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ABSTRACT

Canonical Polyadic Decomposition (CPD), also known as
PARAFAC, is a useful tool for tensor factorization. It has found
application in several domains including signal processing and data
mining. With the deluge of data faced in our societies, large-scale
matrix and tensor factorizations become a crucial issue. Few
works have been devoted to large-scale tensor factorizations. In
this paper, we introduce a fully distributed method to compute the
CPD of a large-scale data tensor across a network of machines with
limited computation resources. The proposed approach is based
on collaboration between the machines in the network across the
three modes of the data tensor. Such a multi-modal collaboration
allows an essentially unique reconstruction of the factor matrices
in an efficient way. We provide an analysis of the computation
and communication cost of the proposed scheme and address the
problem of minimizing communication costs while maximizing the
use of available computation resources.

Index Terms— Tensor decompositions, large-scale data,
distributed computation.

1. INTRODUCTION

From Internet to large research infrastructures, the volume of data
generated by our societies is continuously increasing. A deluge
faced by the producers of these data as well as their users. The
big data issue is a significant scientific challenge that requires
deep investigations in both engineering and fundamental science.
Everyone is concerned and it is urgent to get answers to questions
such as how to store these huge amount of data? How to process and
analyze them?

Low-rank matrix factorization has received a particular attention
in recent years, since it is fundamental to a variety of mining tasks
that are increasingly being applied to massive datasets. In large
applications, matrix factorizations can involve matrices with billions
of entries. At this massive scale, distributed algorithms for matrix
factorization are essential to achieve reasonable performance [2].
However, in many disciplines, data inherently has more than two
axes of variation and can be arranged as tensors (i.e. multi-way
arrays). Computing tensor decompositions of multi-way datasets
is particularly useful to extract hidden patterns and structure in
data analytics problems. Specifically, CPD (Canonical Polyadic
Decomposition) also known as PARAFAC (Parallel factor analysis)
is an extension of a low rank matrix decomposition to tensors.

In order to compute CPD, several algorithms have been
proposed in the literature, which can be classified into three main
categories: alternating algorithms, derivative based algorithms, and
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non-iterative algorithms (see e.g. [3, 4, 5]). Recently, considering
that the data tensor can be serially acquired or the underlying process
can be time-varying, adaptive algorithms have been proposed in
[6]. And more recently, assuming that the data tensor is spatially
spread out, distributed algorithms have been introduced in [7] and
[8]. These algorithms are based on an alternating least square
(ALS) algorithm that proceeds iteratively and minimizes a criterion
(that is usually quadratic) with respect to individual factors one by
one. Then, distributed algorithms are obtained using the concept
of average consensus that has been extensively studied in computer
science and is a central topic for load balancing (with divisible tasks)
in parallel computers [9].

The need for large-scale tensor computations is increasing and
there is a huge gap to be filled. In contrast to large-scale matrix
factorization, very few works are devoted to large-scale tensors. Two
ways have been recently considered in the literature. The first one
consists in exploiting sparseness of tensors. In [10], the GigaTensor
algorithm is designed in order to minimize the number of floating
point operations and to handle the size of intermediate data in
order to overcome the intermediate data explosion problem. For
large-scale tensors the intermediate data explosion problem arises
when Khatri-Rao matrix products are implemented in a naive way.
In [10] a smart ordering of computations is proposed and explicit
computation of Khatri-Rao matrix product is avoided. In addition, a
way to implement the proposed scheme in the distributed computing
frameworks MapReduce and Hadoop is proposed by the authors and
then, from extensive simulations, linear scalability on the number of
machines is claimed. Note that the data explosion problem can also
be handled by exploiting sparseness of both data and latent factors
as in [11, 12, 13].

The second class of methods consists in a subdivision of
the large-scale tensor into smaller ones. Then factor matrices
are reconstituted from the estimated sub-factors. The work
in [14] is motivated by the success of random sampling-based
matrix algorithms. The large-scale tensor is under-sampled several
times, then the different sub-tensors are processed in parallel and
eventually the results are combined in a clever way. In order to
overcome permutation indeterminacies, all the different sub-tensors
are enforced to overlap in a common set of indices in all the three
modes of the tensor. The merging operation is guaranteed to be
successful only if the random samples (sub-tensors) fulfill CPD
identifiability conditions. In [1], sub-division of the original tensor
is achieved in a deterministic way; a grid decomposition is proposed.
CPD is first performed for each sub-tensor in order to get a an
alternative representation that allows avoiding Khatri-Rao matrix
products. Then, grid-CPD performs as a decentralized computation
method where at each step parallel machines have to communicate
with a central server. There is no direct collaboration between the
involved machines. In [15], the authors have introduced the notion
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of collaboration in the grid. In this set-up, the computation is
really distributed. The central server only initiates the process by
sending data to the machines in the network and merges the results
at the end of the computation process. During the computation
process, the central server can allocate its own resources to other
tasks. Moreover, thanks to this full collaboration and by introducing
overlapping between sub-tensors, uniqueness of the decomposition
with indeterminacies as in the standard CPD can be guaranteed.
However, collaboration was restricted to two modes and overlapping
induced loss of efficiency (increase of the dimensions and the
number of sub-tensors).

This paper introduces a new way for computing a grid-CPD
of a large-scale data tensor that ensures essential uniqueness and
perfect reconstruction of the factor matrices. The main idea
of the proposed approach is to allow collaboration between the
machines in the network across the three modes of the tensor.
To cope with the multi-way nature of the data, multi-graphs are
used to model the network. Due to direct collaboration between
machines, fulfilling CPD uniqueness conditions is not required
for each sub-tensor. We provide an analysis of the computation
and communication cost of the proposed scheme and address the
problem of minimizing communication costs while maximizing the
use of available computation resources.
Notations: Vectors are written as boldface lower-case letters
(a,b,· · · ), matrices as boldface upper-case letters (A,B,· · · ), and
tensor as calligraphic letters (X ,Y, · · · ). A

T stands for the
transpose of A whereas A

H stands for its complex conjugate. The
operator ◦ denotes the outer product between vectors, while� stands
for the Khatri-Rao (columnwise Kronecker) product. The Hadamard
(element-wise) product is denoted by the ∗ symbol. For a three-way
tensor X ∈ C

I×J×K , I , J and K are referred to as the mode-1,
mode-2 and mode-3 dimensions of X , respectively. The operator
�1 denotes the mode-1 concatenation of any two tensors X and Y
having the same mode-2 and mode-3 dimensions. This operation is
similarly defined to denote concatenation along the other modes.

2. PROBLEM SETTING

Consider a large-scale tensor X ∈ C
I×J×K , i.e. a tensor with a

total number of entries IJK that can easily be of order of billions.
The CPD of X , denoted by X = [[A,B,C]], is given by [16, 17]:

X =
R∑

r=1

ar ◦ br ◦ cr, (1)

where A = [a1, . . . ,aR] ∈ C
I×R, B = [b1, . . . ,bR] ∈ C

J×R and
C = [c1, . . . , cR] ∈ C

K×R are the factor matrices associated with
the CPD of X , and R denotes the tensor rank. A sufficient condition
for the essential uniqueness of the CPD was first established by
Kruskal in [18], and states that A, B and C can be uniquely
estimated (up to column permutation and scaling) if kA+kB+kC ≥
2R + 2, where k(·) denotes the Kruskal-rank, or “k-rank”, of its
matrix argument. Shortly, k(A) is equal to r if every set of r columns
of A is linearly independent. In what follows, we work under the
assumption that CPD uniqueness for X holds. Usually, the matrices
A, B, and C can be estimated by computing an approximation to
the rank-R CPD of X , i.e.:

min
A,B,C

∥∥∥X −
R∑

r=1

ar ◦ br ◦ cr

∥∥∥
2

F
. (2)

The traditional way for carrying out such a computation is to resort
to an alternating least squares algorithm (ALS) where estimations
of A, B, and C are obtained by alternatively solving three different
linear least squares (LS) problems. Despite its conceptual simplicity,
ALS involved Khatri-Rao matrix products and multiplications of
matrices that cannot be handled when the tensor exhibits large
dimensions since computation and storage resource can easily
become insufficient. Apart from complexity issues, ALS-based
algorithms present a very slow convergence due to the huge number
of unknowns involved in the estimation of the large factor matrices
A, B and C.

Consider a central server having at its disposal a large-scale
data tensor X to be factorized. This server is connected to a
dense network of L machines (cores or independent computers)
with limited processing powers. Our goal is to perform the CPD
of X across the network by using all the in-network computation
resources in an optimal way while making the central server
available to other tasks. The central server and the L machines,
where computations are achieved, are nodes of a network connected
through reliable high speed data links, so that data exchanges may be
considered noise-free. The central server first subdivides the tensor
and assigns each sub-tensor to a given machine. Once computation
is achieved, the L machines send their results back to the central
server where global factor matrices are built. In contrast to the
grid-CPD in [1], the central server is not involved in the computation
process and available to perform other tasks at the same time. The
proposed set-up is therefore fully distributed while that of [1] is
simply decentralized.

3. PROPOSED SOLUTION

The central server generates different (possibly overlapped) data
sub-tensors X (�1,�2,�3) ∈ C

I�1
×J�2

×K�3 , �1 = 1, . . . , L1, �2 =
1, . . . , L2, �3 = 1, . . . , L3, of much smaller dimensions, by
partitioning X in a dense 3-D tensor grid. The dimensions of
the sub-tensors are related as follows: I1 + . . . + IL1 ≥ I ,
J1+. . .+JL2 ≥ J , K1+. . .+KL3 ≥ K. Equality in a given mode
occurs if and only if the sub-tensors do not overlap in that mode.
The sub-tensors X (�1,�2,�3) can be concatenated along different
pair of modes to form mode-1, mode-2, and mode-3 sub-tensors
X

(�1)
1 ∈ C

I�1
×J×K , X (�2)

2 ∈ C
I×J�2

×K , X (�3)
3 ∈ C

I×J×K�3 ,
which are defined, respectively, as

X
(�1)
1 =

[
X

(�1,1)
1 �3 · · · �3 X

(�1,L3)
1

]
(3)

where X
(�1,�3)
1 =

[
X (�1,1,�3) �2 · · · �2 X

(�1,L2,�3)
]
,

X
(�2)
2 =

[
X

(�2,1)
2 �1 · · · �1 X

(�2,L1)
2

]
(4)

where X
(�2,�1)
2 =

[
X (�1,�2,1) �3 · · · �3 X

(�1,�2,L3)
]
,

X
(�3)
3 =

[
X

(�3,1)
3 �2 · · · �2 X

(�3,L2)
3

]
(5)

where X
(�3,�2)
3 =

[
X (1,�2,�3) �1 · · · �1 X

(L1,�2,�3)
]
.

An interesting fact resulting from the CPD trilinearity is as follows:
if the CPD of X is essentially unique and provided that k

A
(�1) =

kA, k
B

(�2) = kB, and k
C

(�3) = kC, each mode-i sub-tensor, i =
1, 2, 3, admits an exact CPD given by:

X
(�1)
1 = [[A(�1),B,C]], X

(�2)
2 = [[A,B(�2),C]]

X
(�3)
3 = [[A,B,C(�3)]]. (6)

Now, the central server assigns a sub-tensor X (�1,�2,�3) to
each of the L available machines. To guarantee a one-to-one
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mapping between the sub-tensors and the machines, each machine
is uniquely labeled by the triad (�1, �2, �3) and is associated with the
corresponding sub-tensor X (�1,�2,�3). Therefore the total number
L of machines is equal to L1L2L3. According to (6), from
their respective sub-tensors, the machines having the same i-th
coordinate, i = 1, 2, 3, can collaborate to estimate their common
sub-factor matrix in mode-i. Therefore the adjacency relations
between the machines evolve according to the mode of interest.
To capture this behavior, we adopt multi-layer graphs, or simply
multi-graphs, for representing the network [19, 20]. For this purpose,
let G be a multi-layer graph which contains 3 individual graph layers
G

(i), i = 1, 2, 3, where each layer G
(i) is a undirected graph

consisting of a common vertex set V , with cardinality L, and a
specific edge set E(i). Each layer is associated with a mode of
the tensor to be decomposed. In addition, each layer is constituted
with Li connected components of L/Li vertices, each connected
component being a star graph1. More precisely, the nodes labeled
(l1, l2, l3) and (l′1, l

′

2, l
′

3) belongs to the same component of G
(i)

if and only if li = l′i. They are adjacent only if one of them is
an internal node and the other is a leaf of a tree. Therefore, each
layer can be viewed as a set of parallel star sub-networks, each star
sub-network constituting a connected component of the graph. As
it is common for tensor decomposition, data processing is to be
carried out in an alternating way. The layers of the multi-graph are
to be considered one after the other. In time, the network topology
switches periodically between parallel star subnetworks (see Fig. 1).

X
(1,1,1)

X
(1,1,L3)

X
(L1,1,L3) X

(L1,L2,L3)

X
(1,L2,L3)

X
(L1,L2,1)

X
(1,L2,1)

X
(L1,1,1)

(l1, 1, 1) (l1, l2, l3) (l1, L2 − 1, l3 − 1)

(l1, L2, L3 − 1)

(l1, L2, L3)

Fig. 1. Left: Subdivision of a large-scale tensor in small
sub-tensors X (l1,l2,l3 each one being associated to a machine
labeled (�1, �2, �3). Right: �1-th star subnetwork of layer 1
associated to the tensor mode 1.

By exploiting the degrees of freedom provided by the three
layers G(i), i = 1, 2, 3, of the multi-graph G, the problem consists in
finding A

(�1), �1 = 1, . . . , L1, B(�2), �2 = 1, . . . , L2, and C
(�3),

�3 = 1, . . . , L3 by solving the three following sets of LS problems:

min
A

(�1)

∥∥∥X (�1)
1 − [[A(�1),B,C]]

∥∥∥
2

F
, �1 = 1, . . . , L1, (7)

min
B(�2)

∥∥∥X (�2)
2 − [[A,B(�2),C]]

∥∥∥
2

F
, �2 = 1, . . . , L2, (8)

min
C

(�3)

∥∥∥X (�3)
3 − [[A,B,C(�3)]]

∥∥∥
2

F
, �3 = 1, . . . , L3. (9)

Each set of LS problems is associated with disjoint subsets of
machines and therefore can be solved in parallel. For instance, the
L1 LS problems in mode-1 are solved independently by L1 subsets
of machines working in parallel. The same applies to the two other

1The choice of a star topology is not restrictive. According to the available
resource any other kind of topology can be adopted.

LS problems. Moreover, fast computations can be performed on
small sub-tensors at each machine.
Let us define X

(�1,�2,�3)

(1)
∈ C

J�2
K�3

×I�1 , X
(�1,�2,�3)

(2)
∈

C
K�3

I�1
×J�2 , and X

(�1,�2,�3)
(3) ∈ C

I�1
J�2

×K�3 as the matrices

obtained by unfolding (“matricization” of) the sub-tensors X (�1)
1 ,

X
(�2)
2 and X (�3)

3 along mode-1, mode-2 and mode-3, respectively.
Note that these matrices collect different rearrangements of the same
data contained in the sub-tensor X (�1,�2,�3). With these definitions,
we can recast each one of the LS problems (7)-(9) as summations
over smaller LS subproblems, as follows:

J
A

(�1) = min
A

(�1)

L2∑
�2=1

L3∑
�3=1

∥∥∥X(�1,�2,�3)

(1)
− (B(�2)

�C
(�3))A(�1)T

∥∥∥2

F︸ ︷︷ ︸
J
(�2,�3)

A
(�1)

,

J
B

(�2) = min
B

(�2)

L1∑
�1=1

L3∑
�3=1

∥∥∥X(�1,�2,�3)

(2)
− (C(�3)

�A
(�1))B(�2)T

∥∥∥2

F︸ ︷︷ ︸
J
(�1,�3)

B
(�2)

,

J
C

(�3) = min
C

(�3)

L1∑
�1=1

L2∑
�2=1

∥∥∥X(�1,�2,�3)

(3)
− (A(�1)

�B
(�2))C(�3)T

∥∥∥2

F︸ ︷︷ ︸
J
(�1,�2)

C
(�3)

.

The solution that minimizes J
A

(�1) (resp. J
B

(�2) and J
A

(�3) ) can
then be written as:

A
(�1)T =

⎛
⎝ 1

L2L3

∑
�2,�3

Γ
(�2,�3)

A
(�1)

⎞
⎠

−1 ⎛
⎝ 1

L2L3

∑
�2,�3

Ψ
(�2,�3)

A
(�1)

⎞
⎠

=
(
Γ

A
(�1)

)
−1

Ψ
A

(�1) (10)

B
(�2)T =

⎛
⎝ 1

L1L3

∑
�1,�3

Γ
(�1,�3)

B(�2)

⎞
⎠

−1 ⎛
⎝ 1

L1L3

∑
�1,�3

Ψ
(�1,�3)

B(�2)

⎞
⎠

=
(
Γ

B
(�2)

)
−1

Ψ
B

(�2) (11)

C
(�3)T =

⎛
⎝ 1

L1L2

∑
�1,�2

Γ
(�1,�2)

C
(�3)

⎞
⎠

−1 ⎛
⎝ 1

L1L2

∑
�1,�2

Ψ
(�1,�2)

C
(�3)

⎞
⎠

=
(
Γ

C
(�3)

)
−1

Ψ
C

(�3) (12)

where Γ
(�2,�3)

A(�1) = B
(�2)HB

(�2) ∗ C
(�3)HC

(�3) ∈ C
R×R,

Γ
(�1,�3)

B
(�2) = C

(�3)HC
(�3)H ∗ A

(�1)HA
(�1) ∈ C

R×R, Γ
(�1,�2)

C
(�3) =

A
(�1)HA

(�1)H ∗ B
(�2)HB

(�2) ∈ C
R×R, Ψ

(�2,�3)

A
(�1) = (B(�2) �

C
(�3))HX

(�1,�2,�3)
(1) ∈ C

R×I�1 , Ψ
(�1,�3)

B(�2) = (C(�3) �

A
(�1))HX

(�1,�2,�3)
(2) ∈ C

R×J�2 , and Ψ
(�1,�2)

C(�3) = (A(�1) �

B
(�2))HX

(�1,�2,�3)

(3)
∈ C

R×K�3 .

The estimation of {A(1), . . . ,A(L1)}, {B(1), . . . ,B(L2)}, and
{C(1), . . . ,C(L3)} is carried out in three steps. First, the L1

connected components of G
(1) operate in parallel to estimate

A
(1), . . . ,A(L1). Second, the L2 connected components of G

(2)

operate in parallel to estimate B
(1), . . . ,B(L2). Finally, the L3

connected components of G
(3) operate in parallel to estimate

C
(1), . . . ,C(L3). Thanks to the star topology adopted herein, the

averaging operations involved in (10), (11), and (12) can be carried
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out in two steps2. First, the leaves of the star sub-network send their
data to the internal node of the corresponding sub-network and then
the averaged quantities are sent back to the leaves.

Identifiability issues: Strictly local computations of a CPD of
the (�1, �2, �3)-th node requires satisfying the following necessary
condition for the identifiability of the triplet {A(�1),B(�2),C(�3)}
at each node [23]:

min(J�2K�3 , I�1K�3 , I�1J�2) ≥ R. (13)

This condition may not always hold, especially for small sub-tensors
where the dimensions are too small compared to the number R
of hidden factors to be identified from the global data tensor.
By allowing collaboration along the three modes, identifiability
conditions are improved by relaxing the necessary constraints on
the sub-tensor dimensions at each node. In this case, the necessary
condition turns out to be

min
( ∑

�2,�3

J�2K�3 ,
∑
�1,�3

I�1K�3 ,
∑
�1,�2

I�1J�2

)
≥ R, (14)

which is clearly less restrictive than the previous one. Moreover,
thanks to the multi-mode cooperation between the machines in
the proposed scheme, permutation and scaling indeterminacies
are similar to those occurring in the standard CPD. Thus, the
reconstruction of the global factor matrices at the central server can
be done without resorting to additional structural constraints such as
anchor [14] or overlapping [15] sub-tensors.

Communication and computation costs: The overall computation
cost of the proposed scheme is similar to that of the centralized
scheme (standard ALS applied to the large-scale tensor). However,
the cost per machine can be significantly lowered. For instance, for a
large cubic tensor (I = J = K, I > 102) and considering a uniform
sampling of the tensor so that Il = Jl = Kl = mI , with m < 1,
the communication and computation costs are given in Table 1:

Table 1. Complexity evaluation per machine and per iteration for an
I × I × I tensor of rank R.

Method Computation cost Communication cost
Centralized 6RI3 -
Distributed 6mRI3 3R2 + 3mRI

Now let us define by q the ratio between the power required for
achieving one floating operation and that for transmitting one real
value. Assuming that q << I2, the ratio between the per machine
consumptions Ed and Ec in the distributed and the centralized
schemes, respectively, is given by: Ed

Ec
≈ (1 + q

2I2
)m ≈ m < 1.

This means that the reduction of power consumption per machine
follows the reduction of the tensor dimensions.
From Table 1, we can note that the additional power consumption
is due to communications. Indeed at each ALS iteration, each
machine (�1, �2, �3) has to transmit three R × R matrices (Γ

A
(�1) ,

Γ
B

(�2) , Γ
C

(�3) ) and three rectangular matrices (Ψ
A

(�1) ∈

C
R×I�1 ,Ψ

B
(�2) ∈ C

R×J�2 , Ψ
C

(�3) ∈ C
R×K�3 ). The overall

communication cost per iteration is then given by:

C = 3R2L+R
∑

�1,�2,�3

(I�1 + J�2 +K�3).

2For arbitrary topologies, exact averaged quantities can be obtained using
the finite-time average consensus protocol designed in [21]. In particular,
it has been shown that consensus can be achieved in two steps when the
topology is restricted to be strongly regular [22].

We can conclude that the communication cost grows linearly
with the number of machines, meaning that the proposed scheme
is scalable in terms of communication cost. Moreover, by
appropriately selecting the dimensions of the sub-tensors, one can
significantly reduce the communication cost per node.

Optimizing the sub-tensors’ dimensions: Given a number L of
available machines, one have to minimize the communication cost
per machine so that the necessary identifiability conditions are
fulfilled. The dimensions of the sub-tensors and the parameters Li

are obtained by solving the following integer programming problem:

minimize 1
L1L2L3

∑
�1,�2,�3

(I�1 + J�2 +K�3)

s.t.
∑
�1

I�1 ≥ I,
∑
�2

J�2 ≥ J,
∑
�3

K�3 ≥ K, L1L2L3 ≤ L
∑

�2,�3

J�2K�3 ≥ R,
∑

�1,�3

I�1K�3 ≥ R,
∑

�1,�2

I�1J�2 ≥ R.

This problem is NP-hard. A more tractable solution can be obtained
if we adopt a uniform sampling for each mode, i.e. I�1 = m1I ,
J�2 = m2J , and K�3 = m3K. Table 2 gives the optimal
configuration for a cubic tensor obtained by solving the above
problem relaxed to the case of uniform sampling for each mode.

Table 2. Optimal number and dimensions of sub-tensors for
different numbers of available machines for a 103×103×103 tensor
( Cm= communication cost per machine;R= rate of machines used).

� machines Sub-tensor size (L1, L2, L3) Cm R (%)
20 500× 334× 334 (2, 3, 3) 1468 90
40 334× 334× 250 (3, 3, 4) 1218 90
60 334× 250× 200 (3, 4, 5) 1084 100
80 250× 250× 200 (4, 4, 5) 1000 100

100 250× 200× 200 (4, 5, 5) 950 100

Note that as the number of available machines increases a more
efficient use of the resources is obtained and the communication cost
per node is reduced, corroborating the relevance of optimizing the
sampling of the data tensor across the three modes.

4. CONCLUSION

Performing CPD for large-scale tensors is particularly challenging.
In this paper, we have proposed a fully distributed method that
allows computing CPD across a network of machines with limited
computation resources. In the proposed scheme, the central
server does not interfere in the computation process and can
achieve other tasks at the same time. The machines in the
network collaborate with each other according to the three modes
of the tensor. Such a multi-modal collaboration is captured by
a multi-graph whose layers have several connected components.
Due to this full collaboration, improved necessary identifiability
conditions are achieved and the global factor matrices can be
reconstructed in an efficient way. However, a communication
overhead is introduced. Hopefully, the communication cost grows
linearly with the number of machines and the dimensions of the
sub-tensors. Additionally, optimizing the sampling of the tensor
across the three modes yields a significant reduction of this overhead
while maximizing the use of the available computation resources.
Extension to tensors of higher orders is straightforward although the
proposed optimization problem becomes more challenging. Future
works include resources optimization for heterogeneous networks
of machines having different computation capabilities, extension to
other tensor factorization, and exploitation of sparsity and structural
properties of the factor matrices.
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