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Abstract - A new strategy to channel equalization 
in digital communication is presented. In this 
approach: the clustering problem is treated 
analytically. We propose a systematic bayesian 
classification using a gaussian approximation of 
the probability density function for each cluster. 
The quality of the approximation dependr on the 
number of clusters considered. We show 
analytically that we can obtain the Bayes equalizer 
performance, if we use the m i m u m  number of 
clusters, and the Wiener one, if we use only tw 
clusters (binary signal care). Some computational 
simulations illustrate power of the presented 
strategy. 

1. Introduction 
Equalization in digital communication systems is 

used in order to recMlsmct the transmitted 
symbols and combat the intersymbol interference 
(ISI) effect. When channels are characteriz.4 by a 
finite impulse response (FIR) filter and an additive 
white gaussian noise source, it is shown in some 
recent works [1][2][7l that it is possible to use a 
Radial Basis Function network (RBF) to perform 
the optimum bayesian equalizer. 

However, despite its desirable performance, this 
approach is strongly limited by the inherent 
equalizer complexity and the high convergence 
time of the most common learning techniques. 

On the other hand, linear equalizers have been 
used for long time. Their importance is associated 
to their low complexity and theoretical tractability. 
However, it has been shown [7] that the optimum 
equalizer is nonlinear in all realistic cases where 
noise is present and the channel is non-minimum 
phase. Furthermore, the considered error function 
minimized by the Wiener linear equalizer, the 
Mean Square Error (MSE) [4], is not equivalent to 
the symbol error rate (SER) 151 which is the 
normally used criterion in the digital 
communication context 

It is well known [9] that a nonlinear block 
detection equalization based on the principle of 
Maximum Likelihood Sequence Estimator will 
provide the best equalization performance when the 
channel is completely known. Its high 

implementation complexity is one of the main 
reasons for using other nonlinear symbol decision 
class equalizers with simpler implementatims but 
poorer perfiiance. In this context, the 
communication community has recognized the 
bayesian symboldecision class equalizers as 
optimal solutions which deals with the equalization 
problem as a classiiication one [lo]. 

Several recent works have been done to reduce 
complexity using clustering methods [2][3] over 
the channel's output The most con" way to 
reduce complexity is to find an approximate 
optimum B a p  decision boundary. When a RBF 
neural network is considered. Complexity can be 
highly reduced by using variable selection 
algorithms as in [8]. 

In this work, we propose a new analytical strategy 
to reduce the bayesian equalizer complexity using 
an estimation of the channel model parameters. 
Our approach confirms analytically that we can 
obtain the Wiener SER performance, if we use the 
less complex bpian equalizer structure, ot the 
optimal Bayes equalizer, if we use the m m  
complex one. 

The main interest of this appmach is thus to 
render possible a full range of gradual choices 
between complexity and performance. 

In the section 2, we present the thearetical basis 
to this approach and in section 3 our simulation 
results are presented and exposed compared with 
the performance of others classical equalhrs. The 
conclusions are presented in the last part. 

2. Equalization and ClassiTkation 
In Fig.l, we depict a cIassical digital 
communication system model. The message sour~e 
emits one symbol a(n) every T seconds, with the 
symbol belonging to a finite alphabet. In this work 
we wil l  consider the bipolar case, where a(n) is 
taken from the set {&I}, forming an i.i.d. sequence. 
The noise b(n) is an additive gaussian noise with 
zero mean and variance at, the causal channel 
impulse response f in)  has a finite length N ,  and 
&(n - d )  is a decided symbol with delay decision 

0-7803-5030-8/98/$10.00 01998 IEEE 428 

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO CEARA. Downloaded on November 25,2022 at 15:26:59 UTC from IEEE Xplore.  Restrictions apply. 

mailto:jugurtamontaIvao@int-ewy.fr
mailto:Bemadette.Dorizzi@int-evry.fr


a. 
v c c m  defined as: 

Far Simplicity of representation, we use column 

chanrl 44 

F*= 

-: ,w-r(.*B I-.) 
Fig. 1: Model of a data msmission system with 

equalizer. 

0 0 0 

f d  fd-1 fd-M+I mw:d 
0 0 .*. 0 

delay position 

In this illusuation, class 1 ('0,) comsponds to the 
transmitted symbol a(n - d )  = 1 and class -1 (Y) 
comsponds to the transmitted symbal 

for which the projected samples have maximum 
benuren-cluss separation and, at the same time, the 
minimum within-class dispasion [a]. This 
corresponds to maximize the functional 

a(n - d )  = -1. clearly, we lo& for 811 nientatia! 

J @ )  = hTR,h hTRch , where R,is the bemen-class 

scatter mclltix and R, is the Mth-clats scatter 

b(n) = [b(n) b(n - 1) a - .  b(n - M + 1)]T and 

x(n)  = [x(n) x(n - 1) 
also define the matrix 

x(n - M + 1)r . we 

f o  0 .-. 

f N - l  '.. f 2  
: ... : 

0 0 ..* fN-, 
N + M - 1 rows and M columns. Then, we can 
write: 
x(nf = f(n) T + b ( n f  = a(n)T F + b(n)T (1) 

where i(n) is the channel state vector and b(n) is 
the noise vector. 

An interesting equalizer that we will consider in 
the first part of subsection 2.1 is a linear mapping 

y(n)  = TI (x(n)) = x(n)' - h , where h is the vector 

h = [ho hl --. hM-l y. This also corresponds 

to fmd the best projection of the samples x(n) onto 
a line in the direction of h. In the classification 
sense [6], this caesponds to find the Fisher's 
linear discriminant h. The Fig. 2 illustrates the 
effect of choosing two different directions for a twe 
dimensional example. 

; I , '  

Fig. 2: Projection of the samples on 2 different lines 
(in 2-D ca~e). 

processing, it is interesting to interpret the total 
scatter matrix R,=R,+R, as the cnrelation 
matrix of the random vector x(n). 

2.1. Calculations for Two Clusters 
To peafm a simple equalize? device, the first 

passible approach is to project the canrpted 
samples x(n) onto a line in the dinxtian of h. In 
this sense, the best directim of h to cluster the 
projected samples can be investigad conside?ing 
the bipolar case, we can calculate two centers 
related to the symbol a(n-d): 

c1 = Eb(n) )  when a(n-d)=l (2) 
C-1 = E b ( n ) }  W h a  a(n-d)=-l. (3) 

Then, a lying (1) to (2) and (3), 
cIT = E  1 (n)T F + b(n)T}  when a(n-d)=l, or 

d, 
and c4' = E&(n)' - F  + b(n)T}  when a(n-d)=-l, 
or 
c4' =[0 0 ... -1 ... O1.F. SO, defining an 
helpful auxiliary matrix as : 

cIT=[O 0 ... 1 ... OI-F, w f i a  1 is 8t rank 

where d can be greater than N-l,we can  write^ 
(4) 

Then. c =k,I,cl}is a set of centers and C is a 
binary random variable with P(C=c+0.5 and 
P(C=c.*)=0.5. 
h a similar way, we define two random variables 

cT = t ~ ( n ) ~  0 F a  

around each center: 
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x,(n)' =a(n)' , F + ~ ( B ) ~ ,  when&-d)=-1 
and 
x1 (n)' = a(n)' - F + b(n)'. when a(n-d) = 1 
To calculate the betwleen-class scatter matrix R, 

we need the mean Vector 
m = P(C = C1)CI + P(C = c-1)c-1 

01' .Then 

a, = Eic - mxc - my 
and R, = F:Ek(n)a(n)T b* 

(5) 
2 T  

In a similar way, we can calculate the within- 
class scatter matrix Rx*: (i denotes cluster i ,  i=l 
or i=-1) 

R,, =E{xi -cixxi -qY}= 

= E{@ - ET>a(n) + b(n)k(rf(F - F*) + b(n)T )> 

* R, =cT,F* F* 

R %, -e, = (m2 (FT - F*T )(J? - Fe) + ai1 . 
One can remark that R , ,  doesn't depend of i. In 
other words, the within-class scatter matrix is equal 

10 the scatter matrix of each cluster 
R,-, =(Rf-I-C-, +RX+,)/2= 

C&F~ - F * ~ ) ( F  - F*) + O ~ I .  2 

Expanding this expression and taking into account 
that 

FZF = FZF+ = I;I~F*, we have: 

(6) 
Now, we can apply these results to J ( h ) .  The 
vector trio which maximizes this functional satisfies 
the eigenvalue problem R,h, = AR,,h,. Then, 
to investigate the direction of this vector, we can 

T F,)h, =+,(F 2 T  F-F, T F,)+a I , 

R, = &@F - F,=F* + G ~ I  

ply (5) and (6) in this last equation: 

i ) ,  d <F* 
, we have thus: 
aiu+;L)v* T F,P, =2bav 2 T  F I + + ~ , .  

Considering equality F?rF = FTF. = FTF*, we can 
obtain: (1 + d)kp = ARxh,, where 

p = & = a%d fd-1 ... fd-M+Ir  = 
= & M n - d ) )  (7) 

T and k = c1 h, and R, = E k ( n ) x ( d T  }. Finally. 
we have : 

show that, if (y) # O ,  4 and the Wiener 

- 
equalizer solution (hW =R, 'p) [4] have the 
m e  direction. 

In the decision erro~ sense, the decision boundary 
has more importance than the equalization 
mapping itseif. For this linear equalizer, the 
decision boundary currwds to the values of x 

x h,=O 
satisfying : 

(9) 
Applying (8) in (9) gives: 

T 

This direction is thus the Same found by the Wiener 
equalhr. 

In another hand, we can implement 8 bayesian 
equalizer, with a RBF mcture, coasidering only 
two gausSians centered at c,, and q, 
respectively. The mapping is now a nonlinear one: 
r(n) = Td (x(m = 

where r1 (x(n)I2 = (x(n) - c1 R-l(x(n) - c l )  
and 

r_l(x(n))2 = (x(.,-c_lrR-l(x(n)-e_l) are 
the Mahidanobis distance [q between x(n) and 
each center and R is the metric used to compensate 
for the nonradial dispersion of x(n). Fig.3 
illustrates the scheme of this bayesian equalizer. 

W "  ' Q  

Fig. 3: Bayesian equalizer with two centers. 
In this case, the decision boundary c<lrresponds to 
the values of x(n) satisfying the equation : 
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2.2. Cdcuhtions for Several Clusters 
To improvc the equalizer peafmnance, we can 

find s e d  clusters by Similar omsidaations. The 
fmt stepis to rake the awiliary matrixas : 

0 - a -  0 

0 0 

fd* fdiQ-1 fd+Q-M+l 
0 ... 

... 
where P and Q are constants. We can write 

set of 2p*4 vecm. Each center is associated to 
the label 1 ar -1, according to the carrespondent 
symbol at the delay position, a(n-d). 

The mean vector is always the null vector: 
m = .x P(C = c i j  ,... m )  c i j  ,... 

i * J a  

= [o OlT, and the matrices R, and R, 
arecalculatedasin (Sand(@. 

The resulting equaliza assumes that each 
hyperellipsoidal cluster of equal size and shape, 
uxresponding to each center, has a gaussian 
distribution of probability. Such aPpr"ati0n 
makes possible an equalizer implementation as 
shown in Fig.5, with 4 clusters in this example. 
Each weight in the last  la^ is equal U) the label of 
its corresponding cluster, i e. a(n - d )  . 

Funhennore, if we take P + Q = N + M - 2 ,  we 
have the maximum number of clustas and F. = F . 
Consequently, R, = 41. and this equalizer wiiI 
perform the optimal Bayes one. 
x(n) r(n-1) ... x(n-M+Z) x(n-M+1) . .  

(x(n) - cl r R-'(x(n) - cl)= 

To find this boundary, we know that c, = 
so 

(x(n) - cl r R-l (x(n) -cl)= 

After some simplifications, we have 
T -1 c1 R x(n) = -x(nf R-'cl 

Assumhg that R is symmetric and positive 

definite, then R-' exists and is symmetric m. 
The last equation can be rewritten as 
(x(nlT ( R - ' ) ~  cl  )T = -x(n) T R - ~ C ~  or 

(x(n)* R-'cl)* = -x(nf R-'c1 , and the 

T decision boundary satisfies x(n)  R-lcl = 0 .  
Then, using (7) we have 

(11) 
T -1 ~ ( n )  R p = O  

Now, considering that R and R are both 
X-C X 

symmetrical and positive dehite, we can 
R=Rx 

take 
or R = R  . In the second case, if we 

X - 
compare (11) and (10). it is evident that we will 
obtain a decision boundary equal to that of Wiener. 
Hence, this two clusters bayesian equalizer has the 
same SER as the Wiener one. However, in order to 
approximating the optimum B a p  decision 
boundary, the best choice is R= R,, because this 
metric takes into m u n t  only the dispersion of 
each cluster. 
For both choices of R, the decision boundaries 

are equivalent to that implemented by a transversal 
linear filter. Fig.4 illustrates this equivalence. 
Moreover, as we can see in the experimental 
results, both choices of R result in a similar SER 
performance, despite the best MSE performance of 
the Wiener qual i i r .  

Fig. 4: Equivalence between the two equalizers. - 
Fig. 5: Bayesian equalizer with four centers. 
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23 A Good Choice of P and Q 
This approach clearly supposes that the channel is 

known or well identified. In this way, we can 
choose the centers considering the rows of F where 
the highest (in module) channel cuefficient appears. 

The resulting bayesian equalizer has 2 clusters 
and P + Q + 1 = M . For example, considering the 
simple channelf =[-0.2 0.5 1 -0.6 0.31” 

M 

we h&e F The gratest 

coefficient is equal to 1 and it appears at the third 
and fourth rows of F. Then, the chosen centers are 
the four vectors ti (1-0.6) f (0.5cl)P. The 
labels of these centers depend on the delay, which 
capl be 2 or 3 in this example. Choosing d=3, the 
t w ~  centers associated to the symbol a(n-3)=1 are 

= [(l- 0.6) (0.5 + 1)y“ and 

c - ~ , ~  = [(-1-0.6) (-0.5+ l)y, and those 

ass0ckted to the symbol a(n-3)=-1 are 

Cl.-l = [(I + 0.6) (0.5 - I)p and 

C-l.-l = [(-1+ 0.6) (-0.5 - 1)r . Fig.6 shows 

these centers (13, all the possible states (k’and ’03, 
and indicates their dispersion around each 
corresponding center. The resuiting equalizer is 
ais0 ShOWn in Fig. 5. 

2- 

1-  

A .- 
i: 0 -  - 

-1 - 

-2 - 

-3 -2 -1 0 1 2 3 
r(n) 

Fig. 6: Centers and clusters illusnation in a 
two-dimensional example. 

3. ExperimentalResdts 
Taking intoaccount the justifications in [71 to use 

nanlinear equalizas, wc how that the linear 
transversal equalizaorder can be inatased but, in 
a highly noisy situation, this inaeases also the 
total power of the noise at the equalizer input. So, it 
has been shown that there is little to be gained in 
terms of SER by increasing the order M beyond a 
cextain Limit 

Fig.7 illustrates this linear equalizer Limitation. In 
this example, the channel is f = b.0 0.8 OS], 
the delay decision is d= 0 and hvo different noise 
levels have been considered: a,l=O.2 and 
0; =0.1. 

10’ 

1 2 5 4 5 6 7 8 9  

M 
Fig. 7 : Performance versus number of taps. 

The Same Fig.7,s.hows the simulation results of 
the proposed bayesian equaliza with 2.8 and p*- 

clusters. The first one and the Wiener equalizer 
have a similar perfoamance, as expaxi. The last 
equalizer carresponds m the optimum B a p  

the 8-cIustas bayesian equalizer (P+Q+l=3) 
outperfms the Wiener quaker even beyond its 
minimum SER. Mare~ver, this 8-clusters ba- 
equaiizer has not a uprohibitivew complexity, 
mainly if compared to the optimum B a p  equalizer 
to this channel (2 A,+’ clusters). 

We present also some other simulation results in 
Fig.8. In this case the channel used 

the 
equaliza order is M=5 and the decision delay is 
d=4. In this figure we can see the gradual 
relationships that exists between 
complexities and their respective perfumance. The 
32clusters equalizer carresponds to that proposed 
in the section 2.3. The complexity reduction results 
are compatible to that in 181. 

equalizer. comparing these results we can see that 

isf =[-0.21 450 0.72 0.36 0.211, 
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10'' 1 I 
S N R  

6 7 8 9 10 11 12 13 14 

Figure 8 : Performance versus SNR. 

4. Conclusions 
We have investigated in this paper the 

implementation of a bayesian equalizer, after an 
identification of the channel coefficients. The 
presented appraach makes possible a graduaI 
compromise betweem complexity and performance 
depending of the number of states chosen for the 
gaussian modelisation of each class. The analytical 
formulation shows and the experimental results 
confirm that the less complex equalizer 
implementation provides equivalent Wiener SER 
performance. Moreover, it is also shown that, fiom 
this lower born, we can increase the equalizer 
complexity (number of centers) enhancing its 
performance. At the upper born we recover the 
optimal bayesian equalizer. 

However, in this approach we need to know the 
channel impulse response or its estimation. Then, 
we see as a natural continuity work a clustering 
based channel identification strategy which take in 
consideration this presented strategy to accelerate 
the clustering algorithm. 

Another point to be investigated is the 
performance loss of the proposed bayesian 
equalizer related to the channel identification error. 
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