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Abstract � The paper is devoted to present an anal­
ysis of the impact of higher order statistics (HaS) in 
adaptive blind source separation criteria. Despite the 
well known fact that they are necessary to provide 
source separation in a general framework, their im­
pact on the performance of adaptive solutions is a still 
open research field. The approach of probability den­
sity function (pdf) recovering is used. In order to verify 
the analysis, two constrained adaptive algorithms are 
investigated. Namely, the multiuser kurtosis algorithm 
(MUK) and the multiuser constrained fitting probabil­
ity density function algorithm (MU-CFPA) are used 
due to the desired characteristics of different HOS in­
volved in their design. Simulation results are carried 
out to basis our analysis. 

I. INTRODUCTIO:-: 

Blind SOurce separation (BBS) has been gained increasing at­
tention in the signal processing community due to its wide appli­
cability in many fields such as digital communications, biomed­

ical engineering and financial data analysis among others [1]. 
From the work by Herault et al in 1985 [2] much effort has 

been done in order to design proper models and suitable statisti­
cal criteria that reflect some known structural properties of the 
sources 13]. A common characteristic of all those criteria is the 
use of higher order statistics (HOS) since second order statis­
tics (SOS) are not sufficient to solve the separation problem for 
general sources [4J. 

The information-theoretic approach has been introduced by 
Donoho in [5J, who has treated the EBB problem by an entropy 
minimization view point. Other well known method to solve 
BSS problems is the use of contrast functions introduced by 
Coman [6], where a contra.';t function is a cumulant-based func­
tion of the separation filter outputs that is maximized if and 
only if separation is achieved [4, 3J. 

Those works have provided important results on the issue 
of necessary and sufficient conditions to provide perfect separa­
tion. Despite the development of techniques that rely directly 
on HaS cUlllulants, some single user techniques, such as con­
stant modulus (CM) and Shalvi-Weinstein criteria, have been 
proposed to ESS in a single-stage and multistage context [7, 8J. 

Papadias proposed in [3, 8) a source separation approach that 
is based on the Shalvi-\Veinstein criterion. The proposal is 
called multiuser kurtosis (MUK) and consists on the kurtosis 
maximization, constrained to an orthogonal global response. It 

ha.s been a great advance on the field of BSS because it has 
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proved global convergence for an arbitrary number of users, 
what has not been done so far. 

The main characteristic of the cumulant-based criteria, as 
the MUK one , is that they use a number of HOS that has a 
trade-off between complexity and performance, it means, the 
criteria ha.s to be the simplest one able to separate the sources. 
In this work we analyze the impact of using more cumulants 
on the criteria to be optimized (or in the contrast function) in 
terms of their corresponding adaptive algorithms. For this sake, 
we have used an approach of probability density function (pdf) 
recovering. 

\Ve have previously proposed a source separation criterion 
based on the estimation of the pdf of the ideally recovered sig­
nals [9]. The criterion also takes profit from the MUK approach 
by considering the constraint over the global response in order 
to provide correct source separation. 

OUf objecti\'e in this work is to evaluate the differences on 
adaptive solutions when the algorithm considers only one higher 
order moment, as in MDK case, or all higher order moments as 
OUf approach in [9]. This aspect can provide significant impro\'e­
ments on the performance of adaptive ESS algoritluns and show 
some guidelines for design blind source separation criteria. 

The rest of the paper is organized a.'; follows. Section II shows 

the analysis involving higher-order cumulants criteria and their 
impact on adaptive algorithms. On Section Ill, two algorithms 
that use different number of cumulants are described to ba.sis the 
analysis. Section IV shows the computational simulations and 
discusses the impacts of the use of more higher-order cumulants 
on the criteria. Finally, our conclusions are stated on Section V. 

II. HIGHER-ORDER CUMULANTS AND ADAPTIVE 

ALGORITHI\IS 

We assume that K independent and identically distributed 
(Li.d.) and also mutually independent zero mean discrete se­
quences uk(n), k = 1, ... , K, t hat share the same statistical 
properties, are transmitted over a MIMO linear memory less 
channel that introduces interuser interference. 

If we consider Al sensors in the receiver we can re present the 
recei\·ed signal at time instant n as 

x(n) = Ha(n) + v(n), (1) 

where a(n) = [ al (n) aK(n) ] T is the vector of sources, 
H is the M x K channel matrix, v(n) is the 1\1 x 1 vector of 
additive gaussian noise and x(n) is the AI x 1 vector of received 
signals. 

The received signals are then precessed by the MIMO equal-
izer given by the matrix Win) = [ wl(n) wK(n) ], 
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which produces a K x 1 vector y(n) that consists of the estima­
tive of the sources. The receiver output can be mathematically 
written as 

where 

y(n) = WH (n)x(n) = WH (n)Ha(n) + v' (n) 
= G(n)a(n) + Vi (n), 

G = WH (n)H "'" [ gl gK ] 

� [ :,:� gKl 

L" gKK 

(2) 

is the global response matrix and v'(n) = WH (n)v(n) is the 
filtered noise at the receiver output. Figure 1 depicts the above­
described system. 

a x y 
t t t 

:ID,-------,H I (J ilL------J W I () : f� 
�---------� -----------) v 

G 

Figure 1: General blind source separation scheme. 

But, how to find the matrix Wi The answer to this question 
has been widely investigated through a large number of research 
teams and published in a great amount of papers. 

In [101, one of the pioneers works on blind deconvolution, the 
approach of pdf matching was inserted. The paper shows that if 
the pdf of the signal in the input and output of a linear system 
(channel and equalizer) are equal then the signal of the input is 
recovered. 

After the work [6], much research has been done in order to 
find cumulant-based contrast functions that when which opti­
mized source separation is achieved. And also, the number of 
cumuJants invoh'ed in the contrast function should be chosen 
to optimize the trade-off complexity x performance. In 1111 
some investigation on cumulants was done in o rder to provide 
reduction of redundancy in contrast functions. 

Based on the Benveniste-Goursat-Ruget (BGR) theorem [10], 
one may consider that blind source separation aims to equalize 
the pdfs of the input and output signals of linear systems. If 
that is achieved, the recovered sources differ from the input one 
only by a permutation and scale factors [1]. 

But how is the pdf constructed? In [121, for discrete Ll.d. 
and zero mean sources, it is proved that the kurtosis can provide 
correct recovering of the signals. The main analysis was based 
for closed-form solutions and not for adaptive algorithms. 

To evaluate the impact on adaptive algorithms we may use 
the Gram-Charlier expansion of pdf given by rI3): 

py(y) = aCyl (1 + � C,P;(Y») , (3) 

where a(y) is the pdf of a normalized Gaussian random variable, 
C; is the i-th coefficient based on the cumulants up to order i of 
the pdf of y and Pi terms are the Hermite polynomials defined 
in terms of the i-th derivative of o:(y) as 

(4) 
The Gram-Charlier expansion is a general approach of the 

Edgeworth expansion [141, the later one only writes the expan­
sion in terms of the cumulants in a decreasing form. 

Typical Hermite polynomials are: 

Po(y) = 1 

H (y) = y 
Pdy) = y2_1 
Ps (y) = yJ - 3y 
P4 (y) = y4 - 6y2 + 3 

Ps (y) = y5 - lOl + 15y 

H (y) = yO _ 15y4 + 45y2 - 15, 

(5) 

and a recursion form of these polynomials is 

(6) 

In an adaptive algorithm, the pdf is estimated through the 
cumulants and also, see Equation (3), by the Hermite polynomi­
als. Actually, if only one cumulant is used as contrast function, 
the pdf estimaton will be based on this higher-order moment. 
This is interesting in the steady-state, when the correct solution 
is achieved, but the convergence performance of the adaptive al­
gorithm can be damaged. 

As shown by the Edgeworth expansion , the lower-order cu­
mulants are more significant than the higher-order ones if the 
pdf is correctly estimated [131. In fact, the higher-order cu­
mulantes are related to the Hermite polynomials with a lower 
influence on the estimation, since they carry less information, 
as it can be seen in Equation (5). 

However, in adaptive algorithms, the information prm'ided 
by the higher-order Hermite polynomials can be very useful in 
the transient period, when the cumulants cannot be accurately 
estimated, to improve the pdf estimative and increase the con­
vergence rate. 

In order to evaluate these differences we present in the next 
section two algorithms that use a different number of HOS to 
perform blind sourCe separation. 

III. Tw'o EXAMPLES: KURTOSIS MAXIMIZATION AND 

CONSTRAINED FITTING PDF CRITERIA 
The presented strategies are based on the well known Shalvi­

Weinstein (SW) criterion [121 proposed to the single user (equal­
ization) case. From the SvV criterion we know that if the re­
ceived power (after equalization) is assured to be equal to the 
transmitted one, it is sufficient to equalize one higher-order mo­
ment to achieve equalization, except by a phase rotation. Gen­
eralization of this theorem to the multi user case is done by the 
insertion of the condition that the recovered sources must be 
different. Then, the following conditions must hold to assure 
source separation [31: 
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C3. l� [Yk(n)Ji = i�,,1 (k = 1, . . . ,K); 
C4. E {iYk(n)n = 0'; (k = 1, . . . ,K); 
C5. E {Yk(n)y�(n)} = 0, k f. q . 

where ak(n) is the transmitted sequence by the k-th source, 
E {-} stands for expectation, Ka is the kurtosis and (]� is the 
variance of the transmitted sequence, and K, [.J is the kurtosis 
operator. 

In order to prove the sufficiency of the conditions above, we 
may express the yariance and kurtosis of each output as 

K 

E {IYk(n)n = 0'; L i9kJi2 (7) 
k=1 

and 
K 

Ii [ydn)J = Ii" L i9kd4 . (8) 

Then, from Equation (8) and Condition C3 we have 

K 

L 191,114 = 1, (9) 
k=1 

and from Equation (i) and Condition C4 we obtain 

K 

L i9Ui2 = 1. (10) 
k=1 

Therefore, based on the fact that 

Equations (9) and (10) state that gk must be in the form 

(11) 

where the single nonzero element can be at any position and q,k 
is an arbitrary phase rotation. Then, by combining Condition 
C5 with the noiseless case of Equation (2) we obtain; 

k f. q. (12) 

Equations (11) and (12) dictate the important property that 
the nonzero position of the sol ution vectors gk and gq cannot be 
the same. Hence, the unique solution that satisfies the problem 
corresponds to the K solution vectors gk be different "Dirac"­
type vectors, as given in Equation (11). 

In the sequel, we present two algorithms that perform BSS, 
in according to the conditions given above. 

A. Multiuser Kurtosis Algorithm (MUK) 
A multiuser algorithm based on the maximization of the kur­
tosis for blind signals recovering is proposed in [8, 3]. MUK is 
a constrained criterion that maximizes the kurtosis of the sig­
nals, subject to the constraint of normalized global response, it 

means, { n1?J�lUdG) = jtlill'[Ykll 
, 

subject to: GH G = I 
where I is the identity matrix. 

(13) 

The criterion divides the separation task into two parts: the 
equalization step, that maximizes the kurtosis, and the separa­
tion one, that performs the decorrelation of the outputs. For 

each task, we denote the beamformers by we for equalization 
part, and W for the later one. The constraint step is performed 

by means of a Gram-Schimdt orthogonalization of matrix W· 
[3J. Therefore, those two parts can be, respectively, written in 
their adaptive versions by [3, 8J: 

Ween + 1) = W(n) + /lsign (�a) x· (nlY(n), (14) 

where Yen) = [iYI(n)i2 yJ(n) iYK(n)i2 YK(n) ] and 
Equation (14) corresponds to the equalization step. For the 
orthogonalization one, we have, for the j-th user 

wj(n+1)= 
j-l 

wj(n + 1) - E (wf (n + 1)wj(n + 1)) wJ (n + 1) 
1=1 

The MUK algorithm is summarized in Table 1 [3]. 

Table 1: I\IUK algorithm, 

1. Initialize W(O) 

2. for n > 0 

3. Obtain Ween + 1) from Equation (14) 

4 Obt ' (+ 1) wj(n+l) . am WI n = Ilwi(n+llll 
5. for j = 2: K 

6. Compute Wj(n,+ 1) from Equation (15) 

7. Go to 5 

8. Go to 2 

(15) 

This algorithm considers only the fourth order moment (un­
normalized kurtosis) to provide source separation. Next section 
presents an algorithm that uses all higher order moments. 

B. Multiuser Constrained Fitting Probability Algo­
rithm (MU-CFPA) 

The MU-CFPA [9] is a constrained version of the algorithm pro­
posed for single-user equalization in [15] that has a multiuser 
version reported in [16]. The original one is based on the esti­
mation of the pdf of an ideally equalized signal at each output, 
by means of a parametric model that fits the system order and 
pdf features. 

Then, we can construct the criterion in order to minimize the 
"distance" between the desired pdf (ideally equalized one) and 
the parametric model . Thus, the well known Kullback-Leibler 
divergence (KLD) [Ii] is used to minimize the divergence be­
tween both functions, since both are positive definite functions. 
The criterion may be written, for the k-th user, as [18] 

(16) 
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where Dollo is the KLD between the pdfs , PY,id",,[ is the pdf 

of the ideally equalized signal and 4>(y, (T;) is the parametric 
model given by 

1 S (]Wf (n)x(n) - a;f2) 
<I>(Yk) = ../21f(T; � exp 

2(T; 
Pr(a.), (17) 

where a'; is the variance of each Gaussian in the model, S is 
the number of symbols in the transmitted constellation and aj 
is the i-th symbol from the alphabet of transmitted symbols. It 
worths mentioning that minimize Equation (16) corresponds to 
maximize the log-likelihood function [17J and also to find the 
entropy of Y if 1> (Y, (Tn = PY,idea[(Y) [15, 16, 19J. 

To assure that the recovered sources be different the orthog­
onalization procedure of the IvlUK is inserted in order to cope 
with the problem of lost users and higb steady state error when 
using an explicit decorrelation term as proposed in [71. Then, 
tbe following constrained criterion has been derived: 

{min JFP(W) = � D II W k<:::l PY.,d,"'(Y) 4'(y< .a-;) (18) 

subject to: GH G = I 

and the adaptive version of the algorithm consists in repJacing 
the step 3 in Table 1 by the following expression: 

W'(n + 1) 0= W(n) - /1vlFp (W(n», (19) 

where VJfP (W(n» is given by 

where a, is the K x 1 vector with the a, symbol from the trans­
mitted alphabet in all positions. 

The resulting algorithm is then called Multiuser Constrained 
FPA (MU-CFPA) and Table 2 summarizes the dynamic of the 
algorithm . 

Table 2: fv1U-CFPA. 

1. Initialize W(O) 

2. for n > 0 

3. Obtain We(n+l) from Equations (19) and (20) 

4 Obt . ( 1) wf ( n+ l } . am WI n + = iH(n+I}1I 
5. for j = 2: K 

6. Compute wj(n + 1) from Equation (15) 

7. Go to 5 

8. Go to 2 

The minimization of KLD in Equation (18) is achieved if 
and only if the two pdf are equal, which consists in matching 
all statistical moments of both pdfs. So, the MU-CFPA clearly 
respects the necessary conditions to provide source separation 
and kurtosis maximization is implicitly comprised in the equal­
ization procedure. 

l3j 

IV. SIMULATION RESULTS 

We consider a simple case of a 2 x 2 unitary channel matrix 

H = [ 0.701 + jO.172 

�0.274 - jO.634 
0.629 + jO.286 ] 
0.159 + jO.704 ' 

(21) 

for the case of two independent QPSK inputs in a 30 dB signal­
to-noise ratio (SNR) environment. The parameters of simula­
tions were: IhlUK = 2 X 10-3, tL�IU-CFPA = 10-2, (T� = 0.1 and 
W(O) = We(O) = I for both algorithms. 

In order to evaluate the performance of both algorithms we 
use the constant modulus error (CME) defined, for the k-th 
user, as follows: 

(22) 

The constant R is related to the power of the transmitted con­
stellation. In Our case we will assume a normalized power, it 
means, R "'" 1. It is important to mention that the step sizes 
were chosen as the highest ones that allow to reach the lowest 
CME for both algorithms. 

Figure 2 shows t.he evolution of the mean CME (from both 
users) of the two algorithms. We can observe that the MU­
CFPA outperforms the MUK in terms of convergence rate and 
reaches almost the same final steady state error (about -30 dB). 
The com"ergence of the MU-CFPA is reached about of 250 sym­
bols and the MUK converges around the 3000 symbols. This 
behavior has also been observed in a wide range of simulations 
for different channels and signaJ.to-noise ratios. 

-5 

-'0 

� 
UJ -15 :. U 

-20 

-25 

-30 

Consta.nt Nodulus Error 

-��O --���--�'�OOO�--�'��--�2000�--�2��=---���--�%oo�---'�OOO 

Uer.abons. 

Figure 2: CME evolution for both algorithms. 

Further, we can observe that a phase rotation is inserted in 
the MUK case. This is not observed in the MU-CFPA, due its 
characteristic of phase recovering [9, 15, 161 that is assured when 
all higher-order moments are used. Figure 3 illustrate the 10% 
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Figure 3: Constellation of the 10% last symbols of one 

output from both algorithms (�vIUK - + in black; �IU­
CFPA - 0 in gray). 

last symbols cOILStellations from both algorithm, so that the 

phase recovering capability of the :vrU-CFPA can be observed. 

v. CONCLUSIONS AND FUTURE WORKS 
\Ve have presented some tools for the analysis of the use 

of higher order moments in adaptive blind source separation 
algorithms. 

The analysis is ba.sw on the probability density function 
matching approach and on the expansion of the pdf in the 
Gram-Charlier one, that uses the Hermite polynomials which 
carry information about dat.a during the adaptation procedure. 

In order to eval uate the used analytical tools we have studied 
two adaptive algorithnls of the literature, namely the multiuser 
kurtosis algorithm (MUK) and the multiuser constrained fit­

ting pdf algorithm (MU-CFPA). Those algorithms respect the 
assumed hypothesis and they use contra.st functions with a dif­
ferent number of higher-order moments. 

The main feature we have observed is the improvement on the 
speed of convergence with a small increase in the computational 
complexity, in the particular Case of the MU-CFPA. 

A natural extension to this work is to find an optimum point 
for the trade-off complexity x performance and extend the com­
parisons with other adaptive algorithms that optimize contrast 

functions with more than one higher-order cumulants. 
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