspecto	peso do	sigla
9		material	
Hexano	óleo amarelo	20,5g	MP4-B-Fh
Benzeno	resina verde	7,3g	MP4-B-Fb
Clorofórmio	resina esverdeada	7,4g	MP4-B-F
Acetona	resina marron	1,4g	MP4-B-Fa
Metanol	resina marron-es-		
	curo	0,7g	MP4-B-Fm

Após concentração e resfriamento, no eluato hexânico $(MP4-B-F_h)$ ocorreu a cristalização de um material sobforma de agulhas. Filtração à vácuo originou, após lavagem

com hexano, 890mg de material cristalino branco amarelado,d<u>e</u> nominado MPE-1, com ponto de fusão 128-139°C,recristalização em mistura hexano/benzeno forneceu 489mg de cristais acicul<u>a</u> res,puros por análises em cromatografias em camada delgada com as características físicas apresentadas na tabela XIV, pag.18.

Recromatografias sucessivas do eluato clorofórmico MP4-B-F_c em coluna de sílica, usando-se clorofórmio como sol vente, originou 30,0g de material sólido, com ponto de fusão 202-210°C, denominado MPE-2. Depois de recristalizado em mistura benzeno/metanol, obteve-se 18,0mg de MPE-2 cromato graficamente puro, com as características físicas apresenta das na tabela XV, pag.109.

Recromatografias sucessivas do eluato benzênico (MP4-B-F_b) em coluna de sílica, usando-se hexano seguido de clorofórmio como solvente, originou 60,0mg de um material so lido amarelo, com ponto de fusão 169.72°C, denominado MPE-3' que após recristalização em mistura hexano/benzeno forneceu 43,0mg de cristais aciculares amarelos com as características físicas apresentadas na tabela XVI,pag.110.

Na tentativa de se isolar maior quantidade de material, extraíu-se 4,0Kg de resíduo do lenho do caule arrastado com vapor d'água, em extrator tipo sohxlet de aço inoxidável semi-industrial, usando hexano como solvente. Evaporação do solvente, sob pressão reduzida, forneceu 63,5g de um extrato denominado MP4-H.

MP4-H foi submetido ao mesmo tratamento que MP4-B e eluído com hexano, clorofórmio e acetona, respectivamente , obtendo-se:

solvente	aspecto	peso do material	sigla
Hexano	óleo amarelo	11,7g	MP4-H-F _h
Clorofórmio	resina verde	33,6g	MP4-H-Fc
Acetona	resina escura	1,0g	MP4-H-F

MP4-H- F_c , (33,6g) foi adsorvido em 270,0g de sílica para coluna, acondicionado em funil de decantação e eluído com hexano, clorofórmio e acetona respectivamente, obtendo-se

solvente	aspecto	peso do material	sigla
Hexano	óleo amarelo	3,6g	MP4-H-Fc-h
Clorofórmio	óleo verde vis		
	coso	17,0g	MP4-H-Fc-c
Acetona	resina verde		
	escura	8,3g	MP4-H-Fc-a

Recromatografia em coluna de sílica(1:10) de MP4-H- F_{e-c} forneceu 841mg de MPE-1, 283mg de MPE-3 e 5,0g de um óleo verde viscoso. Recromatografia em coluna de Sephadex-LH- 20 do óleo verde permitiu o isolamento de uma fração oleosa verde(2,1g), denominada MPE-4 que apresentava-se com uma única mancha em cromatografia de camada de sílica, com as características espectrométricas apresentadas na tabelaXVIL, pag.111.

3.4.3. Teste de Draghendorf positivo:

Colocou-se uma gota de solução clorofórmica de MPE-1 em papel de filtro qualitativo e após evaporação do solvente imergiu-se o papel em solução do Reagente Draghenn dorf(_55_)por alguns minutos. Lavagem do papel de filtro em água destilada revela o aparecimento de uma mancha amare lo-alaranjada indicando teste positivo.

3.4.4. Teste de Erlich positivo:

Aplicou-se uma gota de solução clorofórmica de MPE-1 sobre uma placa de sílica aspergindo-a em seguida com solução de Reagente de Erlich(54) recentemente prepara do, levando à estufa por alguns segundos. O aparecimento de uma mancha róseo-alaranjado revelara teste positivo.

TABELA XIV

.108.

DADOS ESPECTROMETRICO DE MPE-1

U.V.: v_{max}^{MeOH} nm (log ε)

216(3,87) e 241 inflexão (2,80)

 $I.V.: \lambda_{max}^{KBr} cm^{-1}$

3050, 2940, 1760, 1710, 1645, 1610, 3170, 1515. 1465, 1445, 1400, 1370, 1335, 1285, 1260, 1240. 1220, 1195, 1160, 1135, 1120, 1085. 1060. 1035. 1000, 940, 880, 800, 760, 955, 750, 735, e 725.

E.M.: m/e (%)

358(5)M⁺, 326(21), 311(7), 298(3), 281(6),264(2),246(6), 232(7), 232(7), 217(10), 205(6),199(7),179(16),161(11), 159(23), 133(21),119(26),105(48),95(100),81(85),65(39), 55(53), 41(74).

RMN ¹H(270MHz,CDCl₃): δ(integração, multiplicidade,cte. de acoplamento e correlação estrutural)

-1,02(3H,d.d,J=7,OHz,H₃C-17),1,46(3H,s,H₃C-18),1,53-1,93 (3H,m,H-10 e 2H-1),3,70(3H,s,-OCH₃),5,40(1H,t,J=8,OHz, .H-12),6,40(H,s,H-14),6,53(H,t,J=3,OHz,H-3),7,43(H,s, H-16),7,45(H,s,H-15).

RMN ${}^{1}C(25, 2MHz, CDC1_{3}): \delta$ (multiplicidade, correlação estrutural)

19,7(t,C-1),26,8*(t,C-2),135,3(d,C-3), 142,3 (s, C-4), 37,6(s,C-5),35,2 (t,C-6), 26,5 (t,C-7), 40,4(d, C-8), 51,6(s,C-9),52,4(d,C-10), 44,7(t,C-11), 71,6(d,C-12), 125,6(s,C-13),108,0(d,C-14),143,8(d,C-15),139,3(d,C-16), 16,8(q,C-17), 19,7(q,C-18), 164,5(s,C-19),173,0(s,C-20) e 51,2(q,C-21).

* As correlações estruturais podem estar invertidas.

TABELA XV

DADOS ESPECTROMETRICOS DE MPE-2

I.V. λ_{max}^{KBr} cm⁻¹

1715, 1620, 1570, 1520, 1440, 1430, 1380, 1300, 1278, 1225, 1195, 1140, 1100, 1020, 920, 860, 820 e 750.

E.M. m/e (%)

192(30)M⁺, 177(23), 164(11), 35(3), 121(10),105(4),95(5), 79(7), 69(15), 55(8) e 40(100).

RMN ¹H(60MHz,CD₃COCD₃): δ(integração, multiplicidade,cte. de acoplamento e correlação estrutural)

7,80(1H,d,J=10Hz,H-4),7,13(1H,s,H-5),6,75(1H,s,H-8),6,10 (1H,d,J=10Hz,H-3),3,90(3H,s,O-OCH₃) e 2,40(1H,-OH).

.110. TABELA XVI

DADOS ESPECTROMETRICOS DE MPE-3

I.V.: $\lambda_{max}^{KBr} cm^{-1}$

 3400,
 3150,
 3030,
 3000,
 2980,
 2940,
 1695,
 1640,

 1600,
 1480,
 1430,
 1420,
 1400,
 1350,
 1310,
 1290,

 1245,
 1180,
 1160,
 1130,
 1120,
 1110,
 1040,
 1025,

 950,
 930,
 e
 870.

E.M.: m/e (%)

298(93)M⁺, 283(7), 255(8), 241(50), 197(79), 185(60), 173(46), 173(46),147(39),145(31), 125(69), 115(40), 91(36), 83(33), 55(60), e 43(100).

RMN ¹H(270MHz,CDCl₃): _(integração, multiplicidade, cte de acoplamento, correlação estrutural)

6,68(1H,s,H-11),6,60(1H,d.d,J=10 e 17Hz,H-15), 5,55' (1H,d.d,J=10 e 2Hz,H-16),5,23(1H,d.d,J=17 e 2Hz,H-16) 5,14(1H, 1argo deslocável com D₂0, 0-H),2,82-2,36(H, m), 2,20(3H,s,H-17),194-166(H,m),1,29(3H,s,H-20),1,15 (3H,s,H-18), 1,12(3H,s,H-19).

RMN $^{13}C(22,5MHz,CDCl_3): \delta$ (multiplicidade, correlação estrutural)

38,2(t,C-1),34,9(t,C-2),219,7(s,C-3),47,7(s,C-4),50,5 (d,C-5),20,5(t,C-6),29,4(t,C-7), 125,7(s,C-8), 140,5 (s,C-9),37,6(s,C-10),111,2(d,C-11),153(s,C-12), 120,8 (s,C-13), 146,6(s,C-14), 136,2(d,C-15), 120(t, C-16), 13,0(q,C-17), 24,7(q,C-18), 27,0(q,C-19) e 21,2(q,C-20)

TABELA VII

DADOS ESPECTROMÉTRICOS DE MPE-4

I.V.: λ_{max}^{filme} cm⁻¹

3450,3110,3050,2875,1715,1640,1600,1445,1405,1400,1385,1310,1270,1200,1120,1035,1000,935,905,890,765.

E.M.: m/e (%)

328(31)M⁺, 313(5), 297(7), 285(8), 259(11), 253(31), 241 (82), 227(16),213(93),199(100), 185(85),171(52), 157 (30), 141(34),128(42),115(57), 91(32), 77(23), 69 (30), 55(59), 41(75).

RMN ¹H(270MHz,CDCl₃): δ (integração, multiplicidade, cte. de acoplamento e correlação estrutural)

>6,74(1H,s,H-11),6,61(1H,d.d,J=11 e 18Hz,H-15), \$5,52
(1H,d.d,J=2,0 e 11Hz,H-16), 5,17(1H,d.d,J=2,0 e 18Hz,
H-16) 4,94(1H,m,H-18 -sistema ABX₃), 4,70 (1H,m,H-18
-sistema ABX₃),3,64(3H,s, -OCH₃),284-2,27(m),2,20'
(3H, s,H-17),2,06(m,),1,78(3H,s,H-19),1,22(3H,s,H-20)

RMN ¹³C(25,2MHz,CDC1₃): (multiplicidade, correlação estrutu ral)

34,8(t,C-1), 28,6(t,C-2),175,3(s,C-3),141,3^{*}(s, C-4), 46,6(d,C-5), 24,9(t,C-6), 29,6(t,C-7),127,0 (s, C-8), 139,1^{*}(s,C-9)41,2(s,C-10)111,6(d,C-11) 152,6(s,C-12), 120,0 (s,C-13),146,9(s,C-14),135,5(d,C-15),119,6(t,C-16) 12,9(q,C-17), 114,3(t,C-18),22,8(q,C-19),27,9(q,C-20), e 51,7(q,-0CH₃).

> * As correlações estruturais podem estar inver tidas.

3.5.1. Hidrogenação catalítica de MPE-1(esquema IV,aneno IV)

750mg de MPE-1 foram adicionados à uma suspensão de 350mg de Pd/C 10% em 40ml de metanol. Em seguida a mistura foi submetida a fluxo de hidrogênio produzido em aparelho gerador de hidrogênio, à pressão e temperatura ambiente. 0 desenvolvimento da reação e o seu final, após 30min. foram acompanhados por cromatografia em camada fina. A mistura rea cional foi filtrada em pequena coluna com sílica, para reti rar o catalizador; o solvente foi removido sob pressão redu zida e o resíduo submetido a cromatografia. Obteve-se por eluição com clorofórmio, 275mg de um material sólido branco denominado MPE-1/H2-neutro. As outras frações também eluídas com clorofórmio, foram reunidas, dissolvidas em éter etílico e a solução extraída com NaOH 10%(5x15m1). A fase etérea foi lavada com água filtrada sob sulfato de sódio anidro e evapo rada, fornecendo mais 83,0mg de MPE-1/H2.neutro, cujas carac terísticas são descritas na tabela XVIII, pag. 115, A fase alcalina foi acidificada com ácido clorídrico concentrado e extraída com éter etílico(5x10m1). A solução etérea obtida, foi lavada com água, tratada com sulfato de sódio anidro e após evaporação originou 200,0mg de óleo claro bastante den so denominado MPE-1/H2-acido, cujas características espectro métricas são relacionadas na tabela XIX pag. 115.

3.5.2. Hidrólise alcalina de MPE-1(esquema V, anexo V)

A uma solução de 1,0g de MPE-1 em 25m1 de meta nol, adicionou-se 10m1 de KOH 50%. A mistura foi submetida à refluxo, com agitação, durante 14 horas. Após resfriamento, extraíu-se a mistura reacional com éter etílico(2x10m1). Neu tralizou-se a fase hidroalcoólica alcalina com ácido clorí drico concentrado e extraíu-se com clorofórmio. A fase cloro fórmica foi lavada com água, tratada com sulfato de sódio anidro e concentrada sob pressão reduzida, resultando em 853mg de material sólido.Dissolução desse material em etanol à quente forneceu, após recristalização, 275mg de um pó fino e branco denominado MPE-1/hidrolizado, cujas características físicas e espectrométricas são dadas na tabela XX, pag.116.

3.5.3. Hidrogenação catalítica de MPE-3

100mg de MPE-3 foram adicionadas à uma suspensão de 80mg de Pd/C 10% em 20ml de metanol. A mistura foi submeti da a fluxo de hidrogênio corrente por 25min., tempo necessá rio para que o material original fosse hidrogenado, o que foi caracterizado por acompanhamento do desenvolvimento da reação por cromatografia em camada fina. Filtração da mistura reacio nal em pequena coluna com sílica e posterior concentração, sob pressão reduzida forneceu 105,0mg de um óleo límpido amarelo denominado MPE-3/H₂ com as características espectrométricas apresentadas na tabela XXI,pag.117.

3.5.4. Metilação de MPE-3/H₂

Inicialmente tentou-se a metilação de 50mg de MPE-3/H₂ obtido em 3.5.3., com diazometano segundo técnica usual, não obtendo-se resultado satisfatório.

As 55mg restantes foram dissolvidas em 5ml de ace tona anidra(tratamento com carbono de potássio calcinado de acordo com a ténica usual) e acondicionadas em sistema de refluxo contendo 200mg de carbonato de potássio calcinado em mufla aproximadamente à 500°C.Adicionou-se duas gotas de sulfa to de dimetila recentemente destilado e submeteu-se a mistura à refluxo com a agitação por cinco horas. O final da reação foi evidenciado por cromatografia em camada delgada.A mistura reacional foi filtrada sobre uma camada de lã de vidro e solução obtida evaporada sob pressão reduzida. O resíduo obti do foi dissolvido em clorofórmio, lavado com hidróxido de amônio 10% e em seguida com água. Tratamento da solução COM sulfato de sódio anidro e posterior evaporação da solução clorofórmica seguida de cromatografia forneceu 10mg de um material solido branco denominado MPE-3/H2-metilado e apresen tando as características físicas e espectrométricas da tabe-1a XXII, pag. 118.

3.5.5. Hidrogenação de MPE-4

540mg de MPE-4 foram adicionados à uma suspensão de 250mg de Pd/C 10% em mistura de metanol(20m1) e clorofórmio(5m1). A mistura foi hidrogenada durante tres horas se guindo o mesmo método utilizado nas hidrogenações anteriormen descritas. A mistura reacional depois de filtrada em pequena coluna com sílica e evaporada sob pressão reduzida, originou 420mg de um óleo denso denominado MPE-4/H₂.

3.5.6. Metilação de MPE-4

200mg de MPE-4 foram submetidas à refluxo por 6 horas em 10m1 de acetona tratada com carbonato de potássio calcinado e sulfato de dimetila, (aproximadamente 0,3m1) segun do a técnica utilizada para MPE-3/H2. A mistura reacional foi filtrada em funil de Buchner a vácuo e o carbonato de potássio lavado com alguns mililitros de acetona. Após evapo ração da acetona, sob pressão reduzida, o resíduo foi dissol vido em clorofórmio, lavado com hidróxido de amônio 10% depois com água. A fase clorofórmica depois de tratada com o sulfato de sódio anidro evaporada e cromatografada em sílica forneceu 102mg de um óleo denominado MPE-4/metilado com as características espectrométricas apresentadas na tabelaXXXIII pag.119.

3.5.7. Hidrólise alcalina de MPE-4

Dissolveu-se 200mg de MPE-4 em 5ml de etanol e adicionou-se 0,5ml de solução aquosa de hidróxido de sódio 50%. Em seguida submeteu-se a mistura a refluxo durante 30 min. Após tratamento usual a mistura reacional foi cromato grafada obtendo-se 140mg de MPE-4/hidrolizado, apresentando características espectrométricas na tabela XXIV,pag. 120.

TABELA XVIII

.115.

DADOS ESPECTROMETRICOS DE MPE-1/H₂-neutro

I.V: λ_{max}^{KBr} cm⁻¹

3030, 2950, 2890, 1750, 1720, 1445, 1370, 1325, 1225, 1180, 1140, 1055, 1020, 985, 950, 920, 780.

E.M.: m/e (%)

364(3)M⁺, 346(7), 332(7), 318(1), 305(6),293(9),277(2) 264 (3), 250(12),241(4), 216(4), 206(8),189(8),183(48) 165(22), 150(49),122(40),107(50),93(60),79(70),67(90) 55(100) e 41(100).

RMN ¹H(100MHz,CDCl_z): δ (integração, multiplicidade)

4,30-3,44(5H,m), 3,66(3H,s),2,40-1,26(m),1,20(3H,s,), 0,98(3H,d).

TABELA XIX

DADOS ESPECTROMÉTRICOS DE MPE-1/H2-ácido

E.M.: m/e (%)

 $366(7)M^{\oplus}$, 348(11), 332(28), 320(14), 307(7), 286(16), 271(11), 268(7), 250(7), 233(7), 221(21), 208(37), 189(37), 182(16), 161(28), 145(28),119(100),117 (84), 93(37), 81(37), 67(37), 55(86), 41(96).

RMN ¹H (60MHz,CC1_A): δ (integração multiplicidade)

10,28(1H, largo, deslocável com D₂O),3,95-3,17(4H,m), 3,57(3H,s) 2,07(m).

TABELA XX

.116.

DADOS ESPECTROMETRICOS DE MPE-1/hidrolisado

 $I.V.: \lambda_{max}^{KBr} cm^{-1}$

3210, 3060, 2990, 1740, 1710, 1605, 1520, 1460, 1385, 1325, 1190, 1155, 1020, 990, 960,870, 820, e 710.

E.M.: m/e (%)

344(4)M⁺,326(10),311(2),298(19),283(5)270(3),253(19), 231(19),230(9),213(9),197(10),187(10)173(12)159(28), 145(36),131(36),131(36),119(35),105(61)91(100),81(80), 65(40),53(49) e 41(62).

.117.

TABELA XXI

DADOS ESPECTROMETRICOS DE MPE-3/H2

I.V.: filme cm⁻¹

3450, 3000, 2900, 1700, 1600, 1460, 1420, 1390, 1325, 1280, 1220, 1200, 1170, 1095, 1050, 940, e 860.

E.M.: m/e (%)

300(10)M⁺, 285(8), 243(19), 215(14),201(55), 187(49), 185(39), 149(11),128(14), 125(26), 115(16), 105(11), 97(10), 91(24), 83(30), 77(19),69(32),55(57)43(100)

RMN ¹H(60MHz,CC1₄):δ(integração, multiplicidade, cte, de aco plamento e correlação estrutural)

6,40(1H,s,H-11), 5,50(1H,s,arredondado variável com D₂0, -OH),2,80-2,45 (m,), 2,10 (3H,s,H-17) 1,78(m) 1,18(3H,s,H-20),1,02(9H,m,H-16, H-18 e H-19).

TABELA XXII

.118.

DADOS ESPECTROMETRICOS DE MPE-3/H2-metilado

 $I.V.: \lambda_{max}^{KBr} cm^{-1}$

 3010, 2890, 1695, 1600, 1460, 1375, 1290, 1270,

 1200, 1160, 1110, 1085, 1075, 840

E.M.: m/e (%)

314(54)M+, 299(39), 285(4), 271(3), 257(49), 243 (17), 229(21), 213(50), 189(45),187(37),163(62), 159 (22), 141(30), 125(100),115(37), 91(37), 83(53), 69 (39), e_55(41).

RMN ¹H(60MHz,CDCl₃) :δ(integração, multiplicidade, cte. de acoplamento, correlação estrutural)

> 6,60 (1H,s,H-11), 3,78 (3H,s, -OCH₃), 2,83-2,47 (m,) 2,19 (3H,s,H-17), 1,90-1,62(m,),1,30 (3H,s, H -20) 1,13 (9H,m,H-16,H-18 e H-19).

.119.

TABELA XXIII

DADOS ESPECTROMÉTRICOS DE MPE-4/metilado

I.V.: $\lim_{\lambda_{max'}}$ cm⁻¹

3130, 3050, 2870, 1740, 1640, 1595, 1460, 1440, 1330, 1305, 1280, 1260, 1195, 1170, 1120, 1060,

E.M.: m/e (%)

342(32)M⁺, 327(3), 311(4), 299(5), 273,(25), 267 (20), 255 (90), 241(19),227(100),213(86), 199(72), 185 (43), 165 (30), 153(33),141(39),128(42), 115(59), 91 (39), 77 (22), 73(12), 59(21), 42(24).

RMN ¹H(60MHz,CCl₄) δ (integração, multiplicidade, cte. de acoplamento, correlação estrutural)

6,55(1H,s,H-11), 6,50(1H,d.d,J=10 e 17Hz,H-15(5,40(1H, d.d,J=2,0 e 10Hz, H-16),5,01(1H,d.d.J=2,0 e 17Hz,H-16), 4,85(1H,m,H-18 sistema ABX₃), 4,61(1H,m,H-18 sistema ABX₃), 3,72(3H, s, Ø-OCH₃), 3,43 (3H, s, 0=C-OCH₃), 2,07 (3H,s,H-17), 1,77(3H, s,H-19) e 1,20(3H, s, H-20).

RMN $1_{C(25, 2MHz, CDC1_3):\delta}(correlação estrutural)$

34,8(C-1), 28,5(C-2) 174,1(C-3), 140,7^{*}(C-4), 46,7(C-5) 24,8(C-6), 29,5(C-7) 126,9(C-8),138,7^{*}(C-9), 41,4(C-10) 107,0(C-11),156,2(C-12), 122,1 (C-13), 146,6(C-14), 135(C-15), 119,3(C-16),13,0(C-17),114,2(C-18),23,4(C-19) 27,9(C-20), 51,1(0*C-0CH₃), 55,4(Ø-0CH₃).

* As correlações estruturais podem estar invertidas.

TABELA XXIV

DADOS ESPECTROMÉTRICOS DE MPE-4/hidrolisado

I.V: λ_{max}^{filme} cm⁻¹

3450, 3110, 3000, 2900, 2650, 1700, 1630, 1585,1420, 1190, 1100, 1020, 920, 890, 745

RMN¹H (60MHz,CC1₄): δ (integração, multiplicidade, cte. de acoplamento, correlação estrutural)

7,88(1H,s, arredondado,variável com D₂0- C0₂H), 6,70' (1H,s,H-11),6,60(1H,d,d,J=12 e 17Hz,H-15),5,53(1H,d. d J=2,0 e 12Jz,H-16),5,15(1H,d.d,J=2,0 e 17Hz, H-16), 4,97(1H,m, H-18 sistema ABX₃),4,72(1H,m,H-18 sistema ABX₃), 2,20(3H,s,H-17),1,77(3H,s,H-19),1,22(3H,s,H-20).

E.M.: m/e (%)

314(87)M⁺,299(65),285(8), 271(6),257(80), 243 (30), 228(36),213(86),189(67),187(49), 163(77), 149(100), 141(30),125(91), 115(31), 91(20), 83(23),69(10),57(9) e 42(11).

ANEXO I

.121.

Esquema reacional p/obtenção dos ésteres metílicos dos ácidos graxos do óleo fixo da semente de marmeleiro preto.

ANEXO II

ANEXO III

ANEXO IV

.124.

ANEXO V

.125.

4. REFERÊNCIAS BIBLIOGRÁFICAS

01. BRACHO, R., CROWLEY, J. - Phytochemsitry, 5,921-6(1966)

31

02. MONTE, F.J.Q., CRAVEIRO, A.A. - Ciência e Cultura,

(7) supl. 391 (1979).

.126.

- 03. STUART,K.L. HAYNES,L.J., CHAMBERS,C. Chem. Comm, 14, 449(1966); C.A. 65: 14093c (1966).
- 04. JOSEPH, R.S. J. Am. Chem. Soc., 61, 350-1(1931).
- 05. RIZZINI, C.T., MORS, W.B. Botânica Econômica, E. P. U. EDUSP, pág.58 (1976).
- 06. CHAN, W.R. PRINCE, E.C., MANCHAND, P.S. SPRINGER, J. P. CLARDY, J. - J. Am. Chem. Soc. 97(15), 4437-9(1975).
- 07. CHATTERJEE, A. BANERJEE, A. Tet., 33, 2407-14(1977).
- 08. BARNES; R.A, SOEIRO,O.M. LOPES, J.A.M. Ciência e Cultura, 31(7) supl. 401(1979).
- 09. BURKE, B.A., CHAN, W.R. e PRINCE, E.C. Tet. 32,1881-4 (1976).
- 10. SILVA, V.O.ALVARENGA, M.A.GOTTLIEB, O.R. Ciência e Cultura, 30 (7) supl. 332(1978).
- 11. STUART, BYFIELDS, B. CHAMBERS, C., HUSBAND, G.M. -J.Chem. Soc., 9,122830 (1970).
- 12. FREISE, F.W. Pharm. Zentralhale, 76,469-70(1935) e C.A. 29: 7017 (1935).
- 13. GUENTHER; E. The Essential Oils, vol. VI, Robert E. Krieger Publishing Co., Huntington, pag. 169(1950)
- 14. STUART, K.L. CHAMBERS, C. HAYNE, L.J. J, Chem. Soc. C,13, 1681-4 (1969).
- 15. STUART, K.L. TEETZ, V. BURCHARD, F. J, Chem. Soc. D, 7,333(1969).
- 16. STUART, K.I., TEETZ, V., BURCHARD, F.- J, Chem. Soc. C, 13, 1631-84 (1969).
- STUART, K.L., GHRAAM, L. Phytochemistry, 12(8),1967-72 (1973).
- 18. STUART, K.L. CHAMBERS, C. Tet. Lett. 30, 2879-82, (1967)
- 19. STUART, K.L. BARRET, M.M. Tet. Lett. 28,2399-400 (1969)
- 20. KUTNEY, J.P., KLEIN, F.J., EIGENDORF; A. MENEIL, P. '' STUART, K.L. - C. A. 73: 83123w (1971).

- 21. PERSINOS, G.J. C.A. 78: 7827u (1973).
- 22. HAYNES, L.J. HUSBAND, G.E.M, STUART, K.L. J. Chem. Soc. C, 19, 1680-1 (1966).
- 23. STUART, K.L. HAYNES, L.J. HUSBANDS, G.E.M. Tet. Lett., 42, 4473-4(1968).
- 24. STUART; K.L., HAYNES, L.J. J. Chem. Soc. C, 8, 951-7 (1968).
- 25. STUART, K.L., WOO-MING, R.B. Phytochemistry, 14 (2) 594-5 (1975).
- 26. CHAN, W. R. TAYLOR, D.R., WILLIS, C.R. J. Chem. Soc. C, 22, 2781-5(1968) e C.A., 67:32819y (1967).
- 27. KUPCHAN, S, M., HEMINGWAY, R.J. COGGON, P. J.Am. Chem.S. 90(11), 2892-3 (1968).
- 28. KENGO, O. ICHIRRARA, A, SAKAMURA, S. Tet. Lett. 37, 3187-90(1975).
- 29. MELO, C.F.M., SOUZA, H.B., ALVES, M.F. DUARTE, M.L.R.78: 86148z (1973).
- 30. HOPKINSON, J.M. et alii C.A. 78: 1969v(1973).
- 31. DANTAS, T.N.C. "Contribuição ao Conhecimento Químico de Plantas do Nordeste: <u>Croton</u> aff. nepetifolius, Baill". Tese de Mestrado, UFCe. 1979.
- 32. AYAR, V.N. RAO, P.S. SACHDEV, G.P., SESHANDRI, T.R. Indian J.Chem. 9 (10),1055-9(1971) e Phytochemistry' 11(4),1473-6(1972).
- 33. AYAR, V.N. SESHANDRI, T.R. Indian J.Chem. 9(10), 1055-9 (1971) e Phytochemistry 11(4), 1473-6(1972).
- 34. STUART, K.L., WOO-MING, R.B. Phytochemistry, 8 (4), 777-80 (1969).
- 35. Ibid. 8.
- 36. SATISH, S. BHAWNI, D.S. Phytochemistry 11(9),2888-90, (1972).
- 37. CASA GRANDE, C. CANONICA, L., SENERINE, G.R. J. Chem. Soc. Perkin Trans, 1(17), 1959-63 (1975).
- 38. BHAKUNI, D. DHAR.M.M. Experimentia 24(1), 10-11, (1968).
- 39. CHAMBERS, C. STUART, K.L. Chem. Comm. 6, 328-9 (1968).
- 40. CRAVEIRO, A.A., SILVEIRA, E.R., MATTOS, F.J.A, ALENCAR, J.W. - Rev. Latioamer. Quim. 9,95-97 (1978).

- 41. HECKER, E. BARTSCH, H. BRESCH, H. GSCHUEUDT, M. HAERLE, E. KREIBICH, G., KUBINIY, M. SHAINER, H.V. Tet. Lett. 33, 3165-70 (1967).
- 42. MUKHERJER, J. Indian J. Appl. Chem. 32(3), 211-12, (1969).
- 43. STUART, K.L., WOO-MING, R.B. C.A. 82: 152174r (1975).
- 44. BURNEL, R.H., DELLA CASA, D. Nature 203(4942),296-7, (1964).
- 45. WAGNER, H. HORHAMMER, L. KIRALY, C. Phytochemistry 9 (4), 897 (1970).
- 46. CRAVEIRO, A.A., ANDRADE, C.H.S., MATTOS, F.J.A, ALENCAR, J.W. - J. Agric. Food, 26(3), 773(1978).
- 47. JOLLY, A. B. "Introdução à Taxonomia Vegetal". Ed. Nacional, pag. 344(1966).

 BRAGA, R. - "Plantas do Nordeste Especialmente do Ceará, 3a. Edição, Mossoró-RN (1976).

49. Ibid. 48.

50. MATTOS, F.J.A. - Informação pessoal.

51. Ibid. 50.

12

52. CRAVEIRO, A.A., ANDRADE, C.H.S., MATTOS, F.J.A., ALENCAR J.W., MACHADO, M.I.L. - Relatório Convênio BNF-UFC-Óleos Essenciais.

- 53. SAVONA, G. PATTERNOSTRO, M.P. PIOZZI, F., HANSON, J. R. HITCHCOCK, P.B., THOMAS, S.A. - J.Chem. Soc. Perkin I, 643-6 (1978).
- 54. REICHSTEIN, T. Helvetica Chimica Acta, 15, 1110- 13, (1932).
- 55. FARNSWORTH ; N.R., PILEWSKI, N.A., DRAUS, F.J. Lloydia, 25: 312-9(1962).
- 56. WAGNER, H. SEITZ, R. LOTIER, H., HERZ, W. J. Org. Chem. 43(17), 3339-45 (1978).
- 57. BILLET, D., DURCEAT, M. HEITZ, S., AHOND, A. Tet. Lett. 44, 3825-6 (1975).

- 58. ITO, K., FURUKAWA, H. Chem. Comm, 17,653 (1969).
- 59. BOHLMANN, F., ZDERO, C. Phytochemistry, 17,487-89, (1978).
- 60. AGUILAR-SANTOS, G. Chem. and Ind., 19,1074-76(1965).
- 61. BRIESKORN, C.H., STEHLE, T. Chem. Ber., 106, 922-28 (1973).
- 62. Ibid. 7

1 14

- 63. DEVON, T.K. e SCOTT, A.I. "Handbook of Naturally Occurring Compounds", vol. II, Academic Press, N. Y. (1972).
- 64. POUCHERT, J.C. e CAMPBELL, J.R. "The Aldrich Library of NMR Spectra".
- 65. POUCHERT, J.P. "The Aldrich Library of Infrared Spec tra" 2a. Edição (1975).
- 66. ENZELL, C.R. e RYHAGE, R. Arkiv for Kemi, 27(20) 213-29 (1967).
- 67. LEVY, G.C. e NELSON, G.L. "Carbon-13 Nuclear Magnetic Resonance for Organic Chemists", Wiley-Interscience N.York, pág. 111(1972).
- 68. McGARRY, E.J., PEGEL, K.H., PHILLIPS, L. WAIGHT, E. S. J. Chem. Soc. C, 904-9(1971).
- 69. McGARRY, E.J. PEGEL, K.H., PHILLIPS, L.WAIGHT, E. S. J. Chem. Comm. 17, 1074 (1969).
- 70. CANDY, H.A., PAKSHONG, J.M. e PEGEL, K.H. J. Chem. Soc. C, 2536-38(1970).
- 71. STENHAGEN, E. ABRAHAMSON, S. McLAFFERTY, F.W. " Regis try of mass Spectral Data" John Wiley & Sons, N. Y. (1974).
- 72. HORWITZ, W. (ed) "Official Methods of analysis of theAssociation of Official Analytical Chemist(AOAC) 12a. Edição, Washington (1975).