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ABSTRACT

In this paper, a Blind Source Separation (BSS) and channel iden-
tifi cation method using second order statistics is proposed for non-
linear multiuser communication channels. It is based on the joint
diagonalization of a set of covariance matrices. Modulation codes
(constrained codes) are used to ensure the orthogonality of nonlinear
combinations of the transmitted signals, allowing the application of
a joint diagonalization based estimation algorithm. This constitutes
a new application of modulation codes, used to introduce temporal
redundancy and to ensure some statistical constraints. Identifi ability
conditions for the problem under consideration are addressed and
some simulation results illustrate the performance of the proposed
method.

1. INTRODUCTION

This work deals with the Blind Source Separation (BSS) and sys-
tem identifi cation problem for nonlinear multiuser communication
channels. The considered channel is modelled as a complex-valued
linear-cubic Multiple-Input-Multiple-Output (MIMO) Volterra fi l-
ter, which consists of a generical representation of instantaneous
linear-cubic polynomial mixtures. This kind of nonlinear models has
important applications in the fi eld of telecommunications to model
wireless communication links with nonlinear power amplifi ers [1]
and uplink channels in Radio Over Fiber (ROF) multiuser commu-
nication systems [2]. The ROF links have found a new important ap-
plication with their introduction in microcellular wireless networks
[3, 4]. This kind of network architecture provides to the system a
better capacity, coverage and power consumption. Thus, it can also
improve the system reliability and Quality of Service. The uplink
transmission of such systems is done from a mobile station towards
a Radio Access Point, where the transmitted signals are converted in
optical frequencies by a laser diode and then retransmitted through
optical fi bers. Important nonlinear distortions are introduced by the
electrical-optical (E/O) conversion [3, 4]. When the length of the
optical fi ber is short (few kilometers) and the radio frequency has an
order of GHz, the dispersion of the fi ber is negligible [5]. In this
case, the nonlinear distortion arising from the E/O conversion pro-
cess becomes preponderant [3, 4, 5]. Up to several Mbps, the ROF
channel can be considered as a memoryless link [2, 3]. Thus, in a
multiuser system, the wireless link can be viewed as a linear mix-
ture and the overall uplink channel as a memoryless MIMO Wiener
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system [2], which is a particular case of the model considered in
this work. Moreover, in this application, the channel nonlinearity is
modelled as a third order polynomial [2, 3].

In what concerns the BSS problem for nonlinear systems,
there are many works dealing with Post Nonlinear (PNL) mixtures
[1, 6, 7]. Some nonlinear BSS techniques are performed in sev-
eral steps (multi-stage processing) [1, 7] and some works use a joint
diagonalization of spatio-temporal covariance matrices to perform
some of these stages [1, 8]. However, in the context of communica-
tion systems, the transmitted signals are often assumed to be white,
which requires the use of some coding, like those developed in this
paper, to introduce time correlation in the signals. There are few
works dealing with the problem of BSS or/and identifi cation of non-
linear systems in the context of multiuser communication channels.
Among them, we cite [9] that proposes a blind zero forcing based
equalization technique for Code Division Multiple Access (CDMA)
systems.

The technique proposed in this paper exploits the use of Sec-
ond Order Statistics (SOS) of the received signals. Modulation
codes (constrained codes) [10] are used to ensure the orthogonal-
ity of nonlinear combinations of the transmitted signals for several
time delays, allowing the application of a joint diagonalization algo-
rithm [11, 12] to a set of estimated spatio-temporal covariance ma-
trices. The proposed modulation codes introduce redundancy by ex-
panding the signal constellation, generating multilevel modulations.
Modulation expanding is often used in bandwidth-constrained chan-
nels, where a performance gain can be achieved without expanding
the channel bandwidth or the transmission power [10]. Modulation
codes have applications in magnetic record, optical recording and in
digital communications over cable systems, with the goal of achiev-
ing spectral shaping and minimizing the DC content in the baseband
signal [10]. This kind of coding was also used in [13] to reduce
intrachannel nonlinear effects in high-speed optical transmissions.

In this work, the modulation codes are explored with a different
purpose: the nonlinear channel identifi cation. The redundancy pro-
vided by the codes introduces temporal correlation in a controlled
way, in order that the transmitted signals verify some statistical con-
straints associated with the channel nonlinearities.

The method developed in this paper can be viewed as an exten-
sion of the Second Order Blind Identifi cation (SOBI) algorithm [12]
to nonlinear channels. The SOBI algorithm is a blind source sepa-
ration technique for linear instantaneous channels. It uses a joint di-
agonalization based estimator that exploits the temporal correlation
of the sources. Joint diagonalization has been addressed by some
other authors in the context of communication systems in the case of
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linear channels, like in [14] that proposes a time-varying user power
loading to enable the application of the PARAFAC analysis, with the
goal of performing blind estimation of spatial signatures.

2. SYSTEM MODEL

The sampled baseband equivalent model of the communication
channel under consideration is assumed to be expressed as complex
linear-cubic polynomials of the form:

x(i)(n) =
M

X

m1=1

h
(i)
1 (m1)sm1

(n) +
M

X

m1=1

M
X

m2=m1

M
X

m3=1

m3 6=m1

m3 6=m2

h
(i)
3 (m1, m2, m3)sm1

(n)sm2
(n)s∗m3

(n) + υ(i)(n), (1)

where x(i)(n) is the signal received by the antenna i (i = 1, 2, ..., I)
at the time instant n, I is the number of antennae, M is the number
of users, h

(i)
2k+1(m1, . . . , m2k+1), for k = 0, 1, are the channel co-

effi cients, sm(n), for 1 ≤ m ≤ M , are the unknown stationary and
statistically independent transmitted signals and υ(i)(n) is the Addi-
tive White Gaussian Noise (AWGN). The noise components υ(i)(n),
1 ≤ i ≤ I , are assumed to be zero mean, independent from each
other and from the transmitted signals sm(n).

The cubic terms corresponding to m3 = m1 and m3 = m2

are absent in (1) due to the fact that, for constant modulus signals,
like PSK modulated signals, they have the form: sm1

(n) |sm2
(n)|2,

where |sm2
(n)|2 is a multiplicative constant absorbed by the asso-

ciated channel coeffi cient. As a consequence, these cubic terms de-
generate in linear terms. In addition, the quadratic terms are absent
in (1) due to the fact that distortions generated by even-power terms
produce spectral components lying outside the channel bandwidth,
which can be eliminated by bandpass fi lters at the receiver.

The channel model (1) represents a complex-valued truncated
triangular MIMO Volterra fi lter, the inputs of which are user in-
dexed signals, instead of a single time indexed input as in traditional
Volterra fi lters. It represents a generical representation of instanta-
neous linear-cubic polynomial mixtures.

The signals received on the I antennae, at the time instant n, can
also be expressed in a compact way:

x(n) = Hs(n) + v(n), (2)

where x(n) = [x(1)(n) . . . x(I)(n)]T ∈ C
I×1, v(n) = [υ(1)(n)

. . . υ(I)(n)]T ∈ C
I×1 and H = [h(1) . . . h(I)]T ∈ C

I×MV , the
vector h(i) (1 ≤ i ≤ I) containing the parameters h

(i)
2k+1(m1,

. . . , m2k+1), k = 0, 1, and MV being the number of channel co-
effi cients of each fi lter h(i) in (1). Moreover, s(n) ∈ C

MV ×1 is the
input vector containing the linear {sm1

(n)} (1 ≤ m1 ≤ M) and
cubic terms {sm1

(n)sm2
(n) s∗m3

(n)} (1 ≤ m1, m2, m3 ≤ M ,
m1 6= m3, m2 6= m3, m2 ≥ m1). Note that MV = M

2
(M2 −

M + 2).

3. IDENTIFIABILITY CONDITIONS FROM SOS

The proposed nonlinear BSS and channel identifi cation method re-
lies on the joint diagonalization of a set of spatio-temporal covari-
ance matrices of the received signals, given by:

R(τ ) = E

h

x(n + τ )xH(n)
i

= HC(τ )HH + σ2IIδ(τ ), (3)

with

C(τ ) = E

h

s(n + τ )sH(n)
i

, (4)

where τ ∈ Υ = {τ1, τ2, ..., τT }, the superscript H denotes the com-
plex conjugate transpose of a matrix, δ(τ ) is the Kronecker symbol,
σ2 is the AWGN variance and II is the I × I identity matrix. If
I ≥ MV , the noise variance σ2 can be estimated as the mean of the
(I − MV ) smallest eigenvalues of R(0) [12], allowing the subtrac-
tion of the noise term in (3). Thus, this noise term will be omitted in
the sequel.

In order to enable the application of a joint diagonalization algo-
rithm, the matrices C(τ ) must be diagonal for τ ∈ Υ. The following
theorem states suffi cient conditions to ensure this constraint.

Theorem 1: Suppose that all the signals transmitted by the users
are mutually independent and have constant moduli. The following
conditions are suffi cient to ensure the diagonality of the covariance
matrices C(τ ), τ ∈ Υ:

(i). E [sm(n)] = 0, for all the users;

(ii). E
ˆ

s2
m(n)

˜

= 0, for (M − 1) users;

(iii). E
ˆ

s2
m(n + τ )sm(n)

˜

= 0 and E
ˆ

s2
m(n)sm(n + τ )

˜

= 0,
for (M − 1) users, ∀ τ ∈ Υ;

(iv). E [sm(n + τ )sm(n)] = 0, for (M − 1) users, ∀ τ ∈ Υ.

The proof is omitted due to a lack of space.
The following theorem proves that some conditions of Theorem

1 are verifi ed if all the users transmit uniformly distributed PSK sig-
nals with more than 2 symbols in the constellation.

Theorem 2: Suppose that all the users transmit uniformly dis-
tributed PSK signals with Rm > 2, ∀m ∈ {1, 2, ..., M}, where
Rm is the number of constellation symbols of the mth user. Then,
conditions (i) and (ii) of Theorem 1, and conditions (iii) and (iv), for
τ = 0, are verifi ed.

Proof: If sm(n), m = 1, ..., M , takes an equiprobable value

from the set
n

Am.ej2π(r−1)/Rm ; r = 1, 2, ..., Rm; Rm > 2},

then we have

E [sp
m(n)] =

Ap
m

Rm

Rm
X

r=1

ej2π(r−1)p/Rm =
Ap

m

`

ej2πp − 1
´

Rm (ej2πp/Rm − 1)
,

(5)
which is equal to zero for p = 1, 2, 3 and Rm > 2. �

4. DESIGN OF CODING SCHEMES

In this section, some modulation codes are designed to ensure that
the transmitted signals satisfy the constraints listed in Theorem 1.
In these modulation code schemes, the modulation makes part of
the encoding process and it introduces redundancy by expanding the
signal constellation. This means that a modulation memory is intro-
duced in a controlled way with the purpose of keeping the orthogo-
nality between nonlinear combinations of the transmitted signals.

This constitutes a new application of modulation codes, since
they are used to ensure some statistical properties associated with
the channel nonlinearities. Moreover, the code redundancy could
also be explored in the symbol recovery process to provide Bit Error
Rate (BER) improvements, by exploiting the fact that introduced re-
dundancy imposes some constraints on the symbol transitions. This
subject will be investigated in future works.
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Fig. 1. Miller Code State diagram.

The modulated signals are characterized by Discrete Time
Markov Chains (DTMC) with Rm states, given by the PSK sym-
bols ar = {Am· ej2π(r−1)/Rm}, for r = 1, 2, ..., Rm, where Am

is the amplitude of the signal of the mth user. The state transitions
are defi ned by a block of km bits, denoted by Bn = {b

(1)
n , b

(2)
n , ...,

b
(km)
n }, where b

(k)
n , for k=1, ..., km, is uniformly distributed over

the set {0, 1} and 2km < Rm. In addition, it is assumed that b
(k)
n

(k=1, ..., km) are mutually independent. For each of the Rm states,
the block of bits Bn defi nes 2km equiprobable possible transitions.
Therefore, the coding imposes some restrictions on the symbol tran-
sitions. For each state, there is

`

Rm − 2km

´

not assigned transi-
tions. The code rate of the mth user is then given by (km/lm),
where lm = log2 Rm.

Let us denote by T = {Tr1,r2
}, with r1, r2 ∈ {1, 2, ..., Rm}

the Transition Probability Matrix, Tr1,r2
being the probability of a

transition from the state r1 to the state r2. Note that
PRm

r2=1 Tr1,r2
=

1 and Tr1,r2
∈ {0, 1/2km}. So, the matrix T defi nes which are the

possible state transitions for each state.

An example of mapping from the bits Bn to the correspond-
ing PSK symbols is illustrated in Fig. 1 for a 4-PSK signal, where
{a1, a2, a3, a4} are the constellation symbols (states) and km = 1.
This state diagram corresponds to the run-length-limited code known
as Miller Code, associated with the transition probability matrix
T2,B given in (13). The Miller Code widely used in digital mag-
netic recording and in Binary-PSK carrier modulation systems [10].
Similar state diagrams can be obtained for the other transition prob-
ability matrices given in the Appendix.

According to Theorem 2, if all the users transmit uniformly dis-
tributed PSK signals, then conditions of Theorem 1 are verifi ed for
τ = 0. So, the following theorem proposes some constraints in the
transition probability matrix T associated with the users in such a
way that all the users transmit uniformly distributed PSK signals.

Theorem 3: Let us assume that the DTMC associated with the
coding is irreducible and aperiodic. If

PRm

r1=1 Tr1,r2
= 1, for 1 ≤

r2 ≤ Rm, then, for a large number of time steps, the average fraction
of time steps during which the DTMC is in the state ar1

converges
to 1/Rm, for 1 ≤ r1 ≤ Rm.

Proof: The aperiodicity and irreducibility properties assure that
[15]: (i) all the limiting probabilities of a DTMC exist and are posi-
tive, (ii) the stationary distribution exists and is unique, and (iii) the
distribution of limiting probabilities is equal to the stationary distri-
bution. So, the limiting probabilities P = [p1 p2 ... pRm

] can be

obtained by the following system of equations


P T = P,
PRm

r=1 pr = 1.
(6)

It can be easily verifi ed that if
PRm

r1=1 Tr1,r2
= 1, then P = [1/Rm

... 1/Rm] is a solution of the system (6). And fi nally, it can be
proved (the proof is omitted due to a lack of space) that if the limiting
probability of a state ar1

exists, then it is equal to the long-run time
average spent in the state ar1

, i.e. for a large number of time steps,
the average fraction of time steps that the DTMC spends in the state
ar1

converges to the limiting probability of the state ar1
. �

In the sequel, some restrictions to the transition probability ma-
trix are developed in order that the conditions of Theorem 1 are ver-
ifi ed for τ 6= 0. Let T n

r1,r2
be the (r1, r2)

th entry of Tn. By defi ni-
tion, T n

r1,r2
represents the probability of being in the state ar2

after
n transitions, supposing that the current state is ar1

. So, we may
write:

E

h

sk
m(n + τ )sl

m(n)
i

=
1

Rm
aT

l Tτ ak, (7)

where a = [a1, a2, ... aRm
]T and ak =

ˆ

ak
1 , ak

2 , ... ak
Rm

˜T
. Thus,

the conditions (iii) and (iv) of Theorem 1 can be rewritten as:

aT Tτ a2 = 0, aT
2 Tτ a = 0 and aT Tτ a = 0. (8)

The results found in this section may be summarized in the following
corollary.

Corollary 1: If the following conditions hold for all the users:

(i). the transition probability matrix corresponds to an irreducible
and aperiodic DTMC;

(ii).
PRm

r1=1 Tr1,r2
= 1, ∀ r2 , 1 ≤ r2 ≤ Rm;

and, in addition, equations (8) hold for (M − 1) users ∀ τ ∈ Υ,
then all the conditions of Theorem 1 are satisfi ed and, therefore, the
covariance matrix C(τ ) is diagonal ∀ τ ∈ Υ.

It should be highlighted that equations (8) only depend on the
matrix T and the constellation order. That means that transition
probability matrices can be a priori designed to verify these equa-
tions. In the Appendix, some examples of such matrices verifying
these constraints are listed, with the corresponding admissible de-
lays.

5. CHANNEL ESTIMATION ALGORITHM

Provided that the conditions of Corollary 1 hold, the channel H can
be estimated from the set of covariance matrices R(τ ) by using a
joint diagonalization algorithm. The proposed method can then be
viewed as an extension of the SOBI algorithm [12] to nonlinear
channels. The uniqueness of the joint diagonalizer based estima-
tor is given by the following theorem [12]. The covariation matrix
C(0) is assumed to be normalized, i.e. C(0) = IMV

.

Theorem 4: Let B = {B1, ..., BT } be a set of T matrices
MV × MV such that Bt = MCtMH , for t = 1, ..., T , where
M ∈ C

MV ×MV is a unitary matrix and Ct ∈ C
MV ×MV , for

t = 1, ..., T , are diagonal matrices, the elements of which are de-
noted by ct(r) = [Ct]r,r . If

∃ t ∈ {1, ..., T} such that ct(r1) 6= ct(r2),

∀ r1, r2 ∈ {1, ..., MV }, with r1 6= r2, (9)
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then any joint diagonalizer of B is equal to ΠΛM, where Λ is a
diagonal matrix and Π a permutation matrix.

In the Appendix, some examples of confi gurations of transition
probability matrices for 2 users are given, verifying the uniqueness
condition (9). The estimation algorithm can be summarized as fol-
lows:

(i). Calculate the whitening matrix U from:

U =

»

λ
− 1

2

1 w1 · · ·λ
− 1

2

MV
wMV

–H

, (10)

where {λk}
MV

k=1 are the MV largest eigenvalues of R̂(0) and
{wk}

MV

k=1, the corresponding eigenvectors, R̂(0) being the
sampled estimate of R(0). We have considered that the es-
timated noise variance σ̂2 was already subtracted from R̂(0),
as mentioned earlier.

(ii). Calculate the following set of prewhitened matrices:
R̂W (τ ) = UR̂(τ )UH , for τ ∈ Υ, where R̂(τ ) are the sam-
pled covariance matrices.

(iii). Obtain a unitary matrix M̂ as the joint diagonalizer of the
matrices R̂W (τ ), for τ ∈ Υ.

(iv). Estimate the channel matrix as Ĥ = U†M̂ and the transmitted
signals as ŝ(n) = M̂

H
Ux(n), where (·)† denotes the matrix

pseudo-inverse.

Step (iii) of the method is carried out by using the joint diag-
onalization algorithm of [11]. Note that the joint diagonalization
estimator does not assume the knowledge of the covariance matrices
of the sources C(τ ) and that it requires I ≥ MV .

6. SIMULATION RESULTS

In this section, the proposed nonlinear BSS and channel identifi ca-
tion method is evaluated by means of computer simulations with an
uplink channel of a Radio Over Fiber (ROF) multiuser communica-
tion system. The linear wireless interface is modeled as a memory-
less multiuser channel. The I antennae are half-wavelength spaced
and the transmitted signals are narrowband with respect to the array
aperture. Moreover, the propagation scenario is characterized by two
users, the angles of arrival of which are 30◦ and 70◦, respectively.
The E/O conversion in each antenna is modelled by the linear-cubic
polynomial c1x+c3|x|

2x, with c1 = −0.291, c3 = 1.078 (see [4]).
The used modulation is 4-PSK and all the results were obtained via
Monte Carlo simulations using NR = 200 independent data realiza-
tions.

Fig. 2 shows the Normalized Mean Squared Error (NMSE) of
the estimated transmitted symbols versus SNR for the confi gurations
of transition probability matrices given in Table 1 of the Appendix,
for M = 2, T = 4, Ns = 3000 and I = 4, where Ns is the length
of the data block used for the moment estimation. The NMSE of the
transmitted signals is defi ned as:

eS(n) =
1

NR

NR
X

j=1

PNs

n=1 ‖ sj(n) − ŝj(n) ‖2
2

PNs

n=1 ‖ sj(n) ‖2
2

, (11)

where sj(n) and ŝj(n) represents respectively the transmitted sig-
nals and the estimated transmitted signals at the jth Monte Carlo
simulation and ‖ · ‖2 denotes the l2 norm. The performance of our
technique is compared with that of the Minimum Mean Square Error
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Fig. 2. NMSE versus SNR for the confi gurations given in Table 1 -
M = 2, T = 4, Ns = 3000 and I = 4.
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Fig. 3. NMSE of the channel parameters versus SNR for various
values of Ns using Confi g. 2, M = 2, T = 4 and I = 10.

(MMSE) receiver [10] assuming perfect knowledge of the channel.
Note that the tested confi gurations provide quite similar NMSE per-
formances, not far from that of the MMSE receiver when the SNR is
smaller than 25 dB.

Fig. 3 shows the NMSE of the channel parameters versus SNR
for various values of Ns, where the NMSE of the channel parame-

ters is defi ned as: eH = 1/NR

“

PNR

l=1 ‖ H − Ĥl ‖
2
F

”

/
`

‖ H ‖2
F

´

,

where ‖ · ‖F denotes the Frobenius norm. In this case, we have
used Confi g. 2 of Table 1, M = 2, T = 4 and I = 10. It can be
seen that the quality of the channel estimation can be considerably
improved by increasing the length of the data block. This result in-
dicates that the errors in the estimation of the covariance matrices
constitute one of the main sources of performance degradation. In
fact, if the theoretical values of the covariance matrices R(τ ) are
used, the estimation algorithm provides a very low NMSE for the
estimated channel parameters, limited by the machine precision.

Fig. 4 shows the Symbol Error Rate (SER) versus SNR provided
by the proposed technique and the MMSE receiver assuming perfect
knowledge of the channel, using Confi g. 2 of Table 1, M = 2,
T = 4 and Ns = 3000, for I = 4 and I = 8. We remark that the
performance of the joint diagonalization algorithm is close to that of
the MMSE solution if the number of antennae is increased.
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7. CONCLUSION

In this paper, the problem of BSS and channel identifi cation for non-
linear multiuser communication channels has been solved in assum-
ing that the channel is modeled as a multiuser MIMO Volterra fi l-
ter. The proposed method is based on the joint diagonalization of
a set of spatio-temporal covariance matrices. We have made use of
modulation codes to ensure the orthogonality of nonlinear interfering
terms for different time delays, which constitutes a new application
of modulation codes. The proposed technique was tested by means
of computer simulations with an uplink channel of a multiuser ROF
communication system. In future works, other estimation algorithms
will be tested and the impact of the modulation codes on the bit re-
covery will be investigated.

A. APPENDIX - CONFIGURATIONS OF TRANSITION
PROBABILITY MATRICES

As pointed out, the transition probability matrices can be a priori
designed to verify the conditions of Corollary 1. In the following,
we present some examples of such matrices corresponding to 1/2-
rate codes for 4-PSK signals.

It can be proved by mathematical induction that the following
matrices:

T1,A = 0.5

0

B

@

1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1

1

C

A
, T1,B = 0.5

0

B

@

0 1 1 0
0 0 1 1
1 0 0 1
1 1 0 0

1

C

A
,

(12)
verify all the conditions of Corollary 1 ∀τ ∈ I. In this case a =
[1 j − 1 − j]T . In addition,

T2,A = 0.5

0

B

@

1 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1

1

C

A
, T2,B = 0.5

0

B

@

0 1 0 1
0 0 1 1
1 1 0 0
1 0 1 0

1

C

A
.

(13)
also verify conditions (i) and (ii) of Corollary 1.

The identifi ability test indicated in Theorem 4 only depends on
the covariance matrices C(τ ), for τ ∈ Υ, which can be calculated
from the transition probability matrices by using (7) and:

E

h

sk
m(n + τ )sl∗

m(n)
i

=
1

Rm
aH

l Tτ ak. (14)

This means that, if the matrices T of the users are known, the iden-
tifi ability test can be carried out. Thus, it can be verifi ed that the
confi gurations of transition probability matrices for 2 users given in
Table 1 verify the condition of Theorem 4. The corresponding ad-
missible delays are Υ = {0, 1, ..., T − 1}, with T ≥ 2.

Table 1. Confi gurations of transition probability matrices for M=2.

Confi g. User 1 User 2

1 T1,A T2,B

2 T1,A T2,A

3 T1,B T2,B

4 T1,B T2,A
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