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Abstract—This paper studies linear transceiver design in
multicell MIMO Broadcast Channels (BCs). In this context,
previous works have tried to enhance the conventional Block
Diagonalization (cBD) algorithm, such as the proposal of iterative
BD (iBD), which has less dimensionality restrictions and accounts
for the presence of inter-cell interference (ICI). However, both
approaches become interference-limited when the ICI has strong
power. In this paper, we take a different direction by using the
Weighted Sum-Rate (WSR) as the transceiver design criterion.
For that, three different novel algorithms are proposed in this
paper, which are based on the alternating optimization technique
and guaranteed to converge to a local WSR-optimum. The first
algorithm is an interference pricing approach, where each cell
maximizes its own utility, which is formed by the local users’
WSR minus the priced ICI leakage. The second algorithm designs
transceivers that maximize the network-wide WSR. Interestingly,
we prove that the WSR maximization via interference pricing
can be made equivalent to the network-wide WSR maximization,
whenever the mobile stations are equipped with single-antennas.
The third algorithm is an implicit interference pricing approach,
where each cell self-prices its ICI leakage and, thus, does not
require the feedback of variables from other cells. To facilitate
the algorithms’ implementation, a novel Over-the-Air (OTA)
signaling scheme based on Time Division Duplex (TDD) mode is
proposed, which reduces the signaling overhead and requires no
backhaul feedback, as compared to existing schemes.

Index Terms—MIMO systems, block diagonalization, weighted
sum rate maximization, interference-pricing.

I. INTRODUCTION

Multiple-Input Multiple-Output (MIMO) technology has
great potential to eliminate/manage interference, achieve
higher throughput, and enhance system capacity [1]. Using
multiple antennas, the Base Stations (BSs) can transmit to
multiple users simultaneously using linear or non-linear trans-
mission techniques [2] to achieve a linear increase of system
throughput in the number of BS antennas. In single-cell net-
works, the non-linear Dirty Paper Coding (DPC) technique [3]
is known to achieve the channel capacity. However, it is widely
considered that DPC has limited practical applications, due to
its high complexity. Therefore, linear transmission techniques
(also called beamforming) have gained more interest and were
proven to achieve the same sum rate scaling law as DPC [2],
while maintaining low complexity.

A notable scheme in this area is called Block Diagonal-
ization (BD) [4]. In single-cell networks, conventional Block
Diagonalization (cBD) completely eliminates intra-cell inter-
ference by forcing each user to transmit on the null space of
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the other users. However, in multicell networks, cBD would
ignore the inter-cell interference (ICI), which would affect
the users’ performance. For that purpose, the authors in [5]
have proposed enhanced BD (eBD), which uses a whitening
filter to reduce ICI effects. Nevertheless, both cBD and eBD
algorithms have high dimensionality restrictions, since they
both rely on transmit beamforming to eliminate intra-cell
interference and ignore the receive beamforming. Motivated
by the last observation, we have proposed iterative BD (iBD)
in [6], which eliminates the intra-cell interference by jointly
optimizing the transmit and receive beamforming matrices and
also accounts for the ICI presence. We have shown that iBD
has better sum rate performance than both cBD and eBD,
while significantly reducing dimensionality restrictions.

However, it is also shown in [6] that all BD approaches
become interference-limited in the presence of high ICI power.
The main limitation of BD is that each user has an altruistic
behavior with regard to other users in the same cell (since the
intra-cell interference is completely eliminated) and an egoistic
behavior with regard to users in adjacent cells (since nothing
is done to reduce the ICI). Thus, the BD approach cannot
achieve a good balance with regard to the users’ beamforming
behavior, which prevents it from achieving the optimum in
terms of sum rate [7].

An alternative approach is to jointly design the transmit
beamforming of all users in all cells. This approach is named
as Coordinated Multi-Point (CoMP) in the literature and can
be classified into Joint Processing (JP) [8] and Coordinated
Beamforming (CBF) techniques [9]. In contrast to JP, each
user in a CBF system is served by a single BS and thus,
the BSs do not need to share the users’ data or to be
time and phase synchronized. Therefore, CBF has gained
a lot of attention and has been extensively studied in the
literature with different optimization criteria. For example, in
[9]–[11] for sum-power minimization, in [12] for Signal-to-
Interference-plus-Noise Ratio (SINR) balancing, in [13] for
sum Mean-Square Error (MSE) minimization, and in [14]–
[25] for Weighted Sum-Rate (WSR) maximization.

In this paper, we are particularity interested in the WSR
maximization problem. The problem is non-convex and NP-
hard [20], for which only local optima can be guaranteed
via practical methods. Nevertheless, it has some desirable
proprieties such as 1) it can prioritize the users and achieve
some fairness among them by adjusting the weights, 2) it has
an implicit users and streams selection, since, at convergence,
the number of active streams is almost always less than or
equal to the number of BS antennas, and 3) it is always feasible
when only constrained by transmit power. Therefore, the WSR
maximization problem has gained a lot of attention and has
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been extensively studied in the literature, considering different
optimization tools and system models.

For single-cell MIMO Broadcast Channels (BCs), the au-
thors in [14] reformulate the problem into an equivalent
problem that incorporates a weighted sum-MSE and estab-
lish a weighted sum-MSE duality that is solved iteratively
using a Geometric Program (GP) formulation. For multicell
Multiple-Input Single-Output (MISO) BC, the problem was
addressed in [16], [18], [19]. In [16], the authors derived the
Karush-Kuhn-Tucker (KKT) conditions of the problem and
then devised an iterative algorithm to solve them, without the
need of resorting to convex optimization methods. In [18],
an iterative pricing algorithm was proposed based on game-
theory, which is guaranteed to converge to an interference
equilibrium that corresponds to a KKT point for the original
WSR maximization problem. Among all, the global optimum
solution is guaranteed only in [19], where the problem was
solved using a branch-reduce-and-bound algorithm.

On the other hand, the authors in [17] considered the mul-
ticell MISO-Interference Channel (IC) and established a rela-
tion between the WSR and the Virtual Signal-to-Interference-
plus-Noise Ratio (VSINR) by applying the KKT conditions,
which led to a distributed and iterative algorithm. Recently,
the authors in [20] considered a single-cell MIMO-BC and
established a relation between the WSR maximization problem
and the Weighted Minimum-Mean-Square Error (WMMSE)
minimization problem by applying the KKT conditions. As
a result, an iterative algorithm called WSR-WMMSE was
proposed, which is based on the alternating optimization
technique [26] and solves the quite hard WSR maximization
problem indirectly by solving the easier WMMSE minimiza-
tion problem. This later relation has inspired many extensions,
such as to the multicell MIMO-IC [21] and to the multicell
MIMO-BC [22]–[25].

In this paper, we consider a multicell MIMO-BC sys-
tem model and propose three different decentralized and
novel WSR maximization algorithms, which are based on
the alternating optimization technique [26] and are guaran-
teed to converge to a local WSR-optimum. The proposed
algorithms are summarized as follows. The first algorithm
uses an interference pricing approach, the same as in [18],
where each BS maximizes its own utility that is formed
by the local users’ WSR minus the priced-ICI leakage. In
[18], the authors assumed single-antenna users and formulated
the problem as a relaxed Semidefinite Programming (SDP),
whose solution requires each BS to first obtain the transmit
covariance matrices, followed by an operation to guarantee and
extract the rank-one transmit beamforming vectors. Different
from [18], we consider multi-antenna users and the transmit
beamforming matrices are obtained directly by investigating
the KKT conditions of the problem. The main ingredient is
given by Lemma 1, which makes it possible to solve the
transmit beamforming directly from the problem cost function,
in contrast to the WSR-WMMSE from [20]–[25]. Through
computer simulations, it is shown that the proposed algorithm
can achieve a comparable sum rate performance to WSR-
WMMSE, while using fewer iterations.

The second algorithm designs the transmit beamforming

that maximizes the network-wide WSR by generalizing the
solution steps of the first algorithm. Interestingly, it is proven
that the WSR maximization via interference pricing can be
made equivalent to the network-wide WSR maximization
whenever the Mobile Stations (MSs) have single-antenna, i.e.,
in the multicell MISO BC. However, the interference pricing
approach is shown to have some performance loss when the
MSs have multiple antennas, as compared to the network-wide
approach.

The third algorithm is an implicit interference pricing ap-
proach, where each BS self-prices its ICI leakage to other cells.
Through computer simulations, it is shown that the self-pricing
approach has negligible performance loss, as compared to the
network-wide approach, when the BSs have enough Degrees
of Freedom (Dof). In this case, the self-pricing approach is
more appealing for practical systems, since it does not require
feedback of variables from other cells.

The proposed algorithms are decentralized in the sense that
each BS can solve for its transmit beamforming independently,
as soon as it has the required information. Here, we assume
that each BS can acquire the local Channel State Information
(CSI) between itself and all the MSs in the system, as in [20]–
[25]. An effective technique for obtaining this CSI is the Time
Division Duplex (TDD) operation, where uplink training in
conjunction with reciprocity simultaneously provides the BSs
with downlink and uplink channel estimates [27]. Furthermore,
the TDD mode is more applicable than Frequency Division
Duplex (FDD) to local area deployments and small cells,
where the transmit powers, mobile speeds, and channel prop-
agation delays are relatively low [27]–[29]. In this paper, we
further propose a novel Over-the-Air (OTA) signaling scheme
based on TDD mode to facilitate the algorithms’ implementa-
tion. In contrast to some existing signaling schemes in [23]–
[25], the proposed scheme reduces the signaling overhead and
requires no feedback of variables between BSs.

The rest of this paper is organized as follows. In section II
we present the system model. In section III we review the
Block Diagonalization (BD) approach from [6]. The proposed
algorithms and the Over-the-Air (OTA) signaling scheme for
WSR maximization are presented in sections IV and V,
respectively. Finally, in section VI we present numerical results
and then conclude the paper in section VII.

Notations: Upper/lower boldface letters are used for matri-
ces/vectors. The notations (·)H, ‖ · ‖, (·)†, Tr(·), log(·), and∣∣ · ∣∣ denote the complex conjugate transpose, the standard
Euclidean norm, the pseudo-inverse, the trace, the logarithm
of base 2, and the determinant, respectively. E(·) denotes
the statistical expectation. Bdiag{·} denotes the block-diag
operator of a given vector/matrix. [A][1:N ] selects the first N
vectors of a matrix A, while [A][i] selects the i-th vector.

II. SYSTEM MODEL

We consider a multicell MIMO BC wireless network con-
sisting of M cells, as in Fig.1. In each cell, there is one BS
equipped with Nt antennas and K MSs, each equipped with
Nr antennas. We denote the BS of the n-th cell as BSn and
the k-th MS in the n-th cell as MSnk. Let M def

= {1, . . . ,M}
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Fig. 1. Multicell MIMO BC system diagram (M cells and K users per cell).

and K def
= {K1, . . . ,KM} denote the sets of all BSs and MSs,

respectively, whereas Kn denotes the set of MSs associated
with BSn. The M BSs are assumed to operate over a common
frequency channel and communicate with their K respective
MSs using linear transmit beamforming. The scenario under
consideration assumes that each MS is served by only one BS.
The received signal at MSnk is given as

ynk = HnnkTnksnk +
∑

i∈Kn\k

HnnkTnisni︸ ︷︷ ︸
intra-cell interference

+

∑
m∈M\n

∑
j∈Km

HmnkTmjsmj︸ ︷︷ ︸
inter-cell interference

+znk, (1)

where Hmnk ∈ CNr×Nt denotes the MIMO channel matrix
from BSm to MSnk, whose coefficients are independent and
identically distributed (i.i.d) complex Gaussian random vari-
ables, Tnk ∈ CNt×Ns denotes the transmit beamforming, with
Ns being the number of data streams, snk ∈ CNs denotes the
transmitted data vector that is statistically independent with
zero mean and E(snks

H
nk) = I,∀k ∈ K, and znk ∈ CNr

denotes the i.i.d complex Gaussian noise vector with zero
mean and variance σ2

nk. To decode the desired signal, each
MSnk multiplies its received signal vector ynk by the receive
beamforming matrix Rnk ∈ CNs×Nr . Thus, the received data
vector ŝnk at MSnk is given as ŝnk = Rnkynk.

III. BLOCK DIAGONALIZATION APPROACH

Theoretically, the cBD algorithm from [4] can be interpreted
as the equivalent Zero-Forcing (ZF) algorithm for the MIMO
system. The main objective is to completely eliminate intra-
cell interference by forcing each user to transmit on the null
space of all other users in the same cell. The cBD optimization
problem of BSn,∀n ∈M, can be written as

max
Tn

rcBD
n = log

∣∣∣I +
RnHnTnTH

nHH
nRH

n

RnΥnRH
n

∣∣∣ , (PcBD)

s.t.
∑

j∈Kn\k

RnkHnnkTnj = 0,∀k ∈ Kn,

Tr[TnTH
n] = pn,

where pn is the transmit power threshold, rcBD
n is the

BSn achievable rate, Hn =
[
HT
nn1, . . . ,H

T
nnK

]T
, Tn =

[Tn1, . . . ,TnK ], Rn = Bdiag{Rn1, . . . ,RnK}, and Υn =

Bdiag{Υn1, . . . ,ΥnK}, where Υnk denotes the ICI plus
noise covariance matrix of MSnk, which is given as

Υnk =
∑

m∈M\n

∑
j∈Km

HmnkTmjT
H
mjH

H
mnk + σ2

nkINr
. (2)

As one can notice, problem PcBD does nothing to deal with
the ICI that is being received from the other cells or is leaking
to the other cells, since its main objective is to maximize
each cell’s achievable rate such that all intra-cell interference
is eliminated. The main advantage, though, is that PcBD is
completely distributed between M cells and has a closed-
form solution as follows. The transmit beamforming matrix
of MSnk is given as

Tnk = GnkFnkP
1
2

nk, (3)

where Pnk holds on its diagonal the power allocation, Gnk

holds the orthogonal basis vectors of the null space of the
intra-cell users’ channels, and Fnk holds the right singular
vectors of the effective channel of MSnk. Let the intra-cell
users’ channels of MSnk be given as

H−knk = [HT
nnj ,∀j ∈ Kn\k]T. (4)

Then, to calculate Gnk, define the Singular Value Decom-
position (SVD) of H−knk as

H−knk = U−knkΣ−knk [V−knk Gnk], (5)

where Gnk is the last (Nt − l−knk ) right singular vectors and
l−knk is the rank of H−knk . Further, let the effective channel of
MSnk be given as

He
nk = HnnkGnk. (6)

Then, to calculate Fnk, define the SVD of He
nk as

He
nk = Ue

nk

[
Σe
nk 0

0 0

]
[V

e(1)
nk V

e(0)
nk ], (7)

where Σe
nk is an [lenk × lenk] diagonal matrix, V

e(1)
nk contains

the first lenk singular vectors, and lenk is the rank of He
nk.

Therefore, assuming the values of Σe
nk are in a decreasing

order, we choose Fnk and Rnk to be the first Ns vectors of
V
e(1)
nk and Ue

nk, respectively, i.e.,

Fnk =
[
V
e(1)
nk

]
[1:Ns]

and Rnk = [Ue
nk]

H
[1:Ns]

. (8)

With transmit and receive beamforming matrices calculated
as above, the BSn rate function is reduced to

rcBD
n = max

Pn

log
∣∣∣I +

Σ2
nPn

RnΥnRH
n

∣∣∣ , (9)

where Σn = Bdiag(Σe
n1, . . . ,Σ

e
nK) and Pn is a diagonal

matrix that holds the optimal power loading found using water-
filling method [30] on the Σn diagonal elements 1.

From above, it can be seen that one of the main issues
with cBD is that it does nothing to reduce the effects of the

1Note that the water-filling method is applied individually on each sub-
matrix of Σn assuming that total transmit power of the BS is divided equally
between its K users. Clearly, the equal power allocation is a suboptimal
solution. However, this is done to make sure that all K users are allocated
for transmission.
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ICI each user is receiving. This issue has been considered in
[5], where the authors proposed the eBD algorithm to account
for the ICI presence. The eBD algorithm is summarized as
follows. First, to suppress the ICI effects, MSnk uses the
whitening matrix Wnk = Υ

− 1
2

nk at the received signal. Let
Wn = Bdiag[Wn1, . . . ,WnK ]. Then, the BSn rate function
rcBD
n can be written as

reBD
n = max

T̂n

log
∣∣∣I +

R̂nWnHnT̂nT̂H
nHH

nWH
nR̂H

n

R̂nWnΥnWH
nR̂H

n

∣∣∣
= max

T̂n

log
∣∣∣I + R̂nĤnT̂nT̂H

nĤH
nR̂H

n

∣∣∣ , (10)

where Ĥn = WnHn (thus, Ĥnk = WnkHnnk). As in the
case of cBD, the transmit beamforming matrix of MSnk is
given as T̂nk = ĜnkF̂nkP̂

1
2

nk, where Ĝnk is calculated similar
to (5) from

Ĥ−knk = [ĤT
nj ,∀j ∈ Kn\k]T. (11)

The F̂nk and R̂nk matrices are calculated similar to (8)
from the MSnk effective channel

Ĥe
nk = ĤnkĜnk = WnkHnnkĜnk. (12)

Consequently, the BSn rate function reBD
n given by (10) is

reduced to

reBD
n = max

P̂n

log
∣∣∣I + Σ̂2

nP̂n

∣∣∣ . (13)

From above, one can see that both BD approaches, cBD and
eBD, have the same dimensionality restrictions. The expres-
sions given by (4) and (11) have dimension of [(K−1)Nr×Nt]
with rank of [Nt − (K − 1)Nr]. Therefore, to have Ns
columns in the null space, [Nt − (K − 1)Nr] should be
larger than Ns, i.e., [Nt − (K − 1)Nr] ≥ Ns. Moreover, it is
important to note that both approaches use only the transmit
beamforming Tn to eliminate the intra-cell interference, i.e.,
the receive beamforming Rn is not utilized. Motivated by the
last observation, one possible way to reduce the dimensionality
restrictions is to utilize the receive beamforming matrix when
calculating the transmit beamforming matrix [6]. To achieve
this end, the receive beamforming matrix R̃nk can be included
in (11), then we have

H̃−knk = [[R̃njĤnj ]
T,∀j ∈ Kn\k]T. (14)

Note that H̃−knk has dimension of [(K − 1)Ns×Nt], which
is no longer in function of Nr. Calculating the null space
from H̃nk is always satisfied if, and only if, the number of
data streams transmitted by a BS is less than or equal to its
number of transmit antennas, i.e., the condition of [Nt−(K−
1)Ns] ≥ Ns should be satisfied. The following steps are much
similar to the ones above. The transmit beamforming is given
as T̃nk = G̃nkF̃nkP̃

1
2

nk, where G̃nk is calculated similarly
from H̃−knk . The F̃nk and R̃nk matrices are calculated from
the MSnk effective channel

H̃e
nk = ĤnkG̃nk = WnkHnnkG̃nk. (15)

Since the transmit and receive beamforming matrices are
now coupled, the BS is required to conduct some iterations in

Algorithm 1 iterative BD (iBD).

1: Initialize R̃
(1)
nk , T̃

(1)
nk ,∀k ∈ K and set t = 1.

2: BSn,∀n: Transmit data using T̃
(t)
nk,∀k ∈ Kn.

3: MSnk,∀k: Calculate Υ
(t)
nk and feed it back to BSn.

4: BSn,∀n: Calculate R̃
(t)
nk and T̃

(t)
nk,∀k ∈ Kn as:

- Construct H̃
−i(t)
nk using R̃

(t)
nk.

- Calculate G̃
(t)
nk from H̃

−i(t)
nk .

- Construct H̃
e(t)
nk using G̃

(t)
nk.

- Calculate F̃
(t+1)
nk and R̃

(t+1)
nk from H̃

e(t)
nk .

5: Repeat steps 2-4 (until convergence)

order to achieve BD. Therefore, we refer to this approach as
iterative BD (iBD) and summarize it in Algorithm 1.

At the first step, Algorithm 1 initializes the transmit and
receive beamforming matrices for all users. For instance, T̃

(1)
nk

can be initialized using the Maximum Ratio Transmission
(MRT) approach and R̃

(1)
nk = I. At the t-th iteration, each

BS transmits pilot signals precoded with T̃
(t)
nk at step-2 so that

each MSnk can calculate the ICI covariance matrix, i.e., Υ
(t)
nk,

and feed it back to its serving BS via feedback channels. After
that, each BS updates the transmit and receive beamforming of
its users at step-4. The aforementioned steps are repeated until
convergence. Note that the transmit and receive beamforming
matrices of all users are calculated at the BSs. Therefore, at
convergence, each BS would forward the receive beamforming
matrices to its users using the feedforward channels. With the
transmit and receive beamforming matrices calculated as given
by Algorithm 1, the BSn rate function reBD

n given by (10) is
reduced to

riBD
n = max

P̃n

log
∣∣∣I + Σ̃2

nP̃n

∣∣∣ . (16)

Note that both equations (12) and (15) have the same
structure. The following theorem indicates their relation.

Theorem 1: If the number of data streams transmitted to
any user is equal to the number of its receive antennas, i.e.,
if Ns = Nr, then, both eBD and iBD are equivalent and have
the same exact performance.

Proof 1: Please refer to Appendix A.
It’s worth noting that if the system has only one cell, then

the eBD algorithm is equivalent to cBD. In this case, the iBD
algorithm is also equivalent to cBD, only if Ns = Nr, which
is a straightforward result of Theorem 1.

IV. WEIGHTED SUM RATE MAXIMIZATION APPROACH

In this section, we use WSR as the transceiver design crite-
rion. We assume that each MS employs single-user detection
by treating the interference as additive noise. Therefore, the
achievable rate of MSnk can be written as

rnk = log
∣∣∣INs

+ TH
nkH

H
nnkΦ

−1
nkHnnkTnk

∣∣∣, (17)

where Φnk denotes the received interference plus-noise co-
variance matrix for MSnk, which is given as

Φnk =
∑

i∈Kn\k

HnnkTniT
H
niH

H
nnk + Υnk, (18)
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whereas Υnk is given by (2), which denotes the ICI plus
noise covariance matrix of MSnk. Here, we assume that each
MSnk uses Minimum-Mean-Square Error (MMSE) receive
beamforming, which is given as [20]

RMMSE
nk = arg min

Rnk

E[‖Rnkynk − snk‖2]

= TH
nkH

H
nnkΩ

−1
nk , (19)

where Ωnk = HnnkTnkT
H
nkH

H
nnk + Φnk. Using (19), the

MSE-matrix of MSnk is given as [23]

Enk = E[‖RMMSE
nk ynk − snk‖2]

= INs
−RMMSE

nk HnnkTnk, (20)

which can be equivalently expressed as [20]

Enk = (INs + TH
nkH

H
nnkΦ

−1
nkHnnkTnk)−1. (21)

The latter form of Enk in (21) shows that the rate function
given by (17) can be equivalently expressed as

rnk = log
∣∣∣E−1nk ∣∣∣. (22)

Note that Enk must be Hermitian, since from (21), Enk

equals a quantity (right-hand side) that is Hermitian, which
means that Enk = EH

nk. Furthermore, the following lemma is
needed throughout the rest of the paper.

Lemma 1: Given the MSE-matrix Enk as in (20), or
equivalently as in (21), the receive beamforming matrix Rnk

can be written as

Rnk = EnkT
H
nkH

H
nnkΦ

−1
nk . (23)

Proof 2: Please refer to Appendix B.

A. Per-Cell WSR maximization via Interference Pricing

In this section, we consider an interference pricing approach
for designing the transmit beamforming. The main idea is to
manage the ICI received by a user by pricing the interfering
BSs. Similar to [18], [31], we define the interference price as
the marginal decrease in the user rate due to a marginal in-
crease in the received interference. Mathematically, the MSnk
interference price is given as

πnk = ∇Φnk
rnk. (24)

Using the result of ∇ log
∣∣X∣∣ = Tr(X−1∇X), where X is

a matrix [32], then πnk is given as

πnk = Tr(EnkT
H
nkH

H
nnkΦ

−2
nkHnnkTnk). (25)

By observing (25) and the Lemma 1 result, we have the
following corollary.

Corollary 1: The MSnk interference price πnk given by (25)
can be equivalently written as

πnk = Tr(RH
nkE

−1
nkRnk). (26)

Proof 3: According to Lemma 1, the receive beamforming
can be written as Rnk = EnkT

H
nkH

H
nnkΦ

−1
nk . Then, the MSnk

interference price πnk given by (25) is reduced to

πnk = Tr(EnkT
H
nkH

H
nnkΦ

−2
nkHnnkTnk)

(a)
= Tr(RnkR

H
nkE

−1
nk )

(b)
= Tr(RH

nkE
−1
nkRnk)

where (a) is obtained by substituting Rnk into the first equality
and (b) is obtained by using the results of Tr(XYZ) =
Tr(YZX) = Tr(ZXY) [32], which completes the proof.

Let πn = {πmj ,∀m ∈ M\n, ∀j ∈ Km} denote the vector
that collects all interference prices of all users in the system
except BSn users. Then, define the following MS-specific
function

fnk(πn) = µnkrnk − Tr(Lnk), (27)

where µnk > 0 denotes the weight associated to MSnk and
Lnk defines the priced-ICI caused by the MSnk beamforming
Tnk, which is given as

Lnk =
∑

m∈M\n

∑
j∈Km

πmjHnmjTnkT
H
nkH

H
nmj . (28)

Afterwards, each BSn,∀n ∈ M, updates its transmit
beamforming Tnk,∀k ∈ Kn, as the solution to the following
interference-priced WSR maximization problem

max
Tnk,

∀k∈Kn

∑
k∈Kn

fnk(πn) (PWSRP)

s.t.
∑
k∈Kn

Tr(TnkT
H
nk) = pn,

where we have used an equality power constraint rather than
the often used

∑
k∈Kn

Tr(TnkT
H
nk) ≤ pn, since the WSR

optimum is reached at maximum transmit power [20]. From
problem PWSRP, one can see that this approach is different
from the BD approach, in the sense that the ICI received by
a user is being managed by the interfering BSs and not the
serving BS.

In [18], the authors addressed problem PWSRP from a game-
theoretic view-point assuming single-antenna users, where the
function fnk(πn) is interpreted as a user utility function
that penalizes the user rate by the ICI that he is leaking.
The problem in [18], however, was formulated as a relaxed
SDP and its solution would require each BS to obtain first
the transmit covariance matrices, i.e., Qnk

def
= tnkt

H
nk � 0,

followed by operations to guarantee and extract the rank-
one transmit beamforming vectors, i.e., tnk. It was proven
in [18] that problem PWSRP is guaranteed to converge to
an equilibrium point that corresponds to a KKT point for
the original problem PWSRP. In the following, we present a
different solution to problem PWSRP. The solution is obtained
by investigating the KKT conditions of problem PWSRP and
with the help of the Lemma 1 result. The solution of PWSRP
w.r.t. transmit beamforming for MSnk,∀k ∈ K, is given by
Proposition 1.

Proposition 1: Let the receive beamforming Rnk and
MSE matrix Enk for MSnk be given by (19) and (20),
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respectively, and by utilizing the Lemma 1 result, then the
solution of problem PWSRP w.r.t. transmit beamforming Tnk

for MSnk,∀k ∈ Kn, is given as

TWSRP
nk = (Ank + Bn + λnINt)

−1HH
nnkR

H
nkµnk, (29)

where λn,∀n ∈ M, are the Lagrange multipliers associated
with the PWSRP constraint functions, Ank and Bnk are given
as

Ank =
∑

i∈Kn\k

µniH
H
nniR

H
niE
−1
ni RnkHnni, (30)

Bn =
∑

m∈M\n

∑
j∈Km

πmjH
H
nmjHnmj . (31)

Proof 4: Please refer to Appendix C.
In (29), the λn,∀n ∈M, are calculated to satisfy the power

constraint at BSn,∀n ∈ M, by using the KKT condition
λn
(∑

k∈Kn
Tr(TnkT

H
nk) − pn

)
= 0 and by utilizing the

fact that the transmit power is monotonically decreasing with
respect to increasing λn [21]. The closed-form solution can
be obtained by readapting the approach shown in [20] as

TWSRP
nk = βnT̄nk, (32)
T̄nk = (Ank + Bn + αnINt

)−1HH
nnkR

H
nkµnk,

αn =
∑
i∈Kn

Tr(µniE−1ni RniR
H
ni)/pn,

βn =
√
pn/

∑
i∈Kn

Tr(T̄niT̄
H
ni).

B. Network-Wide WSR Maximization
In this section, we consider the general network-wide WSR

maximization problem. Mathematically, the WSR maximiza-
tion problem can be written as [21]

max
Tnk,

∀n∈M,∀k∈Kn

∑
n∈M

∑
k∈Kn

µnkrnk (PWSRM)

s.t.
∑
k∈Kn

Tr(TnkT
H
nk) = pn,∀n ∈M.

Problem PWSRM has been addressed in [20]–[25]. For all
the algorithms presented in these references, PWSRM was
solved by exploiting its relation to the WMMSE minimization
problem, which was initially shown in [20]. Different from
all, in the following, we propose a novel solution that directly
solves PWSRM. Similar to PWSRP, the solution is obtained by
investigating the KKT conditions of problem PWSRM and with
the help of the Lemma 1 result. The solution of PWSRM w.r.t.
transmit beamforming for MSnk, ∀n ∈M,∀k ∈ Kn, is given
by Proposition 2.

Proposition 2: Let the receive beamforming Rnk and the
MSE matrix Enk for MSnk be given by (19) and (20),
respectively, and by utilizing the Lemma 1 result, then the
solution to PWSRM w.r.t. transmit beamforming for MSnk,
∀n ∈M,∀k ∈ Kn, is given as

TWSRM
nk = (Ank + Cn + λnINt

)−1HH
nnkR

H
nkµnk, (33)

where λn,∀n ∈ M, are the Lagrange multipliers associated
with the PWSRM constraint functions, Ank is given by (30),
and Cn is given as

Cn =
∑

m∈M\n

∑
j∈Km

µmjH
H
nmjR

H
mjE

−1
mjRmjHnmj . (34)

Proof 5: The proof can be shown by generalizing the
derivation steps shown in Appendix C and thus we omit them
here for brevity.

By observing (33), we can see that it is closely related to
(29). Theorem 2 shows the connection between both equations
in a special case.

Theorem 2: Both equations TWSRP
nk and TWSRM

nk , given by
(29) and (33), respectively, are equal if Nr = 1 and the
MSnk interference price πnk given by (26) is replaced by π̃nk
that is given as

π̃nk = µnkπnk. (35)

Proof 6: When Nr = 1, the interference price πnk in (26)
reduces to πnk = RH

nkE
−1
nkRnk, since both terms Rnk and

Enk are scalars. By substituting πnk into the Ank and Cn

terms, we have

Ank =
∑

i∈Kn\k

µniπniH
H
nniHnni.

Cn =
∑

m∈M\n

∑
j∈Km

µmjπmjH
H
nmjHnmj .

Since Ank is common in both, the only difference is
between the Bn and Cn terms. Now, comparing Bn to Cn,
we can see that both terms are equal if each interference price
in Bn is replaced by π̃mj = µmjπmj , which completes the
proof.

The result of Theorem 2 establishes a relation between
problems PWSRM and PWSRP. When Nr = 1, the problems
PWSRP and PWSRM are exactly equivalent. In this case, the
receive beamforming and MSE terms are scalars and directly
specify the interference prices of the MSs. However, when
Nr > 1, PWSRP would provide a suboptimal solution to
PWSRM. In this latter case, the interference prices cannot
exploit the spatial dimension that the receive beamforming
brings, since RH

nkE
−1
nkRnk has a dimension of Nr × Nr,

irrespective of the number of data streams Ns, whereas the
interference-price πnk = Tr(RH

nkE
−1
nkRnk) is represented by

a scalar. Therefore, when Nr > 1, the Cn term given by (34)
contains extra information, as compared to Bn given by (31),
which can be exploited by the BSs to reshape the interference.

Similar to (29), the λn,∀n ∈ M, in (33) are calculated to
satisfy the power constraint at BSn,∀n ∈M. The closed-form
solution of (33) can be obtained similar to (32), by replacing
the Bn term with Cn.

C. WSR Maximization Based on Self-pricing

In this approach, we consider a different strategy in the
sense that each BS would self-price the ICI it is leaking to
other cells. In this regard, when compared to PWSRP, the BSs
do not need to collect the interference prices from the users
when calculating the transmit beamforming.

In order to show this, let us assume for a moment that
the rate function of a given user, say MSmj , j ∈ Km, is
mostly degraded by the transmit beamforming from a single
interfering BS, say BSn, n 6= m. This can be translated to
many scenarios, such as the BSs other than BSn have a mutual
interference that is negligible, or they are using a transmit
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beamforming strategy that eliminates ICI by any means.
Therefore, the interference plus noise covariance matrix of
MSmj can be approximated as

Ψmj ≈
∑
k∈Kn

HnmjTnkT
H
nkH

H
nmj + INr

, (36)

where the approximation is used due to the assumption that the
intra-cell interference as well as the ICI from other interfering
BSs than BSn are negligible. By (36), the achievable rate of
MSmj is given as

rmj = log
∣∣∣INs

+ TH
mjH

H
mmjΨ

−1
mjHmmjTmj

∣∣∣. (37)

Considering the high Signal-to-Noise Ratio (SNR) regime,
the rate function of MSmj (37) can be approximated as

rmj ≈ log
∣∣∣TH

mjH
H
mmjΨ

−1
mjHmmjTmj

∣∣∣
= log

∣∣∣TH
mjH

H
mmjHmmjTmj

∣∣∣− log
∣∣∣Ψmj

∣∣∣. (38)

From (38), it can be noticed that the second term in the
right-hand side represents the performance loss of MSmj in
terms of rate due to the beamforming at BSn. An important
point to observe is that this rate loss at MSmj is already known
to BSn, as it denotes the interference leakage from BSn to
MSmj . Therefore, BSn can consider an implicit interference
pricing approach to reduce the interference leakage towards the
MSs of other cells. Let Ψn = {Ψmj ,∀m ∈M\n, ∀j ∈ Km}
and define the following BSn specific function

gn(Ψn) =
∑
k∈Kn

µnkrnk −
∑

m∈M\n

∑
j∈Km

log
∣∣∣Ψmj

∣∣∣. (39)

Using (39), each BSn,∀n ∈ M, updates the transmit
beamforming Tnk,∀k ∈ Kn, as solution to the following
optimization problem

max
Tnk,

∀k∈Kn

gn(Ψn) (PWSRH)

s.t.
∑
k∈Kn

Tr(TnkT
H
nk) = pn.

The solution of PWSRH w.r.t. transmit beamforming for
MSnk, ∀n ∈M,∀k ∈ Kn, is given by Proposition 3.

Proposition 3: Let the receive beamforming Rnk and MSE
matrix Enk for MSnk be given by (19) and (20), respectively,
and by utilizing the Lemma 1 result, then the solution to
PWSRH w.r.t. transmit beamforming for MSnk, ∀n ∈M,∀k ∈
Kn, is given as

TWSRH
nk = (Ank + Dn + λnINt

)−1HH
nnkR

H
nkµnk, (40)

where Ank is given by (30) and

Dn =
∑

m∈M\n

∑
j∈Km

HH
nmjΨ

−1
mjHnmj . (41)

Proof 7: The derivation steps are similar to the ones shown
in Appendix C and thus omitted here for brevity.

Similar to (29), λn,∀n ∈ M, in (40) are calculated to
satisfy the power constraint at BSn,∀n ∈M. The closed-form
solutions of (40) can be obtained similar to (32), by replacing
the Bn term with Dn given by (41).

D. Algorithm Design and Convergence Analysis

To solve either problem of PWSRP, PWSRM, or PWSRH,
an algorithm based on alternating optimization can be used
[21]–[25]. The basic idea is to optimize each problem with
respect to one variable at a time, while keeping the rest of
the variables fixed. The proposed algorithm to solve either
optimization problem is summarized in Algorithm 2. We refer
to this algorithm as WSRP when solving PWSRP, as WSRM
when solving PWSRM, and as WSRH when solving PWSRH.

Algorithm 2 WSR Max. via Alternate Optimization.

1: Initialize T
(1)
nk ,∀k ∈ K.

2: MSnk,∀k: Calculates R
(t)
nk using (19).

3: MSnk,∀k: Calculates E
(t)
nk using (20).

4: if PWSRP then
5: BSn,∀n: Updates T

(t+1)
nk ,∀k ∈ Kn, using (29).

6: end if
7: if PWSRM then
8: BSn,∀n: Updates T

(t+1)
nk ,∀k ∈ Kn, using (33).

9: end if
10: if PWSRH then
11: BSn,∀n: Updates T

(t+1)
nk ,∀k ∈ Kn, using (40).

12: end if
13: Repeat steps 2-12 (until convergence)

In step 1, Algorithm 2 initializes the transmit beamforming
matrices for all users in the system by any means. Afterwards,
the algorithm alternates between the following three steps. In
steps 2 and 3, all MSs calculate, in parallel, their receive
beamforming and MSE matrices, respectively, for the given
transmit beamforming. Next, all BSs calculate, in parallel,
their transmit beamforming, using either approach, for the
given receive beamforming and MSE matrices. If this iterative
process converges, it converges to a fixed point that is a
stationary point of the WSR-objective function [20]. It is worth
noting that in a single-cell scenario, all proposed algorithms
coincide, where each algorithm differs from the other two in
the ICI handling.

For alternating optimization, monotonic convergence of the
objective to a stationary (locally optimal) point is guaranteed,
if each step has a unique optimum [33, Proposition 2.7.1]. The
requirement for the transmit beamforming optimization to be
unique is that the matrix to be inverted in (29), (33) or (40)
is invertible, i.e., (Ank + Bn/Cn/Dn + λnI)−1 does exist.
One sufficient condition for invertibility is that all the power
constraints are active, i.e.,

∑
k∈Kn

Tr(TnkT
H
nk) = pn so that

we always have λn > 0, which is the case in the formulation
of our problems, since the WSR optimum is reached at
maximum transmit power [20]. Another condition is that there
are at least Nt active vectors whose effective channels are
linearly independent, i.e., rank(Ank + Bn/Cn/Dn) ≥ Nt.
In practice, the cases when the matrix is non-invertible, and
the optimal beamforming solution is not unique, are very
rare [25]. Nevertheless, if the matrix is not invertible, the
pseudo-inverse may be used to get a solution. However, since
the original problems PWSRP, PWSRM, and PWSRH are non-
convex, a globally optimal point cannot be found, in general,



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 32, NO.1, 2017. 109

via alternating optimization. Moreover, different initializations
and iteration orders may converge to different local WSR-
optima [21]–[25].

V. WSR MAXIMIZATION SIGNALING SCHEMES

The proposed algorithms above are decentralized, where
each BS can calculate its transmit beamforming locally once
it has the required information. Here, we assume that each
BSn,∀n, has access to the local CSI, i.e., Hnmj ,∀m,∀j,
as in [23]–[25]. TDD operation is an effective technique for
obtaining this CSI, where uplink training in conjunction with
reciprocity provides the BSs with downlink and uplink CSI
simultaneously [27], [28]. In the following, we propose a novel
OTA signaling scheme based on TDD mode to facilitate the
algorithm implementation.

We assume that 1) each BS and MS has orthogonal pi-
lot symbols (training) in the downlink and uplink direction,
respectively, for the OTA signaling, 2) each TDD frame is
divided into two parts; signaling and data parts, as shown in
Fig. 2, where the signaling part is further divided into downlink
and uplink sub-parts to facilitate the variables’ exchange
between BSs and MSs, and 3) all exchanged variables are
perfectly estimated at each iteration.

At the downlink, we assume that each BSn transmits pilot
signals that are precoded with the transmit beamforming
Tnk,∀k ∈ Kn. Thus, each MSnk can estimate the downlink
equivalent channels HmnkTmj ,∀m,∀j, and update its receive
beamforming Rnk and MSE-matrix Enk. On the other hand,
to update the transmit beamforming, each algorithm has dif-
ferent signaling needs. Therefore, we propose the following
two signaling schemes.

A. Signaling Scheme A

In this scheme, we assume that each MSnk transmits an up-
link pilot signal that is precoded with the receive beamforming
Rnk. Thus, each BSn can estimate the uplink equivalent chan-
nels RmjHnmj ,∀m,∀j, and calculate Enk,∀k ∈ Kn, using
(20). This information is sufficient to calculate Ank,∀k ∈ Kn,
which is common in the three algorithms.

For WSRH, Ank,∀k ∈ Kn, is all that is needed to update
the transmit beamforming Tnk,∀k ∈ Kn, where the second
term Dn can be calculated locally. However, for WSRP, each
BSn would require vector πn to calculate Bn, which collects
all interference prices from the users of other cells. The direct
approach, as assumed in [18], is to let each MSnk calculate its
interference price πnk and feed it back to its serving BS, i.e.,
BSn. Then, all BSs perform broadcast-and-gather operation
of their interference prices using the backhaul. Different from
[18], we assume that each BSn first recalculates the receive
beamforming as Rnk = (I − Enk)(HnnkTnk)−1,∀k ∈ Kn,
using local information (see Appendix B), and then calculates
the interference prices πnk = Tr[RH

nkE
−1
nkRnk],∀k ∈ Kn, and

exchanges them with the other BSs using the backhaul. Thus,
we do not need the feedback from the MSs. On the other hand,
for WSRM, each BSn would require µmjEmj ,∀j ∈ K\Kn, to
calculate Cn. Using this signaling scheme, one possible way,

Signaling                       Data
DL  UL  DL  UL  

Fig. 2. Considered TDD frame structure.

as assumed in [25], is to let the BSs exchange them using the
backhaul.

From above, we can see that signaling Scheme A is best
applicable to WSRH, since no further variables feedback
is required. However, for WSRM (WSRP), the feedback of
matrices (scalars) between BSs is required. To reduce the
signaling overhead of WSRM and WSRP, we further propose
the following signaling scheme.

B. Signaling Scheme B

In this scheme, we assume that each MSnk transmits a
pilot signal that is precoded with

√
µnkE

− 1
2

nk Rnk [23], [25].
Thus, each BSn can estimate the uplink equivalent channels
√
µmjE

− 1
2

mj RmjHnmj ,∀m,∀j, which are sufficient to calcu-
late Ank,∀k ∈ Kn, and Bn or Cn. However, with WSRM
and WSRP, each BSn still requires Rnk,∀k ∈ Kn, to calculate
the uplink equivalent channels µnkRnkHnnk,∀k ∈ Kn. One
possible way, as proposed in [23], is to let each MSnk trans-
mit two consecutive uplink pilot signals; one precoded with
√
µnkE

− 1
2

nk Rnk and another precoded with Rnk. However, this
approach would unnecessarily increase the signaling overhead.
In the following, we propose an alternative approach, where
the main idea is to let each BSn recalculate Rnk,∀k ∈ Kn,
using only local information and thus reduce the signaling
overhead.

Let Xnk =
√
µnkE

− 1
2

nk RnkHnnk denote the uplink equiva-
lent channel with MSnk estimated at BSn. Substitute Rnk =
(I−Enk)(HnnkTnk)−1 into Xnk and simplify the resulting
expression, then we have

Xnk = (
√
µnkE

− 1
2

nk −
√
µnkE

1
2

nk)Ynk, (42)

where Ynk = (HnnkTnk)−1Hnnk. Right multiply both sides
of the latter equation by Y†nk and again simplify the resulting
expression, then we have

E
− 1

2

nk =
1
√
µnk

Mnk + E
1
2

nk, (43)

where Mnk = XnkY
†
nk (where Y†nk = YH

nk(YnkY
H
nk)−1),

which is formed using local information. Then (43) can be
solved for Enk iteratively as given by Algorithm 3.

Algorithm 3 Recalculating Rnk at the BS for Scheme B.

1: Construct Mnk and initialize E
(1)
nk randomly.

2: Set Ē
(t)
nk = 1√

µnk
Mnk + E

1
2 (t)

nk .

3: Set E
(t+1)
nk = Ē

−2(t)
nk .

4: Repeat steps 2-3 (until convergence).
5: At convergence, solve Rnk = (I−Enk)(HnnkTnk)−1.

In step 1, Algorithm 3 constructs the local matrix Mnk

and randomly initializes E
(1)
nk . Given those initial matrices, the
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algorithm alternates between steps 2 and 3 at each iteration.
At the t-th iteration, the algorithm solves for E

− 1
2 (t)

nk given
E

1
2 (t)

nk at step 2 (denoted as Ē
(t)
nk). Then, at step 3, the

algorithm solves for E
(t+1)
nk given Ē

(t)
nk. Those two steps are

repeated until convergence. If matrix Mnk is assumed perfect,
the algorithm is able to recalculate the MSE-matrix Enk

perfectly. Then, using Enk at step 5 we can calculate for the
receive beamforming matrix Rnk. Algorithm 3 convergence
behavior is shown numerically in the next section. A proof of
convergence is open and we leave it for a future work.

VI. NUMERICAL RESULTS

In this section we evaluate the performance of the pro-
posed algorithms by means of simulation. We consider a flat
Rayleigh fading scenario with uncorrelated channels between
antennas, i.e., each element of Hnnk,∀n ∈ M,∀k ∈ Kn, is
an i.i.d. complex Gaussian random variable with zero mean
and unit variance. For each simulated algorithm, we initialize
the transmit beamforming matrices using the MRT approach,
i.e., T

(1)
nk = [Vnk][1:Ns]

√
pn/KNs,∀n ∈ M,∀k ∈ Kn,

where Vnk denotes the matrix holding in its columns the
right singular vectors of Hnnk arranged in a decreasing order
w.r.t their singular values. Moreover, we assume that the noise
variance σ2

nk = σ2 = 1.
For comparison, we show simulation results of the WSR-

WMMSE algorithm from [21]–[25], MRT, and the Matrix
Orthogonal Projection (MOP) approach [34]. For the MOP
approach, the transmit beamforming for MSnk is given as

TMOP
nk = [tMOP

1 . . . tMOP
Ns

]
√

Pnk, (44)

where tMOP
i =

Πnk[Vnk][i]
‖Πnk[Vnk][i]‖

, Pnk is an [Ns × Ns] diag-
onal matrix holding the Ns power allocations found using
the water-filling method [30] over the largest Ns singular
values, Πnk = INt

−H−knk
(
(H−knk )HH−knk

)−1
(H−knk )H, whereas

H−knk = [{HH
nmj ,∀j ∈ K\k}] denotes all channel matrices

from BSn to all MSs except MSnk.

A. Example 1: Algorithm 3 Convergence

In this example, we show simulation results to evaluate the
convergence behavior of Algorithm 3. Fig. 3 shows the log-
scale convergence results of Algorithm 3 for the first user, i.e.,
MS11, in terms of the Absolute Error that is defined as

Absolute Error =
∣∣∣∑
i,j

(
E

(t)
11 −E?

11

)∣∣∣, (45)

where E?
11 is the perfect MSE-matrix of MS11 and E

(t)
11 is

the obtained MSE-matrix at the t-th iteration. Each simulated
point is averaged over 1,000 channel realizations.

From Fig. 3, it can be seen that Algorithm 3 has a fast
convergence rate, where it is able to obtain the perfect MSE-
matrix using a few iterations. Note that, when Nt increases,
Ns decreases, and MK decreases, the algorithm has faster
convergence rate. We note that all simulated channel realiza-
tions have converged to the perfect MSE-matrix, although the
convergence of some channel realizations is not necessarily
monotonic.
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Fig. 3. Algorithm 3 Log-scale convergence behavior [M = 2,K = 2].
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Fig. 4. Convergence behavior of Algorithms 1 and 2, SNR = 10 dB and
[M,K,Nt, Nr, Ns] = [3, 3, 9, 2, 2].

B. Example 2: Convergence behavior of Algorithms 1 and 2

In this example, we show simulation results to evaluate the
convergence behavior of Algorithms 1 and 2. Fig. 4 shows
the averaged sum rate convergence results assuming SNR =
10 dB.

From Fig. 4, we can see that all iterative algorithms have
a fast convergence rate, within 1-to-2 iterations for iBD and
within 10-to-15 iterations for the other algorithms. It’s worth
noting that WSRM has a slightly faster convergence rate than
WSR-WMMSE, although both algorithms seem to converge
almost to the same point. However, the convergence speed of
either algorithm varies for the individual channel realizations.
For some channel realizations, WSRM appears to converge
slightly faster and to a higher sum rate than WSR-WMMSE
and vice-versa for the other channel realizations.

C. Example 3: Sum Rate Performance for Single-Cell Case

In this example, we show simulation results to evaluate the
sum rate performance of Algorithms 1 and 2 in the single cell
case, i.e., M = 1. Fig. 5 shows the average sum rate results
for a range of SNR values, assuming µnk = µ = 1. Note
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Fig. 5. Sum rate performance for single cell case [M,Nt] = [1, 6].

that, when M = 1, algorithms WSRM, WSRP, and WSRH
are all equivalent, since the Bn,Cn and Dn terms are all
identity matrices and all algorithms share the Ank calculation.
Therefore, for this example, we only show WSRM results.

From Fig. 5, it can be seen that when [K,Nr, Ns] = [3, 1, 1]
(solid-lines), both iBD and MOP have very close performance
to both WSR-WMMSE and WSRM, which seem to have the
same sum rate performance. However, for the other simu-
lated scenarios, when K and/or Ns increases while keeping
Nt fixed, both iBD and MOP have large performance loss
as compared to WSR-WMMSE and WSRM, although they
maintain the same multiplexing gain. None of the iBD, MOP,
and MRT algorithms can achieve a good balance between
the altruistic and egoistic behaviors of users. While iBD and
MOP have complete altruistic behavior, MRT has complete
egoistic behavior. Consequently, they have performance loss,
as compared to WSR-WMMSE and WSRM.

To examine the impact of user-weights, Fig. 6 shows the
simulation results for a system with equal and unequal user-
weights. From Fig. 6, it can be seen that when all users have
equal weights, they achieve equal performance, in average.
However, when a user has a larger weight than others, MS3

in this case, the algorithm favors him and, thus, achieves
better performance. In terms of sum rate performance, the
system with equal users’ weights has better performance than
otherwise. The reason behind this is that when the algorithm
favors one user over the others, the user(s) with lower weight
would have a degradation in his(their) performance, MS1 in
this case. In general, the increase of one user’s rate does
not compensate the loss of the other users’ rate. Thus, the
algorithm would lose in terms of sum rate.

D. Example 4: Sum Rate Performance for Multicell Case
In this example, we show simulation results to evaluate the

sum rate performance of Algorithms 1 and 2 in the multicell
case, i.e., M > 1, assuming µnk = µ = 1. Fig. 7 shows the
average sum rate results for a range of SNR values.

From Fig. 7, we can see that WSRM and WSRP have the
exact sum rate performance when Nr = Ns = 1 (solid-

-10 -5 0 5 10 15 20
0

5

10

15

20

SNR (dB)

R
at

e
(b

its
/s

/H
z)

MS1

MS2

MS3

Sum

[µ1,µ2,µ3] = [1,3,6]

[µ1,µ2,µ3] = [1,1,1]

Fig. 6. Sum rate performance with equal and different user-weights,
[M,K,Nt, Nr, Ns] = [1, 3, 6, 1, 1].

-10 -5 0 5 10 15 20
0

20

40

60

SNR (dB)

Su
m

R
at

e
(b

its
/s

/H
z)

WSR-WMMSE
WSRM
MOP
iBD
MRT
WSRP
WSRH

[Nr, Ns] = [1, 1]

[Nr, Ns] = [2, 2]

Fig. 7. Sum rate performance for multicell case, [M,K,Nt] = [3, 3, 9].

lines), since both algorithms are equivalent as it is shown in
Theorem 2. However, when Nr = Ns = 2, we can see that
WSRP has some performance loss, as compared to WSRM,
and the performance loss increases as the SNR value increases.
Furthermore, MOP (not feasible when Nr = Ns = 2) has
the same multiplexing gain as WSRM, but with very large
performance loss. On the other hand, both iBD and MRT have
a flat performance as the SNR increases, due to severe ICI. For
WSRH, we can see that it has close performance to WSRM
for the entire SNR range with a small performance loss when
Nr = Ns = 1. However, increasing Ns, the performance
loss increases, as well, since Nt is fixed. WSRH is a self-
pricing algorithm that is distributed between cells. Thus, the
algorithm has less transmit coordination than WSRM and
WSR-WMMSE.

In Fig. 8, we show sum rate performance while varying the
number of MS antennas Nr and fixing the other parameters.
From Fig. 8, we can see that all algorithms have better sum
rate performance as Nr increases. However, WSRP has a much
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slower increase rate than others, which is translated to a higher
rate loss, as compared to WSRM. On the other hand, as Nr
increases, iBD starts to have better sum rate performance than
MRT, as compared to results from Fig. 7. The reason behind
this is that when Nr increases, the interference whitening
method has better impact on reducing ICI effects, and thus,
better performance.

In Fig. 9, we show sum rate performance while varying the
number of BS antennas and fixing the other parameters. As
discussed above, we can see from Fig. 9 that all algorithms
have better sum rate performance as Nt increases. Different
from Fig. 8, WSRP and WSRH sum rate increases as Nt
increases, thus reducing the rate loss as compared to WSRM.
Meanwhile, iBD has a slower sum rate increase as compared
to results from Fig. 8.

VII. CONCLUSIONS

We have considered the Weighted Sum-Rate (WSR) maxi-
mization problem in multicell MIMO Broadcast Channel (BC)

and proposed three different algorithms, which are based on
the alternating optimization technique and are guaranteed to
converge to a local WSR-optimum. For all algorithms, the
transmit beamforming matrices are obtained by investigating
the Karush-Kuhn-Tucker (KKT) conditions of the problems
with the help of Lemma 1. In contrast to the WSR-WMMSE
algorithm from [21]–[25], which solves the WSR maximiza-
tion problem indirectly by solving the Weighted Minimum-
Mean-Square Error (WMMSE) minimization problem, the
proposed algorithms in this paper provide a direct solution to
the WSR maximization problem. Using computer simulations,
it was shown that the proposed algorithms achieve comparable
sum rate performance to the WSR-WMMSE algorithm, while
using fewer iterations. Further, it was shown that the network-
wide WSR maximization can be equivalently solved using an
interference pricing approach if 1) each Mobile Station (MS)
is equipped with a single-antenna and 2) the users’ weights are
included in the interference prices. Furthermore, two different
signaling schemes based on Time Division Duplex (TDD)
mode were also proposed to facilitate the implementation of
the algorithms. Different from existing schemes, the proposed
signaling schemes reduce the signaling overhead and require
no feedback of variables between Base Stations (BSs).

APPENDIX

A. Proof of Theorem 1

At first, one can note that H̃−knk given by (14) can be written
in function of Ĥ−knk given by (11). To show this, let us define
R̃−kn = Bdiag[R̃nj ,∀j ∈ Kn\k]. Then we can write H̃−knk =

R̃−kn Ĥ−knk . Note that R̃−kn is an orthogonal unitary matrix.
Therefore, if Ns = Nr, then we have R̃H−k

n R̃−kn = I,
otherwise, if Ns < Nr, then R̃H−k

n R̃−kn 6= I. Assuming
Ns = Nr, we have

H̃H−k
nk H̃−knk = ĤH−k

nk R̃H−k
n R̃−kn Ĥ−knk = ĤH−k

nk Ĥ−knk .

Therefore, we have H̃−ink ∝ Ĥ−ink. This end result proves that
both matrices are proportional to each other. Consequently,
their individual null spaces are also proportional to each other,
i.e., G̃nk ∝ Ĝnk. Therefore, the singular values calculated
using (7) assuming H̃e

nk given by (15) are exactly equal to the
ones calculated assuming Ĥe

nk given by (12), which completes
the proof.

B. Proof of Lemma 1

In the lemma, we claim that Rnk = EnkT
H
nkH

H
nnkΦ−1nk . To

prove this, assume Ns = Nr and solve for Rnk from (20) as
Rnk = (I−Enk)(HnnkTnk)−1. Then, our claim is that

EnkT
H
nkH

H
nnkΦ−1nk

def
= (I−Enk)(HnnkTnk)−1

EnkT
H
nkH

H
nnkΦ−1nk = (HnnkTnk)−1 −Enk(HnkTnk)−1

TH
nkH

H
nkΦ−1nk

(a)
= E−1nk [(HnnkTnk)−1 −Enk(HnnkTnk)−1]

TH
nkH

H
nnkΦ−1nk

(b)
= E−1nk (HnnkTnk)−1 − (HnnkTnk)−1,

where (a) is obtained by left-multiplying both sides by E−1nk
and (b) is obtained by simplifying (a). From (21), E−1nk =
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(INr
+ TH

nkH
H
nnkΦ

−1
nkHnnkTk). Substitute E−1nk into (b) and

when simplifying the resulting expression we have

TH
nkH

H
nnkΦ

−1
nk = TH

nkH
H
nnkΦ

−1
nk ,

which completes the proof.

C. Proof of Proposition 1

From the KKT conditions, a local optimum must satisfy
∇Tnk

L = 0,∀k ∈ Kn, where ∇Tnk
L defines the complex

gradient operator of L with respect to Tnk and L defines
the Lagrangian function of problem PWSRP, which is given as

L =
∑

k∈Kn

fnk(πn)− λn
( ∑

k∈Kn

Tr(TnkTH
nk)− pn

)
=
∑

k∈Kn

(µnkrnk − Lnk)− λn
( ∑

k∈Kn

Tr(TnkTH
nk)− pn

)
. (46)

The gradient is a matrix with the [p, q]-th element defined as
[∇Tnk

L ][p,q] = ∇[Tnk][p,q]L . In order to calculate ∇Tnk
L ,

we need to calculate first ∇Tnk
rnk, ∇Tnk

rnj ,∀j ∈ Kn\k,
and ∇Tnk

Lnk by utilizing the following results from [32]:
∇ log

∣∣X∣∣ = Tr(X−1∇X) and ∇(X−1) = −X−1(∇X)X−1,
where X is a matrix.

First, ∇[Tnk][p,q]rnk = Tr(Enk∇[Tnk][p,q]E
−1
nk ). Here,

∇[Tnk][p,q]E
−1
nk = eqe

H
pHH

nnkΦ
−1
nkHnnkTnk, where ep (eq)

is a vector of Nt (Nr) dimension with one at the p (q) -th
element and zeros elsewhere. Then, we have

∇[Tnk][p,q]rnk = Tr(Enkeqe
H
pHH

nnkΦ
−1
nkHnnkTnk)

= eH
pHH

nnkΦ
−1
nkHnnkTnkEnkeq.

Since ∇[Tnk][p,q]rnk = [∇Tnk
rnk][p,q], then

∇Tnk
rnk = HH

nnkΦ
−1
nkHnnkTnkEnk. (47)

Furthermore, ∇[Tnk][p,q]rnj ,∀j ∈ Kn\k, is given as

∇[Tnk][p,q]rnj = Tr(Enj∇[Tnk][p,q]E
−1
nj ).

First, ∇[Tnk][p,q]E
−1
nj is given as

∇[Tnk][p,q]E
−1
nj

= TH
njH

H
nnj [−Φ−1nj [∇[Tnk][p,q]Φnj ]Φ

−1
nj ]HnnjTnj ,

whereas ∇[Tnk][p,q]Φnj = HnnjTnkeqe
H
pHH

nnj . Combining
all results together, we have

∇[Tnk][p,q]
rnj

= Tr(EnjT
H
njH

H
nnj [−Φ−1

nj HnnjTnkeqe
H
pHH

nnjΦ
−1
nj ]HnnjTnj)

= −eH
pHH

nnjΦ
−1
nj HnnjTnjEnjT

H
njH

H
nnjΦ

−1
nj HnnjTnkeq.

Therefore, ∇Tnk
rnj ,∀j ∈ Kn\k, is given as

∇Tnkrnj

= −HH
nnjΦ

−1
nj HnnjTnjEnjT

H
njH

H
nnjΦ

−1
nj HnnjTnk.

Finally, ∇Tnk
Lnk is given as

∇Tnk
Lnk =

∑
m∈M\n

∑
j∈Km

µmjH
H
nmjHnmjTnk.

From above, ∇Tnk
L is given as

∇Tnk
L =µnkH

H
nnkΦ

−1
nkHnnkTnkEnk−

ÃnkTnk −BnTnk − λnTnk, (48)

where

Ãnk =
∑

i∈Kn\k

µniH
H
nniΦ

−1
ni HnniTniEniT

H
niH

H
nniΦ

−1
ni Hnni,

Bn =
∑

m∈M\n

∑
j∈Km

µmjH
H
nmjHnmj .

From (48), it can be seen that it is not possible to solve for
Tnk directly. However, according to Lemma 1, we can write
RH
nk = Φ−1nkHnnkTnkEnk (note that Enk = EH

nk). Then, the
gradient function (48) can be written as

∇TnkL =µnkHH
nnkRH

nk −AnkTnk −BnTnk − λnTnk, (49)

where

Ank =
∑

i∈Kn\k

µniH
H
nniR

H
niE
−1
ni RniHnni.

From (49), we can solve for Tnk directly as

Tnk = (Ank + Bn + λnINt
)−1HH

nnkR
H
nkµnk. (50)

Thus, we have the result given in proposition 1.
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