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ABSTRACT 

 

Currently, the welding process is the most used technique for joining workpieces. 

In-service welding of oil and gas pipelines is a technique, which shows important economic 

aspects as well as low environmental impact. The aforementioned benefits are possible since 

there is no need for interrupting the flow operation during pipe repairs, branch on pipes or 

substitution of some defective pipe section. However, during this process, some detrimental 

phenomena such as hydrogen-induced cracking and burn-through may appear. The 

thermomechanical model for analyzing heat transfer from the arc welding as well as the fluid 

flow into the pipeline is very complex, therefore analytical solutions are not available. Physical 

studies might present many difficulties for analyzing the process. Therefore, numerical methods 

emerge as an attractive alternative to solve several classes of engineering problems. The main 

goal of the present study is to develop a numerical simulator using the EbFVM (Element-based 

Finite Volume Method) to analyze in-service welding processes of pipelines. The flexibility of 

treating complex geometries through EbFVM make possible the analysis of various actual 

engineering problems. Based on the performed simulations, some preliminary modifications in 

the process variables can be proposed in order to improve the weld quality. For solving the 

governing equations arising from the thermomechanical model, the EbFVM was used in 

conjunction with unstructured grids. The numerical simulations were performed for 

applications in real welding process. Simulations were performed using methane as working 

fluid for a turbulent flow; Turbulence modeling was performed by making use of empirical 

correlation. The results are presented in terms of thermal cycles, temperature fields, axial and 

hoop stresses, and radial shrinkage, which evaluated them qualitatively and quantitatively. 

Furthermore, the developed simulator was confronted against experimental works, analytical 

solutions from literature, and others numerical studies. Finally, in most scenarios, excellent 

agreements were achieved. 

 

 

Keywords: EbFVM, 3D simulation, Unstructured mesh, In-service welding, Thermal cycle. 

Axial and hoop stresses, Radial shrinkage. 
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CHAPTER 

1 

 

 

 

 

 

INTRODUCTION 

 

 

 

 

 

One of the manufacturing methods of joining materials, the welding process, is 

applied in a myriad of materials which are employed in engineering. Therefore, it has vital 

influence in the thermomechanical behavior during structural element lifetime. According to 

American Welding Society (AWS) (1976), the welding process can be thought of as materials 

joining process that makes coalescence amongst materials by heating them to a given 

temperature. It worth to mention that the metal heating is most provided by an electric arc. In 

addition, a given pressure may or may not be applied in such processes as well as it may be 

applied by itself (Friction Stir Welding (FSW), for example). Also, the process can be made 

with or without the use of filler metal, in case of electric arc welding process (AWS, 1976). 

Amongst the welding applications one can cite the constructions of bridges, oil 

platform, pressure vessels, aircrafts, automobile and nuclear reactors; in all these areas, different 

types of materials such as stainless steel, aluminum, magnesium, and copper can be welded. In 

contrast to conventional form of welding, in-service welding pipeline has gained academic and 

industrial attention mainly by its continuous basis modus operandi during welding repairs, 

branch on pipes or substitution of some defective pipe section. It is important to note that all 



17 

 

these uses of in-service welding are a subset of the hot-tapping technique (Jaske et al., 2006; 

Pereira, 2012).  

Welding Processes involving fluid flow in pipelines present by itself some 

dangerous issues. This is mainly due to the high pressure of the fluid flow and the high heat 

input provided by the arc welding. Therefore, this process needs to be made by high-quality 

welders and also welding simulations can be used to make preliminary analysis in order to avoid 

excessive costs of experiments. The interruption of such operations every time some welding 

is needed is not economic viable, so that in such situations in-service welding is mandatory.  

Nowadays oil, gas and similar companies make use of pipelines for conveying large 

amounts of fluid through long distances. These pipelines need constantly preventive or 

corrective maintenance, so that the process can be operated uninterruptedly and avoid the 

additional costs provided from the operational stops. Moreover, in many situations, it is required 

addition pipe ramifications in order to supply the increasingly industrial demands. 

The knowledge of the main factors which control the fluid flow by forced 

convection inside a given pipeline as well as its mechanical state at walls is it of vital importance 

for analyzing the physical process which governs such phenomena. Therefore, the full 

understanding of the in-service welding technique is fundamental for safety welding procedures 

since these operations modify the structural components of oil and gas pipelines. 

The heat generated during welding process is dissipated through thermal radiation, 

free and forced convection and conduction. Conduction is possible when there is a temperature 

difference in a given medium, where this medium may be either a solid or fluid (liquid or gas). 

Also, it is important to mention that the heat conduction is the main mechanism of heat transfer 

during a welding procedure. Convection occurs between a solid and a moving fluid, in the 

presence of some temperature gradient. Thermal radiation is provided by the emission of 

electromagnetic waves in all bodies with non-zero temperatures (Incropera and DeWitt, 1990). 

In-service welding can guarantee the continuity of the process without interrupt it, 

and therefore resulting in economic benefits and also keeping environmental impacts lower by 

avoiding leaking of harmful gases to the environment. The main disadvantages of in-service 

welding process, which sometimes may be crucial, is the higher tendency of forming hydrogen-

induced cold cracking at pipeline walls of carbon and low-alloy steels (especially at the heat 

affected zone, HAZ) due to the fast cooling rate provided by the flowing oil/gas and the burn-

through effect, which is caused by the excessive heat provided by the arc welding (Sabapathy 

et al., 2001). Last but not least, the fluid pressure is also needed to be considered when in-

service welding is employed. 
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Considering the industrial relevance of the foregoing process and with the aim to 

increase the quality of the weld, researchers have carried out investigations in analytical, 

experimental, and numerical areas concerning the main relevant aspects that govern the fluid 

flow into the molten pool, the heat transfer as well as the stress/strain field throughout the 

workpiece being welded (Pereira, 2012; Sabapathy et al., 2001; Wang et al., 2013). As we 

know, experimental analysis has many drawbacks, such as high cost of equipment and less 

possibility to both change and analyze different scenarios. On the other hand, performing 

numerical analysis of in-service welding processes can overcome these drawbacks. Fig. 1.1 

shows the in-service welding technique being executed. 

 

Figure 1.1 – In-service welding technique. 

 

 
 

Source: Wang et al. (2013). 

 

The long-stablished methods to solve the set of partial differential equations 

numerically can be divided into three main categories: Finite Volume Method (FVM), Finite 

Element Method (FEM), and Finite Difference Method (FDM). Moreover, Finite Volume 

Method is the most used method in the thermo-fluid commercial packages and has gained great 

attention in solid mechanic simulations, since it is the only numerical approach that can 

warranty local conservation of the physical quantities (mass, momentum, and energy) (Maliska, 

2004).  

Numerical approaches can be used to perform analysis of systems that involve fluid 

flow, heat transfer, induced stress/strain and related phenomena such as combustion processes. 

In addition, solution is obtained in a computer-based simulation, since this approach involves 

cumbersome calculations. Numerical methods are based on the approximate solution of 
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governing equations, viz., mass, momentum, and energy equations along with proper initial and 

boundary conditions. Also, Numerical methods have gained great attention in the research 

community as a result of their flexibility and low effective costs. 

To perform a numerical simulation, four main steps must be followed: 

 Defining the physical model; 

 Defining the geometry and creating the mesh; 

 Solving the given problem numerically; 

 Postprocessing and visualizing the obtained results. 

Analyzing the various physical and geometric parameters involved in welding 

modeling might be a complex task, especially when experimental techniques are applied. There 

are many advantages when comparing numerical techniques over experimental approaches, for 

instance, reduction of time to analyze systems with no added expenses, possibility to perform 

studies under hazardous conditions, infinite level of parametric studies leading to unlimited 

possibilities, reliable results, and ability to simulate ideal and realistic relevant problems. 

Nevertheless, to take full advantage of numerical capabilities, experience and exhaustive trial-

and-error analysis is required by the design engineer. 

However, numerical simulation in the welding analysis should not replace 

experimental analysis, instead, numerical analysis must be complemented by experimental ones 

in order to make integrated studies in complex systems (the thermomechanical coupling as one 

example) of vital importance to engineering. 

As long as the influence of fluid flow as well as the heat provided by the electric 

arc welding is known, the design engineer has the chance to select high-resistance pipes, with 

larger diameters and thinner walls with the aim to increase the quality and reduce the material 

required for the construction of pipelines. 

 

1.1   Objectives 

 

1.1.1   General objective 

 

The main objective of this study is to develop a numerical-computer-based 

simulator by making use of the Element-based Finite Volume Method in conjunction with 

unstructured grids in order to evaluate qualitatively and quantitatively the thermomechanical 

effects provided by general in-service welding processes. 
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1.1.2   Specific objectives 

 

The main objective may be split into the following specific objectives: 

 Verify and validate the thermo-elastoplastic numerical approach using 

experimental, numerical, and analytical works from the literature; 

 Evaluate the influence of the 3D thermal field provided by the electric arc 

welding on the structural behavior of the pipeline; 

 Assess the thermal cycles along the pipe walls during the in-service welding 

of pipelines; 

 Evaluate the thermal distribution along the longitudinal pipe walls during 

the in-service welding process; 

 Analyze the influence of fluid flow over the pipeline through empirical 

correlations from literature; 

 Perform a parametric approach to evaluate various contributing factors to 

the weld induced residual stresses and weld distortions; 

 

1.2   Research motivation 

 

The in-service welding technique has gained special attention from the researchers 

and the industrial community since the necessity of weld quality improvement when concerning 

high-risk welding processes. Such technique allows the continuity of the normal pipeline 

operations during inevitable interventions leading to benefits for both the customers and the 

suppliers. Clearly, the achievement of success and safety operations depend upon the 

knowledge of the variables and procedures concerning this technique. 

The turbulent fluid flow inside the pipelines enhances the cooling process during 

the welding operation. The main mechanism of heat transfer during in-service welding is the 

forced convection (Sabapathy et al., 2001), therefore an important step in the numerical 

simulation is to determine the heat transfer coefficient between the flow and the pipe wall. 

Many numerical studies in the area of in-service welding (Wang et al., 2013; Asl and Vatani, 

2013) have made use of empirical correlations to calculate the heat transfer coefficient such as 

the Dittus-Boelter correlation (Incropera and DeWitt, 1990), which is based on the assumption 

of fully developed turbulent flow in smooth circular pipes. Sabapathy et al. (2001) and Wahab 
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et al. (2005) calculated the heat transfer coefficient through a dimensionless approximation 

based on the empirical correlation of Seider and Tate’s (Incropera and DeWitt, 1990). 

During the in-service welding process a combination of a highly localized heat 

source acting upon the workpiece, the high cooling rates caused by the internal fluid flow, and 

the mechanical loads which is imposed by restrictions and internal pressure of the fluid may 

induce thermal residual stresses and distortions at the welded pipeline. The induced welding 

residual stresses and distortions have been considered a great challenge for engineers due to 

their complex nature. The main problems that can be caused by such imperfections are: 

hydrogen-induced cracking, fatigue damage, stress corrosion cracking, brittle fracture, and 

expansions/contractions. Therefore, the proper prediction and correction of welding residual 

stress and distortions are mandatory in any manufactory welding process in order to eliminate 

or at least minimize the aforementioned problems.  

FEM has been used in most of published works concerning the thermo-mechanical 

welding processes. In addition, FEM is the most used method in the commercial packages, since 

it is traditionally used in solid mechanics analysis, and in particular, in Computational Welding 

Mechanics (CWM) (Lindgren, 2007). Despite being well-stablished numerical approaches, a 

few works in the welding area have devoted to the use of both FDM and FVM. Therefore, 

additional methodology will always be welcome to enhance the body of knowledge in any area 

of the physics and engineering. Finally, to the best of o knowledge there is no study applying 

the Element-based finite Volume Method to analyze the thermomechanical behavior of in-

service welding pipelines. In this work, the EbFVM (Maliska, 2014; Marcondes et al., 2013) 

has been used to discretize the energy and the momentum equations for analyzing a thermo-

elastoplastic problem, and therefore, we can contribute to the Computational Welding 

Mechanics area with a robust and reliable method for solving such problems. 
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2.1   In-service welding process 

 

In-service welding pipelines have been largely used in oil and gas industry, 

petrochemical, power generation, and related areas in order to make possible the continuity of 

operation during maintenance process, for instance. During the projection of in-service welding 

procedures, it is mandatory to observe some criteria in order to avoid burn-through (wall 

penetration) and cold cracking (hydrogen-induced cracking) along the pipe walls of carbon and 

low-alloy steels. These procedures involve the heat provided from the electric arc welding, pipe 

chemical composition, and the internal pressure of the fluid flow through the pipe (Pereira, 

2012).  

There exists a myriad of welding process which can be used in in-service welding 

operations such as MIG/MAG (Metal Inert Gas/Metal Active Gas), TIG (Tungsten Inert Gas), 

PAW (Plasma Arc Welding), SAW (submerged Arc Welding), among others. The correct 

choice amongst the aforementioned processes depends on the final application and location of 

the structure to be welded (Cary and Helzer, 2004). 
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Since in-service welding is often performed in remote areas, one can cite the 

SMAW (Shielded Metal Arc Welding) as one viable process for using due to its versatility, low 

cost, flexibility, portability and adaptation to the high cooling rates without introduce defects 

such as the lack of fusion on the weld joints (Jeffus, 2012; Küchler, 2009). This process is 

illustrated in Fig. 2.1. 

 

Figure 2.1 – Shielded Metal Arc Welding. 

 

 

Source: Jeffus (2012). 

 

In-service welding is part of a general operation for constructing pipelines, the so-

called hot-tapping technique. Hot-tapping allows the addition of branch connections to a main 

pipeline and it is able to keep the process in a continuous basis. It is important to mention that 

the success of hot-tap operation is directly affected by the welding on both the valve assembly 

(a mid-way part of the operation) and the sleeve fitting onto the live pipeline (Sabapathy, 2002). 

In-service welding technique can be divided into two main categories: the first one 

is mainly concerned to repair onto pipeline discontinuities and the second one concerned to the 

addition of new branch pipe connections (Pereira, 2012). The branch on pipes, where auxiliary 

pipes are used for deviating the working fluid to the principal pipes, while repairs are made, are 

of vital importance when there is necessity of increase or apply ramification of pipeline 

networks. 

The main types of welding repairs applied to in-service operations are illustrated in 

Figs. 2.2 and 2.3. Fig. 2.2 illustrates the split repair sleeve method. It consists basically in the 

assembling two half-sleeves involving the pipe with one longitudinal and two circumferential 

fillet welds. In this method, while longitudinal weld does not offer any deleterious effect on the 
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pipe, the circumferential fillet weld may induce thermal stress and high temperatures along pipe 

walls as result of the welding process (Alian et al, 2016). 

 

Figure 2.2 – Sleeve repair of a defective pipe. 

 

 

Source: Alian et al. (2016). 

 

The repair by direct deposition of weld metal is illustrated in Fig. 2.3. In this 

method, welding is applied onto the pipe surface which suffered from internal wall losses due 

to material corrosion, reducing the pipe strength, and possibly causing the burn-through of the 

pipe wall. According to Jaske et al. (2006), this is specially applied in bend pipe sections and 

fittings, where the use of full-encirclement sleeves is prohibitive.  

 

Figure 2.3 – Weld direct deposition. 

 

Source: Jaske et al. (2006). 

 

In-service welding shows typical aspects such as the necessity of low energy 

process and the influence on the welding cooling rates by the forced convection provided by 

the fluid flow into the pipe. According to Pereira (2012), the main aspects required during in-

service welding procedure in order to obtain crew safety as well as the integrity of the system 

are: 

 Avoid excessive arc welding penetration at the pipe wall. 

 Produce non-defective welds, with reasonable strength. 
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 Avoid cold cracking at HAZ by limiting its hardness. 

 Avoid the reduction of internal pipe strength. 

During in-service welding processes, the main concerns that need to be avoided are 

the burn-through and cold cracking formation at HAZ. Burn-through may occur due to localized 

heat provided by the electric arc welding, which can result the internal surface of the pipe with 

low strength. In addition, concerning the flow welding parameters, the pipe wall may also fail 

due to internal pressure of the working fluid, since the wall strength reaches sufficient low 

values (Asl and Vatani, 2013). Wade (1982) performed an experimental study on pipes 

subjected to pressurized gas by varying the wall thickness, the arc energy, and the internal gas 

pressure. In that study, he defined a burn-through failure as soon as a bulge of 1.0mm in height 

or higher is formed in the weld zone. Fig. 2.4 illustrates both bulging and burn-through effects. 

 

Figure 2.4 – (a) Bulging and (b) Burn-through failures due to in-service welding. 

 

Source: Wahab et al. (2005). 

 

The cold cracking formation may occur due to the high cooling rate during the 

welding; this is due to high heat rate transfer extracted from the pipe wall by the convection of 

the working fluid flow through the pipe. These combined factors impose the HAZ 

microstructure to high hardness, leaving the structure susceptible to formation of cracks 

(Küchler, 2009). It is important to mention that the most prone sites for cold cracking appear is 

the HAZ as well as the interface between HAZ and FZ (fusion zone) (Kou, 2003; Sharma and 

Maheshwari, 2017). 

Fig. 2.5 shows the main regions originated during a welding process as well as the 

correspondent microstructures presented in a Fe-C phase diagram for a low-carbon 1018 steel.  
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Figure 2.5 – Specimen regions and correspondent Fe-C phase diagram. 

 

 

Source: Kou (2003). 

 

The various HAZ regions which occur during a multi-pass in-service pipeline steel 

welding is depicted in Fig. 2.6. 

 

Figure 2.6 – Schematic illustration of the different HAZ regions in a multi-pass welding. 

 

 

Source: Li et al. (2011a). 

 

As Kou (2003) stressed out, cold cracking is formed when the following four factors 

are present simultaneously: presence of hydrogen in the weld metal, high stresses, susceptible 

microstructure (martensite), and relatively low temperatures (ranging from 100 to 200°C). As 

one could notice, the second and the third aforementioned factors are greatly augmented onto 

in-service welding operations.  
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High Strength Low Alloy (HSLA) steel grades have been commonly used in in-

service pipelines since they present higher strength yield and thinner wall thickness giving the 

possibility of carrying a larger quantity of fluid material with a higher internal pressure. 

Therefore, HSLA steel grades are the best suited materials for the requirements of the pipelines 

of the oil and gas industries (Sharma and Maheshwari, 2017). As Sabapathy (2002) pointed out, 

the enhanced fluid transmission in conjunction with the reduction of pipe wall thickness will 

produce higher cooling rates as a consequence the harder microstructure may be formed at the 

HAZ leaving the material susceptible to cold cracking. Moreover, the pipe becomes prone to 

bulging or even explode by the influence of the arc welding (burn-through).  

Therefore, as previously pointed out with the aim to adjust economic benefits, crew 

safety and system integrity some conservative actions must be implemented such as the use of 

proper heat input, reduction of pipeline internal pressure and/or fluid flow rate and make use of 

high strength pipes (Sabapathy, 2002; Asl and Vatani, 2013). 

 

2.2   Analytical solutions 

 

By solving the heat conduction equation analytically, the time-consuming process, 

usually encountered in numerical analysis, can be surpassed and also the solution can be 

considered free of spatial and temporal discretization errors provided from numerical studies. 

Analytical solutions are obtained for welding analysis by starting from the linear 

heat conduction equation 

 

2T
c k T q

t



  


 

(2.1) 

 

where T is the temperature, k  is the thermal conductivity,   denotes the material density, c  is 

the specific heat coefficient, and q  denotes the heat input which is originated from the arc 

welding. 

Analytical solutions of the heat conduction equation with both a point and a line 

heat source were first derived by Rosenthal (1941) in the mid-1940s. His analytical solution 

was based on a number of simplifying assumptions, viz., constant material properties, semi-

infinite orthogonal domain, quasi-steady-state regime (which leads to neglect the beginning and 

ending arc transient effects) and absence of weld grooves. Furthermore, phase change, 
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convection and radiation thermal losses were neglected. In the case of three-dimensional heat 

transfer in a given domain, Rosenthal’s equation in a moving coordinate system can be given 

as 

 

 0
2 2

P v
T T exp x R

kR 

 
    

 
 

(2.2) 

 

where 
0T  is the initial temperature, P U I    is the net power provided by the arc welding, 

U is voltage, I is the current,   denotes the process efficiency, k  is the thermal conductivity, 

2 2 2R x y z    is the distance between the heat source to a given point, v  denotes the 

welding speed, and   denotes the thermal diffusivity. Fig. 2.7 shows temperature profiles using 

Eq. 2.2.  

Figure 2.7 – Rosenthal’s solution in a given plate. 
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Despite the relevant contribution provided by the Rosenthal’s analytical solution to 

the welding analysis, it is important to mention that the simplified assumptions cause serious 

divergences in the temperature profile near the arc welding including regions such as the Fusion 

Zone (FZ) and the Heat Affected Zone (HAZ), and therefore, the accuracy of the solution is 

drastically reduced, as we can see in Fig. 2.7. In fact, at heat source origin, the Rosenthal 

analytical solution provides infinite temperature, which is physically unrealistic. This is due to 

the assumption of point heat source model. 

Despite those aforementioned drawbacks, Rosenthal (1941) lighted out relevant 

observations in welding analysis such as: the rise of temperature in front of the arc welding is 

steeper than the fall behind it, the welding speed affects the isotherm shape, the metal being 

welded is heated faster than cooled in a given temperature (KOMANDURI and HOU, 2000; 

Rosenthal, 1941). Based on the Rosenthal’s results, Christensen et al. (1965) formulated a 

dimensionless analytical form in order to demonstrate the applicability in a variety of materials 
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and welding process parameters. They found fair agreement in the weld pool shape, length and 

width of the pool. However, the weld depth is not accurated. 

In order to enhance the pioneering analytical works, some authors have made some 

important contributions by adding more realistic assumptions to the previous studies. Eagar and 

Tsai (1983) performed an analytical analysis through the use of a 2D Gaussian distributed heat 

source on a semi-infinite plate. They compared their theoretical study with experimental results 

for different types of materials such as carbon steels, stainless steels, titanium, and aluminum 

with good agreement between the experimental and analytical solutions. In additions, they 

concluded that both welding process variables, viz., current, arc length and welding speed, and 

material parameters such as thermal diffusivity, have substantial effects on weld pool shape. 

Boo and Cho (1990), proposed an analytical solution to predict transient 

temperature distribution over a three-dimensional finite thickness plate during an arc welding 

operation. Convection boundary conditions were applied to this model as well as a 2D Gaussian 

distributed heat source. To take into account the flow provided by the shielding gas, forced 

convection was applied at the top surface right beneath the welding torch and free convection 

was assumed at the bottom surface. Satisfactory accuracy was obtained when comparing this 

particular solution with experimental GTAW bead-on-plate series of experiments performed on 

a carbon steel medium. 

Nguyen et al. (1999) developed transient analytical solutions for solving the heat 

conduction equation with the addition of 3D semi-ellipsoidal and double-ellipsoidal heat 

sources in a semi-infinite domain. Good agreement was obtained when compared transient 

experimental temperature distributions in specific points in a given specimen. Also, the 

predicted weld pool geometry was in accordance with the experimental measures. 

Although numerical methods have been predominant in welding area, important 

analytical solutions have been also contributed to shade some light in complex phenomena of 

the welding process. Fachinotti et al. (2011) improved the Nguyen et al. (1999) model by 

making use of the double-ellipsoidal and double-ellipse heat source with different values for 

the size and heat input in the front and rear parts of the heat source subregions. In addition, the 

authors compared the analytical solution with both a fully 3D and a cross-sectional 2D 

numerical Finite Element Analysis (FEA) and they reached an excellent agreement among the 

three developed approaches. 

Flint et al. (2018) derived a semi-analytical solution for the transient temperature 

field in a 3D orthogonal domain subjected to any linear combination of double-ellipsoidal or 

double-ellipsoidal-conical (DEC) heat sources. The solution was confronted with both 
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numerical FEA and experimental studies and fair agreement was obtained. In addition, dramatic 

reduction of computing time, as commonly observed in analytical solution, was also noticed. 

It is worth mentioning that the most recent developments concerning analytical 

solutions take advantage of numerical methods; this is due to the appearing of time integrals 

that do not have a closed analytical expression in the final form of the temperature field solution, 

therefore numerical integration is required to fully obtain the final analytical expression and the 

solution is in fact a semi-analytical one. Finally, in spite of gaining great insights with analytical 

solutions, as we could see in the foregoing studies, all of them were performed in an orthogonal 

domain, which leaves pipes welding analysis out of this approach and consequently in-service 

welding analysis as well. Therefore, in order to study the transient temperature distribution all 

over pipelines, one needs to rely on both experimental and numerical analysis. 

 

2.3   Numerical methods applied to welding 

 

With the aim to increase the quality of the weldment, researchers have carried out 

investigations in analytical (Rosenthal, 1941; Nguyen et al., 1999; Fachinotti et al., 2011; Flint 

et al., 2018), experimental (Li et al., 2011a; Li et al., 2011b;), and numerical (Anca et al., 2011; 

Gery et al., 2005) areas concerning the main relevant aspects that govern the fluid flow into the 

molten pool as well as the heat transfer throughout the workpiece being welded. 

Analytical studies on thermal welding are based on a number of simplifying 

assumptions, which imposes to this type of analysis a certain degree of limitation. Experimental 

analysis, as one knows, has many drawbacks such as high cost of equipment and less possibility 

to both change and analyze different scenarios. On the other hand, since actual welding process 

requires all the aforementioned aspects to be correctly accounted for, numerical analysis may 

overcome these drawbacks concerning the welding area.  

For solving numerically, the partial differential equations which arise from the 

physical welding model, several authors have been used the Finite Element Method (FEM) 

(Anca et al., 2011; Lindgren et al., 1999), the Finite Difference Method (FDM) (Pavelic et al., 

1969; Magalhães et al., 2018) and the Finite-Volume Method (FVM) (Taylor et al., 2002; 

García-García et al., 2016). In addition, regarding time-saving considerations, alternative 

numerical proposals for treating welding process have been used (Barroso et al., 2010). 

FEM has been used in most of published works concerning the thermo-mechanical 

welding fields. In addition, FEM is the most used method in the commercial packages, since it 
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is traditionally used in solid mechanics analysis, and in particular, in Computational Welding 

Mechanics (CWM) (Lindgren, 2007). A few works have devoted to the use of both FDM and 

FVM. In this work, the Element-based Finite Volume Method (EbFVM) (Maliska, 2014; 

Marcondes et al., 2013) is used to discretize the energy and the momentum equations. 

A massive number of researchers have been focused on predicting in their 

numerical analysis on either macroscopic aspects of welding in a miscellaneous of welded 

structures such as distortion (Hashemzadeh, 2013; Okano and Mochizuki, 2017), residual 

stresses (Anca et al., 2011; Xu et al., 2012), and microscopic ones such as microstructural 

changes (Aissani et al., 2015; Chen et al., 2019). In order to further predict these aforementioned 

aspects numerically, which are strongly related to the final weldment quality, thermal welding 

analysis is mandatory, since these aspects are a consequence of the heat discharged at the weld 

Fusion Zone (FZ) and the subsequent heat transferred to the Heat-Affected Zone (HAZ) and to 

the unaffected Base Metal (BM). 

It is well-known the intrinsic three-dimensional character of the temperature field 

along a given welded structure. Therefore, in order to perform realistic welding analyses, 3D 

models are always necessary since the distribution of temperature along the whole medium 

needs to be taken into account. The downside of 3D models for welding process is the higher 

time-consuming and the requirement of powerful computers to perform full analyses. However, 

as pointed out by Traidia et al. (2012), when phenomena such as the filler metal addition and 

non-flat weld positions needed to be included in a given simulation, 2D models cannot be used 

and therefore 3D modeling needs to be performed. Fig. 2.8 shows a three-dimensional welding 

simulation in a given plate, where the welding heat source is localized in two different positions. 
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Figure 2.8 – 3D numerical analysis in a given plate. 

 

 

Earlier numerical studies in the welding area were developed using the two-

dimensional assumption. Besides the easier numerical implementation of 2D models, the main 

advantage of performing a 2D numerical analysis is the reduction of CPU time requirements. 

Therefore, many authors have been reduced a full 3D model to different forms of 2D ones. In 

spite of some simplifying assumptions, two-dimensional models still can give accurate results. 

As one could see in Fig. 2.8, especially far away from the weld pool, the temperature can be 

assumed constant over the thickness, and the simulation can be performed in a 2D in-plane 

analysis. Fig. 2.9 presents a welding simulation in an x-y plane.  
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Figure 2.9 – 2D in-plane numerical analysis in a given plate. 

 

 
 

  

 

It is important to mention that in the 2D in-plane model, contrary to the 2D cross-

sectional model, the whole plane (y-x) needs to be discretized in order to follow the surface heat 

source which passes along the given plane. 

The 2D cross-sectional model, showed in Fig. 2.10, neglects the heat flow in the 

welding direction, i.e.,   0T y   . By doing this, all the heat provided from the arc welding 

is deposited in a reference x-z plane. 
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Figure 2.10 – 2D cross-sectional numerical analysis in a given plate  

with a surface heat source. 

 

  

 

Fachinotti et al. (2011) pointed out that as long as the Peclet number ( Pe ) increases, 

the accuracy of the 2D cross-sectional model also increases. The Peclet number is directly 

proportional to the welding velocity v and to the characteristic dimension of the longitudinal 

direction L, and inversely proportional to the material thermal diffusivity   (Versteeg and 

Malalasekera, 2007; Mendez, 1995). Pe  can be defined as 

 

vL
Pe ,


  

 (2.3) 

 

It is important to mention that contrary to in-plane models, which may catch all transient 

temperature effects, cross-sectional models work well only for regions in the steady-state 

regime, i.e., the run-on and run-off welding effects are not well modeled. 

To perform a welding process simulation, it is mandatory to know the material 

thermophysical properties as well as the process parameters under analysis. Therefore, the 

appropriate selection of these quantities is of great importance in order to guarantee the quality 

of a given numerical simulation. Through the use of FEM thermal simulations, Gery et al. 

(2005) investigated the effects of the heat source distribution, energy input and welding speed 

on temperature changes on a butt-joint welded plate. They found out that the above 

aforementioned factors greatly affect the shape and boundaries of both FZ and HAZ. Also, they 

concluded that these welding parameters influence the peak temperature in the FZ, so that they 

affect the transient distribution temperature onto the welded plate.  

In order to reproduce real welding process by numerical models, the dependence of 

material thermophysical properties with temperature must be accounted for. Zhu and Chao 



36 

 

(2002) investigated three different scenarios for evaluating the specific heat, thermal 

conductivity, and density of 5052-H32 aluminum alloy in a FEM welding simulation, namely 

properties as a function of temperature, properties evaluated at room temperature, and 

properties as a mean value over the entire temperature history. From their study, it was 

concluded that the three approaches give rises to different results. However, as the authors 

pointed out, in the absence of data for the thermal properties (mainly at high temperature), 

constant room temperature values can be used in the welding simulations. 

According to Goldak et al. (1984), a reasonable choice of the heat source is a 

mandatory factor for properly represent the thermal field in a welding numerical analysis. 

Therefore, since the earlier works by Rosenthal, where a point and line welding heat sources 

were proposed, many researchers have contributed to better approximate the shape and size of 

the molten pool as well as the way which the heat flux from the arc welding distributes onto a 

given medium. Contrary to the localized aspects of point and line heat application, Pavelic et 

al. (1969) first put forward the idea of a distributed flux onto an area by applying a Gaussian 

distribution of heat into a workpiece surface with the goal to model the welding heat source. 

With this new way of modeling heat sources, a significant improvement in both 

analytical and numerical analysis could be achieved, since the effects in and near the molten 

pool could finally be correctly analyzed. It is important to stress out that this was not possible 

in Rosenthal’s heat source models due to the assumption that both the flux and temperature 

were assumed to be infinite at heat source. In the Pavelic’s circular disc model, the heat flux 

into a given workpiece has a Gaussian or normal distribution expressed by 

 

2

0 Crq(r) q( )e  (2.4) 

 

where 0q( )  denotes the maximum flux at the heat source center, C is a distribution width 

coefficient and r is the radial distance from the heat source center. Fig. 2.11 shows the 

parameters of model described above. 
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Figure 2.11 – Pavelic’s disc heat source model. 

 

 

Source: Pavelic et al. (1969). 

 

Alternative forms of the Pavelic’s disc heat source model were proposed 

subsequently by some authors, for example, the work by Friedman (1975). Aissani et al. (2015) 

determined the thermal properties for GTAW process using an experimental and a numerical 

approach. They implemented a 3D FEM model in which a bi-elliptical surface Gaussian heat 

source was used. In addition, metallographic analysis was performed to observe the 

microstructural evolutions. The approaches were confronted with one another and a good 

agreement between them was achieved. 

Pavelic et al. (1969) and Friedman (1975) models work well in situations involving 

shallow weld penetration. Goldak et al. (1984) proposed a non-axisymmetric 3D heat source 

model for reaching a large range of welding penetrations, which would change according to the 

process, welding parameters, and material properties. Different from the traditional Pavelic’s 

and Friedman’s disc models, which distribute heat flux only at the workpiece surface, in 

Goldak’s double-ellipsoidal heat source (DEHS) model the heatsource acts throughout the 

molten zone, as a consequence the actual weld pool shape and size, the digging action, and 

stirring of the arc are taken into account.  

Goldak’s DEHS is illustrated in Fig. 2.12, where a moving coordinate system 

 , ,x z  is following the heat source path. 
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Figure 2.12 – Goldak’s DEHS model. 

 

 

 

The parameters a , b , 
fc , and 

rc  shown in Fig. 2.12 for the double-ellipsoid model are the 

semi-axes parameters to each heat distribution. It is important to mention that parameters a , b

, 
fc , and 

rc , which denotes the width, depth and front and rear lengths of the molten pool, 

respectively are usually determined by metallographic analysis of the FZ (Xu et al., 2012) or 

even by neural-network programs (Moslemi et al., 2022). However, in the absence of 

experimental data, one can estimate the weld bead parameters from welding inputs by making 

use of some traditional mathematical methods such as the ones proposed by Christensen et al. 

(1965) and Eagar and Tsai (1983), and by the more recent work by Lima and Santos (2016). In 

the above aforementioned works a point heat source, surface heat source and volumetric heat 

source were used, respectively. In addition as suggested by Goldak et al. (1984), the distance 

in front of the heat source can be taken as one-half of the weld width and the distance behind 

the heat source may assume the value of twice the width. 

If one needs to model a weld bead with a shape different from an ellipsoidal volume, 

Goldak’s DEHS model turns out to be a non-optimal choice. Hence others models must be 

chosen as in the case of modeling Laser Beam Welding (LBW) as well as Electron Beam 

Welding (EBW) process where deeper penetration can be achieved. 

García-García et al. (2016) established a mathematical model for an autogenous 

GTAW thermal field by making use of the commercial package ANSYS Fluent, which is based 

under the FVM approach. In their work, they developed a novel volumetric moving heat source 

model based upon an elliptic paraboloid geometry in order to represent shallow and deep 

penetration as well as wide and narrow FZ. Estimated thermal history as well as predicted shape 

of weld bead were in good agreement with experimental measures.  
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In light of the importance of the heat source modeling, as stressed out by Lindgren 

(2007), in many situations, it is reasonable acceptable that only the correct amount of heat as 

function of the time and space is inputted in the model. In addition, thermal field response of 

regions far enough of the molten weld pool has little or no dependence of the heat source 

geometry (Flint et al., 2018). 

 

2.4   In-service and conventional welding computational analysis 

 

The numerical analysis performed in pipes with or without fluid flow assumes 

basically the same procedure which has been applied to plates or any kind of structure. Hence, 

all considerations previously observed including the simplified results obtained by using a 2D 

model, for instance, can be applied to in-service welding computational analysis. However, one 

must pay attention to details that is intrinsically for each process being analyzed. 

Amongst a great variety of welding processes, Gas Tungsten Arc Welding (GTAW) 

also referred as TIG (Gas Tungsten Welding) is one of the most important processes concerning 

both research and industrial applications. GTAW may or may not (Autogenous GTAW) make 

use of filler metal; it is important to mention that autogenous GTAW is especially important in 

applications that involves thin plates being welded in butt joint configuration. In addition, the 

lack of filler material makes the process easier for both implementing and analyzing from 

numerical point of view. Also, girth welding simulation using an autogenous process can be 

considered an intermediary step for validating in-service welding numerical codes due to the 

simple aspects of this process. 

Kou and Le (1984) carried out theoretical and experimental studies concerning the 

heat flow during welding on pipes. Their work was made upon a 3D finite difference analysis 

for unsteady heat flow during an autogenous GTAW girth welding. The results achieved in the 

numerical analysis were in good agreement with the experimental ones. In addition, the study 

aimed to provide optimum conditions for girth welding such as uniform weld beads and absence 

of defects such as lack of fusion. 

Modeling single or multi-pass welding include an additional challenge for correctly 

attach real welding conditions to a given numerical simulation, this is due to the necessity of 

addition of filler metal. The elements representing the filler material are included in the model 

by the process of activation or deactivation which depend on the moment of the simulation 

(filler metal being or not present). According to Lindgren (2007) two different approaches can 
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handle this task, namely, the quiet and the inactive element approaches. Both approaches were 

compared in Lindgren et al. (1999) and the results showed that they work equally well. 

The quiet element technique assumes that when a given element has not yet been 

filled, it assumes low thermal conductivity value so that even though that element is presented 

in the model a priori, it remains inactive. Therefore, the elements which are in front of the arc 

welding keep inactive until the front of the heat source enters the element. It is important to 

mention that only when the heat source encounters the inactivated elements the thermal 

conductivity is changed. After that, at each time step, the heat source reaches the inactivated 

filler material deposition is properly deposited, and the thermophysical properties of these 

activated element assumes values similar to those material at melting point. Contrary to the 

quiet element approach, the inactive one just assembles the elements when the corresponding 

filler material is added. Therefore, the system of equations which forms the whole model must 

be recomputed every time step a new element is activated, (Lindgren et al. 1999). 

Karlsson and Josefson (1990) through a three-dimensional FE analysis investigated 

temperature, stresses, and deformations in a single-pass butt-welded pipe. According to the 

authors this kind of simulation can be applied not only to welding pipes but also to power 

stations, offshore structures, and in others industry applications. In that study, they made use of 

a coarse mesh and relatively large time-steps. However, in spite of that, they found satisfactory 

results for both thermal and mechanical models. 

Taylor et al. (2002), used the cell-center Finite-Volume Method to model the welding 

phenomena such as the weld pool fluid flow, heat transfer, and phase change. In addition, a 

vertex-based approach was employed for analyzing the thermo-elasto-plastic distortion of a 

girth welding. PHYSICA integrated modeling framework was used in their FVM study in 

conjunction with unstructured meshes. The approach was validated against analytical, 

numerical, and experimental results and good agreements between all the investigated 

approaches were verified. 

In order to simplify numerical simulations in circumferential pipe welding, authors 

have been making use of both axisymmetric and 3D shell models. Axisymmetric models are 

useful as explained before for cross-sectional model, whereas the applicability of 3D shell 

models is used in most of the cases to thin-walled structures being welded. These two types of 

models are illustrated in Fig. 2.13. 
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Figure 2.13 – axisymmetric and 3D shell models. 

 

  
Source: Lindgren, 2007. 

 

Deng and Murakawa (2006) developed both 2D and 3D thermomechanical FE 

models using the commercial software ABAQUS in order to simulate temperature fields and 

residual stress in multipass welds in a SUS304 stainless steel pipe. The results were validated 

with  experimental data. Based on the 3D simulations, they observed a steady-state regime 

during the welding (except for run-on and run-off effects), and consequently, the results appear 

to be independent of the circumferential direction. Therefore, the axisymmetric 2D model also 

showed good agreement with the experimental results and could drastically reduce the 

computational time of simulation. 

For having initial insights into the risk of burn-through during in-service welding 

and consequently make welding operations under safe limits, researchers have been used the 

Battelle computer-based software (Jaske et al., 2006). Battelle software can predict both cooling 

rates and inner surface temperature as function of welding parameters, geometric parameters, 

and operating conditions. Usually the limits for prevent burn-through and satisfy the safe 

operating conditions are avoid with inner surface temperature equal or bellow 982 °C, for low-

hydrogen electrodes, and 760 °C, except for cellulosic electrodes, and keep maximum tolerable 

hardness at HAZ below 350 HV (Hardness Vickers). Some shortcomings  makes the Battelle a 

limited software: use of a two-dimensional model, able to perform single pass simulation only, 

use of coarse meshes ( limited number of elements), neglecting of existing thermal stress and 

mechanical stresses due to internal pipe pressure, point heat source, and the non-user-friendly 

interface (Jaske et al., 2006; Lima and Santos, 2016). On the other hand, currently FEM and 

FVM simulations in in-service welding processes can overcome all these drawbacks. Majnoun 

et al. (2021) have developed a new thermo-mechanical FEM approach in order to predict 

temperature and stress distribution in the welding of a T-shape pipe joint. They presented some 

results that even though the Battele simulator criteria were satisfied there was a high risk of 

burnthrough occur.  
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The myriad of processes as well as welding parameters make each simulation in 

welding area unique. One of the most important required abilities in a given welding analysis 

(in-service or not) is a proper representation of welding heat source. According to Sabapathy et 

al. (2001), a number of modifications must be performed in (Double-Ellipsoid Heat Source) 

DEHS model in order to correct approximate the out-of-position low-hydrogen SMAW 

process. For this reason, they proposed a new mathematical model of the heat source aiming to 

model the common in-service welding. In this new approach, a modification of DEHS model 

was made by changing the exponential terms in the previous model (Sabapathy et al., 2001). 

This was performed in order to mimic the weave technique often applied with MMAW in in-

service welding operations. Finally, they analyzed welding cooling rates (
8 5

Δt


) and reasonable 

agreement was found when confronted against experimental data. 

In order to represent hot-tapping on pipelines, Lima and Silva (2016) came up with 

a novel mathematical approach by adapting the DEHS model and also, they proposed an 

analytical methodology for estimates the size and shape of the molten pool. Despite good 

agreement with experimental results, the authors stressed out that the model needs to be 

validated by the variation of all extreme welding parameters. 

Recently, Tahami et al. (2019) also developed a FEM model based on a new 

approach of a heat source model in order to model an in-service welding of a T-shape joint 

(direct branch on pipe) steel pipe connection. The parameters investigated were heat input, 

welding speed, pipe wall thickness, turbulent fluid flow parameters, material properties. In 

conjunction with experimental studies, the numerical results formed a computer-code based on 

neural network algorithms for predicting temperature levels for different welding conditions. 

The new model was based upon the Goldak’s DEHS model in order to simulate a MMAW in-

service welding process made in a saddle geometry (direct branch on pipe). The T-shape joint 

is illustrated in Fig. 2.14. 
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Figure 2.14 – 3D FE model for T-branch weld. Goldak’s DEHS model. 

 

 
Source: Tahami et al. (2019). 

 

The less time is consumed during in-service welding, the safer will be the operation 

for the crew; this is due to the severe and unsafe conditions that is encountered during this 

process. By performing both a 3D and a 2D axisymmetric FE thermomechanical analysis in a 

circumferential sleeve repair, Alian et al. (2016) observed the influence of the number of 

welders, their positions, and welding directions under induced residual stresses and 

corresponding distortions. Four different schemes were used, as shown in Fig. 2.15. Readers 

may also be referred to Fig. 2.2. 

 

Figure 2.15 – Welding schemes considered in the work by Alian et al. 
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Source: Alian et al. (2016). 

 

They validated their numerical code using experimental girth welding test data from 

literature. Despite the validation for both models were in satisfactory agreements, the 

axisymmetric model of the sleeve repair welds did not showed good agreements compared to 

3D models when used to predictthe residual stresses and distortions. In addition, according to 

the obtained results, the authors could conclude that the back-step scheme gave the lowest 

average residual stress along the pipe circumference so that they recommended this scheme for 

in-service welding sleeve repair. 

 

2.5   Internal pipe fluid flow  

 

Due to the importance of assess information about the internal pipe pressure as well 

as cooling rates during the fluid flow into pipelines under welding operations, the inclusion of 

flow modeling is of vital importance in such welding process. The internal fluid flow inside 

pipelines may present nonlinearities, inherently instabilities, anisotropy, three-dimensional 

character, and statistic aspects (Wilcox, 2006), which makes it essentially turbulent. 

When fluid flows are controlled by viscous diffusion, they are called laminar flows, 

and the Reynolds number ( Re ) (more details about Re will be discussed in section 3.3) is in 

general small. As Reynolds number increases, (for internal pipe flows this transition occurs 

between 2300Re  and 
410Re ) the inertia terms overcome the viscous stresses, and 

consequently rapid velocity and pressure fluctuation appear in the fluid flow and the motion 

becomes inherently three-dimensional and unstable, which can be described as a turbulent flow 

(Wilcox, 2006). 

The calculation of the Re  number during in-service welding repairs in pipelines as 

well as hot-tapping operations shows that Re  may present values greater than 105. Therefore, 

the internal fluid flow in the in-service welding due to the combination of high Re values and 

remote area location can be classified as a turbulent fully-developed flow (Sabapathy et al., 

2001).  

The unsteady Navier-Stokes equations are capable of computing the smallest length 

and time scales of turbulence. However, these calculations are not feasible in terms of 

computing resources, since temporal and spatial grids need to be sufficiently fine in order to 
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resolve all turbulent scales. Besides, for practical engineering applications the assessment of 

smaller eddies when compared to the larger eddies are not important.  

One way to predict numerically the turbulent flow is by making use of Reynolds 

Averaged Navier-Stokes (RANS) methods. RANS is based on averaging the equations of 

motion, which results in a set of partial differential equations. In spite of having some 

limitations, due to the averaging process, up to date the RANS models are still the first choice 

when numerical modeling of turbulent fluid flow is required. However, for using this method, 

Computational fluid Dynamics (CFD) is required. Therefore a cumbersome and complex 

analysis is required to be implemented. 

An alternative to the use of CFD is the use of non-dimensional empirical 

correlations. For in-service welding analysis, the most common used correlations are the 

dimensionless Dittus-Boelter equation and the Sieder and Tate equation (Incropera and DeWitt, 

1990). These correlations will be better discussed in section 3.2.1. It is worth to mention that 

in-service welding, researchers have been following this tendency since these aforementioned 

empirical correlations have been massively employed by them in order to account for internal 

turbulent flow phenomenon (Alian et al., 2016; Sabapathy et al., 2001). 

Finally, it worth to stress that Sabapathy et al. (2002) performed a sensitivity 

analysis of the Sieder and Tate dimensionless thermal model in order to accurate determine the 

heat transfer coefficient for turbulent flow in a circular pipe. From this investigation, some 

conclusions were able to be drawn. For instance, the variation of weld cooling rate was 4% , 

the variation of maximum HAZ depth was 3% , and the variation of penetration depth was 

considered to be negligible. Therefore, through the aforementioned observations, the author 

could prove the accuracy of the use of such dimensionless correlations in in-service welding 

numerical analysis. 

 

2.6   Mechanics of the welding  

 

During the welding process a high localized heat source act upon the workpiece, 

which also depend on the process conditions, as for instance, the cooling rates during the 

welding process. In addition, we may observe that a small region is subjected to high 

temperatures and a large surrounding area is kept at low temperature. The aforementioned 

conditions cause expansions and contractions due to the thermal loads (heating and cooling) as 

well as mechanical loads which is imposed by restrictions and internal pressure in the case of 
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in-service welding process. After the cooling process, the workpiece may experience 

undesirable conditions such as welding residual stress and shape changes in the structure 

(plastic deformations). Brickstad and Josefson (1998) stressed out that the amount of residual 

stresses in piping system can be more deleterious than stresses caused by the design loads such 

as internal pressure and reaction forces at the supports. 

According to Radaj (1992), residual stresses are self-equilibrating internal forces 

without the influence of external forces which are originated from plastic deformations and may 

act temporarily or permanently. In the context of welding processes, residual stresses may also 

be called thermal stresses due to the non-uniform temperature changes (Kou, 2003). The 

distribution of welding residual stresses may be affected by several factors such as structural 

dimensions and their restraints, material properties, heat source, number of welding passes, and 

welding sequence (Brickstad and Josefson, 1998; Deng and Murakawa, 2006). The authors also 

cited the main problems that welding residual stress may cause: hydrogen-induced cracking, 

fatigue damage, stress corrosion cracking, and brittle fracture. Therefore, the proper prediction 

and correction of welding residual stress is mandatory in any manufactory welding process in 

order to eliminate or at least minimize them. 

Prasad et al. (2016) used a 3D FEM parametric analysis to study the effects of 

welding parameters on residual stress during circumferential TIG welding of pipes. They 

concluded that the higher the current from the arc welding the wider range of axial residual 

stresses. Furthermore, they also noted that the residual stresses near the welding line change 

from compressive to tensile from outer to inner surface. Similar results concerning the profile 

of axial residual stresses through the pipe wall thickness were also observed by Deng and 

Murakawa (2006) and Silva and Farias (2008). Typical results by Deng and Murakawa (2006) 

are shown in Fig. 2.16. 
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Figure 2.16 – Residual axial stresses at outer (a) and inner surfaces (b). 

 

 
(a)                                                                      (b) 

Source: Deng and Murakawa, 2006. 

 

The results presented in Fig. 2.16 is typically found in the welded pipes. The 

residual axial stresses in the pipes change to compressive on the outer surface to tensile on the 

inner surface. This phenomenon (shown in Fig. 2.17) is due to the shrinkage around the pipe 

during the weld bead cooling and is the so-called tourniquet effect (Law et al., 2006). 

 

Figure 2.17 – Tourniquet effect around the welded pipe. 

 

 

Source: Law et al., 2006. 

 

The deformation/distortion which arises from the welding process is another 

important aspect that needs to be take into account during a numerical simulation. Since this 

undesirable defect changes the shape and dimension of the original workpiece, this alteration 

may compromise the performance and consequently, the main purpose of the given welded 

structure. Typical analysis of welding distortions by Qureshi (2008) are shown in Fig. 2.18. 
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Figure 2.18 – Radial displacements. 

 

 

Source: Qureshi, 2008. 

 

As the distribution of residual stresses in a given pipe is affected by many different 

factors, a variety of parametric studies concerning welding residual stress have been performed 

by many authors. Ferro et al. (2006) developed a 3D and 2D numerical model of laser beam 

welding of steel plates by considering the effects of phase transformation under the residual 

stresses. The material used was the ASTM SA 516 steel. They found out that both volume 

change and transformation plasticity tend to relieve high tensile stresses in the fusion zone. 

Sattari-Far and Farahani (2009) studied the effect of different grooves and pass numbers on 

residual stresses in butt-welded pipes. They showed that these two parameters may have great 

influence on magnitude and distribution of residual stresses in welded pipes. Molesmi et al. 

(2022) developed a 3D finite element model in the Sysweld commercial software. They 

investigated the influence of welding sequences on weld induced residual stresses and 

distortions in 316L stainless steel pipes. The full circumferential welding concept presented 

more uniform distributions of residual stresses and distortions along the circumferential 

direction.  
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CHAPTER 

3 

 

 

 

 

 

GEOMETRICAL, PHYSICAL MODEL, AND 

NUMERICAL INGREDIENTS 

 

 

 

 

 

Solving the thermal energy equation as well as the momentum equations 

analytically is only possible for a few simplified problems such as the 2D steady-state solution 

of the temperature field over a thin plate, the Rosenthal’s solution of the temperature field in an 

orthogonal domain subjected to a moving point or heat line source (Rosenthal, 1941), simple 

tension and simple shear applied to bodies under linear elasticity conditions, and bodies 

subjected to uniformly thermal loads under elasticity conditions. When we need to represent 

the real world processes by adding complex phenomena such as transient regime, temperature-

dependent material properties, and thermo-elastoplasticity, one needs to deal with numerical 

methods. 

Basically, by using a numerical approach, the set of partial differential equations, 

which mimics the real phenomena are transformed into a set of algebraic approximated 

equations. The set of algebraic equation needs a discrete domain for store the variables to be 

solved, therefore one defines a computational mesh for doing this task. A similar discretization 

in time is also required. 

In order to guarantee the conservation of a given property, the approximated 

equations used by the FVM are obtained through a balance of the property being evaluated or 
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by integration of the conservative equations over space and time. One knows that any numerical 

procedure that obtain their approximate equations through a material balance is a Finite Volume 

Method (FVM). Thus, there are different types of the aforementioned method. One of them is 

the Element-based FiniteVolume Method (EbFVM), denomination suggested by Maliska 

(2004). The latter, is a FVM that borrows from FEM the concepts of elements and shape 

functions that renders to the final approximate conservation equations at the discrete level.  

 

3.1   Domain discretization 

 

In general, a continuous physical model is described by a set of coupled differential 

partial equations with no analytical solution. In that case, the only remedy left behind is the 

numerical solution. In order to obtain a numerical solution, the domain needs to be broken into 

small pieces, and then forms a set of points, lines, faces, and elements, and therefore, this 

collection of geometrical quantities results in what we known as a mesh or grid. The mesh is a 

crucial step for implement any mesh-based numerical method so that care should always be 

taken when design the required mesh so as to obtain success in a modeling analysis. We can 

classify the types of meshes into two main groups: structured and unstructured meshes. One 

example of a 2D structured mesh (Cartesian mesh, in this example) composed of regular 

quadrilaterals is illustrated in Fig. 3.1. 

 

Figure 3.1 – Structured Cartesian mesh.  

 

 
 

Fig. 3.2 shows a 2D unstructured mesh composed of non-uniform triangles for a 

welding analysis in a thin plate, where a localized refinement mesh has been performed near 

the patch of the arc welding (weld pool and HAZ) in order to capture the high temperature 
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gradients in these regions and a coarser mesh towards the base metal so as computational 

resources are saved.  

 

Figure 3.2 – Unstructured mesh for a welding analysis.  

 

 

The unstructured mesh, which is identified by their irregular connectivities amongst 

its nodes and the absence of a specific rule for correlate mesh elements with its neighbors 

(Versteeg and Malalasekera, 2007; Maliska, 2004), has the ability to fit the boundaries of 

complex geometries, capture all the intricate details in a simulation, make the process of local 

refinement easier, and drastically reduce the required computational resources. Welding 

simulation of T-joint weld designs, branch on pipes, addition of filler metal in grooves, sleeve 

repair welding are some applications that can take advantage of unstructured meshes.  

In the EbFVM approach the mesh can be composed of different types of elements; 

for 2D domain, a mesh composed of triangles, quadrilaterals or a mixed mesh composed of 

triangles and quadrilaterals, and for 3D domains the mesh can be composed of either 

hexahedral, tetrahedral, prism, and pyramid elements, or a combination of them. Nonetheless, 

for the sake of simplicity, a two-dimensional mesh, which is constructed with triangle and 

quadrilateral elements is described in Fig. 3.3. In this Figure, the blue numbers represent the 

elements, the sub-control volumes (sub-elements) are represented by the 
iSCV , and the control 

volume related to the node 1 is described by the gray area.  

 

Figure 3.3 – Unstructured mesh and vertex-based control-volume.  
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From Fig. 3.3, we can see that by joining the edge midpoints and the element 

centroids we can create the sub-control volumes for each element. A control volume is 

constructed around each node by adding the surrounding sub-control volumes that shares a 

node. This is called median dual method (Versteeg and Malalasekera, 2007; Ansys CFX, 2011), 

and gives rise to a cell-vertex approach. Finally, in general, hybrid meshes (combination of 

different elements) are used to better capture the physical phenomena of the problem to be 

solved. This approach has been successfully applied in several fields, see for instance, 

Marcondes et al. (2013), Pimenta (2019), and Taylor et al. (2012). 

The steps of the construction of the approximated equations for each control volume 

is summarized as follows: the physical domain is divided into elements, and then each element 

is subdivided into sub-elements according to the number of nodes of each element. In general, 

each sub-element is called sub-control volume because the conservation equations are 

integrated in time and space for every sub-element. After the integration process, the equation 

of each control-volume is assembled visiting all sub-control volumes that share the same node. 

Due to its conservative aspect, conservation of properties is warranted at each finite control 

volume.  

 

3.2   Global coordinate to local coordinate system 

 

The EbFVM procedures applied to both thermal energy and linear momentum 

equations. Let us started by considering a general variable  , and then writing the well-known 

transport equation as follows:  
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Eq. (3.1) represents the conservation of the property   at every point in a specified 

domain. The first term in the left-hand side is the time rate of change of  , the second one is 

the net rate of   transferred by advection through the domain surface; in the right-hand side, 

the first term is the net rate of   transferred by diffusion through the domain surface and the 

second one is the rate of increase of   due to source terms. The latter is related to the conversion 

of some types of internal energy such as chemical and electrical to thermal energy (Incropera 

and DeWitt, 1990). 

The set of equations which will arise from the process of discretization results in a 

closed system of variables stored in the mesh nodes; therefore, in order to obtain the values all 

over the elements (the entities where most calculations are performed), interpolation functions 

need to be defined so that values at the integration points, for example, can be calculated. As 

we verify in Eq. (3.1), one can associate physical meaning for all the terms that compose this 

equation. The troublesome terms for treating numerically are the diffusion and advective terms, 

both associated with the flow crossing the element interfaces.  

Diffusion terms do not pose numerical instabilities when interpolation schemes are 

applied to interpolate physical properties from the nodes to any part of the element (owing to 

their elliptic behavior); on the other hand, care should be taken when advective terms are 

involved. The use of non-exact interpolation functions gives rise to truncation errors. When 

these errors are associated with advective terms, numerical oscillation and numerical diffusion 

errors are yielded (Maliska, 2004). The advective terms are represented by the second term in 

the left-hand side of Eq. 3.1. However, as long as this term is not accounted in the problem (like 

the present study for both thermal energy and linear momentum equations), we do not need to 

address the aforementioned errors.  

For treating diffusion terms, EbFVM borrows the idea usually implemented in 

Finite Element Method (FEM) by adopting polynomial function for interpolating variables into 

the elements; these functions are the so-called shape functions. For connecting the physical 

mesh (physical domain, frequently with distorted elements) with a local mesh (transformed 

domain), one may use mapping. Through the use of mapping, it is possible to do a parallelism 

between global equations and local ones. The equations responsible for evaluating each 

geometric position and each physical property   within each element are defined by 
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where  i i ix , y ,z  are the Cartesian coordinates,  s,t, p  is the computational coordinates, vn  is 

the number of vertices of each element, iN  denotes the shape functions, and i  represents the  

physical properties stored at the nodes of the elements.  

As previously mentioned, one may deal with different types of elements. In the 

present study hexahedral elements is used for representing three-dimensional geometries except 

in a few test cases where tetrahedrons and prisms are used. Since the majority of simulated test 

cases as well as the in-service welding analysis made use of hexahedron-based meshes, we will 

focus our analysis in this specific type of element. Therefore, Fig. 3.4 shows an irregular 

hexahedron being mapped to a regular hexahedron into a transformed space (s,t,p),  where each 

axis in the transformed plane varies from -1 to 1. 

 

Figure 3.4 – Distorted element, transformed element, and sub-element (sub-control volume). 
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In order to perform the coordinate transformation, the eight tri-linear shape 

functions for each node of the hexahedral element are given by 
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The diffusion terms are related to gradients of  , therefore, we can evaluate these 

gradients taking the derivative of Eq. (3.5) with respect to global coordinates as follows: 
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In Eqs. (3.14) – (3.16), one has shape functions derivatives with respect to global 

coordinates  x, y,z . However, the shape functions are described in terms of local coordinates 

 s,t , p , please refer to Eqs. (3.6) through (3.13). In order to evaluate the derivatives in Eqs. 

(3.14) – (3.16) with respect to x, y, and z, it is necessary to apply the chain rule, which result in 

the following expressions for derivatives of shape function with respect to the global 

coordinates  x, y,z  in terms of local coordinates  s,t , p : 
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(3.18) 

 
1i i i iN N N Nx y x y x y x y x y x y

  
z det J t p p t s s p p s t s t t s p

                   
           

                    
 

(3.19) 

 

where  det J  is the Jacobian of the transformation, which is given by 

 

 
y z y z x y z y z x y z y z x

det J
t p p t s s p p s t s t t s p

                  
          

                  
 

(3.20) 
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The Jacobian matrix can be defined using a matrix notation as 

 

 

x y z
      

s s s

x y z
J s,t , p       

t t t

x y z
     

p p p

   
 
  
 
   


   
 
   
    

 

(3.21) 

 

For more information about the numerical procedure described in this section see 

for instance (Maliska, 2014; Marcondes et al., 2013). 

 

3.3   Thermal model 

 

3.3.1   Thermal energy equation 

 

Thermal energy equation is derived from the first law of thermodynamics, where 

one describes energy being conserved by an energy balance. By assuming that the conductive 

heat fluxes are expressed by the Fourier’s law, the partial differential equation, Eq. (3.1), which 

can model most of the problems concerning the welding processes can be rewritten as 

 

 
   v S

cT
cT k T Q

t





    


 

(3.22) 

 

Despite being an important source of heat transferred in the molten pool (Rykalin 

and Beketov, 1967), the advective term in the left-hand side which is responsible for modeling 

the fluid motion in the welding pool may be neglected in order to reduce the complexity of the 

model. Many authors (Sabapathy et al., 2001; Anca et al. 2011) have approximated this term 

by increasing the thermal conductivity in regions, where liquid phase is expected to appear. 

Therefore, the thermal distribution with phase change during the melting/solidification arc 

welding process can be outlined by the following nonlinear unsteady heat conduction equation: 
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 
  S

cT
k T Q

t


   


 

(3.23) 

 

where T is the temperature,  k k T  is the isotropic (non-dependent of the coordinate direction) 

thermal conductivity,  T   denotes the material density,  c c T  is the specific heat 

coefficient, and    , ,S LQ q t q T t r , where  ,q q t r  denotes the surface or volumetric heat 

input which is originated from the arc welding and  ,L Lq q T t  is the term that takes into 

account the absorption or release of latent heat as a result of the heating or cooling of the 

workpiece being welded. The term concerning the latent heat can be expressed by the following 

expression:  

 

L
L

f
q L

t






 

(3.24) 

 

where L is the latent heat and 
Lf  denotes the liquid fraction that is defined as 

 

0                     

         

1                      

sol

sol
L sol liq

liq sol

liq

for T T

T T
f for T T T

T T

for T T

 



  


 

 

(3.25) 

 

where 
solT  and 

liqT denote the solidus and liquidus temperature, respectively used to take into 

account an extended (non-isothermal) range for phase change (mushy zone). The fact that Lf  

is a linear temperature function inside the phase change interval is equivalent to assume that 

latent heat is uniformly released/absorbed into the mushy zone (Fachinotti et al., 1999). 

By applying the chain rule to Eq. (3.24) and substituting the result into Eq. (3.23), 

one obtains 
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 
 

effc T
k T q

t


   


 

(3.26) 

 

where effc  denotes the effective specific heat coefficient, which is defined as  

 

L
eff

f
c c L

T


 


 

(3.27) 

 

By invoking Eq. (3.25), the effective specific heat coefficient can be recast as 

 

                          

        

                         

sol

eff sol liq

liq sol

liq

c for T T

L
c c for T T T

T T

c for T T

 



   


 

 

(3.28) 

 

Finally, it is worth remembering that in Eq. (3.28) we have  c c T . In addition, 

from Eq. (3.28) one may infer that in the mushy zone the specific heat coefficient is artificially 

increased so as the latent heat is take into account (Thomas et. al., 1984). 

 

3.3.2   Initial and boundary conditions 

 

The thermal problem requires the solution of Eq. (3.23) along with proper initial 

and boundary conditions. As one knows the quality of a simulation is strongly affected by initial 

and boundary conditions, therefore, we must carefully choose them according to previous 

experimental observations. 
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In the present study three conventional types of boundary conditions were used and 

they can be extracted from the Fig. 3.5. For the sake of simplicity, one made use of a 2D 

Cartesian coordinate system. 

 

Figure 3.5 – Thermal boundary conditions. 

 

 

 

The first condition adopted was the Dirichlet boundary condition or boundary 

condition of the first kind. In this situation, one keeps the surface S at a fixed temperature sT , 

and therefore we can mathematically express this condition by 

 

 ,r sT t T  (3.29) 

 

The above-mentioned boundary condition was applied just for a few test cases. The 

second and third boundary conditions were applied to all welding simulations and they are 

obtained by applying an energy balance at the surface of the medium. The external surfaces of 

the material being welded is either adiabatic surface or heat losses by natural or forced 

convection can be evaluated through Newton’s law of cooling. The two aforementioned 

conditions are represented by Eqs. (3.30) and Eq. (3.31), respectively.  

 

0
s

T


n
 

(3.30) 
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 ,
s

k h t
T

TT


    

r
n

 
(3.31) 

 

where n is the unit outward normal vector to the surface S at a point located by the vector r, and 

T  is the environment temperature. Eq. (3.30) represents a Neumann boundary condition or 

boundary condition of second kind, and Eq. (3.31) is known as a third boundary condition type. 

When we have a quiescent environment, h is the sum of the heat transfer coefficient by natural 

convection nch  and the heat transfer coefficient by thermal radiation rh , which can be stated by 

 

nc rh h h   (3.32) 

where rh  is the result from the linearization of the Stefan-Boltzmann equation and is represented 

as follows: 

 

    22
, ,r Th T t t TT  

      



r r  

(3.33) 

 

where   is the Stefan-Boltzmann constant and   is the thermal emissivity. Heat loss provided 

by thermal radiation is mainly important at higher temperature regions such as welding zone 

and HAZ, where temperatures is near or higher than the melting temperature, whereas the heat 

loss provided by natural convection is dominating at region far from the welding line (Obeid et 

al., 2017). 

When the designed system has some kind of external means providing the fluid 

flow, such as the fluid flow in a given pipeline, one has forced convection. The exchange of 

heat between the workpiece being welded and the medium under flowing is given via the forced 

convection heat transfer coefficient 
fch  which can be calculated through the following relation 

 

 fc

D

f

h D
Nu f Re ,Pr

k
   

(3.34) 
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where Nu  is the Nusselt number, D denotes a characteristic length (internal diameter), fk  is 

the thermal conductivity of the fluid, and 
LRe  (Reynolds number) and Pr  (Prandtl number) are 

defined, respectively, as  

 

D

u D
Re




  

(3.35) 

 

Pr



  

(3.36) 

 

where  is the fluid density, u
 is the fluid velocity,   is the dynamic viscosity,   is the 

kinematic viscosity and,   is the thermal diffusivity. By obtaining the forced convection heat 

transfer coefficient we can add it to Eq. (3.32) and model a boundary condition of fluid flow 

into a given pipeline. The two types of convection boundary conditions are illustrated in Fig. 

3.6 for in-service welding application.  

 

Figure 3.6 – Convection boundary conditions at pipe surfaces during in-service welding. 

 

 

 

Calculation of the forced convection heat transfer coefficient can be obtained via 

empirical correlations. For in-service welding analysis, the most common used correlations are 

the dimensionless Dittus-Boelter equation (Eq. 3.37) and the Sieder and Tate equation (Eq. 

3.38) (Incropera and DeWitt, 1990).  
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 

 

(3.38) 

where L denotes the hydrodynamic entry length and 
s  is the viscosity of the fluid near the 

pipe wall. 

Finally, concerning the initial temperature distribution along the medium, it is 

assumed that the welding model is initially at a specified value ( 0T ). The latter value is usually 

assumed to be T . 

 

  0,0T Tr  (3.38) 

 

3.3.3   Welding heat source models 

 

Before showing the mathematical formulation for the welding heat sources, we 

introduce the coordinate system  , ,x z , which follows the welding heat source, refer to Fig. 

3.7. 

 

Figure 3.7 – Coordinate system following the heat source path. 
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The relationship between the fixed coordinate system  , ,x y z  and the local moving 

coordinate system  , ,x z  can be expressed as 

 

 0y y vt     (3.39) 

where the coordinates x and z are equals in both systems,  0 0 0, ,x y z  defines the position of the 

heat source at the initial time, and v is the welding speed.  

Fig. 3.8 shows the considerations for the case of circumferential welding modeling. 

The electric arc path is described by considering that the electric arc is moving along a given x-

y plane.  

 

Figure 3.8 – Path described by the electric arc in a circumferential welding. 

  

 

The mathematical description for modeling circumferential welding is assumed by 

introducing the local moving coordinates  1 2, , z  . 
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   1 0 sinx x R     (3.40) 

 

   2 0 cosy y R     (3.41) 

 

where R is the radial distance from the arc welding to the pipe longitudinal axis z  and   denotes 

the final angular position described by the torch which started from the initial angular position 

0  and can be defined as 

 

vt

R
   

(3.42) 

Finally, a well-modeled welding heat source is of great importance when welding 

thermal analysis is performed. Thereby, in order to model the heat provided by the electric arc 

to the given workpiece, four types of moving heat sources have been tested. Contrary to high-

density Laser Beam Welding (LBW) or Electron Beam Welding (EBW), where the depth to 

width ratio may achieve high values, the heat input arisen from the arc welding can be either a 

constant heat generation per unit area (in the case of shallow weld) or per unit volume. The 

following heat sources are tested in the present work: circular and double-ellipse surface flux 

Gaussian distributions (W/m2), and semi-ellipsoid and double-ellipsoid volumetric flux 

Gaussian distributions (W/m3). Eqs. (3.43) - (3.48) describes the aforementioned welding heat 

sources models applied to a given plate. 

 

 Disc-shaped model 

 

 
 

 

2 2
0 2 2 2

2 2 2

2 2 2

x x3Q
q x, ,t exp 3 3       if   x  a

a a a

q x, ,t 0                                                   if   x  a


 



 

 
     

  
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(3.43) 

 

 Double-elipse model 
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(3.44) 
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(3.45) 

 

 Semi-ellipsoid model 

 

 
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(3.46) 

 

 Double-ellipsoid model 
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(3.47) 
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(3.48) 

 

Fig. 3.9 represents the double-ellipsoid heat source model as well as its geometrical 

parameters in a half-geometry.  

 

Fig. 3.9. Geometrical parameters for double-ellipsoid heat source model in a half-geometry. 

 

  

 

The parameters a , b , 
fc , and 

rc  shown in Fig. 3.9 for the double-ellipsoid model 

are the semi-axes according to each heat distribution, 
ff  and 

rf  are the fraction of heat deposited 

in the front and rear quadrant of the source, respectively. In addition, it is worth mentioning that 

the fractions are related by
f rf f 2   (Goldak and Akhlaghi, 2005). In the above equations, Q 

is the net power of the electric arc, which is defined as 

 

Q UI  (3.49) 

 

where   is the weld thermal efficiency, U is the arc voltage, and I  is the welding current.  
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3.4   Mechanical model 

 

The engineering applications concerning the solid mechanics field involves high 

complex nonlinearities. These nonlinearities are the result of the relation among displacement, 

strain, stress, and boundary conditions, being in the form of prescribed displacement or applied 

loads. According to Kim (2015) the sources of nonlinearities in solid mechanics can be split 

into four main categories: geometric nonlinearity, material nonlinearity, kinematic nonlinearity, 

and force nonlinearity.  

Kinematic and force nonlinearities are related to the dependence of displacement 

and force boundary conditions on the deformations of the structure. They will not be taken into 

account in the present study. Therefore, only geometric nonlinearities, due to large rotations, 

and material nonlinearities, in the form of inelastic material behavior, will be considered in the 

present study. 

It is important to stress out that the large deformation theory was not applied to 

welding analysis; the subsequent sections will be focused on the large deformation theory, since 

this approach had been tested and validated with some elastoplastic mechanical loadings. 

 

3.4.1   Deformation of a solid  

 

When a given body   undergoes small (infinitesimal) deformation under some 

applied loads, the undeformed (initial) and deformed (current) configurations present no 

significant difference in their shapes. A solid body under infinitesimal deformation must have 

both small displacement, small strain, and small rotation. Such assumptions made the numerical 

analysis easier to implement due to some aspects that do not need to be accounted for, e.g., 

whether one uses the undeformed or deformed area in defining stress. When a solid body 

presents either large displacement, large strain, large rotation, or a mixture of them, the 

deformation is said to be large (finite) deformation. In addition, for large deformation analysis 

we need to take into account the difference between undeformed and deformed configurations, 

since this difference can be sometimes even visible to the naked eye.  

Fig. 3.10 shows a given body under some forces and displacements resulting in two 

different domains. The first one is denoted by undeformed (material) or initial domain  0  

and the second one is the deformed (spatial) or current domain  x
.  
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Figure 3.10 – Undeformed and deformed body configurations. 

 

 

 

In Fig. 3.10 each point located by a vector X  in the undeformed domain is unique 

related to a specific point located by a vector x  in the deformed domain. Hence, with the aim 

to map the undeformed infinitesimal distance Xd  to the deformed infinitesimal distance xd , 

one may define the following one-to-one relation 

 

x F Xd d  (3.50) 

 

where, F  is the second-order deformation gradient which provides a complete description 

about stretch and rigid body rotation. By relating the displacement vector u  to the vector X  

and x  we can obtain  

 

0

x
F I u

X


  


 
(3.51) 

 

where, I  is the identity tensor, and 0u  is the displacement gradient at the undeformed 

configuration. 

 

3.4.2   Description of meshes in solid mechanics  

 

For solving the linear momentum equations is possible to either choose a 

Lagrangian or an Eulerian mesh description. According to Belitschko et al. (2014) if the mesh 

is Eulerian, the spatial coordinates x  of the mesh nodes are fixed, which means that the nodes 

coincide with the spatial points, whereas if the mesh is Lagrangian, the material coordinates X  
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of the mesh nodes are time invariant, that is, the nodes coincide with the material points. On 

one hand, the Eulerian approach is normally used in fluid mechanics problems since in these 

cases we are interested in the fluid flow over a fixed region of space; on the other hand, the 

Lagrangian approach is massively used in solid mechanics problems with the aim to follow the 

particle paths in order to determine the deformation along the domain as well as along the 

boundary domain (Maneeratana, 2000), and to accurately describe history-dependent materials 

(Belitschko et al., 2014). In light of that, the Lagrangian approach will be used in the present 

study.  

As soon as the Lagrangian mesh description is selected, a frame of reference must 

be chosen where the linear momentum equations will be integrated. There are two principal 

choices: the first one is the undeformed geometry, which results in the so-called total 

Lagrangian (TL) formulation and the second one is the deformed geometry, which gives rise to 

the updated Lagrangian (UL) formulation (Kim, 2015). The present study will make use of the 

latter approach.  

The UL formulation is expressed in terms of Eulerian measures of stress and strain 

in which derivatives and integrals are taken with respect to the deformed domain 
x  

(Belitschko et al., 2014). Furthermore, in the UL formulation the frame of reference is updated 

continuously as the time passes by, and all the quantities is referred to the last converged 

solution when new increments are required. Also, the computational mesh may move at the 

beginning of each load step by using the displacement increment vector u  from the previous 

load step. Finally, after defining the frame of reference in which the integration will be 

performed, one needs to define a proper work conjugate stress-strain pair. In the present study 

the second-order Cauchy stress rate   in conjunction with the second-order rate of deformation 

tensor D  is adopted. 

 

3.4.3   Linear momentum equations for UL formulation 

 

Knowing that  u  , and  v v u , that is, both the Cauchy stress tensor and 

the velocity vector is displacement-dependent, one may write the linear momentum equations 

for UL formulation according to the general equation (Eq. 3.1) as follows: 
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(3.52) 

 

For starting the mechanical analysis and for the purposes of the present study, we 

first neglect body force effects, the motions by advective nature, and consider a quasi-static 

condition. Therefore, the partial differential equation which describes the conservation of linear 

momentum for UL formulation at every point in a given domain 
x  can be described as  

 

 x    0  (3.53) 

 

where  x    is the spatial divergence of a given property defined in the current configuration. 

Also, the above equation can be expressed in its Cartesian system as 

 

xyxx xz

yx yy yz

zyzx zz

x y z

=  
x y z

x y z

  
  

  
 
   

  
   

  
  
    

0

 

  

 

 

(3.54) 

 

The numerical implementation of the present study is a displacement-based one, 

i.e., the primitive variable is the displacement vector u  which means that we need to obtain a 

relation between the Cauchy stress and the aforementioned vector. This relation is obtained via 

the well-known constitute models which will be presented in section 3.4.5. 

 

3.4.4   Mechanical boundary conditions 

 

For solving Eq. (3.54), we need to stablish a set of boundary conditions (BC). For 

mechanical displacement-based equations one has two possibilities to express the boundary 

conditions: essential boundary conditions (prescribed displacement) and natural boundary 

conditions (prescribed traction). Fig. 3.11 illustrates these BC types along a boundary domain 

  located at a given point by the vector x .  
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Figure 3.11 – Mechanical boundary conditions. 

 

 

 

The prescribed displacement and the prescribed traction can be mathematically 

expressed, respectively, as follows: 

 

uu u  on     (3.55) 

 

  on  n t t       (3.56) 

 

where n  is the outward unit normal vector to the surface   at a given point located by x , 

and t  is the surface traction vector. 

 

3.4.5   Material behavior - constitutive models  

 

By inspecting the behavior of materials through experimentation (one-dimensional 

uniaxial tensile test, for example), one may find relationships between stresses and strains, and 

these relations are the so-called constitutive equations. Belitschko et al., (2014) listed some 

important features which are of key importance when a given constitutive model is to be used: 

 The main assumptions in the model development; 

 The capacity of the model for modeling the material behavior; 

 The model response according to load and deformation regime; 

 Numerical issues of the model implementation. 
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One of these constitutive models is the generalized Hooke’s law, which relates each 

stress component through a linear combination of strains for elastic (reversible and time 

independent) materials (Kim, 2015). The Hooke’s law is defined as 

 

e:C   (3.57) 

 

where e  is the second-order tensor which represents the reversible elastic strains, and C is the 

isotropic (after considering material symmetries) fourth-order tensor which represents the linear 

elastic modulus and is represented by the linear combination of Kronecker deltas as follows: 

 

 ijkl ij kl ik jl il jkC           (3.58) 

 

where   and   are the Lamé constants, which are related to the Young’s modulus E  and the 

Poisson’s ratio   by the following relations: 

 

  1 1 2

E
=




  
 

(3.59) 

 

 2 1

E
=


 

(3.60) 

 

In order to make the computer implementation more practical and by considering 

isotropic material and symmetry of stress and strain tensors, the Hooke’s law can be further put 

into Voigt’s notation. In this notation, one considers fourth-order tensor as 2D pseudo matrices 

and second-order tensor as pseudo vectors. Therefore, we have the following representation: 
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(3.61) 
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It is important to point out that in Voigt’s notation the shear strain components are 

stored as engineering shears, i.e., twice the tensorial shears. 

 

3.4.6   Hypoelastic-based models  

 

The class of constitutive laws, which relates the rate of stress to the rate of 

deformation gives rise to the hypoelastic models. They can be described by the relation 

 

 
=f , D   (3.62) 

 

where  
 represents any objective (material frame indifferent) rate of the Cauchy stress, and 

D  is the second-order rate of deformation tensor, which is given by the symmetric part of the 

velocity gradient L  as follows: 

 

   
1

2

T=symD L L L   
(3.63) 

 

where 

 

n+1

Δv u
L

x x

 
 
 

 
(3.64) 

 

Eq. (3.62) satisfies the principle of material objectivity, which states that a 

constitutive relation must be independent of any rigid body motions (translation and rotation) 

(Belitschko et al., 2014; Dunne and Petrinic 2005). In other words, the material response cannot 

change under the relative motion of a given observer. Finally, as demonstrated by Dunne and 

Petrinic (2005), all the quantities in Eq. (3.62) are objective. In the present study we employed 

a zero-graded (constant isotropic elasticity fourth-order tensor) linear constitutive relation 

between the Jaumann rate of the Cauchy/Kirchhoff stress tensor, which are also objective, and 

the rate of deformation tensor as follows:  

 

= :J
C D 

 (3.65) 
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=J :J
C D  (3.66) 

 

where the Jaumann rate of the Cauchy stress J  and the Jaumann rate of the Kirchhoff stress 

J 
 are related to the Cauchy stress rate   and to the Kirchhoff stress rate   by the following 

expressions, respectively: 

 

=J
W W       (3.67) 

 

=J
W W       (3.68) 

 

where W  is the second-order continuum spin tensor which is given by the skew-symmetric 

part of the velocity gradient L  as follows 

 

   
1

2

T=skewW L L L   
(3.69) 

 

and the Cauchy stress and the Kirchhoff stress are related as follows 

 

 =J  (3.70) 

 

where J is the Jacobian between the current and reference configurations obtained from de 

deformation gradient by 

 

FJ=det  (3.71) 

 

The Eq. (3.67) is crucial to the present implementation since even though the 

Cauchy stress tensor presents objectivity, its counterpart rate do not possess the required 

material objectivity (Belitschko et al., 2014; Dunne and Petrinic 2005). 

 

3.4.7   Hypoelastoplastic formulation 

 

Materials which sustain permanent deformations after suffer loading and unloading 

conditions such as metals, soils and concrete are called plastics. They may be further classified 
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as elastoplastic materials since they usually exhibit elastic behavior until the yield strength is 

reached, and after this stress limit, plastic strains are evolved. The present section will be 

focused on the rate-independent plasticity, i.e., the permanent deformation is indifferent to the 

rate of application of loads. For small elastic strains compared to plastic strains, the modeling 

of material plasticity can be made in terms of the rate of deformation tensor which can be 

additively split as (Kim, 2015),  

 

D D D D D D D     e p th vp c tp
 (3.72) 

 

where D
e
 denotes the elastic part of the rate deformation tensor, D

p
 is the rate-independent 

part of the rate deformation tensor, D
vp

 is the rate-dependent viscoplastic part of the rate 

deformation tensor, D
th

 denotes the part of the rate deformation tensor due to thermal 

expansion, D
c
 is the creep part of the rate deformation tensor, and D

tp
 denotes the 

transformation plasticity part of the rate deformation tensor. It is worth mentioning that the 

present work will deal only with the first three components on the right-hand side of Eq. 3.72. 

Concerning the Computational Welding Mechanics (CWM) applications, Eq. 3.72 

has been used with great success including the in-house codes (Lindgren et al., 1999; Zhu and 

Chao, 2002; Anca et al., 2011) to the ANSYS a well-established multi-physics commercial 

software (Sattari-Far and Farahani, 2009; Prasad et al., 2016; Qureshi, 2008), ABAQUS (Deng 

and Murakawa, 2006), and the SYSWELD a commercial software specifically designated for 

welding analysis (Ferro et al., 2006; Xu et al., 2012; Velaga et al., 2017). 

As the rate of deformation tensor due to the thermal expansion is purely volumetric 

(Lindgren, 2007), we will treat this term separately at the end of this section, therefore, the 

following discussion is related to the elastoplastic strains only. 

Eq. (3.72) in conjunction with Eqs. (3.65)/(3.66) are the first two components of a 

general hypoelastoplastic constituve model. To fully describe a hypoelastoplastic constitutive 

model we need a yield criterion, a plastic flow rule, and a hardening law. It is well-known that 

plastic flow occurs when the yield stress is reached, and this can be represented by a yield 

function. Therefore, plastic flow may be represented by  

 

  0, A f  (3.73) 
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where f is the scalar yield function and A is a set of internal variables. When f < 0 one has 

elastic deformation whereas f > 0 is an inadmissible region of the yield surface. The yield 

function can be expresses in terms of the Von Mises equivalent stress as follows: 

 

     
3

2
y

f σ, A S A    
(3.74) 

 

where 
y  is the yield stress,  

3

2
eq

σ S   is the equivalent stress or von Mises stress, and 

S  is the deviatoric part of the stress tensor, which is given by 

 

pS I   (3.75) 

 

In Eq. (3.75), the invariant Cauchy hydrostatic pressure p is defined as 

 

1

3
p tr   

(3.76) 

 

By considering the associative flow rule (Neto et al., 2008), the rate of plastic flow 

is given by 

 

p f
λD







 

(3.77) 

 

where λ  is a scalar plastic flow. By considering the hardening law from the same function f, 

we can postulate this rule by a function of a set of internal variables   

 

f
λ

A



 


 

(3.78) 

 

After obtaining the solution of the thermal boundary-valued problem, the transient 

temperature field is inputted into the mechanical boundary-valued problem via the rate 

deformation tensor due to thermal expansion, which is given as  
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  th

ref
β T T-TD I  (3.79) 

 

where T is the temperature, refT  is the reference temperature, and  β T  is defined as 

 

 
αE

β T =
1-2ν

 
(3.64) 

 

where   is the temperature-dependent linear thermal expansion coefficient. 
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CHAPTER 

4 

 

 

 

 

 

EbFVM DISCRETIZATION AND NUMERICAL 

SOLUTION OF THE APPROXIMATED 

EQUATIONS 

 

 

 

 

 

4.1   EbFVM discretization of nonlinear heat conduction equation 

 

To obtain the discretization of heat conduction equation, it is necessary to integrate 

Eq. (3.26) in space and time. The spatial integration is made in a control volume V  defined in 

local coordinates like the one shown in Fig. 3.4. In addition, one may include the term involving 

boundary conditions in order to include both internal and external fluxes of energy; the result 

is as follows  

 

 
   

eff

t V t V t V t S

c T
dVdt k T dVdt qdVdt h T T dSdt

t





     

         

(4.1) 
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where dS  is an infinitesimal area. By applying the Gauss’s divergence theorem to the first term 

on the right-hand side of Eq. (4.1), one obtains 

 

 
   

eff

t V t S t V t S

c T
dVdt k T ndSdt qdVdt h T T dSdt

t





    

         

(4.2) 

 

The first term in the left-hand side can be evaluated at node p by considering the 

product of the average value of the integrand by the volume of the control volume. Therefore, 

the first term in the left-hand side of equation 4.2 becomes  

 

 
   

1n neff

eff eff pp p
t V

c T
dVdt c T c T V

t


 


   
     

(4.3) 

 

where pV  is the volume of the control volume, which can be calculated for hexahedral 

elements by 

 

1 1

scv scvn n

p i i

i i

V V det(J)
 

      
(4.4) 

 

where 
scvn  denotes the number of sub-control volumes that forms the control volume, and 

iV  

is the volume of each sub-control volume. 

The first term in the right-hand side can be evaluated by considering the product of 

the average value of the integrand by the surface area of the control volume. In order to use a 

method as unconditionally stable as possible (Lindgren, 2007; Versteeg and Malalasekera, 

2007; Maliska, 2004) for any time-step size, we will adopt a fully implicit approach. 

 

   
1

1 1

scv cs
n

n n

jj
i jt S i

k T ndSdt k T S t



 

 
     

 
   

(4.5) 

 

where 
csn  is the number of  surfaces of each sub-control volume, t  is the time step and S  

denotes the vector area related to each control surface which can be defined as  
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S n S    (4.6) 

 

Finally, inserting Eq. (4.6) into Eq. (4.5), one obtains 

 

 
1

1 1 1

scv cs v
n

n n n

ij ijk ijk ij

i j kt S

k T ndSdt k N T S t



  

 
     

 
  

(4.7) 

 

Following the same procedure adopted with transient terms, the source term and the 

term related to the boundary conditions can be evaluated, respectively, as follows 

 

1n

p p

t V

qdVdt q V t     (4.8) 

 

   
1n

p p

t S

h T T dSdt h T T S t


        (4.9) 

 

Substituting Eqs. 4.3, 4.7, 4.8 and 4.9 into Eq. 4.2, one obtains the discretized form 

of the thermal energy equation as 

 

     
1

1

1 1 1

scv cs v
n

n n n
n n

eff eff p ij ijk ijk ij p p p pp p
i j k

c T c T V k N T S q V h T T S t 







  

                 
  

(4.10) 

 

By considering all control volume equations in a given mesh, we have the following 

system of algebraic nonlinear equations: 

 

1 1n n n
A T B

    (4.11) 

 

where A is the coefficient matrix, T is the vector of nodal temperature, and B is the vector of 

independent terms. It is important to highlight that the nonlinearities introduced in the system 

of equations aforementioned is due to temperature-dependent properties, heat source, boundary 

conditions and so on. 

For solving the thermal problem, which is given by Eq. (4.11), one will make use 

of an incremental procedure. The incremental approach (time marching) starts with a given 
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temperature initial field 
0

T . Then, the system of nonlinear algebraic equation is solved. Finally, 

the temperature T is assigned to 
0

T  so that temperature field is actualized and the solution 

continues by further adding new time steps. However, due to the nonlinearities, an iterative 

procedure needs to be performed during this process. 

 

4.1.1   Iterative solution method for thermal analysis 

 

Eq. 4.11 is a nonlinear system of equations so that an iterative approach is required 

for linearizing and subsequently solving them at each time step. In order to perform this task, 

the Newton-Raphson iterative method is used. Equation (4.11) will be rewritten as follows 

 

1 1 1

1 1 1 1

n n n n

i i i i
A T B R

  

   
   (4.12) 

 

where R is a residue vector and the subscript i is the iteration counter. Iterative corrections to 

the increment in temperature is made through a predictor 
i

T  for the first iteration and 

subsequently by an iterative corrector
i

T . This can be mathematically calculated as 

 

1 1

1

n n

i i i
T T T 


   (4.13) 

 

Next, one must find the iterative correction which may obtains n 1

i 1
R 0




  in the 

following iteration. This can be achieved by 

 




 




  



n 1

n 1 n 1 i

i 1 i i

R
R R T 0

T
 

(4.14) 

 

Eq. 4.14 can be written as 

 

n 1

n 1i

i i

R
T R

T




 


  
(4.15) 

 

In Eq. 4.15 the derivatives can be calculated as follows 
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n 1 n 1 n 1 n

n 1i i i i

i

R A T B
A

T T T

  
   

      
   

 
(4.16) 

 

Therefore, the increment 
i

T  can be finally calculated as  

 

1
n 1 n 1

i i i
T A R


       

(4.17) 

 

The incremental and iterative procedures for solving the heat conduction equation 

is summarized in Fig. 4.1.  

 

Figure 4.1 – Incremental and iterative procedures for heat conduction analysis. 
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4.2   EbFVM discretization of nonlinear momentum equations 

 

As a starting point for the purpose of EbFVM numerical implementation the 

nonlinear momentum equations is written as 

 

n+1 n+1

ext int
F F  0  (4.18) 

 

where n+1

ext
F  is a force vector due to external applied loads and n+1

int
F  is a force vector associated 

with the internal stresses both at time n+1 . The internal stresses can be written for an arbitrary 

solid, with a volume V and boundary V  in its integral form as 

 

n+1n+1

int
V

dS 0nF


  σ  
(4.19) 

 

By substituting Eq. 4.19 into Eq. 4.18 one has 

 

n+1

ext
V

dSF n


   0σ  
(4.20) 

 

By implicitly decomposing the vector of unknown stress components at time   1n 

, which is denoted as 
n+1σ  as 

 

n+1 n n+1Δσ σ σ   (4.21) 

 

and substituting Eq. (4.21) into Eq. (4.20), we obtain 

 

n+1 n+1 n

ext
V V

Δ dS= dSn F n
 

   σ σ  
(4.22) 

 

By rewritten the generalized Hooke’s law (Eq. 3.57) in its counterpart in the rate 

form and neglecting the contribution due to temperature variation one has 

 

n+1 ep,n+1 e,n+1
C : Dσ  (4.23) 
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where 
ep

C  is the elastoplastic material tensor. Therefore, by considering the additive 

decomposition of the rate of deformation tensor expressed in Eq. 3.72, we rearrange Eq. (4.23) 

as 

 

 n+1 ep,n+1 n+1 p,n+1 th,n+1
C : D D D  σ  

(4.24) 

 

By combining Eqs. (4.24), (3.65) and (3.67), one obtains 

 

 n+1 ep,n+1 n+1 p,n+1 th,n+1 n+1 n n n+1
C : D D D W W    σ σ σ  

(4.25) 

 

The left-hand side of Eq. (4.22) can be rewritten considering the incremental form 

of Eq. (4.25), for each sub-control volume of each individual element (ne) of the domain. 

 

 
e e

ne ne
n+1 ep,n+1 n+1 p,n+1 th,n+1 n+1 n n n+1

e=1 e=1V V

Δ dS Δ Δ Δ Δ Δ dSn C : D D D W W n

 

       
   σ σ σ  

(4.26) 

 

Therefore, substituting Eq. (4.26) into Eq. (4.22), and assuming that a priori we do 

not have any force associated with inelastic strains, then we have 

 

e

ne
ep,n+1 n+1 n+1 n n n+1 n+1 n+1 n

ext th int

e=1 V

Δ Δ Δ dSC : D W W n F F F



         σ σ  
(4.27) 

 

The vector force that takes into account the thermal variation at each vertex is 

expressed as follows: 

 

e

ne
n+1 ep,n+1 th,n+

V

1

th

e=1

Δ dSF C : D n



      
(4.28) 

 

and the internal force vector is 

 

e

ne
n n

t

V

in

e=1

dSF n



   σ  
(4.29) 
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Eq. 4.27 can be further rearranged as follows 

 

e e

ne ne
ep,n+1 n+1 n+1 n n n+1 n+1 n+1 n

ext th int

e=1 e=1V V

Δ dS   Δ Δ dS  C : D n W W n F F F

 

               σ σ  
(4.30) 

 

In order to get the final form of the matrices which will contribute to the structural 

stiffness, the terms in the left-hand side are put in index notation. Therefore, using Eqs. 3.14 – 

3.16 the following equations are obtained: 

 

e e

e

ne ne
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ijmp mp j
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 
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 

v

e

v

e
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By retrieving the matrix notation, we can define 
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where 
ep,n+1

mat
K  is the material stiffness matrix and 

ep,n+1

geo
K  is the geometrical stiffness matrix, 

and we can define the total stiffness matrix as  

 

ep,n+1 ep,n+1 ep,n+1

tot mat geo
K K K   (4.35) 

 

It is important to point out that in the case of small deformation theory the 

geometrical stiffness matrix is zero since the undeformed and deformed configurations are 

assumed to be equal. Finally, Eq. 4.30 can be expressed in its matrix form as  

 

ep,n+1 n+1 n+1 n+1 n

tot ext th int
K u F F F  Δ  (4.36) 

 

4.2.1   Iterative solution method for mechanical analysis 

 

When an inelastic load increment takes place, the equilibrium relationship, Eq. 

4.36, is nonlinear. The process of linearization starts with the Eq. 4.18 and follows the same 

procedure developed for thermal equation and for the sake of simplicity only a few steps of the 

solution procedure for the mechanical analysis will be showed. 

Equation 4.18 will be rewritten as follows 

 

1 1 1n n n

i i i
F F R

   
ext int  (4.37) 

 

Iterative corrections to the increment in displacement is made through a predictor 

i
u  for the first iteration and subsequently by an iterative corrector 

i
u . This can be 

mathematically calculated as 

 

1i i i
u u u


      (4.38) 
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Next, one must find the iterative correction which may obtains n 1

i 1
R 0




  in the 

following iteration. This can be achieved by 

 

n 1

n 1 n 1 i

i 1 i i

R
R R u 0

u
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 




  


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(4.39) 

 

Eq. 4.39 can be written as 

 

n 1
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i i

R
u R

u
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(4.40) 

 

In Eq. 4.40 the derivatives can be calculated as follows 
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(4.41) 

 

Knowing that the external force vector has no dependency on the displacement, one 

can reduce the Eq. 4.41 as follows: 
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R F
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(4.42) 

 

Therefore, the increment 
i

u  can be finally calculated as  

 

1
n 1 n 1

i i i
u K R


      

(4.43) 

 

The incremental and iterative procedures for solving the nonlinear deformation 

analysis is summarized in Fig. 4.2.  

 

Figure 4.2 – Incremental and iterative procedures for mechanical analysis. 
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In order to take into account large rotational increments, an algorithm proposed by 

Hughes and Winget (1980) was used to update the stress at the previous load step to the rotation-

free configuration by 

 

n n T
Q Qσ σ  (4.44) 

 

where Q  is the incremental rotation tensor, which is defined by 

 

-1
1 1

2 2
Q I W I W

   
     
   

 

(4.45) 
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The spin tensor W is defined at the midpoint configuration as 
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(4.46) 

 

Finally, the displacement gradient at the midpoint configuration is calculated as 
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(4.47) 

 

Thus, by taking the rotated stress from Eq. 4.44 one may update the Cauchy stress 

as follows 

 

n+1 n n+1Δ σ σ σ  (4.48) 

 

4.2.2   Implicit numerical integration of the return mapping 

 
For the treatment of the nonlinear equations involved in this theory is assumed an 

implicit integration scheme in time, which is linearized via the Newton–Raphson method. The 

reasons behind this choice lie on the stability and quadratic convergence rate near the root. 

Therefore, in case of plasticity loads, the aforementioned numerical approach is used to correct 

the stress state, at the integration point, in terms of the internal parameters when required. In 

the return mapping procedure, the stress field calculated by Eq. (4.48) is adopted as the 

candidate stress tensor 

 

1n c    (4.49) 

 

Once the material yields, the condition of a plastic load is verified and the stress 

state must be corrected with the insertion of the inelastic increment of the rate of deformation 

tensor 
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(4.50) 

 

where   is a multiplier parameter, and finally, the stress-strain relation can be written with 

inclusion of the inelastic strain as 
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(4.51) 

 

In order to differentiate the return mapping equations from the equilibrium 

procedure, the iterative superscript j is adopted instead of n. 

Therefore, rewriting Eqs. (4.51) and (3.74) in the residual form, we obtain 
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 j j
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Applying the Newton-Raphson method to Eqs. (4.52) and (4.53), we obtain 
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(4.54) 

 

where J is the Jacobian matrix, which is given by 
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(4.55) 

 

The new stress state and inelastic internal variable are updated as follows 
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1 1j j j      (4.56) 

 

1 1j j j      (4.57) 

 

These values are used to update the incremental terms 

 

1 1j j j       (4.58) 

 

1 1j j j       (4.59) 

 

The above parameters are used to update the residue vectors 1jR 

  and 1jR 

 . When 

the convergence criterion is reached, the tangent modulus 
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(80) 

 

where 

1

11

n

C
D








. This result leads to , 1

11

ep nC C  , which is the new tangent matrix at the 

integration point. 

For more details of the whole implicit numerical integration procedure see Pimenta 

(2019). 

 

4.3   Numerical approach 

 

The general behavior of a given workpiece being welded is strongly affected by the 

coupling among heat transfer, microstructure evolution, and thermal stresses (Goldak and 

Akhlaghi, 2005). In addition, we may add the fluid flow into the weld pool as well as the fluid 

flow into a given pipeline as in the in-service welding case. However, concerning the 

aforementioned couplings, the present work only focus on the effects of transient temperature 

fields on the thermal stresses and mechanical deformations. The fluid flow into the pipeline will 
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be presented into the numerical model by empirical correlations relating the heat transfer 

coefficient at internal wall boundaries and the fluid flow of the molten pool will be inserted by 

the modification of physical properties at this region. Furthermore, the solution procedure is 

based upon a decoupled approach, where the solution of the thermal and mechanical analysis 

is made sequentially. Firstly, we have a transient thermal analysis in order to obtain nodal the 

temperature distribution and this is followed by a non-linear structural analysis where the stress 

behavior is evaluated at the integration points. 
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CHAPTER 

5 

 

 

 

 

 

VERIFICATION AND VALIDATION TEST 

CASES 

 

 

 

 

 

The process of transforming a real-world phenomenon into a physical model, which 

will be capable of reproduces all its important ingredients, is often composed by a great amount 

of complex aspects. Therefore, in order to represent these phenomena as accurate as possible, 

is it mandatory, for any physical model, to be exhaustively tested so that it reaches reliable 

results. When one performs any numerical analysis, different types of errors may appear, 

erroneous applied boundary conditions as an example, for that reason the process of verification 

and validation of the numerical model must be doing as the first step of the given analysis. 

Furthermore, Versteeg and Malalasekera (2007) pointed out that by doing verification and 

validation one may quantify errors and uncertainty, respectively. In addition, it is important to 

mention that those aforementioned aspects are inherently related to any numerical modeling. 

According to Lindgren (2007) verification is the process that determines if the 

equations which describe the physical model are solved correctly; this can be verified by 

comparing the numerical solutions with benchmark solutions, i.e. analytical solutions, and 

highly resolved numerical solutions, whereas validation is a process that checks if the numerical 
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model reproduces the real world behavior. Therefore, the validation can be performed by 

comparing the numerical results with high-quality experimental results.  

Thus, with the aim to both obtain numerical verification and validation of the 

MPE_EbFVM (multi-physics environment) developed code, we have performed some 

verification and validation test cases for thermal, mechanical and thermo-mechanical problems. 

Furthermore, additional verification and validation test cases for the MPE_EbFVM were 

performed in the works by Pimenta and Marcondes (2019), and Pimenta (2019). 

Before we start, it is important to mention some considerations that were adopted 

for all simulation test cases. They are stated as follows: 

 Independence tests for grid, timestep (transient thermal analysis), and 

loadstep (non-linear mechanical analysis). 

 The meshes adopted were either structured or unstructured depend on the 

given problem; this is possible due to the flexibility that EbFVM approach 

has to handle both types of grids. 

 Wherever there was a symmetry in the geometry, the simulated domain was 

reduced to one-half, one-quarter or one-eighth according to the specific 

problem.  

 The majority of test cases were performed with a mesh composed of 

hexahedral elements, except for few cases, where tetrahedrons and prisms 

elements were employed. 

 Localized grid refinement was made near critical regions with the aim to 

provide a better resolution for the property being analyzed, and the rest of 

the given domain was set with a coarse mesh so as the computational 

resources were saved. 

 Based on the comparison between the results obtained by the present study 

and analytical, numerical or experimental results from literature, the relative 

error was defined as follows: 

 

                             
EbFVM comp

comp

X X

X



  

(5.1) 

 

where 
EbFVMX  is a given result from the present study and compX  is the result 

from the literature study. 
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5.1   Thermal analysis 

 

Since the present work is an uncoupled sequentially thermo-mechanical analysis, 

the process of verification and validation of the numerical model can be performed apart for 

both thermal and mechanical problems. Hence, this section presents verification and validation 

test cases for thermal analysis only. 

  

5.1.1   2D steady-state heat conduction 

 

This section presents a simple benchmark for the MPE_EbFVM. The problem 

consists of a 2D steady-state heat conduction modeled by a 3D square thin plate. In addition, 

since neither phase change nor heat generation are used, Eq. (3.22) has been reduced to the 

well-known Laplace’s equation, which is given by 

 

2 0T   (5.2) 

 

The geometry as well as the boundary conditions are represented in Fig. 5.1. The 

length and width are equal to one, and the 3D plate was made with a small thickness (0.01W), 

where W is the width of the plate. Dirichlet BC was prescribed in the x-y plane, and symmetry 

conditions (Neumann BC) was imposed in the z-normal direction. 

 

Figure 5.1 – Geometry and boundary conditions adopted in the 2D steady-state heat 

conduction analysis. 
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The analytical solution for Eq. (3.37) with the particular set of boundary conditions 

showed in Fig. 5.1 is given by 

 

 

 
 

sinh y W
T sin x W

sinh H W





  

(5.3) 

 

 

For the present simulation, it was adopted a structured hexahedral-based mesh 

composed by 882 nodes, and 400 elements. The results obtained with the MPE_EbFVM was 

compared against the analytical ones. They are presented in Fig. 5.2. The green marks in the 

numerical results represent a temperature profile, T(x, y=0.5), and the red ones represent the 

numerical results for the temperature profile T(x=0.5, y). 

 

Figure 5.2 – Comparison of analytical and numerical results for a 2D heat conduction 

problem. 

 

 

 

From the results, one can see excellent agreement between numerical and analytical 

results. In addition, in spite of the simple character of this specific problem, one may conclude 

that this test case is a fair first step to verify our designed numerical code. 

 

5.1.2   3D moving heat source in a semi-infinite domain 
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This verification test case was performed by comparing the present work with 

analytical solutions by Fachinotti et al. (2011). In the latter work they calculated induced 

thermal field by a moving double-ellipsoidal heat source in a semi-infinite body for welding 

processes. The present verification was made by comparing temperature variation with time in 

a specified point (thermal cycles) as well as temperature profiles in a specified path. The present 

test case has some simplifications (as frequently found in most analytical solutions in the 

welding area), viz., adiabatic boundary conditions, autogenous process, and no latent heat 

effects. Fig. 5.3 shows both geometry (length = 200 mm, width = 200 mm, height = 100 mm) 

and the unstructured mesh used in the EbFVM analysis.  

 

Figure 5.3 – Geometry and unstructured mesh adopted in the EbFVM analysis. 

  

 

Three different cases were analyzed (A, B, C), where we varied the size and the 

amount of the heat deposited in the front and the rear of the semi-ellipsoid. Table 5.1 shows the 

physical and geometrical welding parameters used in this analysis.  

 
Table 5.1. Physical and geometrical welding parameters. 

 

 Case 

Parameter A                        B                       C 

cf, cr 6 mm, 24 mm    15 mm, 15 mm   24 mm, 6 mm 

ff, fr 0.4, 1.6               1.0, 1.0              1.6, 0.4 

b, a 2 mm, 10 mm 

k 29.0 W/m.K 

c 600 J/kg.K 
  7820 kg/m3 

Q  5083 W 

v 5 mm/s 

T0 20°C 

 

Source: Fachinotti et al. (2011). 
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Considering geometry and the aforementioned parameters, the welding torch starts 

moving at point O (0,0,0) when time t=0 s and moves along y-axis with a constant speed. To 

discretize the domain, an unstructured mesh composed of 10,334 tetrahedral elements and 

19,373 nodes was used. In addition, a time-step equal to 0.05 s was adopted and kept constant 

for the whole simulation. 

Figs. 5.4 and 5.5 depict the thermal cycles at point P (0,50,0) and temperature 

profile along the weld line at time t=10 s, respectively.  

 

Figure 5.4 – Thermal cycles for different geometric parameters of the heat source for both 

analytical and EbFVM analysis. 

 

 

Figure 5.5 – Temperature profiles for different geometric parameters of the heat source for 

both analytical and EbFVM analysis. 
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The obtained results from the present work, for all double-ellipsoidal heat source 

configurations, showed an excellent agreement with the analytical solution by fitting it with 

high accuracy. The maximum relative error for both the thermal cycle and the thermal profile 

curves were observed in the case C, at the peak temperature, where it assumes a value of 1.33%, 

and 2.35%, respectively.  

Despite the analysis has been made with temperature-independent properties, which 

makes the analysis easier, the locations where both thermal cycles and temperature profiles 

were compared with the analytical solutions are regions of high gradients, and the present 

numerical approach was able to capture all these details with high accuracy. Therefore, since 

the results showed high accuracy when compared against analytical solutions, the present model 

is able to properly represent a welding process subjected to a volumetric Gaussian heat source.  

 

5.1.3   3D and 2D heat source models 

 

We now validate our 3D MPE_EbFVM code with various types of moving heat sources 

using a thick plate with length = 300 mm, width = 200 mm, and height = 100 mm. The tested 

heat sources are as follows: disc-shaped, double-ellipse, semi-ellipsoidal, and double-

ellipsoidal heat sources.  

The results are compared against experimental results by Christensen et al. (1965). Fig. 

6.6 shows both the geometry along with the double-ellipsoidal heat source model (out of scale) 

and the mesh adopted in the present validation test case. All the boundaries except the top 

surface were kept insulated. At the top surface a combination of convection and radiation losses 

were set by applying Eq. (3.32). 

 

Figure 5.6 – Geometry along with double-ellipsoidal heat source (a) and mesh for the 

validation test case. 
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For this test case, a mesh composed of regular hexagonal elements was used. The 

mesh is composed by 4,880 nodes and 3,780 elements. As can be seen in Fig. 5.6, the adopted 

mesh is very coarse even in the weld line, this is because the heat source dimensions are large 

in comparison with the whole domain. However, a refinement was performed through the 

welding torch path. It is important to point out that these kinds of elements can capture high 

gradients easily, which is often required in welding numerical analysis. High gradients occur in 

the molten pool (fusion zone) and HAZ (Heat-affected zone) regions due to the location of the 

high intensity arc welding, different from the remainder domain, which is often at ambient 

temperature. 

The geometrical and welding parameters are shown in Table 5.2. Thermo-physical 

properties for a low carbon structural steel (0.23 %C) are given in Table 5.3. The welding 

process simulated is SAW.  

 

Table 5.2. Welding and geometrical parameters. 

 

Parameter Value 

Current 1170 A 

Voltage 32.9 V 

Efficiency 0.95 

Speed 5 mm/s 

b, a 20 mm, 20 mm 

cf, cr 15 mm, 30 mm 

ff, fr 0.6, 1.4 

Source: Goldak et al. (1984). 
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Table 5.3. Thermophysical properties for thermal analysis. 

 

Parameter Value 

Thermal conductivity (solid) 34.0 W/m.K 

Thermal conductivity (liquid) 68.0 W/m.K 

Specific heat  680.0 J/kg.K 

Density 7200.0 kg/m3 

Latent heat 291660.0 J/kg 

Solidus temperature 1763 K 

Liquidus temperature 1774 K 

Source: Anca et al. (2011). 

 

Fig. 5.7 presents the temperature distribution obtained with four heat sources models in 

a transverse section to the welding direction 11.5 s after the arc welding has passed by that 

section. The heat sources are disc-shaped, double-ellipse, semi-ellipsoidal, and double-

ellipsoidal heat sources.  

 

Figure 5.7 – Comparison of EbFVM numerical and Experimental temperature distributions 

along with different heat source models. 
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The results for all the heat source models showed an acceptable agreement with the 

experimental results by Christensen et al. (1965). By comparing the accuracy amongst the heat 

source models, all of them showed similar results far from the weld pool. Discrepancies were 

showed near the weld center line, where maximum relative error were found for all heat sources. 

They were 6.9%, 8.25%, 10.8%, and 12.7% for the double-ellipsoid, double-ellipse, semi-

ellipsoid, and disc-shaped heat source, respectively. In addition, as it can be seen in Fig. 5.7, 

the double-ellipsoidal heat source model presented a better fit with the experimental results, 

which also agree with previous literature works (Goldak et al., 1984; Hashemzadeh et al., 2013). 

Therefore, for this specific test case, the Goldak’s model seems to be a better choice for 

characterizing the transient welding process. 

From Fig. 5.7, we can observe that, in average, all heat source models predicted 

similar temperature profile. This observation is in accordance with the results obtained by 

Lindgren (2007) and Flint et al. (2018). However, as we stated before, if one wants to obtain an 

accurate temperature profile, the double-ellipsoid is the best heat source model.  

Finally, it is worthwhile mentioning that despite of all heat source models were able 

to predict the temperate profile, none of them were able to capture the temperature profile 

around the heat source ( 0  ). Therefore, further investigations need to be performed in order 

to understand such behavior. 

 

5.1.4   Single-pass butt-welded pipe 

 

The present verification test case was performed in a single-pass butt-welded pipe. 

The present work is compared with the FEM analysis by Karlsson and Josefson (1990). Both 

EbFVM and FEM models applied full 3D models in a girth welding simulation. The geometry 

and a portion of the mesh (near the weld line) are shown in Fig. 5.8. The outer pipe diameter, 

wall thickness, and total length of the pipe are 114.3 mm, 8.0 mm, and 400 mm, respectively. 

Filler material is deposited in a 5.5 mm deep V-groove. The welding process simulated is MIG. 

At all boundaries, except the symmetry surface (kept insulated), a combination of convection 

and radiation losses were set by applying Eq. (3.32).  

 

Figure 5.8 – Single-pass butt-welded pipe. Joint configuration and mesh near the weld line.  
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For discretize the domain, an unstructured mesh composed by 1,800 prisms, 25,920 

hexahedron, and 36,000 nodes was used. In addition, a time-step equal to 0.05 s was adopted 

and kept constant in the whole simulation. For this simulation, a semi-ellipsoidal heat source 

model was adopted. 

The material employed in the simulation is C-Mn (Carbon-Manganese) steel and 

its temperature-dependent properties are shown in Fig. 5.9. In Fig. 5.9, TC stands for thermal 

conductivity, HTC is the heat transfer coefficient, SH-BM is the specific heat at the base metal, 

and SH-HAZ stands for the specific heat at the heat-affected-zone. HAZ was considered for 

temperatures ranging from 900 °C to the melting point isotherm. 

 

Figure 5.9 – C-Mn temperature-dependent properties. 

 

 

Source: Karlsson and Josefson (1990). 
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Considering the aforementioned geometry and parameters, the welding torch starts 

to move at time t=0 s at 0    (refer to Fig. 3.8) and moves around the whole pipe with a 

constant speed. Welding and geometrical parameters are illustrated in Table 5.4. 

 

Table 5.4. Welding and geometrical parameters. 

 

Parameter Value 

Power 3780 W 

T0 20 °C 

Efficiency 0.9 

Speed 6 mm/s 

b, a 6 mm, 3.5 mm 

c 5 mm 

 

Source: Karlsson and Josefson (1990). 

 

Fig. 5.10 shows the temperature profile for a single-pass butt-welded pipe at the 

outer pipe surface and 150   . We also present the numerical results obtained by Karlsson 

and Josefson (1990) using the FE method.  

 

Figure 5.10 – Outer surface temperature profile after heat source front has passed at various 

moments.  
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From Fig. 5.10, one can see excellent agreement when comparing both studies at 

times t = 2.8 s, t = 5.6 s, and t = 24 s. However, for the time t = 1.4 s EbFVM significantly 

diverges from the FEM at the weld line. The relative error at the latter time reaches a value of 

23.9% at the weld line and decreases near to zero at regions far away from the weld line. Hence, 

further investigations need to be performed in order to understand such deviation. 

Finally, considering that both verification and validation test cases for thermal 

analysis presented good agreements in most of the cases, and that in cases where some 

discrepancy between the comparisons emerged can be attributed to some assumptions and the 

inherently deviation of the numerical studies to analytical, experimental, and other tools, the 

present MPE_EbFVM code can be employed for analysis of welding process in general, 

including in-service welding. 

 

5.2   Mechanical analysis 

 

Since the present work is an uncoupled sequentially thermo-mechanical analysis, 

the process of verification and validation of the numerical model can be performed apart for 

both thermal and mechanical problem. Hence, this section presents one verification test case 

for mechanical analysis only. 

  

5.2.1   Internally pressurized cylinder 

 

This section presents a verification test case involving just mechanical effects 

provided by an internal pressure applied in a 3D long cylinder. The geometry of the problem, 

the boundary conditions, and the 3D element mesh are represented in Fig. 5.11. Material 

properties as well as geometrical parameters are illustrated in Table 5.5. For discretize the 

domain, a structured mesh composed by 100 hexahedron, and 242 nodes was used. Also, due 

to symmetry only one-quarter of the geometry was used. Perpendicular constraints were set at 

symmetry planes (Dirichlet boundary conditions). The analysis was carried out under perfectly-

plastic conditions and assuming plane strain conditions by making use of only one element in 

the normal z-direction and making normal constraints in this direction as well. 
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Figure 5.11 – Infinite long internally pressurized cylinder.  

Geometry, boundary conditions and 3D element mesh.   

 

       

 

 

Table 5.5. Material properties and geometrical parameters for mechanical analysis. 

 

Parameter Value 

Young’s modulus  210.0 GPa 

Poisson’s ratio  0.3  

Uniaxial yield stress 0.24 GPa 

Internal radius  0.1 m 

External radius  0.2 m 

Source: Neto et al. (2008). 

 

The results were compared against the analytical solutions by Hill (1950). Fig. 5.12 

shows the applied internal pressure versus the radial displacement at the cylinder’s outer 

surface. From the results, one can see excellent agreement between numerical and analytical 

solutions. 

  



108 

 

 

Figure 5.12 – Internal pressure vs radial displacement.  

 

 

Fig. 5.12 and Fig. 5.13 shows the hoop and radial stress versus radial coordinate, 

respectively. Both plots are obtained for an applied internal pressure equal to 0.18 GPa. 

 

Figure 5.13 – Hoop stress vs radial coordinate.  

 

 

 

Figure 5.14 – Radial stress vs radial coordinate.  
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The numerical results were in good agreement with the analytical solution. 

Attention needs to be paid at the inner cylinder’s surface where the results did not fit well. The 

relative error for the hoop stress distribution reaches a maximum value of 30% at the inner 

surface while the relative error for the radial stress reaches a maximum value of 18% also at the 

inner surface. Hence, further investigations need to be performed in order to understand such 

deviation. Finally, it is important to mention that the abrupt change in the slope of the hoop 

stress showed in Fig. 5.13 marks the transition of an elastic to a plastic region. 

 

5.3   Thermomechanical analysis 

 

Since the present work is an uncoupled sequentially thermo-mechanical analysis, 

the process of verification and validation of the numerical model can be performed apart for 

both thermal and mechanical problem. Hence, this section presents verification and validation 

test cases for thermomechanical analysis. 

 

5.3.1   Infinite long plate with temperature-dependent shear modulus 

 

The present verification test case was performed in an infinite long plate subjected 

to a thermoelastic loading. The present work is compared with the analytical solution by Sladek 

et al. (1990). The geometry of the problem, the boundary conditions, and the 3D element mesh 

are shown in Fig. 5.15. To discretize the domain, a structured mesh composed by 800 

hexahedrons, and 1722 nodes was used. Assumption of plane strain conditions was made by 

making use of only one element in the normal z-direction and making normal constraints in this 
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direction as well. 

 

Figure 5.15 – Infinite long plate. Geometry, boundary conditions and 3D element mesh.  

 

 

 

 

The infinite long plate was subjected to a linear temperature distribution along the 

y-direction (ranging from 5°C to 100°C) and to a linear temperature-dependent shear modulus. 

The reference temperature was equal to 0°C. The material properties as well as the temperature 

profile are depicted in Table 5.6. 

 

Table 5.6. Material properties and temperature profile  

for the thermomechanical analysis. 

 

Parameter Value 

Temperature  T(y) = 95y+5 

Shear modulus  S(T) = -15.23T+7.95E+4  

Poisson’s ratio 0.3  

Thermal expansion coefficient  1.25E-5 °C-1 

Source: Sladek et al. (1990). 
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Fig. 5.16 shows vertical displacement and Fig. 5.17 shows the normal stress along 

the left wall. As we can see, excellent agreement was achieved by comparing the numerical and 

analytical results. 

 

Figure 5.16 – Vertical displacement vs Y-coordinate.  

 

 

Figure 5.17 – X-normal stress vs Y-coordinate.  

 

 

5.3.2   Thermal hollow sphere subjected to mechanical loading 

 

The present verification test case was performed in a hollow sphere subjected to 

thermal and mechanical loadings. The present work is compared with the analytical solution by 

Timoshenko and Goodier (1970). The geometry of the problem, the loadings, the boundary 

conditions, and the 3D element mesh are represented in Fig. 5.18. To discretize the domain, an 
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unstructured mesh composed by 100065 tetrahedrons, and 18413 nodes was used. Also, due to 

symmetry only one-eighth of the geometry was used, and in addition, perpendicular constraints 

were set at symmetry planes (Dirichlet boundary conditions). The temperature and pressure at 

the inner radius, R1 = 0.01 m, were constant and equal to 6 °C and 5 GPa (red arrows), 

respectively and the outer radius, R1 = 0.02 m, was kept with a temperature equal to 2 °C and 

under a pressure equal to 3 GPa (green arrows). The temperature distribution is expressed by  

 

  10 400T r r   (5.4) 

 

The material properties assume the following values: Young’s Modulus equals to 

1.0 GPa, Poisson’s ratio 0.3, and thermal coefficient equals to 0.02 °C-1. The reference 

temperature was equal to 0°C. 

 

Figure 5.18 – Thermomechanical hollow sphere. Geometry, loadings, boundary conditions 

and 3D element mesh. 

 

                

 

Fig. 5.19 shows the radial displacement as a function of the radius of the hollow 

sphere and Fig. 5.20 shows the Von Mises equivalent stress as a function of the radius of the 

hollow sphere. The results for both analyses were collected at the y-z symmetry plane and they 

were averaged over specific radii. Good agreement was achieved between numerical and 

analytical solutions. Special attention is need to be paid for the Von Mises equivalent stress at 

the inner radius where a relative error was equal to 7.11%. However, this error can be assumed 

to be within engineering accuracy. Finally, regardless Fig. 5.19, due to the combination of 
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loadings acting under the hollow sphere, we can see that now the inner radius became the outer 

radius and the outer radius became the inner one. 

 

Figure 5.19 – Comparison of radial displacements between EbFVM and analytical solutions. 

 

 

 

Figure 5.20 – Comparison of Von Mises equivalent stress between EbFVM and analytical 

solutions. 

 

 

 

5.3.3   Thermo-elastoplastic thin plate 

 

The present verification test case was performed in a non-uniformly long thin plate 

subjected to a thermo-elastoplastic loading. The present work is compared with the analytical 

solution by Boley and Weiner (1962) along with the FVM solution by Demirdžić and martinović 

(1993). The geometry of the problem, the boundary conditions, and a cross-section of the 3D 
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element mesh are shown in Fig. 5.21. To discretize the domain, a structured mesh composed by 

1600 hexahedrons, and 3362 nodes was used. Assumption of plane stress conditions was made 

by making use of only one element in the normal z-direction and assuming that the thickness of 

the plate is small when compared with the height and width of the plate.  

 

Figure 5.21 – Thermo-elastoplastic long thin plate.  

 

 

                  

 

The plate is subjected to a non-uniform temperature distribution expressed by 

 

 
2
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3

y
T y T

h

  
   

   

 
(5.5) 

 

where To = 600 K, h = 1.0 m, and the reference temperature was equal to 0°C. The thermal 

load, which is produced by the temperature distribution along the plate, was uniformly 

distributed throughout the simulation over 10 load steps for the thermo-elastoplastic test case; 

for the linear thermo-elastic test case only 1 load step was applied for the whole simulation. 

The material properties used in the simulations are depicted in Table 5.7. The thermo-

elastoplastic analysis was carried out under perfectly-plastic conditions. 
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Table 5.7. Material properties for thermomechanical analysis. 

 

Parameter Value 

Young’s modulus E  = 210 GPa 

Yield stress 0 = 210 MPa 

Poisson’s ratio    = 0.33  

Thermal expansion coefficient     = 9. 5e-6 K-1 

Source: Demirdžić and martinović (1993). 

 

Fig. 5.22 compares the vertical displacement of the solution obtained by the present 

simulation and the analytical solution for the thermo-elastic case and an additional simulation 

for the thermo-elastoplastic case. As can be seen, excellent agreement was achieved by 

comparing the numerical and analytical results. Also, we can verify that the vertical 

displacement reaches an absolute maximum when the T(y) = 0, at Y = 0.58 m, that is, at this 

point no stress has been produced at all. 

 

Figure 5.22 – Comparison of y-displacement between EbFVM and analytical solution. 

 

 

 

Fig. 5.23 compares the Von Mises equivalent stress of the solution obtained by the 

present simulation and the FVM solution for both thermo-elastic and thermo-elastoplastic case. 

As can be seen, fairly good agreement was achieved for both cases. However, for the thermo-
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elastoplastic case, the results concerning the plastic region (approximately, 0.4 < Y < 0.7) show 

considerable divergence. The FVM results appears to be considering material hardening, 

therefore, further investigations are needed to be performed in order to get final conclusions. 

 

Figure 5.23 – Comparison of the Von Mises equivalent stress between EbFVM and analytical 

solution. 

 

 

 

5.3.4   Welding of an aluminum plate 

 

This validation test case was performed by comparing the present work with the 

GMAW experiment by Masubuchi (1980). For the sake of simplicity, the numerical simulation 

did not include filler material. Fig. 5.24 shows both geometry (length = 1220 mm, width = 12.5 

mm, height = 152.4 mm) and the structured mesh used in the EbFVM analysis. The welding 

torch moves along the longitudinal upper edge. To discretize the domain, a structured mesh 

composed by 1400 hexahedrons, and 3030 nodes was used. Also, due to symmetry only one-

half of the geometry was used, and in addition, zero temperature gradient (Neumann conditions) 

was set at the symmetry plane for the thermal analysis and perpendicular constraints were set 

at the symmetry plane (Dirichlet boundary conditions) for the mechanical analysis. 
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Figure 5.24 – Welding plate. Geometry, boundary conditions and cross-section of the 3D 

element mesh. 

 

 

 

 

A time-step equal to 1.0 s was assumed, loadsteps were kept as 1.0 as well and both 

were kept constant in the whole simulation. For this simulation, disc-shaped heat source model 

was adopted (Eq. 3.43) with a = 6.0 mm. 

The material employed in the simulation is the 5052 H-32 aluminum alloy and its 

thermal and mechanical temperature-dependent properties are shown in Figs. 5.25 and 5.26, 

respectively. 
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Figure 5.25 – Thermal properties of 5052 H-32 aluminum alloy. 

 

 

 

Figure 5.26 – Mechanical properties of 5052 H-32 aluminum alloy. 

 

 

 

 

In the present simulation, all thermal properties were taken as function of the 

temperature, whereas for the mechanical properties the Young’s modulus assumed a mean value 

of 44.5 GPa, the thermal expansion coefficient assumed a mean value of 25.35e-6 °C-1, Poisson’s 

rate was equal to 0.33, and the Yield stress was taken as function of the temperature. Perfectly 

plastic conditions were assumed. Regarding phase changes, Solidus temperature is 880 K, 

liquidus temperature is 922 K and latent heat is 1.076e9 J/m3 whereas for heat losses we 

considered emissivity equal to 0.03 and heat transfer coefficient equal to 5.0 W/m2.K. Finally, 

Table 5.8 shows the welding parameters used in the simulation. 
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Table 5.8. Welding parameters. 

 

Parameter Value 

Current 260.0 A 

Voltage 23.0 V 

Efficiency 0.55 

Speed 7.34 mm/s 

 

Considering the geometry and the aforementioned parameters, the welding torch 

starts moving at point P1(0,0,152.4) when time t=0 s and moves along y-axis with a constant 

speed. Fig. 5.27 depicts the thermal cycles from thermocouples T1 (0, 635.4, 139.7), T2 (0, 

635.4, 114.3), and T3 (0, 635.4, 76.2).  

 

 

Figure 5.27 – Thermal cycles for three different thermocouples for both experimental and 

EbFVM analysis. 

 

 

 

The obtained results, for all three thermocouples, showed fairly agreement with the 

experiments by fitting it within engineering accuracy. The maximum relative error was 

observed in thermocouple T1, at the peak temperature, where it assumes a value of 11.7%.  

Fig. 5.28 compares the transient deflection numerically and experimentally. The 

transient deflection was measured at the lower midpoint of the plate P2(0, 610, 0). The results 



120 

 

match well and the maximum relative error (10.2%) was found at the lower part of the curve 

when the plate starts to curve downward. 

 

Figure 5.28 – Transient deflection at the plate’s lower midpoint for both experimental and 

EbFVM analysis. 

 

 

 

Fig. 5.29 compares the longitudinal residual stress numerically and experimentally. 

The longitudinal residual stress was measured at the plate’s middle section L1(0, 610, 0 – 152.4) 

after the plate has been cooled to the room temperature. The results did not fit the experiments 

well reaching the maximum relative error (59.0%) at the coolest region of the line’s middle 

section. However, as it can be seen, the numerical results are in agreement with literature 

showing tensile stresses closer to the weld line and compressive stresses far away from these 

region. In addition, the numerical curve fairly mimics the profile of the curve of the 

experiments. 
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Figure 5.29 – Longitudinal residual stress at the plate’s middle section for both experimental 

and EbFVM analysis. 
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RESULTS AND DISCUSSION 

 

 

 

 

 

This section presents the results and discussion of the thermomechanical 

simulations in cylindrical geometries. The first section is concerned with conventional weld 

analysis, where there is no fluid inside the pipe. Since there is a large amount of works with this 

kind of simulation, a better understanding of the results can be made through the comparison 

of present work with the ones found in the literature. The second section adds to the analysis 

the thermomechanical inputs of the fluid flow inside the pipe. Therefore, by considering the 

fluid flow in the analysis, we can represent in-service welding processes and obtain a better 

understanding of the process through parametric studies of the process. 

 

6.1   General aspects of welding in the cylindrical geometries 

 

For both the conventional and in-service welding analyses, girth welding 

simulations were performed in a full 3D model butt-welded pipe. The geometry, a portion of 

the mesh (near the weld line), and the welding torch direction are given in Fig. 6.1. The outer 

pipe diameter, wall thickness, and total length of the pipe are 114.3 mm, 8.0 mm, and 400 mm, 

respectively. It is important to stress that the results showing next in sections 6.1 and 6.2 are not 
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specific to any particular welding process. Therefore, the results presented in the former 

sections can just be compared from qualitative point of view. 

 

Figure 6.1 – Butt-welded pipe, a portion of the mesh near the weld line, and the welding torch 

direction.  

 

 
 

Due to symmetry only one-half of the geometry was simulated. In the thermal 

analysis, at all boundaries, except the symmetry surface (kept insulated), a combination of 

natural convection, forced convection (inside the pipe), and radiation losses were applied at the 

pipe walls. The mechanical boundary conditions (Dirichlet boundary conditions) used in the 

simulations are shownin Fig. 6.2. 

 

Figure 6.2 – Mechanical boundary conditions at pipe surfaces for the cylindrical geometries. 
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The domain was discretized using an unstructured mesh composed by 7,072 

hexahedrons, and 9,520 nodes. In addition, an increment time of 1.0 s (thermal simulation) and 

a loadstep of 1.0 (mechanical simulation) were adopted and kept constants in the whole 

simulation. For this simulation, a semi-ellipsoidal heat source model was adopted. 

The material employed in the simulation is SUS304 stainless steel and the thermal 

and mechanical properties function of the temperature are shown in Fig. 6.3 and 6.4, 

respectively. 

 

Figure 6.3 – SUS304 temperature-dependent thermal properties. 

 

 

Figure 6.4 – SUS304 temperature-dependent mechanical properties. 
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In the present simulations, all thermal properties were taken as function of the 

temperature, whereas for the mechanical properties due to convergence problems mean 

mechanical properties were used. Therefore, the following average mechanics properties were 

used:  Young’s modulus equal to 132 GPa, thermal expansion coefficient equal to 1.93e-5 °C-1, 

Poisson’s rate equal to 0.33, and the Yield stress equal to 129 MPa. Perfectly plastic conditions 

was assumed. This approach has been shown to give accurate results in welding simulations 

(Zhu and Chao, 2002). 

Considering the aforementioned geometry and parameters, the welding torch starts 

to move at time t=0 s at 0    (refer to Fig. 6.1) and moves around the whole pipe with a 

constant speed. The heat source was modelled by a semi-ellipsoid heat source. Welding and 

geometrical parameters are illustrated in Tables 6.1 and 6.2. 

 

Table 6.1. Welding and geometrical parameters. 

 

Parameter Value 

Current 111 A 

Voltage 34.05 V 

Efficiency 0.7 

Speed 3 mm/s 

T0 20 °C 

Room temperature 20 °C 

Heat transfer coefficient 15 W/m.K 
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b, a 6 mm, 6 mm 

c 6 mm 

 

Table 6.2. Thermophysical properties for thermal analysis. 

 

Parameter Value 

Latent heat 1.98.10^9 J/m³ 

Solidus temperature 1613 K 

Liquidus temperature 1663 K 

Emissivity 0.75 

 

In the present work, the main difference between the conventional welding analysis 

and the in-service welding analysis is related to the boundary conditions at the inner pipe 

surface. In the conventional welding analysis, heat flux through the inside pipe wall was 

composed by natural convection and thermal radiation and no pressure was applied at it. In the 

in-service welding simulations, we will introduce the forced convection instead of natural 

convection in order to represent the fully-developed turbulent fluid flow into the pipe and apply 

pressure at the inside pipe wall. 

A constant heat transfer coefficient along the inner pipe wall was used and this 

coefficient was evaluated by the empirical correlation of Dittus-Boelter (Incropera and DeWitt, 

1990). As the aforementioned coefficient has larger values for forced convection, the heat 

transfer coefficient is a key parameter for the in-service welding analysis. 

 

6.2   Conventional welding analysis 

 

Fig. 6.5 depicts the temperature distribution along the pipeline during the welding 

process. The welding torch starts to move at time t=0 s at 0    and moves around the whole 

pipe completing a cycle within approximately 120 s. As we can see, the maximum temperature 

achieved in the weld pool during this process is approximated 2400 °C, whereas the temperature 

close to the ends of pipe does not exceed the room temperature. Fig. 6.5d represents an instant 

when the pipeline is already on the cooling stage. 
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Figure 6.5 – Temperature field at simulation times (a) 10s, (b) 69 s, (c) 105 s, and (d) 182 s. 

 

      

(a)                                                                          (b) 

      

(c)                                                                         (d) 

 

Fig. 6.6 shows the temperature profile for a girth butt-welded pipe at the outer pipe 

surface and 90    at various moments of the welding simulation after the heat source origin 

has passed. From this result we can see the abrupt change in the temperature gradient near the 

weld which is caused by the highly concentrated heat source. This situation affect the stress 

distribution as we will see afterwards. 

 

Figure 6.6 – Outer surface temperature profile after heat source origin has passed at various 

moments. 
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Fig. 6.7 shows thermal cycles at six different locations. From this figure, one can 

concludes that due to the welding process parameters as well as material properties, the peak 

temperatures at all the corresponding locations (outside or inside at the symmetry plane) as well 

as the whole curve profile are identical, which indicates that the heat transfer is in a steady-state 

regime when the arc welding is moving around the pipe. The latter arguments are strictly related 

to the Peclet number. Therefore, remainder analyses will be performed at 90    only. 

 

Figure 6.7 – Thermal cycles at different locations. 

 

 

 

Fig. 6.8(a - b) shows the longitudinal residual stress and the circumferential residual 

stress along the Z-coordinate. Both of them were measured inside and outside the pipe at various 

positions along the circumferential direction (hoop coordinate) after the pipe has been cooled 

to the room temperature. As can be seen, at the weld center line (Z = 0) and its surrounding 
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(HAZ), both axial and hoop residual stresses show tensile stresses at the inner surface and 

compressive stresses at the outter wall. In the regions far away from the path described by the 

torch, nearly zero stresses occurred, since in these regions the thermal variation vanishes and 

the mechanical effects is solely due to the restrictions imposed at the pipe ends. It is also 

observed that there is a change from tensile to compressive stress and vice versa for all stress 

distribution. In addition, one may observe that in the welding region permanent plastic strains 

are developed as the yield strength (129 MPa) is surpassed. Finally, the general profile of both 

axial and hoop stress shows close analogy with previous works from literature (Brickstad and 

Josefson, 1998; Deng and Murakawa, 2006; Qureshi, 2008; Obeid et al., 2017). 

 

 

Figure 6.8 – Axial and hoop stresses at the outer and inner surfaces.  

 

  

(a)                                                                         (b) 

 

Fig. 6.9 shows the radial deflection measured at 90   , all over de Z-coordinate 

for both inside and outside pipe walls. As we can see, after the welding process has been 

completed, i.e, during the cooling stage, radial contractions take place inside and outside the 

pipe walls at position 90   .  

 

Figure 6.9 – Residual deflection distribution at 90   . 
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6.3   In-service welding analysis 

 

6.3.1   Varying parameter – fluid velocity 

 

In addition to the previous considerations concerning the conventional welding, the 

following ones is added to complete the requisites for the in-service welding analysis. Methane 

was simulated as the working fluid. Thermophysical properties are depicted in Table 6.3. 

 

Table 6.3. Thermophysical data of methane at 4 MPa. 
 

Parameter Value 

 [ kg/m3]  28.5 

c [kJ/kg.K]  2.623 

k.102 [W/m.K]  3.211 

 .106 [Pa.s]  12.6 

 

Source: Wang et al. (2013). 

 

The influence of fluid velocity in the thermal cycle for CH4 as working fluid is 

shown in Fig. 6.10(a-b) and Table 6.4. Fig. 6.10(a) shows that, for the outside surface, the fluid 

velocity has no significant influence in the peak temperature whereas at the inner surface as 

long as the fluid velocity increases the peak temperature decreases as shown in Fig. 6.10(b). 

For both inside and outside surfaces, Table 6.4 show that by increasing the fluid velocity the 

cooling time decreases leading to the increasing in cooling rates. This tendency indicates that 

the greater the fluid velocity the more heat is extracted from the inner pipe wall. 
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Figure 6.10 – Thermal cycles at different locations. 

 

  

(a)                                                                         (b) 

 

Table 6.4. Cooling time from 800 to 500°C. 
 

               8 5
Δt

 [s] 

Velocity [m/s] Outside              Inside 

1.0      25                     24 

10.0     11                     10 

20.0      8                       7 

 

Therefore, in-service welding analyses showed that by increasing the fluid velocity 

both peak temperatures and the time for cooling the working piece from 800° to 500° decreases. 

This effect is beneficial because  the burn-through effect is avoid. On the other hand, such effect 

can improve the chance of the appearance of hydrogen-induced cold cracking by originating 

hard microstructure (martensite) at the pipe wall due to the faster cooling rates. Therefore, 

proper welding procedures should be applied in order to balance these aspects. 

Fig. 6.11(a - d) shows the longitudinal residual stress and the circumferential 

residual stress along the Z-coordinate. Both of them were measured inside and outside the pipe 

at 90    after the pipe has been cooled to the room temperature. As it can be seen, there is no 

significant difference between the results for velocities of 10 m/s and 20 m/s. Also, at the weld 

center line and its surrounding (HAZ), the axial residual stresses show tensile stresses at the 

inside surface and compressive stresses at the outside wall for velocities of 10 m/s and 20 m/s. 

In the regions far away from the path described by the torch, smaller stresses occurred, since in 

these regions the thermal variation reduces and the mechanical effects is solely due to the 

restrictions imposed at the pipe end and the internal pressure of the fluid flow. In addition, one 
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may observe that the smaller the fluid velocity, the greater the stresses. Therefore, in in-service 

welding processes in order to reduce the chances of appearance of cold cracking (higher 

stresses), the velocity of the fluid needs to be kept as high as possible and kept in mind the other 

factors that will be affected by this procedure. 

 

Figure 6.11 – Axial and hoop stress at the outer and inner surfaces at 90   . 

 

  

(a)                                                                         (b) 

 

  

(c)                                                                         (d) 

 

Fig. 6.12 shows the radial deflection measured at 90   , all over de Z-coordinate 

for the inner and outter pipe walls. As we can see, after the welding process has been completed, 

i.e, during the cooling stage, radial expansions take place inside and outside the pipe walls at 

position 90   . It is noticeable that no significant difference in the results appeared by 

changing the fluid velocity. 

  



133 

 

 

Figure 6.12 – Residual deflection distribution at 90   . 

 

 

 

6.3.2   Varying parameter – fluid pressure 

 

In addition to the previous considerations concerning the conventional welding, the 

following ones is added to complete the requisites for the in-service welding analysis. Methane 

was simulated as the working fluid at 10 m/s. Thermophysical properties are depicted in Table 

6.3. 

 

Table 6.5. Thermophysical data of methane at different pressures. 
 

                                CH4 

Parameter 2.0 MPa                 6.0 MPa                  8.0 MPa 

 [ kg/m3] 13.70                        44.10                        60.8 

c [kJ/kg.K] 2.345                        2.674                        2.867 

k.102 [W/m.K] 3.46                          3.84                          4.10 

 .106 [Pa.s] 11.20                       12.16                         12.85 

 

Source: Huang et al. (2017). 

 

 

The influence of fluid pressure in the thermal cycle for CH4 as working fluid is 

shown in Fig. 6.13(a-b) and Table 6.6. Fig. 6.10(a) shows that, for the outside surface, at 90  

, the fluid pressure has no significant influence in the peak temperature whereas at the inner 

surface as long as the fluid pressure increases the peak temperature decreases as shown in Fig. 
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6.13(b). For both inside and outside surfaces, at 90   , Table 6.6 shows that by increasing the 

fluid pressure the cooling time decreases leading to the increasing in cooling rates. This 

tendency indicates that the greater the fluid pressure the more heat is extracted from the inner 

pipe wall. 

 

Figure 6.13 – Thermal cycles at different locations. 

 

  

 

Table 6.6. Cooling time from 800 to 500°C. 
 

               8 5
Δt

  [s] 

Pressure [MPa] Outside                 Inside 

2.0      15                        13 

6.0      9                          7 

8.0      7                          6 

 

Therefore, in-service welding analyses showed that by increasing the fluid pressure 

both peak temperatures and the time for cooling the working piece from 800° to 500° decreases. 

On one hand, this is beneficial to avoid burn-through. However, the former effect improves the 

chance of the appearance of hydrogen-induced cold cracking by originating hard microstructure 

(martensite) at pipe wall due to the faster cooling rates. Therefore, proper welding procedures 

should be applied in order to balance these aspects. 

Fig. 6.14(a - d) shows the longitudinal residual stress and the circumferential 

residual stress along the Z-coordinate. Both of them were measured at inner and outter wall at 

90    after the pipe has been cooled to the room temperature. As it can be seen, at the weld 

center line and its surrounding (HAZ), the axial residual stresses shows tensile stresses at the 

inside surface and compressive stresses at the outside wall for pressure of 2.0 MPa while hoop 

stress presents only compressive stresses for both inside and outside surfaces at the weld center 
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line and HAZ. In addition, one may observe that the greater the fluid pressure the greater the 

stresses. Therefore, in in-service welding processes in order to reduce the chances of appearance 

of cold cracking, the pressure of the fluid needs to be kept as lower as possible and kept in mind 

the other factors that will be affected by this procedure. 

 

Figure 6.14 – Axial and hoop stress at the outer and inner surfaces at 90   . 

 

  

(a)                                                                         (b) 

 

  

(c)                                                                         (d) 

 

Fig. 6.15 shows the radial deflection measured at 90   , all over de Z-coordinate 

for both inside and outside pipe walls. As we can see, after the welding process has been 

completed, i.e, during the cooling stage, radial expansions take place inside and outside the pipe 

walls at position 90   . As we expected, as long as the internal pressure is augmented the 

radial shrinkage also increases and shows greater values at the outside surface. 
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Figure 6.15 – Residual deflection distribution at 90   . 

 

 

6.3.3   Varying parameter – heat input 

 

In addition to the previous considerations concerning the conventional welding, the 

following ones is added to complete the requisites for the in-service welding analysis. Methane 

was simulated as the working fluid at 10 m/s. Thermophysical properties are the same used in 

section 6.3.1 

The influence of the heat input in the thermal cycle for CH4 as working fluid is 

shown in Fig. 6.16(a-b) and Table 6.7. Fig. 6.10(a-b) shows that, as long as the heat input 

increases, the peak temperature also increases in both inner and outer surfaces. For both inside 

and outside, at 90   , surfaces, Table 6.7 shows that by increasing the heat input the cooling 

time also increases leading to the decreasing in cooling rates. 

 

Figure 6.16 – Thermal cycles at different locations. 
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Table 6.7. Cooling time from 800 to 500°C. 
 

                8 5
Δt

  [s] 

Heat input [W] Outside                   Inside 

2645      11                          10 

2835      12                          11 

3402      13                          12 

 

Therefore, in-service welding analyses showed that by increasing the heat input 

both peak temperatures and the time for cooling the working piece from 800° to 500° increases. 

On one hand, the slower cooling rates helps to avoid hydrogen-induced cold cracking at pipe 

wall, on the other hand, this may cause the burn-through effect. Therefore, proper welding 

procedures should be applied in order to balance these aspects. 

Fig. 6.17(a - d) shows the longitudinal residual stress and the circumferential 

residual stress along the Z-coordinate. Both of them were measured inside and outside the pipe 

at 90    after the pipe has been cooled to the room temperature. As it can be seen, at the weld 

center line and its surrounding (HAZ), the axial residual stresses shows tensile stresses at the 

inside surface only for the case where the heat input was 2645 W; the other case for both inside 

and outside surfaces showed compressive stresses. The hoop stresses present only compressive 

stresses for both inside and outside surfaces at the weld center line and HAZ. In addition, one 

may observe that the greater the heat input the greater the stresses. Therefore, in in-service 

welding processes in order to reduce the chances of appearance of cold cracking, the heat input 

needs to be kept as lower as possible and kept in mind the other factors that will be affected by 

this procedure. 

 

Figure 6.17 – Axial and hoop stress at the outer and inner surfaces at 90   . 
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(a)                                                                         (b) 

 

  

(c)                                                                         (d) 

 

Fig. 6.18 shows the radial deflection measured at 90   , all over de Z-coordinate 

for both inside and outside pipe walls. As we can see, after the welding process has been 

completed, i.e, during the cooling stage, radial expansions take place inside and outside the pipe 

walls at position 90    in all cases except when the heat input was 3402 W at the inside wall 

where radial contractions appeared. 

 

Figure 6.18 – Residual deflection distribution at 90   . 
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CHAPTER 

7 

 

 

 

 

 

CONCLUSIONS AND FUTURE WORK 

 

 

 

 

 

In the present work, an Element based Finite-Volume Method (EbFVM) simulator 

in conjunction with unstructured grids has been developed to give a better understanding of the 

in-service welding process in order to enhance both the economic benefits, safe welding 

procedures, and anticipating some risks to the crew and for the process itself. The partial 

differential equations arising from the physical model (thermal energy and momentum 

equations) in conjunction with proper boundary conditions and different moving heat source 

models were discretized by the EbFVM. 

The thermo-elastoplastic numerical approach was verified and validated against 

analytical, numerical, and experimental studies. Also, in general, most of the results were in a 

good agreements with the works from the literature. From these analyses, it is concluded that 

the EbFVM simulator can be applied for a whole range of welding simulations and therefore, 

the addition of internal fluid flow by simulating the in-service welding process it was also 

possible. 

For in-service welding process, it was investigated the influence of the fluid 

velocity, internal fluid pressure, and heat input to the pipeline. The fluid flow was simulated 

through the use of empirical correlations. From the analyses of thermal cycles, thermal fields, 

axial and hoop stress distribution, and radial shrinkage, proper welding procedures were 
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proposed in order to avoid both the burn-through effect and the hydrogen-induced cold cracking 

at the pipe walls. For instance, through the evaluation of the 3D thermal field and the thermal 

cycles provided by the electric arc welding to the pipeline, it was possible to analyze the regions 

with higher risk of burn-through effect and also anticipate the risk of damage of the structure 

caused by induced thermal stresses and distortions.  

Hence, the EbFVM simulator provides an efficient and reliable way to promote the 

study of a wide range of welding simulations, including in-service welding process. This is 

possible due to implementation of natural and forced convective and radiative boundary 

conditions, addition of filler material, different heat sources, stress-strain constitutive 

relationships as well as different geometry and meshes. Finally, the simulator also has an 

important implementation of large deformation theory concerning the mechanical analysis. This 

is a first step in the large deformation theory in our resource group and it will be crucial for 

analyzing any type of welding condition in the future. 

 

7.1   Future work 

 

In order to perform a more detailed study it is recommended the following analysis 

for future researches with the developed simulator: 

 Perform an experimental work in order to validate the fluid flow and 

thermomechanical effects for the in-service welding of pipelines; 

 Combine CFD techniques with the developed simulator to compare with the 

results achieved in the present work which applied empirical correlations to 

describe the internal fluid flow; 

 Test different models of plasticity and viscoplasticity as well as the 

inclusion of the effects of metallurgical transformation on the welded 

workpiece; 

 Perform multipass welding analysis; 

 Test other kinds of heat sources such as the conical heat source to simulate 

Welding Laser Beam; 

 Apply mechanical large deformation analysis to welding processes. 

 Perform simulations with others working fluids and different states of 

matter. 
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APPENDIX 

A 

 

 

 

 

 

LARGE DEFORMATION ANALYSIS 

 

 

 

 

 

This appendix presents numerical verification of the MPE_EbFVM (multi-physics 

environment) developed code concerning large deformation cases. We have performed some 

verification test cases for both elastic and elastoplastic mechanical problems. 

 

A.1   Unit cube subjected to simple tension 

 

This section presents a verification test case involving just elastic mechanical 

effects provided by a simple tension uniformly distributed in the top side of the unit cube. The 

geometry of the problem, and the applied load are represented in Fig. A.1. The analysis was 

carried out for both Jaumann rate of the Cauchy stress and Jaumann rate of the Kirchhoff stress 

and compared to analytical solutions, see Crisfield (1991) and Pinsky et al. (1983), respectively. 

For discretize the domain, a structured mesh composed by 1 hexahedron, and 8 nodes was used. 

For the Jaumann rate of the Cauchy stress analysis, perpendicular constraints were set at 

symmetry planes (Dirichlet boundary conditions at faces 1, 2, and 3). 

 

Figure A.1 – Unit cube subjected to applied load. 
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Table A.1 presents the material properties and applied load used in the simulation. 

 
Table A.1. Material properties, and applied load. 

 

Parameter Value 

Applied pressure 68 GPa                      

Young’s modulus  200.0 GPa                  

Poisson’s ratio  0.30                            

 

Source: Maneeratana (2000). 

 

Fig. A.2 shows the comparison between large deformation theory and small 

deformation theory with analytical solution by using Jaumann rate of the Cauchy stress. The 

load step used was 0.01. As we can see, excellent agreement was achieved by comparing the 

numerical and analytical results concerning the large deformation analysis. It is important to 

see that for small deformations the approaches coincide. 

 

Figure A.2 – Comparison between large deformation theory and small deformation theory 

with analytical solution by using Jaumann rate of the Cauchy stress. 
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For the Jaumann rate of the Kirchhof stress analysis, Young’s modulus is 200 GPa 

and Poisson’s rate is 0.3. Plane strain approach is considered by applying the following 

boundary conditions presented at Table A.2 in the unit cube presented in Fig. A.1. 

 

Table A.2. Boundary conditions. 
 

Wall Restricted at direction 

Left Free surface 

Right x 

Top Free surface 

Bottom y 

Back z 

Front z 

 

Fig. A.3 shows the comparison between large deformation theory and small 

deformation theory with analytical solution by using Jaumann rate of the Cauchy stress. The 

load step used was 0.001. As we can see, excellent agreement was achieved by comparing the 

numerical and analytical results concerning the large deformation analysis. It is important to 

see that for small deformations the approaches coincide where the stretch ratio tends to 1. 

 

Figure A.3 – Comparison between large deformation theory and small deformation theory 

with analytical solution by using the Jaumann rate of the Kirchhoff stress rate 
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A.2   Unit cube subjected to simple shear 

 

This section presents a verification test case involving just elastic mechanical 

effects provided by a simple shear tension uniformly distributed in the top side of the unit cube. 

The geometry of the problem at initial and final configuration, and the applied shear load are 

represented in Fig. A.4. The analysis was carried out for both Jaumann rate of the Cauchy stress 

and Jaumann rate of the Kirchhoff stress and compared to analytical solution, see Pinsky et al. 

(1983), respectively. For discretize the domain, a structured mesh composed by 1 hexahedron, 

and 8 nodes was used.  

 

Figure A.4 – Unit cube subjected to simple shear loads 

 

 

 

 

 

 

The material properties and the boundary conditions for the simple shear test case 

are shown in Table A.3. 

 

Table A.3. Material properties and boundary conditions for the simple shear test case. 
 

Parameter Value 

B.C at top surface v w 0                   

B.C at bottom surface   u v w 0               

Young’s modulus  200.0 GPa                  

Poisson’s ratio  0.30                            
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Since for the simple shear problem one has isochoric deformation, that is J = 1, Fig. 

A.5 shows the comparison between EbFVM and analytical solution by using the Jaumann rate 

of both Cauchy and Kirchhoff stress rate. The load step used was 0.001. As we can see, excellent 

agreement was achieved by comparing the numerical and analytical results. 

 

Figure A.5 – Comparison between EbFVM and analytical solution by using the Jaumann rate 

of the Cauchy/Kirchhoff stress rate 

 

 

 

A.3   Tensile test of SAE 1045 

 

The present validation test case was performed in a sheet specimen of SAE 1045 

steel subjected to tensile test. The present work is compared with the experiments by Cabezas 

and Celentano (2004). The geometry of the problem, and the 3D element mesh are shown in 

Fig. A.6. For discretize the domain, a structured mesh composed by 3150 hexahedron, and 3968 

nodes was used. A localized refinement was made where the structure is expected to failure. 

Due to symmetry, only one-eighth of the geometry was used, and in addition, perpendicular 

constraints were set at symmetry planes (Dirichlet boundary conditions). 

 

Figure A.6 – Geometry and 3D mesh of the sheet specimen. Load step (0.01) 
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The material properties for the tensile test are shown in Table A.4. 

 

Table A.4. Material properties the tensile test. 
 

Parameter Value 

Poisson’s ratio  0.30                            

Young’s modulus  222000 MPa                  

Yield strength  450 MPa                  

Hardening modulus  8000 MPa                  

 

Fig. A.7 plotted the engineering stress-strain curve. From the results, one can see 

good agreement between numerical predictions and experiments by Cabezas and Celentano 

(2004). The maximum relative error is 4.9% which is observed at the transition from elastic to 

plastic behavior. The error is within engineering accuracy. 

 

Figure A.7 – Engineering stress-strain curve. 
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APPENDIX 

B 

 

 

 

 

 

ELEMENTS AND SHAPE FUNCTIONS FOR 

PRISMS AND TETHAHEDRONS 

 

 

 

 

 

This appendix shows the elements and their respective shape functions of both tetrahedral and 

prismatic (with triangular base) elements. Fig. B.1 shows tetrahedral and prismatic elements as 

well as all their sub-control volumes. 

 

Fig. B.1. 3D elements and their respective sub-control volumes. 
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Source: Marcondes et al. (2013). 

 

Explicitly, the shape functions as function of the computational plane for tetrahedral 

and prismatic elements are given by Eqs. B.1-B.2, respectively. 

 

 

 

 

 

1

2

3

4

, , 1

, ,

, ,

, ,

N s t p s t p

N s t p s

N s t p t

N s t p p

   







   

 

  

 

 

(B.1) 

 

1

2

3

4

5

6

( , , ) (1 )(1 )

( , , ) (1 )

( , , ) (1 )

( , , ) (1 )

( , , )

( , , )

N s t p s t p

N s t p s p

N s t p t p

N s t p p s t

N s t p sp

N s t p tp

   

 

 

  





 

(B.2) 

 

where s, t and p denote the local axes in the computational plane. 

 

 

 

 


