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a b s t r a c t

Two generalizations of the Lambert W function were recently discussed in the literature,
the Lambert–Tsallis Wq and the Lambert–Kaniadakis Wκ functions. Both of them have
been used in interesting problems in physics and engineering. In this direction, the
present work introduces a third generalization, the new function Rq,Q (z), solution of
the equation Rq,Q (z) ×Q expq(Rq,Q (z)) = z. It is shown this new function can be used
to construct new disentropy as well it is used to model the q-diode, a hypothetical
electronic device whose electrical current depends q-exponentially on the voltage
between its terminals. Analytical and numerical results for the new disentropy and
q-diode are provided.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The Lambert W function is an important multivalued function that finds applications in different areas of mathematics,
computer Science and physics [1–6]. The Lambert W function is defined as the solution of the equation

W (z) eW (z) = z. (1)

In the interval −1/e ≤ x ≤ 0 there exist two real values of W (z). The branch for which W (x) ≥ −1 is the principal
branch named W0(z) while the branch satisfying W (z) ≤ −1 is named W−1(z). For x ≥ 0 only W0(z) is real and for x <
−1/e there are not real solutions. The point (zb = −1/e, W (zb) = −1) is the branch point where the solutions W0 and
W−1 have the same value.

On the other hand, the q-exponential function proposed by Tsallis [7] is given by

eqz =

⎧⎨⎩ ez q = 1
[1 + (1 − q) z]1/(1−q) q ̸= 1 ∩ 1 + (1 − q) z ≥ 0

0 q ̸= 1 ∩ 1 + (1 − q) z < 0
(2)

Using Tsallis q-exponential (2) in the Lambert equation (1), one has the Lambert–Tsallis equation [8]

Wq (z) eqWq(z) = z (3)

whose solutions are the Lambert–Tsallis Wq functions. Using the definition of expq given in Eq. (2) in Eq. (3), the Wq
function can be found solving the equation [8]

x(r + x)+r
= r rz, (4)
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Fig. 1. Wq=3/2 versus z.

where x = W (r−1)
r

(z), r = 1/(1 − q) and (x)+ = max{x,0}. When q = 1, one has e1(z) = ez and, consequently, W1(z) =

W (z). For example, for q = {2, 3, 3/2, 1/2} one has the following Lambert–Tsallis Wq upper branches (upper index ‘+’)

W2(z) =
z

z + 1
, z > −1, (5)

W3(z) = z
√
z2 + 1 − z2 z ≥ 0. (6)
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z
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W+

1/2(z) =
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27
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−
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729 +

8
27

, z ≥ −0.29629, (8)

Fig. 1 shows the plot of Wq=3/2 (upper ‘+’ and lower ‘–’ branches) versus z.
More details about the Lambert–Tsallis function and its applications can be found in [8–15].
In order to handle with the expq function, one has to use the q-operations. The important ones used in this work are:

a ×q b = max
{[

a(1−q)
+ b(1−q)

− 1
]1/(1−q)

, 0
}

≡
[
a(1−q)

+ b(1−q)
− 1

]
+

1/(1−q)
(9)

(
exq
)α

= eαx1−(1−q)/α. (10)

2. The Rq,Q function

In this section a new function is introduced. It is named Rq,Q function and it is the solution of the following equation

Rq,Q (z)×Q eqRq,Q (z) = z. (11)

Eq. (11) is the Lambert–Tsallis equation using the q-product operation. Obviously, Rq,Q=1(z) = Wq(z). Using (2) and (9) in
(11) one gets

R1−Q
q,Q (z)+

[
1 + (1 − q) Rq,Q (z)

] 1−Q
1−q −

(
z1−Q

+ 1
)

= 0. (12)

The general solutions of (12) will be published elsewhere. Here, the important case for introduction of a new disentropy
and the q-diode modelling is Q = q. In this case Eq. (12) is reduced to

R1−q
q,q (z)+ (1 − q) Rq,q (z)− z1−q

= 0. (13)
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Fig. 2. Rq,q(z) versus z for q = 1/2 and q = 2.

For example, for q = 2 and q = 1/2 one has

R2,2 (z) = −
1
2z

±
1
2z

√
1 + 4z2, (14)

R1/2,1/2 (z) = 2
(
z1/2 + 1

)
− 2

√
2z1/2 + 1. (15)

Fig. 2 shows the plot of the parts of the functions R2,2 and R1/2,1/2 that obey Eq. (11).

3. Disentropy

The disentropy based on the Lambert and Lambert–Tsallis functions and its applications in quantum and classical
information theory, image processing and black hole, among others, have been discussed in [8–14]. Taking the logq in
both sides of Eq. (11) with q = Q , one gets

logq (z) = Rq,q (z)+ logq
[
Rq,q (z)

]
. (16)

Hence, Tsallis q-entropy can be written as

Sq = −

∑
i

pqi logq (pi) = −

∑
i

pqi Rq,q (pi)−

∑
i

pqi logq
[
Rq,q (pi)

]
. (17)

The term

Dq,q =

∑
i

pqi Rq,q (pi) (18)

is a disentropy. It can be shown it is maximal for delta distribution and minimal for a uniform distribution. Its quantum
version is

Dq,q (ρ) =

∑
i

λ
q
i Rq,q (λi) (19)

where λi is the ith eigenvalue of the density matrix ρ. The disentropy based on the Rq,q function can be used in the same
problems that the disentropy based on the Lambert–Tsallis function is used. For example, it can be used to measure the
disentanglement of bipartite of qubit states [8]. Fig. 3 shows the behaviour of Dq,q for the distribution {p,1-p} using the
values q = 0.5, q = 1 and q = 2.



4 R.V. Ramos / Physica A 556 (2020) 124851

Fig. 3. Disentropy of the distribution {p, 1-p} versus p for q ∈ [0.5, 1, 2].

In [10] the continuous disentropy (based on the Lambert–Tsallis Wq=2 function) of the Wigner function was used to
measure the quantumness of a physical state,

Dq =

∫
y

∫
x
wq (x, y)Wq (w (x, y)) dxdy ⇒ D2 =

∫
y

∫
x

w3 (x, y)
1 + w (x, y)

dxdy, (20)

where w(x, y) is the Wigner function of the physical state considered. Although Eq. (20) can detect quantumness, it is
not good for measuring entanglement or disentanglement since it can return a negative value. Aiming to overcome this
problem, a new formula was proposed, the disentropy based on the Rényi entropy [13]:

Dq,α = Wq

(∫∫
x,y
wα (x, y) dxdy

)
. (21)

Although any value of q can be used in Eq. (21), only α = 2 (or even numbers) is used. In this case the information
contained in the signal of the Wigner function is lost. In order to have a disentanglement measure that takes into account
the signal of the Wigner function, the following continuous disentropy is here proposed

Dq,q =

∫
y

∫
x
wq (x, y) Rq,q (w (x, y)) dxdy ⇒ D2,2 =

∫
y

∫
x

w (x, y)
2

(√
1 + 4w2 (x, y)− 1

)
dxdy. (22)

One may note that R2,2 is always positive. In order to test Eq. (22), the bipartite quantum state described in [16] is
considered:

|ψ⟩ =
(1 + ad)√

(1 + ad)2 + a2d
|00⟩ −

1
√
2

a
√
d√

(1 + ad)2 + a2d
|02⟩ −

1
√
2

a
√
d√

(1 + ad)2 + a2d
|20⟩, (23)

where a is an interpolation parameter and D = 2d is the number of dimensions of the bipartite system. The eigenvalues
of the partial trace of (23) are

λ± =
1
2

⎧⎨⎩1 ±

[
1 −

(
a2d

(1 + ad)2 + a2d

)2
] 1

2
⎫⎬⎭ . (24)

Thus, the disentanglement of the bipartite state (23) is

Dq,q (ψ) = λ
q
+Rq,q (λ+)+ λ

q
−Rq,q (λ−) . (25)

On the other hand, the Wigner function of the state (23) is

w (r, k) = π−De−r2−k2 [1 + a
(
γ−r2 − γ+k2 + γ

(
r2 + k2

)
− 4γ r2k2 sin2 (θ)

)]
(26)
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Fig. 4. Disentanglement of the state (23) using D2,2(λ+ , λ−) (Eq. (25)) and D2,2(w(r, k)) (Eq. (22)) versus a, for D = 4 and θ = 5π /12. Both disentropies
were normalized.

Fig. 5. Electrical circuit with a resistor and a diode.

where

γ± = 2
1 + aD/2 ± a

(1 + aD/2)2 + a2D/2
(27)

γ =
a

(1 + aD/2)2 + a2D/2
. (28)

The bipartite disentanglement of the state (23) versus a measured by Eqs. (25) and (22) and (26)–(28), for D = 4 and
θ = 5π /12, can be seen in Fig. 4.

As expected, the minimal disentanglement (maximal entangled state) occurs in a = −2/D = −0.5 and the maximal
disentanglement (separable state) occurs in a = 0.

4. The q-diode

For a semiconductor diode that obeys the simplified Shockley’s model, the relation between current and voltage is
given by

I = Ise
VD
ηVT , (29)

where Is is the saturation current of the diode, VD is the voltage between the diode terminals, VT = kT /qe (qe — electron
charge, k — Boltzman constant, T — temperature) and, finally, η is the diode ideality factor (1 < η < 2 for silicon diodes).
Fig. 5 shows the very basic electrical circuit composed by a power supply, a resistor and the diode.

The current that flows through the diode in the circuit shown in Fig. 5 is given by

I = Ise
V−RI
ηVT . (30)
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Using the Lambert W function in (30) one gets the following relation between electrical current (I) and power supply
voltage (V )

I =
ηVT

R
W
(

IsR
ηVT

e
V
ηVT

)
. (31)

More details about the applications of the Lambert function in the analytical solution of some electronic circuits can
be found in [17–20].

The q-diode, by its turn, is defined as the hypothetical device whose relation between current and voltage between its
terminals (VD) is given by

I = Ise
VD
ηVT
q . (32)

Using the q-diode in the circuit shown in Fig. 5, the value of the electric current flowing through the diode is given by

I = Ise
V−IR
ηVT
q . (33)

Using the q-operations in (33) one gets

I = Ise
V−IR
ηVT
q ⇒

IR/ηVT

IsR/ηVT
= e

V
ηVT
q ÷q e

IR
ηVT
q ⇒

IR/ηVT

IsR/ηVT
×q e

IR
ηVT
q = e

V
ηVT
q . (34)

Now, using the function Rq,q in (34), after some algebra one gets the following solutions for the electrical current I, for
q = 2 and q = 0.5,

I2 (V ) =
ηVT

R

⎡⎣−
1

2e
V
ηVT
q

+
1
2

√(
e

V
ηVT
q

)−2

+
4ηVT

IsR

⎤⎦ , (35)

I1/2 (V ) =
ηVT

R

⎡⎣2

((
e

V
ηVT
q

)1/2

+
ηVT

IsR

)
− 2

√
2
ηVT

IsR

(
e

V
ηVT
q

)1/2

+

(
ηVT

IsR

)2
⎤⎦ . (36)

One may note that (35) and (36) are, respectively, equal to (14) and (15) when (ηVT/IsR) = 1. The q-diode that follows
the non-simplified Shockley’s model has the following current × voltage relation

I = Is

(
e

VD
ηVT
q − 1

)
. (37)

Using Eq. (37) in the circuit shown in Fig. 5, one gets for the electric current the equation

I = Is

(
e

V−RI
ηVT
q − 1

)
. (38)

After some algebra one easily gets

IsR (i + 1) /ηVT

IsR/ηVT
×q e

IsR(i+1)
ηVT

q = e
V+IsR
ηVT

q , (39)

where i = I/Is. The solutions for q = 2 and q = 1/2 are, respectively,

I2 (V ) =
ηVT

IsR

⎡⎣−
1

2e
V+IsR
ηVT

q

+
1
2

√(
e

V+IsR
ηVT

q

)−2

+
4ηVT

IsR

⎤⎦− 1, (40)

I1/2 (z) =
ηVT

IsR

⎡⎣2

((
e

V+IsR
ηVT

q

)1/2

+
ηVT

IsR

)
− 2

√
2
ηVT

IsR

(
e

V+IsR
ηVT

q

)1/2

+

(
ηVT

IsR

)2
⎤⎦− 1. (41)

In Fig. 6 one can see the solutions of Eq. (39) for the cases q = 1, q = 0.75 and q = 1/2. The smaller the value of q the
slower is the growth of the current. The q-diode with q > 1 operates at very low voltage since expq(x) goes too fast to
zero. For example, for q = 1.25, one must have V/(ηVT ) < 4 (V < ∼0.1 mV).

Compared to the classical diode, the q-diode with q > 1 has to operate with lower voltage while the q-diode with
q < 1 requires a larger voltage. Since, the q-diode shows the nonlinear behaviour (between I and V ) it can be used in
telecommunications equipment working as a modulator or mixer, for example. Furthermore, like the ordinary diode, the
current flowing through the q-diode depends on the bias applied (forward or reverse). Thus, the q-diode can also be used



R.V. Ramos / Physica A 556 (2020) 124851 7

Fig. 6. q-Diode current versus voltage curve for q ∈ [0.5, 0.75, 1].

Fig. 7. Input and output of a half-wave rectifier using a q-Diode with q = 0.75. The input signal is Vin = 800 sin(ωt).

in power electronic circuits like half-wave and full-wave rectifier circuits, as well in clipping circuits. In Fig. 7 one can see
the q-diode (q = 0.75) working correctly as half-wave rectifier. The input signal is Vin = 800 sin(ωt) (dashed line) and
the output signal is V (solid line). The voltage between the q-diode terminals is ∼64V (one hundred times larger than the
voltage between the terminals of a silicon diode).

In Fig. 8 the q-diode (q = 0.75) is also working in a half-wave rectifier circuit. However, the input signal is Vin =

100sin(ωt) (dashed line). In this case, the input voltage is not large enough to make the q-diode to work in the correct
operation point and, hence, the output signal, V (solid line), is not correctly rectified.
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Fig. 8. Input and output of a half-wave rectifier using a q-Diode with q = 0.75. The input signal is Vin = 100 sin(ωt). The output voltage is deformed
because the q-diode is not working in the correct operation point.

5. Conclusions

Initially, the present work introduced the solutions of the equation Rq,Q (z) ×Q expq(Rq,Q (z)) = z and showed two
applications of the function Rq,Q (z): (1) It was used to construct a new disentropy formula. This new disentropy can be
applied in a large variety of problems in physics and engineering. A full comparison between the disentropy based on
the Rq,q function and the disentropy based on the Lambert–Tsallis Wq function is a question for future investigation. (2)
The Rq,q function was used to model the q-diode. Basically, different values of q results in q-diodes operating in different
voltages. q-Diodes with q > 1 (q < 1) are devices that work with small (large) signals. Which values of q will result in a
q-diode that can be physically realized is still a problem to be investigated.
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