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Abstract—Tensor contraction is a multilinear algebra operator that
defines an inner product between two tensors with compatible dimensions.
In this work, we show that the MIMO-OFDM (Multiple-Input Multiple-
Output - Orthogonal Frequency Division Multiplexing) received signal
can be modeled by means of the tensor contraction operator. This tensor
model is obtained without requiring additional spreading and provides
a new, compact, and flexible formulation of a MIMO-OFDM system.
Moreover, exploiting it at the receiver side facilitates the design of several
types of receivers based on iterative LS (Least Squares) or recursive LS.
We compare the proposed iterative and recursive LS based receivers
with and without enumeration and show their advantages over the
traditional ZF-FFT (Zero Forcing - Fast Fourier Transform) receiver for
MIMO OFDM. This structured tensor model also opens new research
directions. Moreover, our generalized tensor contraction formulation can
be extended to different multi-carrier MIMO systems.

I. INTRODUCTION

OFDM (Orthogonal Frequency Division Multiplexing) is the most
widely used multicarrier technique in current wireless communication
systems. It is robust in multipath propagation environments and
has a simple and efficient implementation [1], [2]. Using the FFT
(Fast Fourier Transform) the complete frequency band is divided
into smaller frequency subcarriers. The use of the cyclic prefix
mitigates the ISI (Inter-Symbol Interference) and the ICI (Inter-
Carrier Interference). Typically, the OFDM receiver is implemented
in the frequency domain based on ZF (Zero Forcing) filter. More
advanced solutions are proposed in [3]. Furthermore, optimal training
and channel estimation for OFDM systems are proposed in [4], [5].

Tensor signal processing offers an improved identifiability, unique-
ness and more efficient denoising compared to matrix based tech-
niques. A good overview of multilinear algebra, tensor decomposi-
tions, and applications of tensor signal processing are provided in [6],
[7], and [8]. Previous publications on tensor models for multicarrier
communications systems [9], [10], [11], and [12] do not exploit the
channel correlation between the adjacent subcarriers.

In [9], a MIMO (Multiple-Input Multiple-Output) multicarrier
system is modeled using tensor algebra and the PARATUCK2 tensor
decomposition resulting in a novel space, time, and frequency coding
structure. Similarly in [10], trilinear coding in space, time, and
frequency for MIMO-OFDM systems is proposed based on the CP
(Canonical Polyadic) tensor decomposition. By exploiting tensor
models, semi-blind receivers have been introduced for multicarrier
communications systems in [12] and [11]. All these publications
use additional spreading that leads to a significantly reduced spectral
efficiency to create the tensor structure.

An inner product between two N -way tensors is also known
as a tensor contraction [8]. Such a contraction operator has been
introduced in [13]. Moreover, it is used in [14] to model two-hop
MIMO relaying systems. Furthermore, in [15] an application of the
contraction operator to MIMO-OFDM systems is presented. However,
the transmitted signal tensor is assumed to be Khatri-Rao coded with
a CP structure. In this work, we present the contraction between
an uncoded signal tensor and a channel tensor for OFDM systems,
yielding the same spectral efficiency as matrix based approaches
(since no additional spreading is used).

Since we do not use the Khatri-Rao coding structure as in [15]
we do not get the corresponding the CP structure for the transmit
signal tensor. By exploiting this new tensor structure, we can reshape
it into the factorization of a sum of Kharti-Rao products. This
problem can be solved by means of generalized techniques based
on iterative and recursive least squares originally proposed for blind

source separation. Such techniques are presented in [16] and [17]. By
extending these techniques, we propose a joint channel and symbol
estimation algorithm for OFDM systems based on iterative and
recursive least squares, with and without enumeration. Our computer
simulations show the advantages of the proposed receives compared
to the traditional ZF-FFT (Zero Forcing - Fast Fourier Transform)
receiver.

The rest of this paper is organized as follows. In Section II we
present the notation and some tensor algebra definitions used later in
this paper. In Section III we introduce the proposed system model
and the proposed receiver solutions. We evaluate the performance of
the proposed receivers based on simulations presented in Section IV.
In Section V we conclude this paper.

II. TENSOR ALGEBRA AND NOTATION

We use the following notation. Scalars are denoted either as capital
or lower-case italic letters, A, a. Vectors and matrices, are denoted as
bold-face capital and lower-case letters, a,A, respectively. Tensors
are represented by bold-face calligraphic letters A. The following
superscripts, T , H ,−1, and + denote transposition, Hermitian transpo-
sition, matrix inversion and Moore-Penrose pseudo matrix inversion,
respectively. The outer product, Kronecker product, and Khatri-Rao
product are denoted as ◦, ⊗, and ⋄, respectively. The operators
||.||

F
and ||.||

H
denote the Frobenius norm and the higher order

norm, respectively. Moreover, the n-mode product between a tensor
A ∈ C

I1×I2...×IN and a matrix B ∈ C
J×In is defined as A×n B,

for n = 1, 2, . . . N [7]. A super-diagonal or identity N -way tensor
of dimension R × R . . . × R is denoted as IN,R. Similarly, an
identity matrix of dimension R×R is denoted as IR and we denote
a vector of ones of length R as 1R. The n-th 3-mode slice of a tensor
A ∈ C

I×J×N is denoted as A(.,.,n) and accordingly one element
of this tensor is denoted as A(i,j,n). The operator diag(.) transforms
a vector into a diagonal matrix and the operator vec(.) transforms a
matrix into a vector.

The contraction A •mn C between two tensors A ∈ C
I1×I2...×IN

and C ∈ C
J1×J2...×JN represents an inner product of the n-th

mode of A with the m-th mode of C, provided that In = Jm [8].
Contraction along several modes of compatible dimensions is also
possible and accordingly the contraction along two modes is denoted

as A •m,l

n,k C. The contraction along two modes between the tensors

A ∈ C
I×J×M×N and C ∈ C

M×N×K is defined as [8],

(A •1,23,4 C)(i,j,k) ,
N
∑

n=1

M
∑

m=1

A(i,j,m,n) · C(m,n,k) = T (i,j,k).

This example represents a contraction of the 3-rd and 4-th mode of
A with the 1-st and 2-nd mode of C, respectively.

Using the concept of the generalized unfoldings [18], [15], it can
be shown that the tensor contraction satisfies

[A •1,23,4 C]([1,2],3) = [A]([1,2],[3,4]) · [C]([1,2],3) =

[A •2,14,3 C]([1,2],3) = [A]([1,2],[4,3]) · [C]([2,1],3).

In the generalized unfolding [A]([1,2],[3,4]) the 1-st mode varies faster
than the 2-nd mode between the rows and the 3-rd mode varies faster
then the 4-th mode between the columns. A visualization of this
generalized unfolding and the index ordering is depicted in Fig. 1.

The CP tensor decomposition decomposes a given tensor into the
minimum number of rank one components. This CP decomposition
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Fig. 1: Visualization of the generalized unfolding [A]([1,2],[3,4]).

of a 3-way, low rank noiseless tensor A ∈ C
I×J×M into R rank

one components is defined as

A = I3,R ×1 F 1 ×2 F 2 ×3 F 3,

where F 1 ∈ C
I×R,F 2 ∈ C

J×R, and F 3 ∈ C
M×R are the factor

matrices [7], [6]. For a tensor with a CP structure its unfoldings can
be expressed in terms of factor matrices. For instance, the 3-mode
unfolding of the tensor A, i.e., [A]([3],[1,2]), satisfies

[A]([3],[1,2]) = F 3 · (F 2 ⋄ F 1)
T .

In a similar way, the rest of the tensor unfoldings can be defined.

III. MIMO-OFDM SYSTEM

We assume a MIMO-OFDM system with MT transmit and MR

receive antennas. All signals and equations are in the frequency
domain. Moreover, N is the number of subcarriers and K denotes the
number of transmitted frames. The received signal in the frequency

domain Ỹ ∈ C
N×MR×K after the removal of the cyclic prefix is

defined by the means of the contraction operator

Ỹ = H̃ •1,22,4 S̃ + Ñ .

The frequency selective propagation channel is represented by a

channel tensor H̃ ∈ C
N×N×MR×MT as in [15]. For each receive-

transmit antenna pair the channel transfer matrix is a diagonal matrix

and this represents the corresponding slice of the tensor H̃, i.e.,

H̃(.,.,mR,mT ) = diag
(

h̃
(mR,mT )

)

. The vector h̃
(mR,mT )

∈ C
N×1

contains the frequency domain channel coefficients. We assume that
the channel stays constant during the K frames. The transmit signal

tensor is denoted as S̃ ∈ C
N×MT ×K and Ñ ∈ C

N×MR×K

represents the additive white Gaussian noise in the frequency domain.
Using the generalized unfoldings for the received signal in the

frequency domain we get

[Ỹ ]([1,2],[3]) = [H̃]([1,3],[2,4])S̃([1,2],[3]) + [Ñ ]([1,2],[3]) ∈ C
N·MR×K .

(1)

In [15] we have shown that the ([1, 3], [2, 4]) generalized unfolding
of the channel tensor can be expressed as

[H̃]([1,3],[2,4]) = H̄ ⋄ (1T
MT

⊗ IN ) ∈ C
N·MR×N·MT ,

where H̄ ∈ C
MR×N·MT is a matrix containing all non zero elements

of the tensor H̃ and it is defined as,

H̄ =









h̃
(1,1)T

h̃
(1,2)T

. . . h̃
(1,MT )T

...
...

...
...

h̃
(MR,1)T

h̃
(MR,2)T

. . . h̃
(MR,MT )T









(2)

=
[

H̃
(1)
R H̃

(2)
R . . . H̃

(MT )
R

]

∈ C
MR×N·MT . (3)

The matrix S̃([1,2],[3]) ∈ C
N·MT ×K is the transpose of the 3-mode

unfolding of S̃. For notational simplicity, we define the following
block matrix S̄

S̄ = S̃
T

([1,2],[3]) =
[

S̃
(1)

S̃
(2)

. . . S̃
(MT )

]

∈ C
K×N·MT ,

(4)

where S̃
(mT )

∈ C
K×N contains the symbols transmitted via the

mT -th antenna. By substituting the corresponding tensor unfoldings
in equation (1), we get

[Ỹ ]([1,2],[3]) =
(

H̄ ⋄ (1T
MT

⊗ IN)
)

· S̄
T
+ [Ñ ]([1,2],[3]). (5)

The above equation satisfies the CP decomposition of a noisy tensor.
By applying an inverse unfolding for the received signal in the
frequency domain, we get after the removal of the cyclic prefix

Ỹ = I3,N·MT
×1 (1

T
MT

⊗ IN )×2 H̄ ×3 S̄ + Ñ . (6)

Our goal is to jointly estimate the channel and the symbols, i.e., H̄
and S̄ in equation (6). Note that all factor matrices are flat resulting
in a degenerate CP model in all three modes. Therefore, it is difficult
to estimate the channel and the symbols by simply fitting a CP model
to the received signal tensor in (6).

Moreover, we assume that the symbol matrix consists of data and
pilot symbols, S̄ = S̄d + S̄p. The matrix S̄d and S̄p represents
the data symbols and the pilot symbols, respectively. The matrix S̄d

contains zeros at the positions of the pilot symbols. Accordingly, the
matrix S̄p contains non-zero elements only at the pilot positions.
Typically, there are three ways of arranging the pilot symbol within
the OFDM blocks (block, comb, and lattice-type) [1]. As we assume
that the channel stays constant during the K frames, we send pilots
only within in the first frame with subcarrier spacing of ∆F between
two pilot symbols. This results in ⌊ N

∆F
⌋ pilot symbols per OFDM

block. In comparison, other publications such as [9], [10], [11], and
[12] use N pilot symbols per OFDM block. A reduced number of
pilot symbols can be used only if the channel correlation among
adjacent subcarriers is exploited for channel estimation.

Using the prior knowledge of the pilot symbols and their positions,
the channel in the frequency domain can be estimated. Naturally, the
channel is estimated only at those subcarrier positions where the pilot
symbols are located. Afterwards, an interpolation is applied to get the
complete channel estimate. Moreover, as shown in [4], [5] the channel
can be first estimated in the time domain and then transformed into
the frequency domain. Either way, this leads to a pilot based channel

estimate that we denote as ˆ̄Hp, or H̃p. The pilot based channel
estimate is then used to estimate the data symbols. In the rest of this
section, we discuss different ways to estimate the symbols.

Traditionally, the estimate of the symbols is obtained in the
frequency domain with a ZF receiver. In this case, the symbols
are calculated by inverting the channel matrix for each subcarrier
individually. This ZF receiver using the above defined tensor notation
is summarized in Algorithm 1.

Algorithm 1: ZF receiver

initialization H̃p;
for n = 1 : N do

ˆ̃S(n,.,.) ≈
ˆ̃H+

p(n,n,.,.)Ỹ(n,.,.);

end

Alternatively, if we compute the 1-mode unfolding ([1],[2,3]) of

the tensor Ỹ in equation (6), we get

[Ỹ ]([1],[2,3]) = (1T
MT

⊗ IN) ·
(

S̄ ⋄ H̄
)T

+ [Ñ ]([1],[3,2]) ∈ C
N×MR·K .

Tanking into account the structure of the matrices (1T
MT

⊗ IN) ∈
R

N×N·MT , H̄ in (3), and S̄ in (4), the above unfolding is

[Ỹ ]([1],[2,3]) =

MT
∑

mT =1

(

S̃
(mT )

⋄ H̃
(mT )
R

)T

+ [Ñ ]([1],[3,2]).

After transposition and omitting the noise term, we get

[Ỹ ]([2,3],[1]) ≈

MT
∑

mT =1

(

S̃
(mT )

⋄ H̃
(mT )
R

)

∈ C
MR·K×N .
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This sum of Khatri-Rao products can be resolved in a column-
wise fashion. Let ỹn ∈ C

MR·K×1 denote the n-th column of

[Ỹ ]([2,3],[1]) ∈ C
MR·K×N . After reshaping this vector into matrix

Ỹ n ∈ C
MR×K , such that ỹn = vec(Ỹ n), it is easy to see that this

matrix satisfies

Ỹ n ≈ H̃n · S̃n, (7)

where H̃n and S̃n are the n-th slice of H̃(n,n,.,.) ∈ C
MR×MT

and S̃(n,.,.) ∈ C
MT ×K , respectively. Note that Ỹ n is the n-th

slice of Ỹ(n,.,.). Using the pseudo inverse of the channel we get
the traditional ZF receiver as summarized in Algorithm 1.

Alternatively, the channel and the symbols on each subcarrier can
be estimated by means of iterative or recursive LS algorithms. Similar
algorithms were proposed in [16] and [17] for blind source separation.
We have extended the algorithms presented in [17] to our application.

Algorithm 2: Iterative Least Squares with Projection

initialization H̃p, maxIteration, minErr;
for n = 1 : N do

set i = 1, e = ∞;
while i < maxIteration or e > minErr do

¯̃
S

(i)
n = (H̃

(i−1)H
n H̃

(i−1)
n )−1H̃

(i−1)H
n Ỹ n;

S̃
(i)
n = proj

(

¯̃
S

(i)
n

)

;

if rank
(

S̃
(i)
n

)

= MT then

H̃
(i)
n = Ỹ nS̃

(i)H
n (S̃

(i)H
n S̃

(i)
n )−1;

else

H̃
(i)
n = H̃

(i−1)
n ;

end

i = i+ 1, e = ‖H̃
(i−1)
n − H̃

(i)
n ‖2F;

end
end

Algorithm 3: Iterative Least Squares with Enumeration

initialization H̃p, maxIteration, minErr;
for n = 1 : N do

set i = 1, e = ∞;
while i < maxIteration or e > minErr do

for k = 1 : K do

ŝ = arg min
s
(j)∈Ω

‖Ỹ n(.,k) − H̃
(i−1)
n s(j)‖;

j = 1, . . .MMT ;

S̃
(i)
n(.,k) = ŝ;

end

if rank
(

S̃
(i)
n

)

= MT then

H̃
(i)
n = Ỹ nS̃

(i)H
n (S̃

(i)H
n S̃

(i)
n )−1;

else

H̃
(i)
n = H̃

(i−1)
n ;

end

i = i+ 1, e = ‖H̃
(i−1)
n − H̃

(i)
n ‖2F;

end
end

The first two algorithms, namely ILSP (Iterative Least Squares
with Projection) and ILSE (Iterative Least Squares with Enumeration)
summarized in Algorithm 2 and Algorithm 3, respectively, are
iterative algorithms based on LS. Both algorithms are initialized
with the pilot based channel estimate, the maximum number of
iterations (maxIteration), and the minimum error difference between
to consecutive updates (minErr). The ILSP algorithm is essentially
an iterative version of the ZF algorithm, where in each iteration the
estimated symbols are projected onto the finite alphabet Ω of the

transmitted symbols. This finite alphabet depends on the modulation
type and the modulation order M . Details regarding the convergence
for different finite alphabets are discussed in [17]. To estimate the
symbols, we compute a pseudo inverse of the channel which leads
to the condition MR ≥ MT . On the other hand, the ILSE algorithm
does not require this condition as it estimates the symbols based on
enumeration. Equation (8) represents the enumeration or the search
over the final alphabet of symbols.

ŝ = arg min
s
(j)∈Ω

‖Ỹ n(.,k) − H̃ns
(j)‖, j = 1, . . .MMT (8)

Both algorithms update the channel only if it is possible, i.e., if the

rank of the symbol matrix S̃n ∈ C
MT×K is MT . Note that this is

not possible for all values of MT , K, and for all patterns of random
data symbols.

Algorithm 4: Recursive Least Squares with Projection

initialization H̃p, 0 ≤ α ≤ 1;
for n = 1 : N do

¯̃
Sn = (H̃

H

n H̃n)
−1H̃

H

n Ỹ n;

S̃n = proj
(

¯̃
Sn

)

;

set P (0) = IMT
, H̃

(0)
n = H̃n;

for k = 1 : K do

s = S̃n(.,k);

H̃
(k)
n = H̃

(k−1)
n +

(

˜Y n(.,k)−
˜H

(k−1)

n s
)

α+sHP (k−1)s
sHP (k−1);

P (k) = 1
α

(

P (k−1) − P (k−1)ssHP (k−1)

α+sHP (k−1)s

)

;

end
end

Algorithm 5: Recursive Least Squares with Enumeration

initialization H̃p, 0 ≤ α ≤ 1;
for n = 1 : N do

set P (0) = IMT
, H̃

(0)
n = H̃n;

for k = 1 : K do

ŝ = arg min
s
(j)∈Ω

‖Ỹ n(.,k) − H̃
(k−1)
n s(j)‖;

j = 1, . . .MMT ;

S̃n(.,k) = ŝ;

H̃
(k)
n = H̃

(k−1)
n +

(

˜Y n(.,k)−
˜H

(k−1)

n ŝ
)

α+ŝHP (k−1)ŝ
ŝHP (k−1);

P (k) = 1
α

(

P (k−1) − P (k−1)ŝŝHP (k−1)

α+ŝHP (k−1)ŝ

)

;

end
end

The remaining two algorithms, namely RLSP (Recursive Least
Squares with Projections) and RSLE (Recursive Least Squares with
Enumeration) are recursive implementations of ILSP and ISLE,
respectively. In both algorithms the channel is estimated based on
RLS (Recursive Least Squares), where α is the weighting coefficient
and P denotes the inverse correlation matrix. Due to the computation
of the pseudo-inverse of the channel matrix, MR ≥ MT should hold.
On the other hand, the RLSE algorithm is suitable for any values of
MT , MR, and K.

ILSP has the same computational complexity as traditional ZF
receivers with the added complexity of the additional iterations if the
symbol matrix has full rank. The ILSE algorithm does not compute
a pseudo-inverse of the channel matrix. However its computational
complexity comes from the enumeration and it depends on the num-
ber of antennas and the modulation order. The recursive algorithms,
RLSP and RLSE require a finite number of iterations that is equal to
N ·K. The RLSP algorithm still computes the pseudo-inverse of the

3188

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO CEARA. Downloaded on November 17,2022 at 18:03:03 UTC from IEEE Xplore.  Restrictions apply. 



channel, however the RLSE does not compute any matrix pseudo-
inverse. Therefore, the RLSE algorithm has a smaller computational
complexity.

IV. SIMULATION RESULTS

We compare the performance of the five algorithms, ZF, ILSP,
ILSE, RLSP, and RLSE using Monte Carlo simulations. First, we
consider a 2 × 2 OFDM system, with K frames, and N = 128
subcarriers. The pilot symbols are transmitted on every third sub-
carrier, ∆F = 3 and only during the first frame. Using these pilots
we obtain the pilot based channel estimate with which we initialize
all of the algorithms. The transmitted data symbols are independent
and modulated using 4-QAM modulation. The frequency selective
propagation channel is modeled accoring to the 3GPP Pedestrian A
channel (Ped A). The duration of the cyclic prefix is 32 samples
and the weighting factor α = 1. In Fig. 2 and 3 we depict the
SER (Symbol Error Rate) as a function of the Eb/N0 (energy per
bit/ noise power spectral density) in dB for K = 2 and K = 8,
respectively. Both algorithms based on enumeration, ILSE and RLSE
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Fig. 2: SER for a 2× 2 OFDM system, ∆F = 3, N = 128, K = 2.
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Fig. 3: SER for a 2× 2 OFDM system, ∆F = 3, N = 128, K = 8.

outperform the rest of the algorithms. The performance of ILSP and
RLSP is similar to the ZF performance and it depends on the number
of frames. As shown in Fig. 3, increasing the number of frames leads
to a slightly better SER as compared to ZF. Note that the transmitted
data symbols are independent and randomly drawn with no guarantee

that the matrices S̃n are of rank MT . Therefore, in many cases the
number of iterations is equal to one. In all of the other simulated
cases the algorithms converge after 3 iterations. As in [17] we also
observe that the iterative algorithms have a better performance than
the recursive ones for an increased number of frames. However, the
recursive algorithms, RSLP and RLSE, require less computational
complexity than the iterative ones, ILSP and ILSE. Moreover, for the

same simulation parameters as in Fig. 3 but taking into account only
100 realizations and Eb/N0 = 10 dB we depict the computational
time required for each algorithm in Table I. The ILSP algorithm
requires the smallest amount of time, because additional iterations
will not be computed when the symbol matrix does not have full rank.
The RLSP algorithm requires the longest time as it performs iterations
and computes a pseudo-inverse of the channel matrix. The RLSE
algorithm has the smallest computational complexity and requires a
moderate amount of time.

Algorithm ILSP ILSE RLSP RLSE
Total Time [s] 2.815 6.910 7.962 4.810

TABLE I: Computational time required for each algorithm.
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ILSE 4x4

ZF 4x2

RLSP 4x2

RLSE 4x2

Fig. 4: SER for an OFDM system, ∆F = 4, N = 512, K = 2 and
MT ×MR antennas depicted in the legend.

Furthermore, in Fig. 4 we show the SER as a function of Eb/N0

in dB for MIMO OFDM systems of dimension 4 × 4 and 4 × 2,
respectively. Here, we compare only the recursive algorithms with
respect to the ZF receiver, as they are less complex and have a
comparable performance as the respective iterative versions. The
RLSE outperforms the rest of the algorithms and it is capable of
estimating the data symbols even if MT > MR without additional
spreading as in [15].

V. CONCLUSION

In this paper, we have presented a tensor model for a MIMO-
OFDM systems based on the generalized contraction operator. The
derivation of this model facilitates the design of several types of
receivers based on iterative and recursive LS algorithms. We have
compared these algorithms with and without enumeration with the
traditional ZF receiver. ILSP and RLSP show a similar performance
as the ZF algorithm. The other two algorithms, ISLE and RLSE based
on enumeration, outperform the rest of the algorithms at the cost of
increased complexity. Both recursive algorithms, RLSE and RLSP
have less computational complexity as compared to their iterative ver-
sions. The RLSE algorithm does not perform matrix inversion, being
suitable for any configuration setup. It is capable of estimating the
data symbols even for MT ≥ MR without additional spreading. In
the future, recursive algorithms can be used to exploit the correlation
of the channel tensor, especially in time varying scenarios. Moreover,
multiple unfoldings can be exploited sequentially to capture the tensor
structure in the receiver design. Furthermore, the system can be
modified such that only specific codewords leading to rank MT

data matrices are used. This transmit strategy would guarantee that
each symbol matrix is invertible to improve the channel estimates.
Finally, it is worth mentioning that our generalized tensor contraction
formalism presented here is very general and can be extended to any
other multicarrier system, such as GFDM (Generalizes Frequency
Devision Multiplexing) or FBMC (Filter Bank Multi-Carrier) leading
to tensor based improvement of these multicarrier systems.
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