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In the present work, we introduce the Lambert-Kaniadakis Wκ function. It is a generalization of 
the Lambert W function that solves the equation Wκ (z) expκ (Wκ (z)) = z, where expκ (z) is the 
κ-exponential, a generalization of the exponential function proposed by Kaniadakis. Following, the Wκ

function is used in the definition of the κ-disentropy. Analytical results and numerical calculations of Wκ

are shown, as well some applications of the κ-disentropy are discussed.
© 2019 Elsevier B.V. All rights reserved.
1. Introduction

The Lambert W function is the solution of the equation

W (z)eW (z) = z. (1)

Several analytical solutions of problems in mathematics, physics 
and computer science uses the Lambert W function [1–6]. A gen-
eralization of (1) is the recently proposed Lambert-Tsallis Wq func-
tion [7]. It is the solution of Wq(z) expq(Wq(z)) = z, where expq(z)
is the q-exponential proposed by Tsallis [8]. Another possible gen-
eralization of (1) is

Wκ (z)expκ

(
Wκ (z)

) = z (2)

where expκ (z) is the κ-exponential proposed by Kaniadakis [9]

expκ (z) = [√
1 + κ2z2 + kz

] 1
κ . (3)

Furthermore, expκ=0(z) = ez and, obviously, Wκ=0(z) = W (z). Us-
ing (3) in (2) one gets

Wκ (z)
[√

1 + κ2W 2
κ (z) + κWκ (z)

] 1
κ = z. (4)

Now, introducing r = 1/κ and x = W 1
r
(z) in (4) one obtains

x
[√

r2 + x2 + x
]r = rr z. (5)
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From (5) one can see that Wκ (0) = 0. The solutions of (5) are roots 
of polynomials. However, before to find out explicit formulas for 
Wκ (z), it is important to find the branch point (zb, Wκ (zb)), that 
is, the point where two different real solutions meet. For example, 
for the Lambert function the branch point is (−1/e, −1). The solu-
tion in the interval −1/e ≤ z ≤ 0 is named W−1 while the solution 
in the interval −1/e ≤ z ≤ ∞ is named W0. The value of Wκ (zb)

can be found doing dWκ/dz|zb = ∞. Using (2) and (3), one has

dWκ

dz
=

(
dWκeWκ

κ

dWκ

)−1

=
[(

Wκ√
1 + κ2W 2

κ

+ 1

)
eWκ
κ

]−1

, (6)

hence, the first derivative of Wκ is infinite for Wκ = −∞ and 
Wκ = −(1 − κ2)−1/2, that is valid in the interval 0 ≤ κ2 < 1. The 
value of zb is found using (2) and (3) again

zb = Wκ (zb)eWκ (zb)
κ = − 1√

1 − κ2
e−1/

√
1−κ2

κ = − (1 − κ)
1−κ
2κ

(1 + κ)
1+κ
2κ

.

(7)

Thus the solution in the interval zb ≤ z < 0 is W −
κ (z) while the so-

lution in the interval zb ≤ z < ∞ is W +
κ (z). Moreover, d2 W +

κ (z)
dz2 <

0. On the other hand, initially d2 W −
κ (z)

dz2 > 0 and it changes into 
d2 W −

κ (z)
dz2 < 0. In order to see this clearly, let us initially consider 

κ = 1/3. Substituting r = 3 in (5) one has

(
x2/3)2 + 3

1/3
x2/3 − 3

z1/3 = 0. (8)

2z 2
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Fig. 1. W +
κ (z) and W −

κ (z) versus z for κ = 1/3.

Fig. 2. W1/2 versus z.
Hence, the Lambert-Kaniadakis functions are

W ±
1/3(z) =

(
− 3

4z1/3
± 3

4z1/3

√
1 + 8

3
z

)3/2

. (9)

The branch point is (−3/8, −√
18/4). The plot of W1/3(z) versus z

can be seen in Fig. 1.
For κ = 1/2 (r = 2), the Lambert-Kaniadakis function W1/2(z)

is one of the roots of the polynomial P (X) = x3 − x2/z + 2x − z
and the brunch points is (−(4/27)1/2, −(4/3)1/2). In the interval 
z ∈ (−(4/27)1/2, (4/27)1/2), P (X) has three real roots and two of 
them are useful, let us call it by W (1)

1/2 and W (2)
1/2. For z2 > (4/27), 

P (X) has only one real root, W (3)
1/2. The plot of W1/2 versus z can 

be seen in Fig. 2.
For κ = 1 (r = 1) one has

Wκ=1(z) = z√
2z + 1

, z > −1/2. (10)

In z = −1/2, W1(z) presents a vertical asymptote with
W1(−1/2+) = −∞. The function is monotonically increasing with 
W1(+∞) = +∞ and its concavity is d2 W +

1 (z)
dz2 < 0.

For κ > 1, there is no branch points and Wk(z) is defined in 
the entire real line. For example, Fig. 3 shows the plot of Wκ (z)
versus z for κ = 0, κ = 1 and κ = 2, in the interval z ∈ [0, 10].

The curves in Fig. 3 were calculated numerically using the Hal-
ley method. According to the Halley method [1,2,5], the equation 
f (x) = 0 can be numerically solved using
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Fig. 3. Wκ (z) versus z for κ = 0, κ = 1 and κ = 2.
x( j + 1) = x( j) − 2 f (x( j)) f ′(x( j))

2[ f ′(x( j))]2 − f (x( j)) f ′′(x( j))
. (11)

Now, making f (Wκ ) = Wκ expκ (Wκ ) − z = 0 and using d expκ (y)/

dy = expκ (y)/(1 + κ2 y2)1/2 in (11), the function Wκ can be ob-
tained numerically using

wκ ( j + 1) = wκ ( j)

− wκ ( j)ewκ ( j)
κ − z

[ wκ ( j)√
1+κ2 w2

κ ( j)
+ 1

]
ewκ ( j)
κ −

[ wκ ( j)√
1+κ2 w2

κ ( j)
+2

][wκ ( j)ewκ ( j)
κ −z]

2wκ ( j)+2
√

1+κ2 w2
κ ( j)

.

(12)

At last, calling by W +
κ the upper branch and W −

κ the lower 
branch, after some algebra the following limits can be obtained

lim
z→∞
κ>0

W +
κ (z) ≈ (2κ)−1/(1+κ)zκ/(1+κ) (13)

lim
z→−∞
κ>1

W +
κ (z) ≈ −(2κ)1/(κ−1)zκ/(κ−1) (14)

lim
z→0−

0<κ<1

W −
κ (z) ≈ −(2κ)−1/(1−κ)z−κ/(1−κ). (15)

2. The κ-disentropy

The κ-logarithm function and the Kaniadakis entropy (κ-en-
tropy) are given, respectively, by [9,10]

lnκ (x) = xκ − x−κ

2κ
, (16)

Sκ = −
∑

n

pn
pκ

n − p−κ
n

2κ
= −

∑
n

pn lnκ (pn). (17)

In a recent work the disentropy was introduced as a measure 
of order or certainty [7]. The disentropies related to Shannon and 
Tsallis’ entropies have been used in quantum and classical informa-
tion theory [7,11], in radial basis function network [12] and as a 
quantumness measure [13]. The κ-disentropy related to κ-entropy 
is here defined as

Dκ =
∑

pn Wκ (pn). (18)

n

Differently of the disentropy proposed in [7], the κ-disentropy is 
not obtained from the relation between the functions lnκ (z) and 
Wκ (z). It is introduced ad-hoc. However, as one can see, Dκ still 
keeps the important properties. For example, it is maximal for a 
delta distribution and minimal for a uniform distribution. Consid-
ering the distribution {p, 1 − p}, Fig. 4 shows the plot of κ-entropy 
and κ-disentropy versus p for κ = 0 and κ = 1/2.

The quantum κ-entropy is given by [14]:

Sκ (ρ) = Tr(ρ1−κ − ρ1+κ )

2κ
=

∑
n

λ1−κ
n − λ1+κ

n

2κ
. (19)

The corresponding quantum κ-disentropy is here defined as

Dκ =
∑

n

λn Wκ (λn), (20)

where λn is the nth eigenvalue of the density matrix ρ . One can 
note that Fig. 4 also describes the entanglement measured by Sκ

and disentanglement [7] measured by Dκ of the pure two-qubit 
state |ϕ〉 = p1/2|00〉 + (1 − p)1/2|11〉, versus p (the eigenvalues of 
the partial states ρA(B) = TrB(A)(|ϕ〉〈ϕ|) are p and (1 − p)).

3. Applications of Wκ and Dκ

In [10], considering a spherical surface as being the holographic 
screen, with a particle of mass M positioned in its centre, the Ka-
niadakis statistics was used to determine the relation between the 
number of bits of the holographic screen, N , and the holographic 
screen area A:

N =
ln

(
κ A
4l2p

+
√

κ2 A2

16l4p
+ 1

)
κ ln(c1)

, (21)

where lp is the Planck’s length. The total number of microstates is 
cN

1 , where c1 stands for the number of internal degrees of free-
dom on the holographic screen. Thus, using the microcanonical 
ensemble definition where all states have the same probability, the 
κ-entropy Sκ is given by [10]

Sκ = cNκ
1 − c−Nκ

1

2κ
(22)

while the κ-disentropy Dκ is

Dκ = Wκ

(
c−N)

. (23)
1
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Fig. 4. Sκ and Dκ versus p for κ = 0 and κ = 1/2.
However, in order to recover the Boltzmann-Gibbs statistics when 
κ = 0, the condition 4 ln(c1) = 1 is required. Therefore, the disen-
tropy as a function of the holographic screen area is given by

Dκ = Wκ

[(
κ A

4l2p
+

√
κ2 A2

16l4p
+ 1

)− 1
κ
]
. (24)

One can note in (24) that the larger the area A the smaller is 
the disentropy, as expected. Furthermore, when κ tends to zero, 
one recovers the disentropy of the black hole in Boltzmann-Gibbs 
statistics, D = W (exp(−A/4l2p)).

In [15] it has been shown that for a normal (complex or real) 
matrix B = U D B U †, expκ (B) = U expκ (D B)U † as long as ‖B‖ <
1/κ (the square root of the largest eigenvalue of B is lower than 
1/κ ). Thus, given a Hermitean matrix H A = U D A U †, one can de-
fine the family of κ-Hermitean matrices Hκ = U Dκ U † where the 
nth eigenvalue of Hκ (ξn) and the nth eigenvalue of H A(λn) are re-
lated by

λneλn
κ = ξn ⇔ λn = Wκ (ξn). (25)

Using the κ-Hermitean matrices, one can construct the family of 
κ-quantum gates Uκ = exp(iHκ ). For example, if one starts with 
CNOT gate (that is also Hermitean) UCNOT , one can construct the 
following family of unitary gates

Uk = exp
(
iUcnote

Ucnot
κ

)

= V

⎡
⎢⎢⎣

exp(−ie−1
κ )

exp(e1
κ )

exp(e1
κ )

exp(e1
κ )

⎤
⎥⎥⎦ V †, (26)

where V is an unitary matrix whose columns are the eigenvectors 
of UCNOT . One can also work in the opposite direction:

H AeH A
κ = Ucnot

⇒ H A = V

⎡
⎢⎢⎣

Wk(−1)

Wk(1)

Wk(1)

W (1)

⎤
⎥⎥⎦ V † (27)
k

and the family of κ-quantum gates constructed is

U = exp(iH A)

= V

⎡
⎣ exp[iWk(−1)]

exp[iWk(1)]
exp[iWk(1)]

exp[iWk(1)]

⎤
⎦ V †.

(28)

A special care must be taken when one chooses the value of κ , 
since in general Wκ is not defined in the whole real straight line. 
For example, in (29) one cannot use κ = 1/2, since W1/2(−1) is 
not real.

Entropy plays an important role in image processing algorithms. 
For example, the segmentation algorithm, one of the most basic 
tasks in image processing that aims to separate the main object of 
the background, can be ‘tuned’ by maximizing the entropy [16–19]. 
Basically, the segmented image is constructed setting all pixels 
with value smaller than t to the value ‘0’ (black) and all pixels with 
value larger or equal to t to the value ‘255’ (white). For an N × N
image there are N2 pixels. The value of the k-th pixel is v(k). 
For a given threshold value t , the set of pixels A = {a1, a2, . . . , as}
is composed only by pixels with values larger or equal than t
while the set of pixels B = {b1, b2, . . . , br} is composed only by 
pixels with values lower than t (r + s = N2). Thus, the proba-
bility distributions for object P (A) = {pa(1), . . . , pa(k), . . . , pa(s)}
and background P (B) = {pb(1), . . . , pb(k), . . . , pb(r)} can be con-
structed:

pa(k) = v(ak)/

s∑
i=1

v(ai) (29)

pb(k) = v(bk)/

r∑
i=1

v(bi). (30)

The κ-entropy of the distribution P (A) (P (B)) is Sκ (A) (Sκ (B)). 
The values of Sκ (A) and Sκ (B) depend on the value of t . The 
best value of t is the one that maximizes SABκ = Sκ (A)[1 +
(κ Sκ (B))2]1/2 + Sκ (B)[1 + (κ Sκ (A))2]1/2. The same method can 
be used employing the κ-disentropy instead of κ-entropy. The 
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Fig. 5. Normalized κ-disentropy and κ-entropy of the image of the star V838 monocerotis versus the threshold value t , for κ = 1/2.

Fig. 6. Image of the star V838 monocerotis segmented by an algorithm based on the minimization of the disentropy Dκ=1/2. Image n◦ 21 found in https://www.spacetelescope .
org /images /archive /top100/.
κ-disentropy of the distribution P (A) (P (B)) is Dκ (A) (Dκ (B)). 
The values of Dκ (A) and Dκ (B) depend on the value of t . The 
best value of t is the one that minimizes DABκ = Dκ (A)[1 +
(κ Dκ (B))2]1/2 + Dκ (B)[1 + (κ Dκ (A))2]1/2.

As an example, let us consider the image of the star V838 
monocerotis (image n◦ 21 found in https://www.spacetelescope .
org /images /archive /top100/). The κ-disentropy and κ-entropy ver-
sus threshold value t , for κ = 1/2, can be seen in Fig. 5.

The segmentation protocol described in [16] but using the min-
imization of the κ-disentropy DABκ (κ = 1/2) produces the seg-
mented image shown in Fig. 6 (t = 124).
4. Conclusions

The present work introduced the Lambert-Kaniadakis Wκ func-
tion. As an application of the Wκ function, the κ-disentropy was 
introduced. Then, we used the κ-disentropy to calculate the dis-
entanglement of pure two-qubit states, we provided a formula 
for the κ-disentropy of a holographic screen as a function of its 
area and we described an image segmentation algorithm based on 
the minimization of the κ-disentropy. Hence, like the q-disentropy 
[7], the κ-disentropy can find applications in several different 
areas of physics and engineering. In particular, since Wκ (z) ac-

https://www.spacetelescope.org/images/archive/top100/
https://www.spacetelescope.org/images/archive/top100/
https://www.spacetelescope.org/images/archive/top100/
https://www.spacetelescope.org/images/archive/top100/
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cepts negative values in its arguments (z ≥ zb for 0 < κ < 1), like 
the q-disentropy, one can also calculate the κ-disentropy of the 
Wigner function of some highly quantum states, what cannot be 
done with κ-entropy.
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