Modeling the use of spot instances for cost reduction in cloud computing
adoption using a Petri net framework

Maristella Ribas', C. G. Furtado?, Giovanni Barroso’

'"Techne Engenharia e Sistemas, Sao Paulo, Brazil
*Federal Institute of Ceara (IFCE), Fortaleza, Brazil
mari@techne.com.br, cjunior@ifce.edu.br,
geb@fisica.ufe.br

Abstract

An effective decision-making about using Infrastructure as a
Service (IaaS) resources in cloud computing projects is still a
challenge to managers. We need to optimize resources use in
cloud services, to obtain financial success in cloud projects. In
this work, we propose a petri net framework to model possible
cost savings using public clouds spot instances pricing scheme.
The results from initial simulations indicate that spot instances
can be a very interesting option for savings in autoscaling
process.

Keywords—Cloud computing, Spot Instances, BDIM, Petri nets..

1. INTRODUCTION

Cloud computing is defined by NIST [1] as a model for
enabling on-demand network access to a shared pool of
configurable computing resources that can be rapidly
provisioned and released with minimal management effort or
service provider interaction. Usually, cloud services are
categorized as Infrastructure as a Service (IaaS), Platform as a
Service (PaaS) and Software as a Service (SaaS).

In a previous work [2], we proposed a novel framework
that combined several of the most relevant factors (according
to the current literature) to assist decision-makers in the
evaluation of both SaaS and on-premises options choice.
There, we identified that cloud services managers need to
optimize the use of cloud resources in order to obtain financial
success in their cloud projects. When the PaaS users contract
the use of shared resources (CPU, memory, databases, or web
server, among others), this problem is more apparent. We can
cite the example of a PaaS provider that shares resources from
a third-party IaaS provider. The PaaS provider need to allocate
as many users as possible in the same resource without losing
quality of service (QoS), ensuring acceptable response time
and usability in accordance with defined service level
agreements (SLAs). The optimal allocation problem is similar
to the traditional "knapsack problem", known to be NP-
complete, and whose resolution requires specific heuristics to
enable the computational implementation in acceptable time.
We need to identify the heuristics that can provide the best
results for this problem.The complexity is even greater when
we need to optimize total cost of infrastructure use. When laaS
plans hired by the PaaS provider uses automatic elasticity
features (auto scaling), the potential costs are virtually
unlimited, and any savings in each operation may represent a
significant value.

978-3-901882-76-0 @2015 IFIP

1428

Alberto S. Lima®, Neuman Souza®, Antdo Moura®

3Federal University of Ceara, Fortaleza, Brazil
*Federal University of Campina Grande (UFCG), Brazil
{albertosampaio, neuman} @ufc.br, antao@dsc.ufcg.edu.br

In this paper, we focus on modeling and reducing cost of
elasticity of cloud services. Elasticity, also known as dynamic
provisioning, “has become one of the most important features
of a cloud computing platform” [3]. By using this feature,
application owners can scale up and down the resources used
basedon the computational demands of their applications, and
pay only for the resources they actually use. Elasticity places
new challenges in resource management, as pointed in [4], and
makes it harder to estimate costs, thus adding more
complexity to the decision making process.

Our main work contribution resides in the framework
proposal and findings from simulation scenarios while
investigating savings using spot prices. The PN model to
estimate cost savings uses a particular purchasing option for
virtual machines named spot instances [5]. This purchasing
option is currently supported by Amazon Web Services
(AWS), the leader in public IaaS market, according to
Gartner’s analysts [6]. Spot instances work exactly the same
way as any other running EC2 virtual machine. The difference
lies in the pricing scheme: the hourly price is not fixed; in fact
clients bid on how much they are willing to pay for them.
AWS dynamically defines Spot Price, which varies in real-
time based on supply and demand. If the client bid is above
the current Spot Price, then the instance is started. If Spot
Price changes, and rises above the client bid, then the instance
is terminated by AWS. In this paper, we will refer to instance
as any type of virtual machine that can be rented in a public
cloud.

II. LITERATURE REVIEW

A Colored Petri Net [7] (CP-net or CPN) is a graphical
language for constructing models. A CPN is a discrete-event
modeling language combining the capabilities of Petri nets
with the capabilities of a high-level programming language
[8]. We used CPN Tools [9] to design the hierarchical Petri
nets to compose our framework. CPN Tools also supports the
inclusion of timing information to the framework.

We conducted a literature review, where we looked for
‘Cloud Cost Model’. We selected 43 papers that seemed more
relevant to our study. An interesting study related to
comparison of on-premises and cloud services is found in
[10]. The authors compare costs and overhead for HTC jobs in
two environments: a public cloud and a desktop cluster of
non-dedicated resources. Their cloud cost model considers
hours of use of instances and upload/download data. They
point that start of a billing period varies between providers.

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO CEARA. Downloaded on November 11,2022 at 13:45:13 UTC from IEEE Xplore. Restrictions apply.

Some, including AWS, charge from the start of the wall-clock
hour in which the instance was started — billing from 7 pm for
an instance started at 7:59 pm whilst others charge from the
time the instance was actually started. Their on-premise cost
model considers factors like cost of hardware acquisition, cost
of providing technical support for the desktop cluster, charges
incurred for carbonemission, and energy cost (per kWh). They
propose six different policies for cost savings in the cloud: P1
- limiting the maximum number of Cloud instances, P2 -
merging of different users’ jobs, P3 - instance keep-alive, P4 -
delaying the start of instances, P5 - removing the delay on
starting an instance, and P6 - waiting for the start of the next
hour.

The work in [11] compared costs of HPC (high
performance computing) on-premises and in the cloud. The
simplified total cost of the on-premises cluster mainly depends
on the purchase of the hardware, the maintenance and
operation of the cluster, and its energy consumption (which
can be lowered by turning off idle nodes). For the cloud cost
model, they focus on hours of instances use and analyze
factors like purchasing options.

Elasticity in multi-tier cloud application is analyzed in
[3]. The authors proposed an algorithm that relies on online
monitors to detect the changes in workloads and perform
corresponding scaling in each tier. The algorithm was
designed to measure the cost spent in adding a server divided
by the decreased response time because of this addition.
Hence this criterion was called the consumed cost/decreased
response time (CC/DRT) ratio.

Some studies refer to cost optimization using linear
programming techniques [12], using cache as a service (CaaS)
to reduce /O costs and improve performance [13]. The study
in [14] explored factors that affected chargeback for cloud
services, mainly acceptability and effectiveness, and presented
interesting insights on qualitative issues in cloud services use.

Spot instances were studied in[15] to characterize their
behavior through statistical models. The authors present
probability density functions (pdf) for Spot Price and interval
for price spot change. Another study of Spot Prices [16]
proposed a framework for bidding on spot prices in order to
achieve monetary advantages and still comply with SLA
regulations.

Petri nets were used in [17] as a tool for stochastic
generation of dependability and cost models for representing
cloud infrastructures.

To the best of our knowledge, there is no study to
provide a model to estimate cost savings using spot instances.

III. OUR FRAMEWORK

Cloud providers usually charge customers in a pay-per-
use basis, that is, the customer pays for each hour (or minute,
or month) that the machine stays turned on. Each laaS
provider has its own billing model for virtual machines use. In
this paper, we investigated Amazon Web Services (AWS)
current purchasing options. AWS is the leader in IaaS market,
and currently offers three purchasing options:

e On demand: charges are for each hour the virtual
machine (named instance) is turned on. There is no
upfront investment, and no commitment of use. It is the
simpler way of use and pay, but usually the most
expensive hourly rate;

e Reserved: customers pay for the period of reservation
instead of hours of use. Payment options may be: no
upfront, partial upfront or all upfront. Figure 1 illustrates
prices for US-east region and m3.medium instance size.
AWS presents an hourly estimate of the cost to compare
prices to the On demand option; however, reserved
instances are paid by the period (month, year) and not by
hour of use. This means that if you purchase a reserved
instance for a month, it makes no difference if it stays on
or off, the price will be the same. Reserved instances
prices can be equivalent to on premises cost of operating a
local server [18];

e Spot: charges are for hours of use, similar to on demand
option, however, the hourly price is not fixed. Clients bid
on how much they are willing to pay for the hour. AWS
dynamically defines Spot Price, which varies in real-time
based on supply and demand. If the client bid is above the
current Spot Price, that the instance is started. If Spot
Price changes, and rises above the client bid, then the
instance is terminated by AWS.

YRR 1M WYEAR TTRA
Soiege O Y o
Paewl Hiecve o On Cemnd b
Csee gt Hovdy et Brae Hoy Peyraart Cledtt overOr- Demard
O Uplwd Boihly Howly™ Demard Hanlr
Notpfront 50 $%50 S0.0500 8%
s it st R . w0, Partizl an 510.95 $0.0278 [
Shakdz er .
upleai Holr Upfront $0.070per
taur
Allupfront 5372 5000 S0.0425 B% Alusfost 5ot A

Figure 1. Reserved Instances Prices for US-east Region and m3.medium
instance size.

Begin

mctian
TOPETCO OGN TeET . looalhen RaT:

> Monitor |

’:’Jlflcmmy cost and
Spot savings
—

nlSarom
Figure 2. CPN Model for Instance use Simulation

To investigate how the use of spot instances can help in
cost reduction, we created a CPN model hierarchically
organized in modules that will compute:1) the monthly cost of
all running instances and 2) savings by using Spot instances.
In our model, there will be one (could be more, if necessary)
reserved instance, that will remain always on, to guarantee
availability of the service all the time. Since it will always be
on, the reserved option is the most cost effective option. The
other instances will be turned on and off whenever needed, by
monitoring the demand for servers, simulating the auto scaling
process. This way, the model will simulate elasticity of server

IFIP/IEEE IM 2015 Workshop: 10th International Workshop on Business-driven IT Management (BDIM) 1429

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO CEARA. Downloaded on November 11,2022 at 13:45:13 UTC from IEEE Xplore. Restrictions apply.

LA RaTheslinns nreEicions 1

use. Figure 2 illustrates the main CPN model, that will be
decomposed into four subnets: Monitor AutoScaling, Scale
Up, Scale Down and Spot Termination. We will discuss these
nets in detail.

CPN Model: Instance Use Simulation
This model represents the proposed mechanism for using

Spot Instances for cost savings in elasticity. There are 4 input

parameters to the model:

e Hourly price for On Demand instance, represented by the
constant demPrice in the model.

e Hourly price for Reserved instance, represented by the
constant resPrice in the model.

e Hourly price for Spot instance. These values will be
obtained dynamically by using AWS API, during the
simulation period. To accomplish that, we use a special
programming interface for Java.

e demand() function: This function represent the demand
for servers in the auto scaling process. It will return the
number of servers needed at some point in time. It must
be customized when using the model. Figure 3 presents an
example of demand() function use. In this case, the
function will return 1 server needed for nighttime (23h to
6h) and will return 1 or more servers in daytime (6h-
22h). To compute how many extra servers will be needed,
we use a Normal distribution with average 3 and standard
deviation 0.5. This function should be adapted to reflect
each business scenario of needs for extra servers in auto
scaling.

fun demanda() =
let
val h =intTime() mod 24
val extra = normal (3.0, 0.5)

in
if h<7 orelse h> 22 then
1
else

1+floor(extra)
end;

Figure 3. Customizable demand() function example

There are 2 output values of the model:

e Total monthly cost of EC2 instances use, including
charges for all instances (Reserved, Spot and On
Demand)

e Total savings obtained by using Spot instances compared
to On Demand instances.

The CPN model will use the following elements:

e Color server: represent one instance currently turned on.
It is a tuple of 3 information (type, price, time), where
type can be res, dem or spot, to identify the purchasing
option (reserved, on demand or spot), price is the hourly
price charged for that instance, and time is the start time
of use of the instance.

e Color srv: list of active instances, representing all servers
that are currently turned on.

e Color costSave: a tuple of 2 real numbers (rl, r2) where rl
represents the total monthly cost and r2 represents the
total savings.

e Place Begin: contains one timed token to start the
simulation process at model time 0.

e Transition Open: will open the connection with the Java
programming interface and initialize the list of servers,
including a reserved instance in the list.

e Function inSrv (type, price, list): will insert one server of
given type and price to the list of active servers.

e Transition Monitor Autoscaling: a substitution transition
to model the auto scaling process (turning servers on and
off as needed), it will be discussed in detail when we
present the corresponding subnet.

e Transition Spot Termination: a substitution transition to
model the spot termination process (turning servers off
due to changes in spot prices), it will be discussed in
detail when we present the corresponding subnet.

e Place cs: used as a temporary space to add the cost of
using one server when it is turned off. At this moment,
one can compute the total hours of use of this server and
multiply by the hourly price. It will be discussed in detail
when we present the Monitor Autoscaling and Spot
Termination subnets.

e Place end: will receive a token when simulation reaches a
predefined time (720 hours = 24 hours * 30 days),
representing the end of the month being analyzed.

e Transition Close: will close the connection with the Java
programming interface and finalize the simulation
process, modeling the action of turning off all servers.

e Function addVal(list): will compute the cost of use of
each server in the list, multiplying hours of use by hourly
price. Then, it will add cost for all servers.

e Function econSpotsRemoved (list): will compute the
savings of using each spot instance in the list, multiplying
hours of use by (on demand hourly price - spot hourly
price). Then, it will add savings for all instances.

e Place EC2 Monthly cost and Spot savings: at the end of
simulation, its marking (c,s) will represent the total cost
of server use (¢) and savings using spot instances (s), the
output values of the model.

Subnet: Monitor AutoScaling

f il Tiag) > = ard i

1 then 17{)

8-
wart Moniar
\ Autoscaling

T
i

Figure 4. Monitor Auto Scaling subnet

This subnet models the auto scaling process. Figure 4
illustrates the CPN model, that implements the transition
Monitor Auto Scaling in main net. It will be executed every
hour, and monitor if there is need for turning on or off servers.
It will compare the need of servers at this time (given by
demand() function) with the number of active servers (length
of list of active servers). When demand is greater, it will put a
token in place High Use, which will drive Scale Upprocess,
that will be discussed in its own subnet. When demand is
smaller, it will put a token in place Low Use, which will drive

1430 IFIP/IEEE IM 2015 Workshop: 10th International Workshop on Business-driven IT Management (BDIM)

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO CEARA. Downloaded on November 11,2022 at 13:45:13 UTC from IEEE Xplore. Restrictions apply.

Scale Down process, that will be discussed in its own subnet
as well. If demand is neither greater nor smaller, it will only
wait until next hour, by putting a token in Wait place that will
only be available in the next hour. It also checks the end of
simulation, and in this case, puts a token in place End.

Subnet: Scale Up

This subnet will model actions needed to add servers to
our server list with the least cost possible. Figure 5 illustrates
subnet Scale Up.

Y s
L =denirke] S Wewdemiviee, 3}
3 tavneh emand |
— " a
D)
ervers

[s<demPuce] Tn/OGE 4—/) e

[rp—— K

A » LaunchSpot o€

NS A S
Figure 5. Scale Up subnet
Table 1. Parameters for obtaining spot prices in AWS

Simulation Region AZ [Instancetype
1 South America sa-east-la Windows m3.medium
2 South America sa-cast-la Windows m3.2xlarge
3 South America sa-east-la Linux/UNIX m3.medium
4 South America sa-east-la Linux/UNIX m3.2xlarge
5 US-East us-east-1c Windows m3.medium
6 US-East us-east-1c Windows m3.2xlarge
7 US-East us-east-1¢ Linux/UNIX m3.medium
8 US-East us-east-1c Linux/UNIX m3.2xlarge

The policy implemented by this subnet is to obtain the
current Spot price, place a bid a little above, and verify which
has the lowest price, the spot instance or the on demand
instance. It is important to notice that on-demand instances are
always available, this way this subnet will always add one
server to our server list. The CPN model will use the
following elements:

e Place High use: has a token when scale up is needed

e Transition GetPrice: will compute an optimal bid for a
spot instance. To do that, it will use the Java interface to
obtain the current spot price for the model time passing
parameters (simulation#, modelTime) where simulation#
is a simulation number, that represent a set of parameters
needed to get spot prices, and model Time represents the
day of month and time to obtain spot price. Tables 1 and 2
illustrate input parameters of Java interface.

e Place Spot Price: holds the bid for the spot instance,
which will be the spot price (a real number) returned by
the Java interface plus $0.0001. This way, we ensure that
our bid is high enough to obtain a spot instance, at the
least possible cost.

e Transition Launch Demand: fired when marking in Spot
Price place is higher than on demand price. In this case, it
is not interesting to use spot instance, since it is currently
more expensive. It will insert a server purchased using
“on demand” option in the list of active servers, with the
corresponding demPrice (input parameter). To do that, it
will use inSrv function (type, price, list), that will also

save the model time when the server was inserted in the
list and update the list of active servers.

e Transition Launch Spot: fired when marking in Spot Price
place is lower than on demand price. In this case, it is
interesting to use spot instance, since it is currently
cheaper. It will insert a server purchased using “spot”
option in the list of active servers, with the corresponding

price, that is, the bid. It will use inSrv function.
Table 2. Model time and corresponding time of day in simulation

Model Time Day of Month Hour of day
1 1 0
2 1 1
24 1 23
25 2 0
720 30 23

Subnet: Scale Down

This subnet will model actions needed to remove servers
from our server list, selecting first the servers with the greatest
cost possible, to keep using the cheaper ones. Figure 6
illustrate subnet Scale Down.

[lengt~ Is>1"

PiCK Server

Most
Expensive

(c+costherver,serv),
E+aconSpoL{zary)}

Figure 6. Scale Down subnet
The policy implemented by this subnet is to select the
server with the maximum price charged hourly, and turn it off.

It also implements the policy of always leaving ON the server

covered by a reservation (where the client paid an upfront fee

to get better prices for the hourly charges). This way, even
when there is low utilization, there will be one server
available. This was built to model real world scenarios in

business applications, where the application is available 24

hours a day, always. It can also model the situation where the

‘reserved’ server is actually an internally hosted server, as in

hybrid clouds. In fact, it is noticeable that in terms of cost, in

some scenarios the cost of a ‘reserved’ server is equivalent to

an internally hosted server [18].

The CPN model will use the following elements:

e Place Low use: has a token when scale down is needed
Transition Pick server: will pick the most expensive
server, to be turned off. It will use function maxPrice(list)
that will select the server with the lowest hourly price.
This function excludes reserved instances, because
turning them off will make no difference in the final cost,
since they are always charged for the whole period,
regardless of being used or not.

e Transition Turn Off: will exclude from the server list the
selected server. Will also compute total cost for using that

IFIP/IEEE IM 2015 Workshop: 10th International Workshop on Business-driven IT Management (BDIM) 1431

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO CEARA. Downloaded on November 11,2022 at 13:45:13 UTC from IEEE Xplore. Restrictions apply.

instance and the savings by using spot instances compared
to on-demand instances, using functions CostServer and
EconSpot

e Function CostServer will compute cost of using the server
using the expression: Cost of use = (hours of use) *
(hourly price)

e Function econSpot will compute savings using the
expression: Savings = (hours of use) * ((hourly price for
on-demand) — (hourly price for spot)). It is important to
notice that savings will only be computed when turning
off spot instances, since they will be zeroed when turning
off on-demand instances (hourly price for on-demand =
hourly price)

Subnet: Spot Termination

This subnet will model regular verification of Spot price
market. As mentioned before, spot instances are automatically
terminated by AWS when Spot price rises above the price the
client is currently paying for them. Figure 7 illustrates subnet

Spot Termination.
—1

Chack for Spot
lerrurzhon

ek

2xput Ik

acten

L

r

ond"TFER. {(simncTime])} pacantacccel
PO o3 O JReLomEIntgece e TS stn
aud

k| | remowes 3xsi)s, si
Fiteciedy

(Suol ™
&)
Tuin off =)T
i spol rice
raised
A
- L i el
o oS pariensesrd(. 3)}
X
SR,
(cs]
T G e

Figure 7. Spot Termination subnet

The CPN model will use the following elements:

e Transition Check for Spot Termination (simulation#,
modelTime): will be executed every two hours, to monitor
spot prices and simulate termination of spot instances. To
do that, it will use the same Java interface to obtain the
current spot price that was used in transition GetPrice in
subnet Scale Up. It will only be fired when there is at
least one spot instance in the list of active servers. After
fired, It will wait for 2 hours, by putting a token in Wait
place that will only be available after 2 hours. It also
checks the end of simulation, and in this case, puts a
token in place End.

e Place Spot Price: holds the current spot price returned by
the Java interface.

e Transition Turn Off if spot price raised: will check the list
of active servers looking for spot instances with hourly
prices lower than the current spot prices. These instances
will be terminated (turned off). It will wuse
valSpotsRemoved() and econSpotsRemoved() to compute
the cost of use of the terminated instances and savings as
computed in Scale Down subnet. The only difference is
that Turn Off if spot price raised may remove several

servers from the list of active servers at once. In our
model, the termination of these instances may cause
several Scale Up transitions to be fired, if utilization
levels are still high.

IV. CASE STUDY AND RESULT ANALYSIS

We did a case study to validate our framework proposal.

The experimental design of the simulations followed a 2*

factorial design. Since we used AWS Spot Instances, we

examined the factors that affected EC2 prices:

e Region-AZ: AWS currently offers their services in 9
different geographic locations around the world, named
Regions: US-East (N. Virginia), US-West (Oregon), US-
West (N. California), EU (Ireland), EU (Frankfurt), Asia
Pacific (Singapore), Asia Pacific (Tokyo), Asia Pacific
(Sydney), and South America (Sdo Paulo). Each region
has at least 2 availability zones (AZs), which are
datacenters in different locations connected through low-
latency links. Each region has its own pricing table for
On-demand and Reserved Instances. Spot Instances price
may also vary by AZs in each region.

e Operating System: AWS has different prices for hours of
use of EC2 instances depending on the O.S: Linux/Unix,
SUSE Linux and Windows.

e Instance type: EC2 prices vary upon the size of the
instance. For our experiments, we considered m3.medium
(1 vCPU, with computational power of 3 ECU, 3.75 GB
of memory and 1HD type SSD with a storage capacity of
4GB) and m3.2xlarge (8vCPU, with computational power
of 26 ECU, 30 GB of memory and 2HD type SSD with a
storage capacity of 80 GB)

Table 4 illustrate factors and levels in the experimental design

of our simulations
Table 4. Factors and levels

Factor Levels Selected for Experiment
Region-AZ Over 20 South America (1a), US-East (Ic)
0S 3 Windows, Linux/Unix

Instance type Over 20 m3.medium, m3.2xlarge

In each of the selected 2° = 8 scenarios we ran 10
simulations to obtain statistical information. The evaluated

scenarios are shown in Table 5.
Table 5. Simulations using framework

Hourly price
Scena Region A (O] Instance On Reserved Upfront
rio z type demand (1 year all investment
upfront)
1 South la Windo m3.medi 0,1580 0,1410 $1.235,00
America ws um
2 South la Windo m3.2xlar 1,2650 1,1205 $9.816,00
America ws ge
3 South la Linux/ m3.medi 0,0950 0,0509 $446,00
America UNIX um
4 South la Linux/ m3.2xlar 0,7610 0,4063 $3.559,00
America UNIX ge
5 US-East Ic Windo m3.medi 0,1330 0,0855 $749,00
ws um
6 US-East lc Windo m3.2xlar 1,0640 0,6809 $5.965,00
ws ge
7 US-East Ic Linux/ m3.medi 0,0700 0,0425 $372,00
UNIX um
8 US-East lc Linux/ m3.2xlar 0,5600 0,3412 $2.989,00
UNIX ge

Savings using spot instances
Figure 8 presents simulation results for savings. For the
South America region, the simulation returned higher savings

1432 IFIP/IEEE IM 2015 Workshop: 10th International Workshop on Business-driven IT Management (BDIM)

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO CEARA. Downloaded on November 11,2022 at 13:45:13 UTC from IEEE Xplore. Restrictions apply.

for m3.medium instances. In fact, for m3.2xlarge instances,
there was no savings at all when using Linux/UNIX. That
happened because in the whole period of simulation spot
prices were higher than on demand prices ($1.2240 for spot
and $0.7610 for on demand). In this case, our model did not
use spot instances and consequently there were no savings.

For US-East region, simulation returned higher savings (up to
67%) than in South America region, and the highest value was
found in m3.2xlarge instances. This happened because spot
prices remained consistently low during the simulation period
(50.0641 for spot and $0.5600 for on demand).

m3.2xlarge

US Easl

South America

Figure 8. Simulation results

Face validity

Validating a framework, such as we have presented here,
is a multi-year effort. To start however, we applied a face
validity questionnaire to 20 IT managers. The questionnaire
included three questions, each of which leads to a hypothesis
to be tested. We presented the framework theory to managers
before the evaluation. Statistical inference was used to test the
hypotheses (binomial statistical test with a 5% significance
level). Our initial results are shown in Table 8. Face validity
appears to be established in the three dimensions. Managers
considered the framework to be “useful”, “effective” and
“preferable” to their current way of decision making. We plan

to expand and repeat this test in a future work.
Table 8. Hypotheses to test theory face validity

Y% Is there statistically
Hypothesis who significant evidence to
agree accept hypothesis?
Preference: Manager prefers the framework to the current 100 yes
process
Utility: Manager considers the framework useful 100 yes
Effectiveness: In modeling a business scenario, manager
can identify value elements in cost reducing to decision- 90 yes
making support

V. CONCLUSION AND FUTURE WORK

Cloud Managers need solutions to support an effective
cost reduction and resource optimization, to support the
decision-making process.

In this work we proposed a Petri net framework to
evaluate cost reduction using spot instances. We proposed a
set of policies in auto scaling that can help in cost reduction of
cloud services. Our main contributions were the framework
proposal and the simulation scenarios evaluation.

Our preliminary studies indicated that using spot
instances in auto scaling process may help reduce cloud
services costs. We proceeded an initial face validity exercise,
where results were promising. Managers evaluated our

framework as useful, preferable and effective. The results of
our presented framework can be used by managers as a
criterion in decision-making about cloud computing adoption.
As a threat to validity, we can cite the limited number of
considered scenarios and simulations. Albeit these limitations,
our initial results were promising.

This paper focus was the cost reduction treatment. We
plan to expand and use our framework to support decision-
making in laaS, PaaS and SaaS scenarios evaluation. As
future work, we plan to execute extensive simulations to
complete our framework validation, and a possible extension
of the framework to handle SLA violations and fines.

REFERENCES

[1] NIST - National Institute of Standards and Technology. NIST Definition
of cloud computing. Gaithersburg, MD, 2009.

[2] Ribas M., Lima A. S., De Souza J. N., Moura A., Sousa F. R. C., Fenner
G. Assessing Cloud Computing SaaS adoption for Enterprise
Applicationsusing a Petri net MCDM framework, Ninth Business-driven
IT Management Workshop-BDIM, pp. 1-6, 2014.

[3] Han, R. et al. Enabling cost-aware and adaptive elasticity of multi-tier
cloud applications. Future Generation Computer Systems, 2014.

[4] Manvi, S. S., Shyam, G. K. Resource management for Infrastructure as
a Service (IaaS) in cloud computing: A survey. Journal of Network and
Computer Applications, pp. 424-440, 2014.

[5] Amazon. Amazon EC2 Spot Instances. Fonte: Amazon Web Services:
http://aws.amazon.com/ec2/purchasing-options/spot-instances. Accessed
in December, 2014.

[6] Gartner Group. Magic Quadrant for Cloud Infrastructure as a Service.
Fonte: http://www.gartner.com/technology/reprints.do?id=1-
1UKQQA6&ct=140528&st=sb. Accessed in December, 2014.

[7] Peterson, J.L. Petri net theory and the modelling of systems. Prentice
Hall, 1981.

[8] Jensen, K., Kristensen, L. Coloured Petri Nets - Modelling and
Validation of Concurrent Systems. Springer, 2009.

[9] CPN Group. (2013). CPN Tools. Fonte: http://cpntools.org/.Accessed in
November 2013.

[10] McGougha, A.S. et al. Comparison of a cost-effective virtual Cloud
cluster with an existing campus cluster. Future Generation Computer
Systems, 2014.

[11] Alfonso, C, et al. An economic and energy-aware analysis of the
viability of outsourcing cluster computing to a cloud. Future Generation
Computer Systems, 2013.

[12] Malawski, M. et al. Cost minimization for computational applications on
hybrid cloud infrastructures. Future Generation Computer Systems,
2013.

[13] Han, H. et al. Cashing in on the Cache in the Cloud. IEEE Transactions
on Parallel and Distributed Systems, 2012.

[14] Baars, T. et al. Chargeback for cloud services. Future Generation
Computer Systems, p. http:/dx.doi.org/10.1016/j.future.2014.08.002,
2014.

[15] Javadi, B. et al. Characterizing spot price dynamics in public cloud
environments. Future Generation Computer Systems, 2013.

[16] Tang, S. et al. A Framework for Amazon EC2 Bidding Strategy under
SLA Constraints. IEEE Transactions on Parallel and Distributed
Systems, 2014.

[17] Sousa, E. et al. A Modeling Approach for Cloud Infrastructure Planning
Considering Dependability and Cost Requirements. IEEE Transactions
on Systems, Man, and Cybernetics: Systems, 2014.

[18] e-fiscal. Computing e-Infrastructure cost estimation and analysis -

Pricing and Business Models. In: Financial Study for Sustainable
Computing e-Infrastructures, 2013.

IFIP/IEEE IM 2015 Workshop: 10th International Workshop on Business-driven IT Management (BDIM) 1433

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO CEARA. Downloaded on November 11,2022 at 13:45:13 UTC from IEEE Xplore. Restrictions apply.

