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We propose a scheme for implementing a probabilistic controlled-NOT (CNOT) gate for coherent state
qubits using only linear optics and a particular four-mode state. The proposed optical setup works, as
a CNOT gate, near-faithful when |a|2 > 25 and independent of the input state. The key element for
realizing the proposed CNOT scheme is the entangled four-mode state.
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1. Introduction

After Knill et al. [1] showed that linear optics alone would suf-
fice to implement efficient quantum computing, quantum optics,
that had proved to be a fertile field for experimental tests of quan-
tum science, brought a great perspective to quantum information
processing (QIP).

In [1] efficient quantum computation is achieved using single
photon sources and single photon detectors, but the alternate idea
of encoding quantum information on continuous variables [2] has
lead to a number of proposals for realizing multi-photon [3-7] and
hybrid (coherent states and single photon) [8] quantum computa-
tions. The hybrid scheme proposed in [8] is, actually, more efficient
than pure linear optical and pure coherent state quantum comput-
ers.

The main drawback of proposals [3-5] is that “hard”, non-linear
interactions are required in-line of the computation, and these
would be difficult to implement in practice.

The elegant scheme proposed in [6] requires only relatively
simple linear optical networks and photon counting, but, unfor-
tunately, the amplitude of the required superpositions of coherent
states is prohibitively large. On the other hand, the scheme pro-
posed in [7], that was built on the idea found in [6], requires only
“easy”, linear in-line interactions, since all the hard interactions
are only required for off-line production of resource states, and is
based on much smaller superposition states.

The universal set of gates presented in [7] is composed by
a phase rotation gate, a superposition gate (that implements a
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rotation of 7 /2 about X) and a two-qubit controlled phase gate.
If a CNOT gate using coherent states is proposed, the universal set
of gates for [7] can be simplified, since any quantum circuit can be
built using single qubit gates and CNOTs. Our goal here is to pro-
pose a scheme for implementing probabilistically a CNOT gate for
coherent state encoded qubits using an entangled four-mode state,
beam splitters and photon number counters.

Several proposals and experimental implementations of a
CNOT gate for single photon qubits have been done in the last
years [9,10]. Pittman et al. describe in [9] a quantum parity check
and a quantum encoder and show how they may be combined to
implement a CNOT gate using polarizing beam splitters and po-
larization single photon qubits. The experimental demonstration of
this gate can be found in [11]. It is described in [12] the operation
and tolerances of a nondeterministic, coincidence basis, quantum
CNOT gate for photonic qubits. The gate is constructed using lin-
ear optical elements and requires only a two-photon source for its
demonstration. Its success probability is 1/9.

An unambiguous experimental demonstration and comprehen-
sive characterization of quantum CNOT operation in an optical sys-
tem using four entangled Bell states as a function of only the input
qubits’ logical values, for a single operating condition of the gate,
is found in [13]. The gate is probabilistic, but with the addition of
linear optical quantum non-demolition measurements, it is equiv-
alent to the CNOT gate required for scalable all-optical quantum
computation.

In [14] it is reported an experimental demonstration of telepor-
tation of a CNOT gate assisted with linear optical manipulations,
photon entanglement produced from parametric down-conversion,
and postselection from the coincidence measurements. The average
fidelity for the teleported gate is 0.84. Zhao et al. detail in [10] a
proof-of-principle experimental demonstration of a nondestructive
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Fig. 1. Optical setup for performing the CNOT gate for coherent state qubits proba-
bilistically.

CNOT gate for two independent photons using only linear optical
elements in conjunction with single-photon sources and condi-
tional dynamics.

All the examples given above are probabilistic gates. A deter-
ministic CNOT is still not available due to the need of non-linear
operation [15,16]. Here we present a proposal for implementing
probabilistically a CNOT gate inspired by the scheme presented
in [9].

This Letter is outlined as follows: in Section 2 we present
the optical setup for a probabilistic CNOT gate for coherent state
encoded qubits; in Section 3 brings the analysis of success and
fidelity of the proposed CNOT gate; and, at last, we make our con-
cluding remarks in Section 4.

2. Optical setup for a probabilistic CNOT gate

We intend to perform a CNOT gate between the qubits |C) =
al0) + b|1) and |T) = c|0) + d|1), where |C) and |T) are the
control and the target qubits, respectively. In a coherent state
quantum computer (CSQC), the qubit is encoded as |0); = |—«)
and |1); = |a) where o« is assumed to be real. In this case,
we have [(0|1)]? = |(—a|a)|? = exp(—4|«|?), which ensures the
orthogonality if o > 2 [3-6]. Thus, the states |C) and |T) for
coherent state qubits are: |C) = N.(a|—«) + b|a)) and |T) =
N¢(c|—ot) +d|er)), where N = [1 42 - %(a*b) exp(—2|«|*)]~"/2 and
Ne=[1+2-9%(c*d) exp(—2|a|?)]~1/2 are normalization constants.

Schematic of the optical setup for our proposed CNOT gate
is showed in Fig. 1. The state |Q2) in Fig. 1 is an four-mode
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The PS, by its turn, adds a phase ¢ to the signal passing through
it. Its unitary operator is U(9) = exp(jod'a), such that:

Ula) =|ea). (2)

If 6 =, the PS is a NOT or X gate for a CSQC because if the light
entering the PS is a coherent state |o)(|—c)), the output state will
be |—a)(ler)).

Still referring to Fig. 1, mode 1 is the control qubit |C), mode 6
is the target qubit |T) and modes 2 to 5 correspond to the auxil-
iary resource state |Q2). Before the photon counters, the state |v),
resulting from the evolution of the input state |C)1 ® |R2)2-5 R |T)g
through the optical setup, is given by:

1Y) = N[ac(l0, —v2a, —a, —at, 0, —/2ax)
+ |0,—\/§a —oz,oz,«/foz,O)
+ I—ﬁa,O,a,a,O,—ﬁa)
+ I—ﬁa,O,a,—a,ﬁa,O))
+ad(|0, —V2a, —a, —a, —/2a, 0)
+ |0,—«/§ot —a,a,0, \/Ea)
+-v2a,0,a,a, —v2a,0)
+|-v2w,0, 0, —a, 0, \/ia))
+bc(|\/ia,0, —a, —a,0, —/2a)
+ I\/fa,O, —oz,oz,\/ioe,O)
+10,vV2a, o, 0,0, —v/2a) + [0, V2, o, —ax, \/Eoe,O))
+bd(|«/§oz,0, —a, —a, —/ 2, 0)
+ |\/§Ol,0, —a,ot,O,«/iot)
+ |0,x/§a,ot,a,—x/§a,0)
+10, V20, o, —2, 0, v/200))], (3)

where N = N; - N - N;. When the photon counter Cy registers ny
photons, we obtain one of the following states on modes 3 and 4:

[X)3,4=1,256(0,n2,0,n4]1)1_6
~ac(—1)"?M|—a, —a) + ad(—1)2|—a, )

state given by |Q) = No(|—«o, —«, —o, —a) + |—a, —a,a, o) + +bc(—1)™ o, &) + bd|a, —t), (4)
lo, o, o, —at) + |, o, —t, o)), where the normalization constant is
No = 4[1 + exp(—4la|?) + 2 - exp(—6la|?)]” /2. This state can be  |X) = (11,0,n3,0[¥)
generated by the quantum circuit shown in Fig. 2 and can be im- ~ac(—1)M o, —a) +ad (=)o, o)
plemented nondeterministically from the optical scheme proposed ns
in [26]. The success probability of this scheme is 1/4. +be|—a, a) +bd(=1)" |-, —a), (5)

In Fig. 1, BS, PS and C are beam splitters, phase shifters and |x) = (0,ny, n3, 0]yr)
photon counters, respectively. The set of beam splitters and pho- n o
ton counters are used to perform Bell-state measurements [17,18]. ~ac(=1)"|—a,a) +ad(=1)"?""|-a, —a)
The unitary operator of a lossless balanced beam splitter is B = +bela, —a) + bd(—1)3 o, ) (6)
exp[n(&lﬁg +ﬁ§€12)/4]. If we send two coherent states |o); and
|8)> through the BS, the total state at the output is given by: |X) = (n1,0,0,na]yr)

~ac(—1)" Mo, o) +ad(—1)" |or, —at)
Bla, B)12=|(@—B)/V2, (@ +B)/V2), ,. (1) +be(—1)"|~a, —a) + bd|—a, ). 7)
‘ X -
2 /1 2 l
\V% -
|0100), , 1 1T L, @ _5(\0000>+\0011>+|1110>+|1101})14
N N \N%
inputs f 0 H & 4 outputs

Fig. 2. Circuit to generate a four-partite entangled state |Q) for single photon qubits.
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From (4), we note that photon counters C; and C3 registered
zero photons whereas photon counters C, and C4 registered a non-
zero number of photons ny and ng4, respectively. A similar analysis
can be done in (5)-(7). The schematic optical setup here presented
will work correctly if the output state is equal to

[A) = CNOT|C, T)
= Ny (ac|—a, —ar) + ad|—a, o) + beler, o) + bdat, —r))
or a state that can be converted to |A) by a unitary operator, with
Ny ={1+2-[%{c*d} - (1+29%{a*b})
+%{a*b} - exp(—2||?)] - exp(—2le|?)}

Therefore, the optical system is successful when measurements in
the photon counters correspond to one of the following mutually
exclusive situations:

-1/2

(i) n1 =n3 =0, both ny and n4 are even and both PS’s are dis-
abled;
(ii) np =ng4 =0, both n; and n3 are even and only PS1 is acti-

vated,

(iii) ny = ng4 = 0, both n, and n3 are even and only PS2 is acti-
vated;

(iv) np =n3 =0, both ny and n4 are even and both PS’s are acti-
vated.

3. Analysis of probability of success and fidelity of the optical
setup

In this section, we analyze the probability of success of the pro-
posed CNOT gate, considering each of the four situations listed. For
simplicity, we assume a, b, c,d and « real.

The probability of success for situation (i), p; = |1,2,5,6(0,n2,
0,n4 | ¥)1-6/% is given by

_INP?
4N, P

It is easy to verify using Eq. (8) that the probability of one success-
ful event is 1/16. The same result is obtained for other situations
(p = pi = pii = piii = Piv)- Therefore, the total probability of success
is 1/4.

We can use an appropriate displacement operator in the cases
where the CNOT gate fails, achieving the so-called near-faithful op-
eration, i.e., the fidelity of the collapsed state can be almost 1 for a
large enough |a|?, as expected. Suppose that in (4) ny and ny4 are
odd, resulting in a state

(1—e20%)?, (8)

Di

1) = Ny (ac|—o, —a) — ad|—a, @) — beler, &) + bd|at, —ax)),

N1 = {1 —2[cd(1 — 2ab) +abe~ 21" |e~21*} 7172, 9)

The state given by Eq. (9) is neither |A) nor it be can con-
verted in |A) by a unitary operator and its fidelity should be less
than 1. Therefore, let us apply the displacement operator ﬁz(ﬂ) =
exp(ﬂ&; — B*ady) on mode 2 of the state in (9) to increase the fi-
delity of the collapsed state. If 8 = —jm /(4), the resulting state
is

|¢1) = D> (-%)lqh)

=N1ej”/4<ac

-, I —oe>+jad
4o

o jn—i—a
T 4o

+ jbc

a,—£+a>+bd‘a,—ﬂ—a>). (10)
4o 4o

Such that the fidelity of the state given by Eq. (10) is
Fr=[(es [ 4]
— INal- Ny |- /G2 (1 4 4. abed - e~2P), (11)

Analyzing (11), we notice that the fidelity is almost 1 for a large
enough |a|? and the probability of success in this case is

!/

NP
VTTAE

(1—e2%)?, (12)

Now suppose that in Eq. (4) np and n4 are even and odd, re-
spectively, resulting in

l¢2) = Na(—ac|—a, —a) +ad|—er, o) — beler, o)
+ bd|at, —at)),

-1/2

Nz = {1—2[cd(1 + 2ab) — abe~2*"]e=21"} (13)

If we apply the displacement operator b(ﬂ) on both modes of (13),
the following state is obtained:

|¢2/> — ﬁ1 <—%> ® bz (—%) |d2)

| jm
=Np| —jac|—— —o,—— —«
( 4o 4o >
J jm o | jm
d—— —«a, —— bc|—— ,——
+a 4o ¢ 4a+a>+JC 4a+a 4a+ot>
jm jm
bd|—=— ,—— = . 14
+ ' yw +o y” a>> (14)

The fidelity and probability of success in this case are, respectively,

Fy=1{¢"5 | 4)]
=|N,| - |N2|e—ﬂ2/ue|a|2>(1 +2(d* —c*)ab - e_4|"‘|2), (15)
. INP ~202\2
= 1— ) 16
P2 4|N2|2( e %) (16)

For the case that ny and n4 are odd and even, respectively, the
projected state with the displacement operator applied on mode 1

of (4) is
}¢3/>= _N3<ac —% —a, —ot>+ad —% —a,ot>
+ jbc I +a,+a )+ jbd -z +o,-a)),
4o 4o
N3 = {1+2[cd(1 — 2ab) — abe 21" o2} 7112, (17)
The fidelity and probability of success are then:
Fy=|('3 | 2)|
= [Ny | - [N3Je ™ /G2 (1 4 2cd . =210, (18)
IN|? oa?\2
p3’ = 4|N3|2(1 —e %)% (19)

Table 1 shows all sixteen possible situations where the pro-
posed CNOT is successful and the operations that we must perform
depending on the number of registered photons. Therefore, the
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Table 1
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All sixteen possible situations (distinguished by recorded photon numbers ny and turning on-off of PS’s) and the corresponding recovery operator necessary for the successful

performance of the CNOT.

Possible situations Collapsed state Phase shifters Recovery operator Fidelity Probability of success
n ny ns ng PS] PSZ

0 even 0 even Eq. (4) off off IQ1 1 Eq. (8)
0 even 0 odd Eq. (4) off off DB ® D(B) Eq. (15) Eq. (16)
0 odd 0 even Eq. (4) off off DBYI Eq. (18) Eq. (19)
0 odd 0 odd Eq. (4) off off 1® D(B) Eq. (11 Eq. (12)
even 0 even 0 Eq. (5) on off IR1 1 Eq. (8)
even 0 odd 0 Eq. (5) on off DB ® D(B) Eq. (15) Eq. (16)
odd 0 even 0 Eq. (5) on off DB ®I Eq. (18) Eq. (19)
odd 0 odd 0 Eq. (5) on off 1® D(B) Eq. (11) Eq. (12)
0 even even 0 Eq. (6) off on IR1 1 Eq. (8)
0 even odd 0 Eq. (6) off on D(B)® D(B) Eq. (15) Eq. (16)
0 odd even 0 Eq. (6) off on DI Eq. (18) Eq. (19)
0 odd odd 0 Eq. (6) off on 1® D(B) Eq. (11) Eq. (12)
even 0 0 even Eq. (7) on on IR1 1 Eq. (8)
even 0 0 odd Eq. (7) on on D(B) ® D(B) Eq. (15) Eq. (16)
odd 0 0 even Eq. (7) on on DBy®I Eq. (18) Eq. (19)
odd 0 0 odd Eq. (7) on on 1® D(B) Eq. (11) Eq. (12)

Probability of Success (p) and Fidelity (F;)

"' 1 L L 1 L 1 L
1] 1 2 3 4 <] 5} 7 8

2
lod

Fig. 3. Total probability of success and fidelity versus |«|? for a lossless optical setup
and ideal photon number counters. (a) 6 = 7 /4 and ¢ = 7w /4; (b) 6 = 7 /4 and
¢=2m/3;(c)®=m/3 and ¢ =27 /3.

total probability of success and fidelity of the optical system are,
respectively,

pr=4-(p+pi'+p2' +p3). (20)

Fr=4-(p-14+p1' - Fi'+p2' - F +p3 - F). (21)

Figs. 3, 4 and 5 show plots of the total probability of success
and fidelity as a function of ||, 8 and ¢, where a =sin(9), b =
cos(9), ¢ =sin(¢), d = cos(¢) and « is assumed to be real.

As we can see in Fig. 3, if we consider a lossless optical setup
and ideal photon number counters, there is a monotonic rela-
tion between the total probability of success and fidelity, given
by Egs. (20) and (21), and the average number of photons |x|?,
for several values of 6 and ¢. Both pr and Fr asymptotically ap-
proach 1 in the limit of |&|> — oo.

In Figs. 4 and 5, we can see that the proposed CNOT gate is
near-faithful when || > 25 and independent of 6 and ¢, i.e., in-
dependent of the input states, |C) and |T).

As mentioned before, the CNOT gate here proposed may be
used to simplify the universal set of gates for a coherent state
based quantum computer such as described in [7]. Alternatively,
a CNOT gate could be implemented by using a Controlled-Z gate
and two Hadamard gates as proposed in [7] and [5], respectively.

o
=]
L

o
=
Fl

Total Probability of Success
o o
N ™
F ] L

o
©

Fig. 4. Total probability of success as a function of 6 and ¢ for |«|?> = 0.25 and
loe|? = 25.

Fig. 5. Total fidelity as a function of 6 and ¢ for |«|? = 0.25 and |«|? = 25.

The main drawbacks to this alternative is the fact that we would
need non-linearity (for the Hadamard gates) and small values of «,
demanding quantum Zeno effect or multiple use of teleportations,
increasing the number of Bell-state measurements, beam splitters
and resource states.

In general, the proposed scheme has the following advantages
compared to gates proposed in [5,7] for coherent state qubits: it
does not require (1) Bell-state measurements with arbitrarily high



M.S.R. Oliveira et al. / Physics Letters A 377 (2013) 2821-2825 2825

precision (that needs three beam splitters and four detectors) [5],
(2) Hadamard gates [5], and (3) beam splitters with reflectivity de-
pendent on the average number of photons [7]; and it uses only
two NOT gates instead of three as used in [5]. Furthermore, the
implementation of this CNOT gate becomes viable with the present
development of silicon photonics technology and multi-pixel coun-
ters (MPPC) that are able to distinguish between 1, 2, ..., 10 pho-
tons [http://www.hamamatsu.com].

In a more recent work, Lund et al. [19] propose a set of gates
for coherent state qubits and study fault tolerance under the ef-
fects of small amplitudes and loss. Their chosen universal set of
quantum gates is composed by a X gate, an arbitrary Z rotation, a
Hadamard gate, and a controlled-Z gate. They show that using er-
ror correction only small amplitudes are required for fault-tolerant
quantum computing. As in the previous work by Ralph et al. [7],
in [19] a CNOT gate is not proposed.

The CNOT gate here presented may be used with one of the two
schemes [7,19] as an alternative to the universal set of quantum
gates. As a future work, one may study if in this case, using er-
ror correction, small amplitudes could be enough for fault-tolerant
computation.

4. Conclusion

We presented a proposal for implementing a probabilistic CNOT
gate for coherent state qubits. The proposed optical setup uses only
linear optical devices, photon number counters and a special en-
tangled four-mode state as an auxiliary resource. An appropriate
displacement operator can be used when the CNOT gate fails, such
that it can work near-faithful, when |a|? > 25, independent of the
input states. The total efficiency of the optical setup is 1/4, consid-
ering that the entangled four-mode state is supplied.
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