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ABSTRACT
Millimeter wave multiple-input-multiple-output (MIMO) achieves
the best performance when reliable channel state information is used
to design the beams. Most channel estimation methods proposed in
the literature, however, ignore practical hardware impairments such
as carrier frequency offset (CFO) and may fail under such impair-
ment. In this paper, we present a joint CFO and channel estimation
method based on tensor modeling and compressed sensing. Simula-
tion results indicate that the proposed method yields better channel
recovery performance than the benchmark and that it is more robust
to a small number of channel measurements.

Index Terms— MmWave, MIMO, tensor, compressed sensing,
channel estimation

1. INTRODUCTION

Millimeter wave (mmWave) multiple-input-multiple-output (MIMO)
is a fundamental technology for future mobile communications sys-
tems. It is expected to enable data transfer in the order of gigabits
per second, therefore significantly increasing system capacity. Al-
though beam training already enables satisfactory data transfer
performance [1, 2], considering the full channel state information
(CSI) could significantly enhance spectral efficiency [3]. In this
sense, the channel estimation problem becomes critical.

Some proposed mmWave channel estimation methods take
CFO into account. In [4], a CFO-aware iterative channel estimation
method based on the least squares (LS) solution is presented for a
single-input-single-output mmWave system based on single-carrier
frequency-domain equalization. In [5], a beam alignment technique
which considers the effects of CFO is presented. This method relies
on beam directions hashing, which allows to easily track energy
changes across directions and find the correct alignment. A channel
estimation technique robust to both CFO and phase noise is intro-
duced in [6]. Therein, the received signal is modeled as a tensor
and the channel parameters are estimated by a customized orthog-
onal matching pursuit (OMP) algorithm. However, the methods
presented in [5, 6] are applicable only to analog filtering-based sys-
tems. To fill this gap out, the work of [7] presented a joint CFO and
channel estimation method based on maximum likelihood and OMP
for a hybrid analog/digital (A/D) system.

In this paper, we solve the CFO-distorted channel estimation
problem for a hybrid A/D point-to-point massive MIMO system.
We assume a time-variant small-scale fading gain, unlike the chan-
nel models in [6, 7]. The evolution of the phase errors during some
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time slots allows us to model the antenna measurements at the re-
ceiver as a multidimensional (tensor) signal. With such a model,
we propose a tensor-based joint CFO and channel estimation tech-
nique. An appealing property of tensor methods is the relaxed con-
ditions on tensor decomposition uniqueness compared to matrices.
This property, determined by Kruskal’s Theorem [8] for the canon-
ical polyadic (CP) decomposition, has been shown to bring perfor-
mance improvements, including reduction of training samples [9]
and improved parameter estimation accuracy [10]. Simulation re-
sults indicate that the presented tensor-based method offers better
channel estimation performance and exhibits robustness to CFO for
a relatively small number of channel measurements.

The following notation is adopted throughout the paper: Lower-
case bold-face letters x denotes vectors, upper-case letters matri-
ces, e.g. X , uppercase calligraphic letters tensors, e.g. X . The
(i, j)th entry of X is written as [X]i,j . The transpose and the con-
jugate transpose (Hermitian) of X are denoted by XT, XH, respec-
tively. The M -dimensional identity matrix is represented by IM
and the M -dimensional null matrix by 0M . IL×L×L denotes the
L-dimensional third-order identity tensor [11]. The matrix opera-
tor Diag(·) transforms an input vector into a diagonal matrix. The
Moore-Penrose pseudo-inverse is denoted by (·)†. The Kronecker
product, the Khatri-Rao product and the n-mode product are referred
to as ⊗, � and ×n, respectively. The Euclidean norm, the statistical
expected value operator and the determinant are respectively denoted
as ‖·‖2, E [·] and det(·). Complex Gaussian distribution of indepen-
dent random variables with null mean and covariance matrix σ2 is
denoted as CN (0, σI). For more details on tensor notation, we refer
the reader to [11, 12].

2. SYSTEM MODEL

Let us consider a narrowband point-to-point mmWave hybrid A/D
MIMO system model. We consider the narrowband assumption for
simplicity purpose although it is not practical for mmWave systems.
Yet, we believe the proposed tensor approach will make it possi-
ble to consider frequency selective channels in future work. The
transmitter (TX) employs a uniform linear array (ULA) of Nt an-
tennas connected to Lt RF chains, while the receiver (RX) captures
the transmitted signals with a ULA of Nr antennas connected to
Lr RF chains. We consider simultaneous transmission of Ns data
streams to the RX. To this end, the TX applies a precoding filter
F̄ ∈ CNt×Ns and the RX a combining filter W̄ ∈ CNr×Ns . The
hybrid A/D transceiver architecture splits the precoding filter into a
RF analog precoder FRF ∈ CNt×Lt and a baseband digital precoder
FBB ∈ CLt×Ns such that F̄ = FRFFBB. Likewise, the combin-
ing filter is implemented as the cascade of WRF ∈ CNr×Lr and
WBB ∈ CLr×Ns with W̄ = WRFWBB. We consider that the ana-
log filters are implemented by a phase-shifting network, hence the
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Fig. 1. At each kth time slot, the TX employs Mt precoders and
the RX makes Lr measurements. The channel matrix and CFO are
assumed to be constant within a time slot.

elements of the corresponding matrices are constrained to have con-
stant modulus [13, 14].

We consider the narrowband clustered model contributing with
L propagation paths [15] to model mmWave channels. We assume
that the geometrical information (angles of arrival and departure)
remain constant over Np time slots, while the small-scale fading
changes for every kth time slot, k = 1, . . . , Np. Therefore, the
(Nr × Nt)-dimensional channel matrix at the kth time slot can be
written as

Hk =
√

NtNr
L

L∑
`=1

αk,`ar(θ
r
`)at(θ

t
`)

H = ArΓkA
H
t , (1)

where αk,` denotes the small-scale fading complex gain relative
to path `, ar(θ

r
`) ∈ CNr and at(θ

t
`) ∈ CNt the steering vec-

tors evaluated at elevation θr
` (θt

`) arrival (departure) angle at the
receiver (transmitter), respectively. The receive and transmit ar-
ray manifold matrices are written as Ar = [ar(θ

r
1), . . . ,ar(θ

r
L)]

and At = [at(θ
t
1), . . . ,at(θ

t
L)], respectively. The diagonal matrix

Γk =
√

NtNr
L

Diag(αk,1, . . . , αk,L) bears the small-scale fading
complex gains. We assume that each path has the same average
power, i.e., αk,` is modeled as a circular symmetric Gaussian ran-
dom variable with zero mean and unit variance. In practice, the
narrowband assumption is quite limiting and simplifies the CFO
problem. In spite of that, we consider this assumption to validate the
applicability of our tensor formulation. More practical scenarios,
including wideband communications, are envisaged as future work.

We assume that the angles of arrival and departure are on a uni-
form grid with Gr and Gt points. Without loss of generality, we
consider Gr = Nr and Gt = Nt. Under these assumptions, the
channel matrix Hk can be approximated as Hk ≈ ΨrΓ̃kΨ

H
t , where

Ψr and Ψt stand for Nr- and Nt-dimensional discrete Fourier ma-
trices [9], and Γ̃k ∈ CNr×Nt is a L-sparse matrix whose non-zero
elements correspond to the angles of arrival and departure pairs. To
deal with out-of-grid angles, one could, for example, increase the
number of grid points.

Hardware imperfections such as carrier frequency offset (CFO)
may distort the transmit/receive signals, and, thus, standard channel
estimation methods may not be able to deal with these frequency
offsets and fail to properly estimate the channel’s parameters. To
tackle this issue, we consider a CFO term in our signal model, which
is presented in the following. For modeling simplicity reasons, we
consider CFO only at the receive side. Also, we assume that a single
oscillator drives all the RF chains at a given end. As a result, there is
a unique CFO in the system.

3. CHANNEL ESTIMATION

Let us consider that the downlink channel estimation (from TX to
RX) occurs during Np consecutive time slots, as illustrated in Fig-
ure 1. At each slot k ∈ {1, . . . , Np}, the TX employs a sequence of

Mt precoding vectors (each corresponding to a measurement) in suc-
cessive time instants. The RX applies simultaneously its Lr combin-
ers, each one corresponding to a RF chain, to measure the received
signals. To simplify the analysis, we assume the TX sends the same
symbol s = 1 in all transmission, as in [16]. In the kth time slot, the
channel measurement acquired by the receiver for the pth combiner
wp ∈ CNr and the qth precoder fq ∈ CNt is

yp,q,k = wH
pHkfqe

jΩk + wH
pbq,k, k ∈ {1, . . . , Np}, (2)

where Ωk = 2π fCFO
Fs

k denotes the error phase term due to CFO, Fs
the sampling frequency, and bq,k ∈ CNr the additive white Gaus-
sian vector noise term, with bq,k ∼ CN (0Nr , σ

2
nINr ). After Mt

transmissions, the RX accumulates MtLr measurements into a ma-
trix:

Yk = W HCkF + W HBk ∈ CLr×Mt , k ∈ {1, . . . , Np}, (3)

where Ck = Hke
jΩk denotes the effective channel matrix,

W = [w1, . . . ,wLr ] ∈ CNr×Lr the combining matrix, F =
[f1, . . . ,fMt ] ∈ CNt×Mt the precoding matrix, and Bk =
[b1,k, . . . , bMt,k] ∈ CNr×Mt the additive noise matrix. Now, stack-
ing (3) for allNp time slots into Ȳ = [Y1, . . . ,YNp ] ∈ CLr×MtNp ,
we have

Ȳ = W HC̄(INp ⊗ F ) + W HB̄ (4)

C̄ = [C1, . . . ,CNp ], B̄ = [B1, . . . ,BNp ] ∈ CNr×MtNp

Due to the structure of C̄, which comes from the fading, one can-
not directly apply compressed sensing based approaches to (1). To
exploit this structure, we identify (4) as a tensor unfolding, and then
apply tensor techniques to estimate the channel considering CFO. It
is important to note that model (2) implies the CFO at the RX re-
mains approximately constant while the TX switches between the
Mt precoders. We assume that the phase errors induced by CFO
are invariant in a given time slot. Modeling phase errors across slots
is more important as they increase at a rate that is Mt times higher
than the in-slot phase errors. The assumption allows us to develop a
tractable tensor formulation and is validated through simulations.

To see that (4) is a tensor unfolding, let us first concatenate (3)
into a third-order tensor Y ∈ CLr×Mt×Np . It means that, instead
of stacking the Yk matrices into a wide matrix, we stack them into
a rectangular cuboid, such that [Y]·,·,k = Yk, k ∈ {1, . . . , Np}.
Likewise, we can concatenate the effective channels into a tensor
C ∈ CNr×Nt×Np , such that [C]·,·,k = Ck, k ∈ {1, . . . , Np}. Thus,
using n-mode tensor products [11], it can be shown that Y and C are
written as

Y = C ×1 W H ×2 F T + B, (5)

C = IL×L×L ×1 Ar ×2 A∗t ×3 Γ, (6)

where B = B̄ ×1 W H is the filtered additive noise tensor, B̄
is the tensor obtained by reshaping B̄, and Γ ∈ CNp×L de-
notes the effective small-scale fading gain matrix, defined as

[Γ]k,` =
√

NtNr
L

ejΩkαk,`. We identify (5) and (6) as Tucker
and rank-L CP models, respectively. In fact, the 1-mode unfolding
of (5) is exactly (4).

In the following, we describe a method to estimate the channel
parameters Ar, At and Γ from the received signal tensor (5) over
Np time slots. First, we need to rewrite (5) in a convenient manner.
In this direction, let us replace (6) into (5) to get the following CP
model for the measured signal tensor Y:

Y = IL×L×L ×1 W HAr ×2 F TA∗t ×3 Γ + B. (7)
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Due to the sparse spatial response, the array manifold matrices can
be expanded into their sparse representation [17]: Ar = ΨrSr and
At = ΨtSt, where Sr ∈ CGr×L and St ∈ CGt×L denote sparse
coefficient matrices [9]. Hence, (7) can be rewritten as a rank-L CP
model with factor matrices Q(1) ∈ CLr×L, Q(2) ∈ CMt×L and
Q(3) ∈ CNp×L:

Y = IL×L×L ×1 W HΨrSr︸ ︷︷ ︸
Q(1)

×2 F
TΨtSt︸ ︷︷ ︸
Q(2)

×3 Γ︸︷︷︸
Q(3)

+B. (8)

For later use, let us write the 3-mode unfolding of Y as follows [11]:

[Y](3) = Γ
[
(W HAr)� (F TA∗t )

]T
+ [B](3) ∈ CNp×LrMt , (9)

where [B](3) ∈ CNp×LrMt is the 3-mode unfolding of B.
To reconstruct the channel coefficients C from Y , one needs first

to estimate the sparse coefficient matrices Sr, St, rebuild the array
manifold matrices Ar, At, and then estimate the effective fading ma-
trix Γ. Let Ŝr, Ŝt and Γ̂ denote the estimated matrices. Then, we
rebuild the array manifold matrices as Âr = ΨrŜr and Ât = ΨtŜt
and the effective fading matrix can be estimated by solving a LS
problem, as will be shown in Section 3.2. The channel coefficients
can thus be estimated as

Ĉ = IL×L×L ×1 ΨrŜr︸ ︷︷ ︸
Âr

×2 ΨtŜt︸ ︷︷ ︸
Ât

×3Γ̂. (10)

Under some conditions one can uniquely factorize Y into (8) and
estimate its factor matrices Q(1), Q(2) and Q(3) up to trivial per-
mutation and scale ambiguities [12]. In the next section, we discuss
these conditions in more detail.

3.1. Uniqueness

The uniqueness of the CP model (8) is related to Kruskal’s Theo-
rem [8]. In [18], this Theorem is applied to 3rd order CP tensors
whose factor matrices are sparse. In (8), however, only the the fac-
tor matrices corresponding to the two first tensor modes are sparse.
Therefore, we adapt the results of [18] to our scenario. Let mr and
mt denote upper bounds on the number of nonzero elements per col-
umn of Sr and St, respectively. Also, let kSr , kSt and kΓ denote the
Kruskal rank of the matrices indicated in the sub-index. Model (8)
is essentially unique (i.e., its factor matrices can be uniquely recov-
ered up to scalar and permutation ambiguities [12]) if the sufficient
conditions below is satisfied:

min(Lr, kSr ) + min(Mt, kSt ) + min(Np, kΓ) ≤ 2L+ 2 (11)
Lr ≥ 2mr, Mt ≥ 2mt.

From the definition of the fading matrix Γ in (6) and the i.i.d. fading
assumptions, we have that kΓ = min(Np, L). Since, in practice,
the number of multipaths is typically smaller than the number Np
of frame time slots, then kΓ = L and the uniqueness condition (11)
simplifies to:

min(Lr, kSr ) + min(Mt, kSt ) ≤ L+ 2 (12)
Lr ≥ 2mr, Mt ≥ 2mt.

A discussion on the minimum number of measurements can be
drawn from (12) following the same reasoning presented in [9].
Note that condition (12) provides a trade-off between the number
Lr of RF chains at RX and the number Mt of beams at TX ensur-
ing the recovery of the channel parameters from the (compressed)
measurement tensor Y given in (8).

3.2. CP-OMP Algorithm

Assuming that the uniqueness conditions given in (12) are satisfied,
one can estimate the factor matrices Q(1), Q(2), and Q(3) up to scal-
ing and permutation by applying a CP decomposition algorithm such
as the alternating least squares algorithm (see [12, 19, 20]). Once
these matrices are estimated, we need to estimate Sr and St. To this
end, we formulate the following compressed recovery problems:

sr,opt = arg min
sr
‖sr‖0 s.t.

∥∥∥q(1) − [IL ⊗ (W HΨr)]sr

∥∥∥
2
≤ σ,

(13)

st,opt = arg min
st
‖st‖0 s.t.

∥∥∥q(2) − [IL ⊗ (F TΨt)]st

∥∥∥
2
≤ σ,

(14)

where sr = vec(Sr), st = vec(St), q(1) = vec(Q(1)), q(2) =
vec(Q(2)), and σ is a small positive threshold, which may be differ-
ent for (13) and (14). Since these problems are non-convex, they can
be relaxed to `1 norm minimization problems [17] and solved using
any standard compressed recovery algorithm. In this work, we con-
sider the well-known OMP, which gives us the following estimates:
Ŝr = unvec(sr,opt) and Ŝt = unvec(st,opt). Then, we rebuild the
array manifold matrices as Âr = ΨrŜr and Ât = ΨtŜt. To find an
estimate of Γ, we formulate the following LS problem considering
the unfolding representation (9):

min
Γ

∥∥∥∥[Y](3) − Γ
[
(W HÂr)� (F TÂ∗t )

]T∥∥∥∥
F

, (15)

where [Y](3) = [vec(Y1), . . . , vec(YNp)]T ∈ CNp×LrMt . The so-

lution to (15) is given by Γ̂ = [Y](3)

[
(W HÂr)� (F TÂ∗t )

]T†
.

Once all parameters have been estimated, one can reconstruct
the channel with (10). The proposed channel estimation method is
referred to as CP-OMP, and it is summarized in Algorithm 1. Note
that the knowledge of the channel rank L is assumed to compute the
CP decomposition of Y . Any CP model order estimation technique,
e.g., CORCONDIA [21], can be used to this end.

Algorithm 1 CP-OMP
Require: Y , W , F , Ψr, Ψt, L
1: Estimate Q(1), Q(2), and Q(3) fromY by applying a CP decomposition

algorithm (e.g. [12, 19, 20]);
2: Solve (13) and (14) by OMP to get Ŝr and Ŝt, respectively;
3: Build up Âr = ΨrŜr and Ât = ΨtŜt;
4: From (15), obtain an LS estimate of Γ;
5: Reconstruct the channel tensor from (10).

4. SIMULATION RESULTS

In this section, we present some results from computer simulations
carried out to evaluate the performance of the proposed channel es-
timation method. As a benchmark, we consider the OMP algorithm
applied independently to each time slot, which can be considered as
a “naive” solution since it ignores the CFO diversity across the dif-
ferent slots. As figures of merit, we consider the normalized mean
square error (NMSE) of the estimated channel and the achievable
rate, which is given by

R = log2 det
[
INs + SNR

Ns
W H

BBW
H
RFHFRFFBBF

H
BBF

H
RFH

HWRFWBB

]
The figures of merit are calculated relative to the actual channel ma-
trix taken at the first time slot (k = 1), and the transceiver filters are
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Fig. 2. NMSE vs. SNR. Mt = 32 transmissions.
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Fig. 3. NMSE vs. Mt. SNR = 0 dB.

computed with respect to the estimated channel matrices. Figures
2–5 were obtained by averaging the results of 1000 independent ex-
periments.

The simulation parameters are: Nr = 16, Nt = 64 antennas,
Lr = Lt = 6 RF chains, Ns = 2 data streams, Np = 10 time slots,
L = 8 multipaths, fc = 28 GHz carrier frequency, 10 ppm CFO,
which gives fCFO = 280 kHz, Fs = 2 MHz sampling frequency.
During the channel estimation phase, the elements of combiner W
and precoder F matrices are respectively generated as 1√

Nr
ejϕr

and 1√
Nt
ejϕt , with phase ϕr, ϕt randomly (discrete uniform dis-

tribution) selected from the set of Nq = 32 quantized phase shifts
{0, 2π

Nq
, . . . ,

2π(Nq−1)

Nq
}.

We first investigate the NMSE performance of CP-OMP and
compare it to the benchmark. In Figure 2, the NMSE is computed
as a function of the SNR for Mt = 32 transmissions. This result
indicates that CP-OMP exhibits superior channel estimation perfor-
mance from −8 to 10 dB. At 0 dB SNR, for example, the perfor-
mance difference is 2 dB. To study how does the number Mt of
transmissions affects the NMSE, it is calculated for varying Mt and
0 dB SNR in Figure 3. As expected from CS theory, the NMSE de-
creases asMt grows. We observe that for the given parameters, there
is a performance gap of roughly 2 dB from Mt = 12 to Mt = 32.
This performance improvement provided by CP-OMP can be ex-
plained as follows: (i) the proposed method exploits the CFO di-
versity by combining data embedded in all Np time slots, while the
benchmark considers the information of only a single time slot. (ii)
The CP model of the measurement signal tensor allows to breakdown
a NrNt-dimensional CS problem into Nr- and Nt-dimensional CS
sub-problems. Note that the high-dimensional CS problem is more
sensitive to noise than the lower dimensional CP-OMP problems.
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Fig. 4. Achievable rate vs. SNR. Mt = 32 transmissions.
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Fig. 5. Achievable rate vs. Mt. SNR = 0 dB.

This comes from the fact that CP-OMP begins with a CP decompo-
sition algorithm, which already rejects some noise.

We also conduct computer simulations to assess the rate perfor-
mance of our mmWave MIMO system model with imperfect CSI.
In Figure 4, the achievable rate is calculated in terms of SNR. As a
reference, we plot the achievable rate with perfect CSI knowledge.
For Mt = 32 transmissions, this figure reveals that CP-OMP and
the benchmark OMP exhibits close performance. In particular, we
note that both methods perform close to the perfect CSI upper bound
for high SNR. However, what is the influence of Mt on the achiev-
able rate performance? To find out, we compute the achievable rate
as a function of this parameter in Figure 5. We note that, for rela-
tively small transmission numbersMt, the performance gap between
the channel estimation increases. For example, for Mt = 8 trans-
missions, the performance gap is 3 bits/s/Hz. We conclude that our
CP-OMP approach is more robust to a small number of channel mea-
surements, represented by Mt in this scenario.

5. CONCLUSION

This paper tackled the mmWave MIMO channel estimation problem
under CFO impairments. We proposed a tensor-based channel esti-
mation method called CP-OMP which takes the CFO diversity into
account to ameliorate performance. Our simulation results indicate
that CP-OMP yields better NMSE and achievable rate performance
than the matrix-based OMP benchmark. Also, our results suggest
that CP-OMP is more robust to CFO for a small number of chan-
nel measurements. Perspectives of this work include the general-
ization of the proposed tensor-based channel estimator to cope with
frequency-selective channels and other hardware impairments.
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